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Abstract

It is well-known that heuristic and rigorous analysis of many in-
teger factorisation and discrete logarithm algorithms depends on our
various results about the distribution of smooth numbers. Here we
give a survey of some other important cryptographic algorithms which
rely on our knowledge and understanding of the multiplicative struc-
ture of “typical” integers and also “typical” terms of various sequences
such as shifted primes, polynomials, totients and so on.

Part 1
Introduction

1 Outline of the contents

1.1 Motivation

It is a common knowledge that number theory provides an enabling back-
ground for public key cryptography which used to design and analyze a va-



riety of algorithms. Certainly algorithms for the integer factorisation and
discrete logarithm problems are classical examples of the great importance.

However it seems that there are still many powerful results and techniques
of analytic number theory which are now known and used widely enough by
the cryptographers.

In Section 3 ee also provide a very brief and incomplete summary of some
important number theoretic results which are commonly utilized in studying
the multiplicative structure of integer numbers. These results can be found,
in much more precise forms, in [17, 44, 60] and in a many other standard
manuals. Some of them are directly used in this paper, some remain in the
background.

We do not aim to replace the systematic study of analytic number theory,
or even provide a “tool-box” of relevant results. Our purpose is much more
modest. We intent to survey various presently available results and methods.
This may assist in developing some taste and feeling of what kind of results
can be obtained within our present techniques and which ones have a chance
to be true at all. As well, it may help to develop correct heuristics for
problems that are too complicated to be tackled theoretically.

On the other hand, number theorists may wish to learn about new impor-
tant areas of applications of their skills and knowledge. Furthermore, final
tuning and adjusting already knows results and techniques may lead to new
advances of intrinsic mathematical interest. However our outline, somewhat
sketchy and simplified and also sometimes ignoring subtleties, cannot replace
a careful and systematic reading of the original cryptographic literature.

1.2 Number theory background

In the first part we give a very brief outline of some important facts about
the multiplicative structure of integer numbers. For example, we address the
following questions: Given a “typical” integer n what can we say about

e the largest prime divisor of n?

e the distibution of integer divisors of n?

We also discuss whether the answers to similar questions are much differ-
ent for “typical” integers of cryptographic interest, such as



e shifted primes p — 1;
e polynomial values f(n);

e values of the Euler function.

We note that we do not attempt to give any systematic knowledge or
even a complete survey. Rather we intent to give some taste of this area and
provide a guide to the literature. In particular, many of the presented here
results can be found with complete proofs in [17, 36, 37, 60] and many other
manuals, we also recommend the surveys [35, 41].

1.3 Cryptographic applications

We apply this knowledge to analysis of several not-so-well-known crypto-
graphic algorithms and attacks on various cryptographic protocols:

e Naive ElGamal protocol for private key exchange;

Fix-padded RSA;

Generalised Diffie-Hellman protocol;

Pratt primality certificate;

Using small exponentiation base;

Strong primes for RSA.

As in the case of the number theoretic part, we only explain the meaning
and importance of theses results and sketch the main underlying ideas.

2 Notation

2.1 General conventions

We recall that A < B and B > A are both equaivalent to A = O(B).
However the symbols ‘<’ and “>’are more convenient to use as they are



more compact and admits more informative chains like A < B = C (while
A = O(B) = C is meaningless and A = O(B) = O(C) may discard some

useful information).
The letter p (with or without a subscript) always denotes a prime number

We use € to denote a small positive parameter always allow all implied
constants to depend on it.

We use logx to denote the natural logarithm and when we write log x,
loglog z and so on, we always assume that the argument is large enough

2.2 Arithmetic functions

As usual, for an integer m > 2, we use P(m), w(m), 7(m) and ¢(m) to
denote the largest prime divisor, the number of distinct prime divisors, the
number of positive integer divisors and the Fuler function of m. We also put
P(1)=w(l)=0and 7(1) = p(1) = 1.

For a real > 0 we denote by 7(z) the number of primes p < x and by
7(x; q,a) the number of primes p < x with p = a (mod q).
2.3 Sequences of interest

The following sequences A = (a,) of integer numbers are of our primal
interest:

e A = IN, natural numbers
e A=P,={p+a : pprime}, shifted primes

e A =F ={f(n) : n=12..} where f € Z[X], polynomial
sequences

e A=d={p(n) : n=1,2...}, values of the Euler function

2.4 Smooth numbers

Colloquially, an integer n is smooth if it has only small prime divisors.



In a more precise quantitative form, we say that n is y-smooth if all prime

divisors p | n satisfy p < y.
Alternatively, n is y-smooth if and only if P(n) < y.

For a sequence A = (a,) of integer numbers we use 9(z,y;.A) to denote

the number n < x for which a,, is y-smooth.

We also denote for brevity

Y(x,y) U(z,y; N,
To(T,y) = Y(z,y;Pa),
Vi(z,y) = Y(,y; Fy),
O(z,y) = Y(v,y;9).

2.5 The Dickman—de Bruijn function

The following function p(u), known as the he Dickman—de Bruijn function

plays a prominent role in investigating smooth numbers.

It is defined by recursively by the relations:
plu) = 1, 0<u<l,

and

p(u) = 1—/1uwdv, u > 1.

[

Here we summarise some properties of p(u)

We recall that

plu) = u™ - oo
and more precisely
1 u
p(u) = (LO()) . u— oo,
ulogu

We also have
p(u) =1—logu, 1<u<2.

For example, p(e!/?) = 1/2, that is, ~ %50 of integers n have all prime
divisors up to n'/ ¢”? " This has been used by I. M. Vinogradov, and then
by D. A. Burgess, to estimate the smallest quadratic non-residue modulo a

prime p.



3 Some Fasic Number Theory Facts

3.1 Distribution of prime numbers

We recall that by the prime number theorem we have

m(z) =liz + O (ﬁ)

1
liz = / —dt
5 logt

or, in an more common Nowadays it is more commonly formulated in the
following fully equivalent form

Hz)=z+0 (ﬁ)

(again for any fixed K) in terms of the function

U(z) = Z log p.

p<z

for any fixed K, where

A very commonly committed crime against primes is the assertion that

)= g5 ()

which is wrong, although, of course,

m(x) ~ liz ~ z/log z.

An asymptotic formula for the number of primes in arithmetic progression
is given by the Siegel-Walfisz theorem . For every fixed A > 0, thereis B > 0
such that for all z > 2 and all positive integers ¢ < log” z,

lix
max |7(z;q,a) — ——| K< rex (—B lo x)
jedhax (239, a) ¢(q)' p g

For larger values of ¢, only conditional asymptotic formulas are known
(for example under the Generalised Riemman Hypotheis).
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However the Brun-Titchmarsh theorem gives an upper bound of the right
order of magnitude in for all ¢ < 2'~¢. For all x > 2 and all positive integers
¢ x

@i a) < (q)log(x/q)
(in fact it is expected to hold with just log z instead of log(x/q)).

Finally, although “individually” for every ¢, the Siegel-Walfisz theorem is
the best know result; on “average” over ¢, the Bombieri- Vinogradov theorem
gives a much better estimate. For every fixed A > 0, there is B > 0 such
that

.
m(y; q,a) — i’ < z(logx)~.
(g

)

E max max
< -
J<al/ 2o ) B y<z ged(a,q)=1

3.2 Sums and products over prime numbers

We recall the Mertens formulas

1
> - = loglogz+A+o(l), A=02614...,
p

p<z
1
Z ogp — 10g:L’—|—B—|—O(1), B=1.3325...,
p<z p
1 1
H(l_‘) _ G ey
s P log x

where v = 0.5772. .. is the Fuler-Mascheroni constant.

In particular the last formula show that the Euler function is “large”:

> p(n) > —
n n _
=¥ log logn

For any complex number s with s > 1 the Riemann Zeta-function is
given by
=1
S) = —’
() =3

n=1

then it is analytically continued to all s € C.



The Riemman Hypotheis asserts that all zeros of ((s) with 0 < Rs < 1
have Rs = 1/2. It is important to remember that there are other trivial zeros
outside of the critical strip 0 < Rs < 1.

The Generalised Riemman Hypotheis predicts that the same is true for
a much wider class of similar functions called L-functions (and even more
general functions).

There are some ezplicit formulas which related 7(x) with the zeros of ((s)
in the critical strip. In particular, the nonvanishing ((1 4+ it)((it) # 0 for
every t € IR implies that the Prime Number theorem in the form = (z) ~ liz.
In fact the more we know about the distribution of the zeros of ((s) the
better we bound on |7(z) — liz| we can get.

The best known result on the zero-free region of ((s) are due to the results
of N. M. Korobov and I. M. Vinogradov, who independently obtained them
in 1953, see [44]. Unfortunately over the last decades very little progress has
been achieved in this area.

For Rs > 1 we the Dirichlet product:

() =T
[Iii-=) = 14+ =+ — + =+
S s 2s 3s
» p » p p
=1
—n:1§—((3)-

More generally, let S be any set of primes, and let Ns be the set of
integers whose all prime factors are from S:

ne-5) -2 ®

PES neNs



Part 11

Arithmetic Structure of
Integers

4 Rough Introduction to Smoothness

4.1 Counting smooth numbers: Intuition

It is widely accepted that intuition plays a very important tool in cryptog-
raphy. For examples, many cryptographic papers readily accept that unless
there are some obvious divisibility conditions, the density of prime values
among the element of a given sequence is the same as for the set of natural
numbers. This and several similar “postulates” can be found throughout the
modern cryptographic literature. So let us where our intuition can take us
in the case of smooth numbers and see what it suggest for the behavious of
(x,y) (defined in Section 2.4).

It is natural to approximate the probability that p { n when n < z is
chosen at random by 1 —1/p.

Now assuming that all prime p < y are independent, we can suggest that
the probability that p tn for all z > p > y when n < z is chosen at random

is close to
1 1 1\ logy 1
1—~- | = 1— = 1— - ~ -
H( p) H( p)H< p> logz

T>p>y p<w p<y

by the Mertens formula, where u is given by
log
u =
logy
Thus our intuation leads us the a very nice asymptotic formula

Y(w,y) ~ %x

This formula is nice and easy to use, but annoyingly enough has a minor
disadvanrage, it is completely wrong.

or r =y (3)



This failure should certainly be taken as a precaution against uncritical
use of intuition, especially when the intuition is wrong.

4.2 Counting smooth numbers: Theoretic estimates

We start with an observation that although the intuitive approach of Sec-
tion 4.1 failed, the parameter u, given by (3), is indeed very important and
plays a very significant role in computational number theory and cryptogra-

phy.
Probably one of the most convenient and readily available for applications
results is the estimate of

U(a,y) =u My (4)
due to E. R. Canfield, P. Erdés and C. Pomerance [15] which holds in the
very large range:

u<y'™ or  y>(logx)t.

The range in which (4) holds is close to best possible as the behaviour of
¥(x,y) changes for y < log .

We note that (4) is not an asymptotic formula (since o(u) in the ex-
ponent). However an asymptotic formula for ¢ (x,y) is also possible. In
particular, A. Hildebrand [40] has given the asymptotic formula

Y(x,y) ~ plu)z (5)

for
u < exp ((log y)3/5’5) or y > exp ((loglog x)5/3+€) .
A precise estimate on the error term in (5) is given by E. Saias [54].

We note that (4) and (5) put together imply (1), which of course can be
obtained independently.

Unfortunately the range of the validity of (5) is much narrowed that that
of (4), and will probably remain this way for quite some time as by a result
of A. Hildebrand [39] the validity of (5) in the range

1<u<y'/?e or y > (logz)**e

is equivalent to the Riemann Hypothesis.
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5 Methods for Estimation of ¢ (x,y)

5.1 Counting very smooth numbers: Lattices

To estimate ¢ (x,y) for rather small values of y one can use the following
geometric approach, which has been studied in depth by A. Granville [32].
Here are some ideas behind this approach.

Let 2=p; < ... <ps <ybeall s=mn(y) primes up to y. Then we have

U(z,y) = #{(al,...,as) : pr“gx}

= #{(ala---aas) : Zailogpiﬁlogif}-

i=1
Thus our question is reduced to counting integer points in a certain tetrahe-
dron.

The number of integer points in any “reasonable” convex body is close to
its volume. However this is correct only is the volume is large compared to
the dimension s. Thus we may expect that
log® x

w(x’y) ~ S! Hj:1 10gpz

provided that y is reasonably small. This approach can and has been trans-
formed in rigorous estimate, see [32].

5.2 Upper bounds: Rankin’s method

For large values of y the above method fails to produce any useful estimate.
If only an upper bound is required, as is the case in may situations, the
so-called Rankin’s method provides a reliable and easy to use alternative.

Fix any constant ¢ > 0. Then

vy = > 1 > (5 = 2 (). (6)

n<x n<e pln=p<y
pln=p<y pln=p<y

11



The underlying “philosophy” is that most of the contribution to v (z, y) comes
from integers which are close to z, so, although (%)C is large than 1 for
such integers, it is not much larger. On the other hand, this function (%)C
decreases rapidly to 0 n much large than x. So the above two steps do
not introduce too many extras to our counting. We now take advantage of
the fact that the right hand side of (6) is an infinite series which can be

represented as a Dirichlet product, see (2). Hence

oy <ot Y = (1—]}) (7

Using the Prime Number Theorem (in the best available asymptotic form)
we estimate the product on the right hand side of (7) as a function of y and
¢ and minimize over all possible choices of ¢ > 0. This task is technically
non-trivial but is quite feasible and leads to the quasi-optimal choice

ulogu
logy

c=1-

which in turn produces a upper bound of the form (4).

Certainly the ease of application (despite some technical complications
at the end) is a main advantage of this approach. On the other hand it suits
only for upper bounds and is not able to produce a lower bound.

5.3 Asymptotic formula: Buchstab—de Bruijn recur-
rent relation

We write each y-smooth n with n > 1, as n = pm where p = P(n) is the
largest prime factor of n. We note that m < z/p and is p-smooth.

Collecting together integers n with P(n) = p we get
x
s =14 50 () )
Py

(where 1 as the front accounts for n = 1).

This identity has been used for both lower and upper bounds and even
for asymptotic formulas.

12



We now use it to “prove” the asymptotic formula (5) for each fixed u.

The “proof” is by induction over N, where u € (N, N + 1] and during
our argument we completely ignore error terms and many other things. In
particular we use the sign ~ without even specifying its precise meaning.
However, with a little bit of careful analysis, it can be re-casted into a proper
proof.

We start with an observation that for 0 < u < 1 we trivially have
U, 2'") = |].

For 1 < u < 2 (that is, for x > y > z'/?), noticing that non-y-smooth
numbers have one and only one prime divisor p > y, we get

xr
Wow) = o= ¥ #mimsaf—a- 3 |2
y<p<z y<p<z p
1 1 1
SEETDIEEEI(BD SETS O
y<p<z p ( 2<p<z p 2<p<y p

Now, by the Mertens formula,

d(r,y) ~ (1l - (loglogz —loglogy))
1
N oT (1 —log ogm) =2(1 —logu) = zp(u)

logy

We now remarls that in fact the above step has not been necessary but
is good warming exercise for the next “induction” step.

Suppose that 1 (x, 2'/*) ~ 2p(u) holds for 0 < u < N.
Consider a value of u € (N, N + 1].
Subtracting the Buchstab-de Bruijn relation (8) with y = z'/V:

s =1+ 5 v (L)
p<zl/N

from the same relation with y = z'/*:

by =1+ 3 w(gp),

p<zl/v

13



we obtain

P a) = PNy - 3 1p(fJQ

xl/u<p§xl/N p
1 (log(x/p)
~ xz|p(N)-— Z —p <lo—
I gp
since 1 | 1
og(e/p) _logz ., _ logz —1=u—1<N,

logp  logp log(x'/*)
so the induction hypothesis applies (certainly the presence of error terms is
totally ignored here).

We now recall the definition of the function ¥(z) and the prime number
theorem, see Section 3.1. Writing z = «!/*, by partial summation, we get

1/N

Z 1 (log(x/p)> /”T (log:c 1) di(z)
ot/ <peat/n P logp at/u log 2 zlog 2
B 1/N

* log x dz
p —1
1 1
2l/u og 2 zlog 2z

v dt
N

sloat ™ = (o) = ol =0T ) = stu)e

which concludes our “proof”.

Q

Therefore

6 Variations

6.1 Evaluation of ¢ (x,y)
To optimise and balance many cryptographic algorithms, need more precise

information about ¥ (x,y) than the proven (or even conjectured) estimates
and asymptotic formulas can provide.

14



For example, S. T. Parsell and J. P. Sorenson [52], improving several
results of D. Berstein [9], have shown that for any parameter «, one can esti-
mate ¢(,y) up to a factor 1+O(a~' log z) in time O (ay*?/logy + alog z log ).
A number of other results can be found in [43, 56, 57, 58].

6.2 Constructing smooth numbers

It is certainly trivial to produce a smooth number, for example, 2* is as
smooth as it gets.

The problem becomes much harder and thus more interesting if one need
to find a y-smooth number in a given interval |z, z + z]. This question gives
an example of the referese influance of cryptographic techniques on number
theory.

Namely, D. Boneh [10] has used some ideas and algorithms originated
from cryptographic applications to design a polynomial algorithm to for this
problem for some relations between x, y and z.

Some results about the existence of very smooth numbers with a pre-
scribed bit pattern at certain position are given in [55], see also [31] whose
approach (via character sums instead of exponential sums) may probably be
used to improve that result of [55].

Certainly more research in this area would be very desirable.

6.3 Rough numbers

Let Q(x,y) be the number of n < x which are y-rough, that is, all prime
divisors p | n satisfy p > y.

The question has been addressed by A. A. Buchstab [14] who give the

asymptotic formula
x

logy’

where the Buchstab function w(u) is defined as follows: w(u) = 1/u for
1 <u<2and

Q(z,y) ~ w(u)

u—1
uw(u) =1 +/ w(t)dt for u > 2.
1

15



We note that such numbers can be considered as “approximations” to prime
numbers but maybe easily found and also proven to exist in various sequences
of cryptographic interest (when proving the existence of primes among its
terms is out of reach).

6.4 Integers with a large smooth divisor

It also natural to ask how often an integers has a large smooth divisor. In a
more quantitative form, one may ask about the behaviour of

O(z,y,z) =#{n <z : Id|n, d> z, dis y-smooth}.

This question has been studuied in the classical literature on smooth num-
bers, see [37, 60, 61], however it has not received as much attention as the
question of estimating ¥ (z, y).

More recently it has been addressed independently in [7, 63] where asymp-
totic formulas for ©(z,y, z) are given. This formulas a given in terms of the
same parameter u in the case of ¥ (z,y) (see (3)) and also in terms of another
parameter
_ log 2
~ logy
and also involve some integral expression with the de Bruijn function p(u)
and its derivative. We note that part of the motivation of [7] has come from
a concrete cryptographic problem discussed by A. J. Menezes [49], see also
Section [?].

v

6.5 Other prime divisors

The notion of smoothness addresses the distribution of the largest prime di-
visor P(n) of integers. However studying the second largest prime divisor is
of ultimate interest two as the complexity of obtaining full integers factorisa-
tion of n via the elliptic curve factorisation algorithm of H. W. Lenstra [45]
depends on this prime divisor.

More generally, using Pj(n) to denote the j-th largest prime divisor of n,
one can ask about the joint distribution

U@,y ) =#{n <z | Pi(n) <y;, j=1,...,k}.

16



We refer to [62] for the most recent results on this topic and further references.
The case of k = 2 is especially important:

In the above notation the the elliptic curve factorisation algorithm [45]

factors an integer n completely in time exp ((2 + o(1)) vl1og ploglog p) noW
where p = Py(n).

6.6 Miscellaneous

In this section we present several disconnected results, which however unlikely
to have any cryptographic applications may still contribute to developing
some understanding smooth numbers and also indicate what kind of problems
one may hope to successfully tackle.

A. Balog and T. D. Wooley [5] have considered k-tuples of consecutive
smooth integers and proved that for any k£ and € > 0 there are infinitely
many n such that n + 4 is n®-smooth for i = 1,... k. In fact the proof in [5]
yields a very nice and elementary explicit constructions. One can also take
k — oo and € — 0 (slowly) when n — oo.

A. Balog [3] has proven that each sufficiently large integer N can be
written as N = n; + no where ny, ny are N“-smooth, where

o=t 00605, ...

9ve

Results of this type may be considered as dual to the binary Goldbach con-
jecture that all positive even integers N > 4 an be represented as the sum of
two primes.

Finally, we remark that various bounds of rational exponential sums

Saq(z,y) = Z exp(2mian/q)

n<x
n is y-smooth

where ged(a, ¢) = 1, are given by E. Fouvry and G. Tenenbaum [24] and also
by R. de la Bretéche and G. Tenenbaum [12].

17



7 Smooth Elements in Integers Sequences

7.1 Smooth Numbers in arithmetic progressions

So far we considered the distribution of smooth values in the set of all natural
numbers. A very natural generalisation of this question, which also comes
up in some applications, is to study smooth numbers with an additional
conguence condition. In particular, we introduce the counting functions

Y(x,y;a,q) = #{n <z : nis y-smooth, n = a mod ¢}

and
1/’;(%3/) = #{n <z : nis y-smooth, ged(n,q) =1}

G. Tenenbaum [59] has proved that

Vg(,y) ~ @Wﬁv,y)

in a wide range of parameters.

In turn, a scope of bounds of the forms

1
77Z}(x’y7a7Q) ~ m¢Q(x7y>’

1
¢(x,y,a,q) - m¢Q(x7y>7

1
¢(x,y,a,q) > @¢Q(x7y>7

(of descreasing strength but in incresingly larger ragnes of z, y and ¢) can
be found in [4, 33, 34, 25, 38]. Some of this bounds hold for for all a with
ged(a, q) = 1, some of them hold only for almost all such integers a.

We note that bounds of exponential sums S, ,(x,y), see Section 6.6 can
also be interpreted as results about the uniformity of distribution of smooth
numbers in arithmetic progressions “on average”.

18



7.2 Smooth Numbers in Small Intervals

The next sequence we consider is the sequence of integers in “short” intervals
[z, x + z). Accordingly, we put

¢(x,y,z) = ’QD([E + Zay) - ¢(93>?J)

It is natural to expect that

U(@,y,z) ~ p(u)z
in a wide range of x, y and z.

There is a series of results due to Balog [2], E. Croot [19], J. B. Fried-
lander and A. Granville [27], J. B. Friedlander and J. C. Lagarias [27],
G. Harman[38], T. Z. Xuan [65] which give various results in this direction,
but in general the situation is far from satisfactory here.

It is especially interesting the work of E. Croot [19] uses an a very unusual
for this area tool: bounds of so-called bilinear Kloosterman sums due to
W. Duke, J. B. Friedlander and H. Iwaniec [23].

For example, from the point of view of cryptography and computational
number theory, the main challenge in this area is obtaining good lower bounds
in ¢ (z,y,4x'/?), which appears to be out of reach nowadays. This case is of
special importance of as it is crucial for the rigorous analysis of the elliptic
curve factoring algorithms of H. W. Lenstra [45]. We note that, the result of
E. Croot [19] applies to intervals of similar length, but for much large values
of y that those appearing in [45].

We remark, that H. W. Lenstra, J. Pila and C. Pomerance [46, 47] found
an igeneous way to circumvent this problem by introducing a hyperelliptic
factoring algorithms. For this algorithm smooth numbers in large intervals
ought to be studied which is a feasible task. Of course this has been achieved
at the cost of very delicate arguments and required the the authors to develop
new algebraic and analytic tools.

7.3 Smooth Shifted Primes

Recall, the definiton of the counting function 7,(z,y) of smooth shifted
primes given in Section 2.4. The values of a = +£1 are certainly of special
interest for cryptography.
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It is strongly believed that that for any fixed a # 0 the asymptotic formula

Ta(2,y) ~ plu)m(z) (9)
holds for a wide range of z and y. Unfortunately results of such strength
seem to be unavailable within the present techniques.

However rather strong upper bounds are known. For example, C. Pomer-
ance and I. E. Shparlinski [53] have given the estimate

Ta(2,y) K up(u)m(z)

for
exp <\/logxloglogx> <y<zx
In a shorter range
exp ((log 2)/*) <y <z

the “right” upper bound

ma(7,y) < p(u)m(z)

follows from a result of E. Fouvry and G. Tenenbaum [25, Theorem 4].

It is not just the asymptotic formula (9) is presently our of reach. In fact
even obtaining lower bounds on 7,(x,y) is a an extremely difficult task with
very slowly progressing results.

The best known result, which is due to R. C. Baker and G. Harman [6]
only asserts that there is a positive constant A such that for a # 0,

ma(,y) > w(z)/(log z)"

for u < 3.377... (where as before, u is defined by (3)). In most of the appli-
cations the logarithmic loss in the density of such primes is not important.
However, if this becomes an issue, one can use the bound of J. B. Friedlan-
der [26]

mo(z,y) > m(x)
which, however, is proven only for u < 2y/e = 3.2974 . . ..

We finally recall yet another result, implied by the work of R. C. Baker
and G. Harman [6], which says that

m(x) — ma(x,y) > 7(x)

20



for u>1.477....

The above results can be reformulated in the following equivalent forms
which are usually better known and in which they are more frequently used.

For some absolute constants A, C' > 0 such that for any a # 0:

e there are at least Cm(x)/log” z primes p < z such that p + a has a
0.6776.

prime divisor ¢ > p ;
e there are at least C'w(x)/log” z primes p < z such that all prime divi-
sors ¢ of p + a satisfy ¢ < p®2962,

The above two statements are expected to be true with A = 0 and with
1 — ¢ instead of 0.6776 and ¢ instead of 0.2962, respectively (for any ¢ > 0).

It is interesting to recall, that results about shifted primes p — 1 having
a large prime divisor play a central role in deterministic primality test of
M. Agrawal, N. Kayal and N. Saxena [1].

7.4 Smooth Values of Polynomials

Let f(X) € Z[X] and let ¢¢(x,y) is defined as in Section 2.4.

As in the case of shifted primes, here are rather strong upper bounds on
Y¢(x,y), see for example, the results of N. A. Hmyrova [42] and N. M. Tim-
ofeev [64].

For a squarefree polynomial f, G. Martin [48] gives an asymptotic formula
of the type

V(2,y) ~ p(diu)p(dau) . .. p(dyu)z
where dy, dy, . . ., dj be the degrees of irreducible factors of f over Z[z|, how-
ever only for very large values of y. Several related results can also be found
in the work of C. Dartyge, G. Martin and G. Tenenbaum [21], where also
smooth values of polynomials at prime arguments (that is, of f(p)) are dis-
cussed.

7.5 Smooth numbers in sumsets

R. de la Bretéche [11] gives a result of surprising generality and strength
which claims that under some conditions the proportion of smooth numbers
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among the sums a + b, where a € A and b € B is close to the expected value
for a wide class of sets A, B C Z.

For example, let A and B be two sets of integers in the interval [1, z].
Then, for any fixed ¢ > 0 and uniformly for exp ((log z)?3¢) < y < z, we
have

#{(a,b) € Ax B : a+bis y-smooth}

= p(u) - #A#B (1 +0 ((#ﬁ;ggl;; llo)gy)> ’

where, as usual, u is given by (3).

Although the author is unaware of any cryptographic existing applications
of this result, it seems to have a great potential due to its generality and
essentially “condition-free” formulation.

Several more relevant results are also given by E. Croot (77?).

7.6 Smooth polynomials over finite fields

In full analogie with the case of integer numbers, we say that polynomial
F € KJz| over a field IK sis k-smooth if all irreducible divisors f | F satisfy
deg f < k.

For a finite field IF,, of g-elements we denote
Ny(m, k) =#{f € F[z] : deg f <m f is k-smooth and monic}.

Define

m

m  logq

ko log ¢*

(the last expression makes the analogy with the formula (3) completely ex-
plicit).

The systematic study of N,(m, k) dates back to the work of A. M. Odlyzko [51]

who also discovered the relevance of this quatity for the disrete logarithm
problem in finite fields.

More recently a series of very precise results about N,(m, k) have been
given be R. L. Bender and C. Pomerance [8]. For example, by [8, Theo-
rem 2.1] we have

N,(m, k) = u~regm
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as k — oo and u — oo, uniformly for ¢* > mlog®m, and by [8, Theorem 2.2]

we also have
Ny(m, k) > m g™

for k < mY/2

8 Distribution of Divisors

8.1 More About Intuition

It is obvious that the density of perfect squares n = d? is extremely small as
there are only about ~ x'/? perfect squares up to z.

Let’s relax the relation n = k? and consider n = km with k < m < k1001,

Such integers can be called “almost” squares.

Question: Is the density of “almost” squares small? Are there only o(x)
of “almost” squares up to x?

Answer: NO !

“Almost” squares occur with positive density.

8.2 Notation
Given a sequence of integers A = (a,) we denote
H(z,y,z; A) = #{n <z : Jd|a, with y <d < z}.
The following sequences A are of our primal interest:
e A = 1IN, natural numbers
e A=P,={p+a : pprime}, shifted primes

e A =F; ={f(n) : n=12..} where f € Z[X], polynomial
sequences

e A=d={p(n) : n=1,2...}, values of the Euler function

23



8.3 Natural Numbers

This case goes back to an old questions of Erdés:

Given an integer N what is the size of the multiplication table
{nm : 1<m,n<N}.

Show that almost all n have two divisors d; < dy < 2d; .

Erdos, Ford, Hall, Hooley, Maier, Saias, Tenenbaum ..., 1980 — ?77:

Many various results, upper and lower bounds on H(z, y, z, IN), depending
on relative sizes of z,y, z as well as of z — y and z/y.

A sample result (will be used later)

Define v > 0 by the relation

- y1+1/v

Then, if
2y < z < min{y*/?, z1/?}

then

H(z,y,z,IN) _loglogwv
exp(—cy/logvloglogv) < <
xp(—cy/logvloglogv) < ———"3 ST

where ¢ > 0 is an absolute constant and
1+ loglog2

0=1-—
log 2

= 0.008607. ..

is the FErdds number.
Special case: c¢j(e)z < H(z,y,y' ™, IN) < co(e) where the implied con-
stants depend on € > 0.

Equivalent form: There is a positive density of integers n < x, depend-
ing only on ¢ > 0, which have a divisor d € [y, y' ]

Let’s prove something ...

Special-special case:

For 0 < a < 3:
r < H(z,2% 2% IN) < x

It is enough to consider v < 5 < 1/2 (since if d|n then (n/d) | n).

Consider only prime divisors p € [z%, 27].
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e There are > x/p integers n < z divisible by p

e Each n < x may have at most K = [a~!] of them.

Z z

2o <p<zh

The sum

count every integer n < x with a prime divisor p € [z?, xﬁ] at most K times.

I3
1 T T 1
H(z,z% 2% IN) > — T -
ma Nz e Y f=t 3 L
2o <p<af zo <p<af

By the Mertens formula

H(z,z% 2° IN) > % (loglog(2”) — loglog(z®) + o(1))
oz log(z”)
= % log log () + 0(1))
_ log(Bja)
K

8.4 Shifted Primes

Ford, 2007:

Upper bounds on H(z,y, z; P,) of the same strength as for H(z,y, z; ).

Lower bounds are much weaker although heuristically there is little doubt
that H(x,y, z; P,) behaves similarly to H(z,y, z; ).

One of the very few known lower bounds (yet, with many important
applications to cryptography) is due to Ford, 2007:
Fora#0and 0 < a < 3:

ci(e)m(x) < H(z, 2%, 27, P,) < eae)m(x)
The proof follows the same path as our previous proof, but needs rather

deep tools from the analytic number theory, the Bombieri- Vinogradov theo-
rem :

Instead of integers n < x with p | n we need to count primes ¢ < z
with p | ¢ — a.
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8.5 Polynomials

I wish I could say something here ...

However, it is not hopeless. It is just needs more attention, and fully
deserves it!

8.6 Euler Function

Here is just yet another confirmation that totients are not typical integers.

As we have mentioned, H(z,y, z;P,) is expected to behave similarly to
H(z,y, 2z N).

However the behaviour of H(x,y,z; ®) is very different! Totients have
larger /denser divisor sets.

Ford and Hu, 2007:
e Uniformly over 1 <y < x/2, we have H(x,y,2y; ®) > x.
e For y = 2°), we have H(z,y,2y; ®) ~ =.

e For a positive proportion of integers n, there is a divisor d | ¢(n) in
every interval of the form [K,2K], 1 < K <n.

Part II1
Applications

8.7 Primality, Factorisation, Dlog

E. Croot, A. Granville, R. Pemantle and P. Tetali [20]
90% of applications are in these areas.
90% of this talk is about other applications.

Examples:

e Dixon’s Method
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e Quadratic Sieve
e Number Field Sieve
e Index Calculus

e Elliptic Curve Factoring

Some are rigorously analysed, some are heuristic (but based on our under-
standing (777) of smooth numbers)

8.8 Index Calculus in ]F;

Initial Assumption

Let us fix some y (to be optimised later) and assume that we know
discrete logarithms of all primes py, ..., ps up to y.

To compute &k from b = a* mod p we

e take a random integer m and compute

ba™ = o

c ™ mod p

Note that
Dlog, ¢ = Dlog, b 4+ Dlog, a™ = Dlog, b+ m
Cost: negligible

e Try to factor ¢, assuming that ¢, treated as an integer, is y-smooth and
try to factor c as

c=npit...p¥
factors, by using the brute force trial division.

Note that
Dlog, ¢ = ayDlog, p1 + ... + a,Dlog, ps

Cost: About y operations
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e [f the previous step succeeds, output
Dlog, b = a;Dlog, p1 + ... + asDlog, ps — m,

otherwise repeat the first step.

logp
logy

Cost: About u,” repetitions, where u, = (under the assumption

that ¢ is a random integer up to p).

Total Cost: yu,”
Taking y = exp (\/log ploglog p) we get an algorithm of complexity about

exp (2 log plog log p)

... but it is too early to celebrate yet.

Removing the Assumption

We apply the same algorithm for each p; as b. Then at the 3rd step we
get an equation

DlOga Di = ()él,iDlOga P1 + ...+ asﬂ-Dloga Ps — My

We cannot find Dlogp; immediately

... but after we have this relations for every p; we have a system of s
linear equations with s variables!!

This algorithm (due to Andrew Odlyzko, AT&T, 1967) has the overall
subexponential complexity about

exp (ey/logploglogs)

for some constant c.

Nowadays there is an algorithm, Number Field Sieve, of complexity

1/3( 2/3)

exp (c(log p)°(loglog p)
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8.9 Text-book ElGamal

Boneh, Joux and Nguyen, 2000:
ElGamal Scheme Primes p,q with ¢ | p — 1

g € I}, of order q.

Private Key: z € Z,

Public Key: X = ¢

Encryption of a Message j:
For a random r € Z,, compute R = pX", and Q = ¢" send C = (R, Q) =
(nX",9")

Decryption:
Compute S = Q" =g = X" and R/S = R/ X" = p

’Assume that p is small‘

E.g. pis a key for a private key cryptosystem

Attack

We have R = pU where U € G, the subgroup of I} of order g.
Let 1 <u< M.

e Compute R? = piU? = uf;

e Choose some bound B and for m = 1,..., B compute, sort and store
mi;

e For k=1,...,M/B compute R?/k? = (u/k)? and check whether they
are in the table;

e Output p = km if there is a match.
The Algorithm works with:

e B = M for all messages (trivial; e.g., m = u, k = 1)

e B = M'?* for a positive proportion of messages (nontrivial; it works
because with a positive probability a random integer y has a represen-
tation p = km with 1 < k < m < pl/?e),
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Example: M = 2% (standard key size for a private key cryptosystem).

The attack runs in a little more than 240 steps.

8.10 Desmedt-Odlyzko Attack

RSA Singature Scheme:

N = RSA modulus

e = public exponent
d = private exponent; ed =1 (mod ¢(N))

Message m

Signature: s = m? (mod N)
Verification: : m = s¢ (mod N)

Y. Desmedt and A. Odlyzko [22] have given an existential forgery attack

on this scheme. In this scenario we are allowed to ask for signatures on some
“allowed” message (for example, padded in a prescribed way), and them we
must produce a signature on one more “allowed” message.

e Select a bound y and let py, ..., pr be the primes up to y, i.e. k= 7(y).

e Take k + 1 messages m; which are y-smooth and factor them m; =

k Qi j
[j=ip;
k+1

e Express [[,Z; m;" = 1 as a multiplicative combination of my,...,my,
by solving

k
ZO‘MW =ary1 (mode), j=1,... k.
i=1

Thus i
Mpyp1 = 7° Hmz” (mod N)
j=1
e Ask for the signatures s; on m; for ¢ = 1,..., k and forge the signature
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on Mg41 as

k k
. Uj du.
o= Tl =11
i=1 j=1
k
— de du; __ d
=r Hmi "=my,, (mod N)
J=1

D. Coppersmith, J. S. Coron, F. Grieu, S. Halevi, C. Jutla, D. Naccache,
J. P. Stern [16] have recently introduced a number of improvements and
generalisations in this attack and also given some applications to concrete
protocols.

8.11 Generalised Diffie-Hellman Problem

Recently, several cryptographic schemes have appeared which base their se-
curity on the following assumption:

Let g be an element g of prime order p of a “generic” Abelian group G.

Assumption: Given n powers ¢*,...¢° with some “hidden” integer x,

it is hard to compute gm"H.

A “generic” attack (e.g. Shanks or Pollard algorithms) take about p'/2
operations.

Brown, Gallant, 2006:
and, in more detail, Cheon, 2006::

e Given ¢* and gacd for some d | p — 1, one can find x in time about
(p/d)Y/? + dV/? (which is O(p'/4) for d ~ p'/?).

e Given gm,...gxd for some d | p + 1, one can find z in time about

(p/d)*/? 4 d (which is O(p'/3) for d ~ p'/3).
Question: How often primes p are such that p £ 1 has a divisor d of a
give size?

More specifically:
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Question: How often primes p are such that p £ 1 has a divisor d €
[n17¢, n] (which will guarantee the maximal advantage if we are given g%, ... g*").

Ford, 2006::

For every £ > 0 this happens for a positive proportion of primes p.

Moral: The conditions for this attack are satisfied with a positive prob-
ability!! The new problem is weaker than the traditional Diffie-Hellam prob-
lem.

8.12 Fix-Padded RSA

N = n-bit RSA modulus.
“Text-book” RSA signature scheme:

Message m = Singature s = m¢ mod N

Verification: s¢ = m mod N — 777

8.13 Chosen Message Attack

Assume that the attacker wants to sign an important message m and has an
ability to ask a demo version to decrypt some innocent messages.

The attacker:

e chooses a random m; and computes my from m;ms = m mod N (and
gets to (meaningless) messages m; and ms).

e asks the demo version to sign s; = m? mod N

e computes s = s159 mod N

This works because

S=S81S9=m mg = (mlmg)d =m? mod N

RSA is homogeneous:
A relation between messages implies a relation between signatures.
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Defence:
Allow the signature/verfication algorithms to work only for messages of spe-
cial structure, e.g., ending with some function of the message itself or say
with 100 binary digits of :
my and my are not likely to be of this type = the attack fails.

Fixed-pattern padding scheme:
fixed n — ¢-bit padding P |

m— P+m=R(m), s(m)= R(m)*mod N
Some existing standards still use this scheme.
[13, 29, 30, 50]

Maisarsky, 1997:
Girault and Misarsky, 1997:
Brier, Clavier, Coron and Naccache, 2001:

’ Existential forgery ‘

that is, the attacker can sign some message.
Lenstra and Shparlinski, 2002:

’ Selective forgery ‘

that is, the attacker can sign any message.

Idea of the Forgery

Find four distinct ¢-bit messages my, ..., my such that
R(my) - R(ms) = R(mg) - R(my4) mod N.

Then
s(my) - s(mg) = s(ms) - s(my) mod N.

— signature on mg can be computed from signatures on myq, mo, my.

The above congruence is equivalent to
P(ms +my —mq —mso) = myms — mgmy mod N.
With

T =1m;—mgz, Y=Mg— M3, 2Z=1M3-+MmMyg— M3 — My
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this becomes
(P 4+ mg3)z = xy mod N.

This congruence would be trivial to solve by we need ‘“small”
x, y and z about ¢ bits long
Let £ = (1/3 4 ¢)n.

We start with the congruence
(P4 s)z =w mod N.

where |s| < N'/3+¢ is given and the variables w and s satisfy where |z| < N'/3
and w < N2/3+2&

Let R;/Q; denote the i-th continued fraction convergent to (P + s)/N.
Then

’P—l—s_& < 1
N Qi| ~ QiQis1
Defin j by Q; < N2 < Q..
Let
w=|(P+s)Q; — NPy
Then

0<w< N/Qj1 < NY* and (P +s)z=wmod N
for some 2 with |z| < N2, namely »z = +Q);.
e Choose a “random” r with 0 < r < 0.5/N¢ and find
w = (P—i—mg,—r LNI/?’J)zmodN

with w < N?/3

e Put u=w+r N3]z, thus
u= (P +mg3)z mod N
and u < N?/3+¢

e Try to use elliptic curve factorisation to factor v which runs in time

exp (2y/log ploglogp) where p = P(u/P(u)) = P»(u) (but terminate
this steps if it takes too long).
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e Try to find z,y with u = zy and z,y < N/3+¢

e [f successful, compute my, ms, my, otherwise try another pair z, u

Why does it work?

Eventually we hit a reasonably good u:

e u is of the form u = P(u)v where P(v) = P5(u) is small .

e u has a divisor € [N1/3+¢/2 N1/3+]

Heuristic run-time: Ly(1/3,1) which is substantially faster than
Ln(1/3,(128/27)Y3) ~ Ly(1/3,1.68),
where as usual

Ly (e, ) = exp((y + o(1))(log N)*(log log N)'~®).

for M — oo.

Lenstra and Shparlinski, 2002:
Selective forgery for 1024 RSA modulus.

Question: Find a way to use more signatures and thus extend the range
of ¢ which can be attacked this way.

8.14 Large Subgroup Attack

Digital Signature Algorithm (DSA), uses two large primes p and ¢ with
qlp—1

Suppose that p and g are selected for DSA using the following standard
method:

e Select a random m-bit prime ¢;

e Randomly generate k-bit integers n until a prime p = 2ng+1 is reached.
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Menezes, 2007:
The Large subgroup attack on some cryptographic protocols (HMQV).

Question: What is the probability n(k, ¢, m) that n has a divisor s > ¢
which is 2%-smooth?

Banks and Shparlinski, 2007:
(heuristically, assuming that shifted primes p — 1 behave like “random” in-
tegers):

In the most interesting choice of parameters at the present time is k = 863,
¢ = 80, and m = 160 (which produces a 1024-bit prime p), for which one
expects that the attack succeeds with probality

1(863, 80, 160) ~ 0.09576 > 9.5%

over the choices of p and gq.

8.15 Smooth Orders

Let I(n) be the order of 2 modulo n, ged(2,n) = 1 (change 2 with your
favourite integer a > 2).

Question: Can we use g = 2 as the base for Diffie-Hellman, ElGamal
and other exponentiation based cryptoschemes modulo n?

Yes, but only if /(n) is not smooth — mind Pohlig-Hellman!
Question: Why would we want g = 27

Boneh and Venkatesan, 1996:
Nice bit security properties
(and a little easier to compute).

Also remember Pollard’s p — 1 factorisation method: if p|n with [(n)
smooth, n can be easily factored.

Let
L(z,y) = #{p < x : l(p) is y-smooth}.
and
N(z,y) = #{n <z : I(n) is y-smooth}.
Pomerance and Shparlinski, 2002:
For exp (\/logxlog logm) <y <z, we have

Lz, y) <up(u/2)7(x),
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Banks, Friedlander, Pomerance and Shparlinski, 2003:
For exp (\/logmlog log:z:) <y < x, we have

N(z,y) < xexp(—(1/2+ o(1)) uloglogu)

Remark: Mind loglogu rather than logu in the exponent.

How tight are they?
Probably quite tight (but 1/2 should be 1 in both cases).

8.16 Pratt Tree

Assume that somebody wants to “sell” a large prime p, but the buyer requests
a proof that p is prime indeed.

Here is a way to do this.
Pratt, 1975:

e Ask the buyer to check that p is not a perfect power (easy!!).

e Produce a primitive root g modulo p and ask the buyer to check this.
It is enough to verify that

g1 (mod p)

for all prime divisors g | p — 1, so the list of these primes ¢ also must
be supplied.

e Give a proof that each ¢ on the above list is prime by iterating the
above procedure.

The algorithm runs in polynomial time and in particular shows that
PRIMES € NP (not so exciting nowdays as we know that PRIMES € P).

The whole algorithm can be viewed as a tree where each node contains a
prime (with p as a root), with 2 at each leave.

The number of multiplication required by this algorithm is:

Pratt, 1975: O((log p)?).
authBayless2007 C'log p for any C' > 1 and almost all primes
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This tree is called the Pratt Tree.

Question: What is the size of this tree, e.g. the height, the number of
nodes, the number of leaves, etc.

Banks, Shparlinski, 2007: The length L(p) of the chain p — P(p — 1)

is at least log]

oglog x
1 1) —————
(14 of ))log log log x

for almost all primes p.

Ford, Konyagin, Luca, 2008 (?): The height H(p) of the Pratt Tree is
at least
(log p)*%2% > H(p) > loglog =

for almost all primes p.
Ford, Konyagin, Luca,, 2008 (?): Heuristically

H(p) = eloglog p + O(log log log p)

for almost all primes.

8.17 Strong Primes

A prime p is strong if p — 1 and p + 1 have a large prime divisor, and p — 1
has a prime divisor r such that » — 1 has a large prime divisor.

If p is not strong then

1. either p — 1 or p + 1 are smooth;
2. or p — 1 is divisible by a r? for a large prime 7;

3. or ¢(p — 1) is smooth

For 1: Bounds on 7(x,y)

For 2:
oY 1Y 5 =06/

r>y p<z,p=1 mod r2 r>y

For 3: 777
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Let
(z,y) =#{p <z : @(p—1) is y-smooth}.
and

O(x,y) =#{n <z : @(n) is y-smooth}.

Banks, Friedlander, Pomerance and Shparlinski, 2003:
For (loglogz)'™ <y < z, we have

O (z,y) < zexp(—(1+ o(1))uloglogu)

Remark: Mind loglogu rather than logu in the exponent and mind the
very wide range.

How tight are they?
Under some plausible conjecture, matching lower bound.

We can now use II(z,y) < ®(x,y) to take care of 3.
Other bounds:

For exp (\/log:clog logx) <y <z we have

I(z,y) < u”'r(x).

For logx <y < z, we have
m(x)
exp((3 + o(1))u'/?log u)
N 7(x) loglog x
exp((1 + o(1))ulogu)

(z,y) <

Dream Result:

M(x,y) < w(x)exp(—(1+o(1)) uloglogu) 777
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