A Biometric Identity Based Signature Scheme

Seminar Biometry & Security

18.01.2010
Bonn-Aachen International Center for Information Technology
Nina Keller
Outline

- Motivation
 - Why Identity Based Signatures
 - Identity Based Signatures
- Preliminaries
 - Bilinear pairings
 - Fuzzy Extractor
 - Error Correction Codes
- The Extraction Process
- Signature Scheme
- Security Issues
Why Identity Based Signatures

- Identity Based cryptography is a type of public-key cryptography.
- Public key of a user is some unique information about the identity of the user (e.g. a user's email address).
- No exchanging of private or public keys.
- No key directories.
- No third party, no certificates.
- No key revocation, once issued, keys are always valid.
- If there are only a finite number of users, after all users have been issued with keys master key can be destroyed.
Identity Based Signatures

- An identity-based scheme can be described as a collection of the following four algorithms:

1. **Private Key Generator (PKG)**
2. **Setup**: Given parameters and K_m, computes k.
3. **Extract**: Given parameters, K_m, computes d.
4. **Sign**: Given parameters, m, computes σ.
5. **Verify**: Given parameters, m, accepts/rejects σ.

[Diagram showing the flow of data through the algorithms]

- ID is the input for each algorithm, and the output is passed to the next algorithm.
- k, d, σ, and accept/reject are the outputs for each step.
- m is the message input for the **Sign** and **Verify** steps.
- $param$, K_m are parameters used in the **Setup** and **Extract** steps.

Identity Based Signatures

- An identity-based scheme can be described as a collection of the following four algorithms:

1. **Private Key Generator (PKG)**
2. **Setup**: Given parameters and K_m, computes k.
3. **Extract**: Given parameters, K_m, computes d.
4. **Sign**: Given parameters, m, computes σ.
5. **Verify**: Given parameters, m, accepts/rejects σ.

[Diagram showing the flow of data through the algorithms]

- ID is the input for each algorithm, and the output is passed to the next algorithm.
- k, d, σ, and accept/reject are the outputs for each step.
- m is the message input for the **Sign** and **Verify** steps.
- $param$, K_m are parameters used in the **Setup** and **Extract** steps.
Preliminaries

Bilinear pairing

\[e : G_1 \times G_1 \rightarrow G_2 \]

Properties:

• Bilinearity: \(\forall P, Q \in G_1, a, b \in \mathbb{Z}_p^*: e(aP, bQ) = e(P, Q)^{ab} \)

• Non-Degeneracy: \(\forall P \in G_1, P \neq \infty: e(P, P) \neq 1 \)

• \(e \) has to be computable in an efficient manner
Preliminaries

Tate pairing τ'_q

$$\tau'_q : E(F_p)[q] \times E(F_p^2)/qE(F_p^2) \rightarrow \mu(q)$$

$$\tau'_q(P, Q) = a + bi \in \mu(q)$$

$F_p = \{0, 1, 2, 3, \ldots, p - 2, p - 1\}$

$F_p^2 = \{a + ib\}, \quad a, b \in F_p, \quad i = \sqrt{-1}$

$E(F_p): y^2 = x^3 + x$

$E(F_p^2)[q]$ - subgroup of $E(F_p)$ consisting of points of order q

$\mu(q) = \{a \in F_p^2 | a^q = 1\}$
Preliminaries

Fuzzy Extractor

\[M = \{0,1\}^v \] - a finite dimensional metric space consisting of biometric data points

\[dis : M \times M \rightarrow Z^+ \] - distance function

\(l \) - number of bits of the extracted output string \(ID \)

\(t \) - error threshold

\((M,l,t) \) - fuzzy extractor is generated using two functions:

- **Gen**: probabilistic generation procedure, on input \(b \in M \) outputs an “extracted” string \(ID \in \{0,1\}^l \) and public string \(PAR \)

- **Rep**: deterministic reproduction procedure allowing recovery of \(ID \) from the corresponding public string \(PAR \) and any \(b' \) sufficiently close to \(b \)
Preliminaries

Fuzzy Extractor

Our fuzzy extractor uses:

- *Hamming Distance* is defined to be the number of bit positions that differ between b' and b

- Error Correcting Codes
Preliminaries

Error Correcting Codes

- \(C \) - subset of \(n \)-bit words (i.e. \(C \subseteq \{0,1\}^n \)) with \(n > n \) and \(k \) having at least \(2^k \) elements for some positive integer.

- \(C_e : M \to C \) – one-to-one encoding function.

- \(C_d : \{0,1\}^n \to C \) - decoding function that has an error threshold of \(t \).

- The decoding function \(C_d \) will take an arbitrary \(n \)-bit string and “correct” it to the nearest codeword in \(C \).
Preliminaries

Error Correcting Codes

- Example:
 - Let $n=3$, $v=1$ and $C=\{000,111\}$
 - Let C_d compute majority
 - Then C_d would map a bitstring $x \in \{0,1\}^3$ to 000 if at least two bits of x are 0s and to 111 if at least two bits are 1s.
 - Threshold $t=1$
The Extraction Process

Step 1: obtaining b from the biometric reader
Step 2: use an error correcting codes to fuzzy extract some data from the biometric input.

- *Gen* function:

 \[
 ID = H(b) \\
 RAP = b \oplus C_e(ID)
 \]
The Extraction Process

Step 2: use an error correcting codes to fuzzy extract some data from the biometric input.

- *Rep function:*

\[
ID' = C_d(b' \oplus PAR) = C_d(b' \oplus b \oplus C_e(ID))
\]
Signature Scheme

Private Key Generator (PKG)

Setup
- param, K_m

Extract
- d

Sign
- σ

Verify
- accept / reject

1. $ID \rightarrow Private Key Generator (PKG)$
2. $ID \rightarrow Extract\ d$
3. $k \rightarrow Setup\ param,\ K_m$
4. $m \rightarrow Sign\ \sigma$
5. $param\ Extract\ d$
6. $param\ Verify\ \sigma$
7. $m \rightarrow Verify\ accept / reject$
Signature Scheme

Setup:

Given a security parameter k PKG selects:

- Groups G_1, G_2 of prime order $q > 2^k$
- A generator P of G_1
- Randomly chosen master key $s \in \mathbb{Z}_q^+$ and the associated public key $P_{pub} = sP$
- Cryptographic hash functions of the same domain range $H_1, H_2 : \{0, 1\}^+ \rightarrow G_1^+$, $H_3 : b \rightarrow \{0, 1\}^+$
- Encoding function C_e and a decoding function C_d
- It also selects a method for extracting the features of a biometric, F_e
Signature Scheme

Key Generation

- After obtaining b using feature extractor F_e the identity string is calculated $ID = H_3(b)$

- The PKG computes the public key $Q_{ID} = H_1(ID) \in G_1$ and the associated private key $d_{ID} = sQ_{ID} \in G_1$
Signature Scheme

Sign

To sign a message M:

1) Pick a random integer $r \in \mathbb{Z}_q$ and compute $U = rP \in G_1$
 Then $H = H_2(ID, M, U) \in G_1$.

2) Compute $V = d_{ID} + rH \in G_1$

3) The value $PAR = b \oplus C_e(ID)$ is included as part of the signature

The signature on M is the triple $\sigma = \langle U, V, PAR \rangle$
Signature Scheme

Verify

To verify a signature \(\sigma = \langle U, V, PAR \rangle \) on a message \(M \) for an identity \(ID \), the verifier performs the following steps:

1) Obtain a biometric reading \(b' \) and calculate
 \[
 ID' = \text{Rep}(b', PAR)
 \]

2) Calculate
 \[
 Q'_{ID} = H_1(ID') \in G_1 \quad \text{and} \quad H = H_2(ID', M, U) \in G_1.
 \]

3) Signature is verified if
 \[
 e(P, V) = e(P_{pub}, Q'_{ID}) e(U, H)
 \]
 and rejected otherwise.
Security Issues

• Malicious signing
 - Biometric data can be obtained relatively easily
 - Attacker can't sign a document (he still doesn't have private key)
 - Attacker can attempt to acquire the private key

• Solution: imposing proper authentication procedures for users applying to the PKG (certificates)
Security Issues

- **Disavowal**
 - If fuzzy extractor is not robust, attacker can tamper with ID
 - Attacker can try to alter his biometrics (wear a thin film with another print on his finger)
 - **Solution**: inspect the biometrics before measurement.