Security on the Internet, summer 2007 MICHAEL NÜSKEN

4. Exercise sheet Hand in solutions until Thursday, 3 Mai 2007.

Any claim needs a proof or an argument.

Exercise 4.1 (Polynomials over \mathbb{F}_2). (10+4 points)

Let's consider polynomials with coefficients in the field \mathbb{F}_2 . (Remember that $\mathbb{F}_2 = \mathbb{Z}_2$ since 2 is prime.)

(i) Take your student id, and write $1234567 + \text{studentid} = \sum_{0 \le k < 24} s_k 2^k$ with $s_k \in \{0, 1\} \subset \mathbb{Z}$. Now interpret $s_k \in \mathbb{F}_2$ and write down the polynomials

$$a = \sum_{0 \le k < 8} s_k X^k \in \mathbb{F}_2[X],$$

$$b = \sum_{0 \le k < 8} s_{k+8} X^k \in \mathbb{F}_2[X],$$

$$c = \sum_{0 \le k < 8} s_{k+16} X^k \in \mathbb{F}_2[X],$$

$$d = a + b X^8 = \sum_{0 \le k < 16} s_k X^k \in \mathbb{F}_2[X].$$

If a = 0, b = 0, or deg c < 3 then add 2345678 to your real student id.

1

1

3

- (ii) Compute a + b.
- (iii) Compute $a \cdot b$.

(iv) Compute the remainder of the division of *d* by *c*.

Some polynomials are a proper product of others. Some are not.

- (v) Prove that $X^2 + X + 1$ cannot be written as a proper product. We call such a polynomial *irreducible*.
- (vi) Write $X^8 + 1$ as a product of irreducible polynomials (that cannot be written as a product). [For verification only: the factors' degrees are all 1.]
- (vii) Write $X^9 + 1$ as a product of irreducible polynomials. [For verification +4] only: the factors' degrees are 1, 2, and 6.]

Exercise 4.2 (Touching \mathbb{F}_4).

(4+4 points)

Consider polynomials of degree less than 2 over the field \mathbb{F}_2 . Define addition and multiplication of them modulo the polynomial $X^2 + X + 1$.

- (i) Write down the complete list of elements.
- (ii) Write down the addition table.
- (iii) Write down the multiplication table.

We can now consider polynomials over \mathbb{F}_4 : $T^2 + T + 1$ is such a polynomial. Factor it (over \mathbb{F}_4).

Exercise 4.3 (Computing inverses).

(6 points)

If possible compute the inverse

- (i) ... of 89 in the ring \mathbb{Z}_{101} ,
- (ii) ... of 42 in the ring \mathbb{Z}_{1001} ,
- (iii) ... of 1817 in the ring \mathbb{Z}_{10001} .

Give a proof if no inverse exists.

Exercise 4.4 (Computing in \mathbb{F}_{256}). (8 points)

Let M be your student id. Let

 $a = M \mod 256, b = (M \operatorname{div} 256) \mod 256, \text{ and } c = (a + b) \mod 256$

Now interpret *a*, *b* and *c* as elementes of \mathbb{F}_{256} , just as in AES. Compute in \mathbb{F}_{256}

(i) a + b (Attention! Usually the result will not be c!),

- (ii) $a \cdot b$, and
- (iii) 1/a (or 1/b in case a = 0).

Note: If $x = x_1 \cdot 256 + x_0$ with $0 \le x_0 < 256$, then $x \operatorname{div} 256 = x_1$ and $x \operatorname{rem} 256 = x_0$.

1

1

2

+4