Security on the Internet, summer 2007
 Michael NÜSKEN

4. Exercise sheet
 Hand in solutions until Thursday, 3 Mai 2007.

Any claim needs a proof or an argument.

Exercise 4.1 (Polynomials over \mathbb{F}_{2}).
Let's consider polynomials with coefficients in the field \mathbb{F}_{2}. (Remember that $\mathbb{F}_{2}=\mathbb{Z}_{2}$ since 2 is prime.)
(i) Take your student id, and write $1234567+$ studentid $=\sum_{0 \leq k<24} s_{k} 2^{k}$ with $s_{k} \in\{0,1\} \subset \mathbb{Z}$. Now interpret $s_{k} \in \mathbb{F}_{2}$ and write down the polynomials

$$
\begin{aligned}
& a=\sum_{0 \leq k<8} s_{k} X^{k} \in \mathbb{F}_{2}[X], \\
& b=\sum_{0 \leq k<8} s_{k+8} X^{k} \in \mathbb{F}_{2}[X], \\
& c=\sum_{0 \leq k<8} s_{k+16} X^{k} \in \mathbb{F}_{2}[X], \\
& d=a+b X^{8}=\sum_{0 \leq k<16} s_{k} X^{k} \in \mathbb{F}_{2}[X] .
\end{aligned}
$$

If $a=0, b=0$, or $\operatorname{deg} c<3$ then add 2345678 to your real student id.
(ii) Compute $a+b$.
(iii) Compute $a \cdot b$.
(iv) Compute the remainder of the division of d by c.

Some polynomials are a proper product of others. Some are not.
(v) Prove that $X^{2}+X+1$ cannot be written as a proper product. We call 1 such a polynomial irreducible.
(vi) Write $X^{8}+1$ as a product of irreducible polynomials (that cannot be writ-2 ten as a product). [For verification only: the factors' degrees are all 1.]
(vii) Write $X^{9}+1$ as a product of irreducible polynomials. [For verification only: the factors' degrees are 1,2 , and 6.]

Exercise 4.2 (Touching \mathbb{F}_{4}).

Consider polynomials of degree less than 2 over the field \mathbb{F}_{2}. Define addition and multiplication of them modulo the polynomial $X^{2}+X+1$.
(i) Write down the complete list of elements.
(ii) Write down the addition table.
(iii) Write down the multiplication table.

We can now consider polynomials over $\mathbb{F}_{4}: T^{2}+T+1$ is such a polynomial. Factor it (over \mathbb{F}_{4}).

Exercise 4.3 (Computing inverses).
(6 points)
If possible compute the inverse
(i) \ldots of 89 in the ring \mathbb{Z}_{101},
(ii) \ldots of 42 in the ring \mathbb{Z}_{1001},
(iii) \ldots of 1817 in the ring \mathbb{Z}_{10001}.

Give a proof if no inverse exists.

Exercise 4.4 (Computing in \mathbb{F}_{256}).

Let M be your student id. Let

$$
a=M \bmod 256, b=(M \operatorname{div} 256) \bmod 256, \text { and } c=(a+b) \bmod 256
$$

Now interpret a, b and c as elementes of \mathbb{F}_{256}, just as in AES. Compute in \mathbb{F}_{256}
(i) $a+b$ (Attention! Usually the result will not be c !),
(ii) $a \cdot b$, and
(iii) $1 / a$ (or $1 / b$ in case $a=0$).

Note: If $x=x_{1} \cdot 256+x_{0}$ with $0 \leq x_{0}<256$, then $x \operatorname{div} 256=x_{1}$ and x rem $256=$ x_{0}.

