Security on the Internet, summer 2007 Michael Nüsken ## 5. Exercise sheet Hand in solutions until Thursday, 10 Mai 2007. Any claim needs a proof or an argument. do they not collide? | | | F | 8 | | | | | |---|---|---------------------------------|---|--------------------------|--------------|-----------------------------|--| | Exercise 5.1 (The group of invertible elements). (12+4 points) | | | | | | | | | List the elements of and count the group | | | | | | | | | (i) | $\mathbb{Z}_2^{ imes}$, | (iii) \mathbb{Z}_4^{\times} , | (v) | $\mathbb{Z}_8^{ imes}$, | (vii) | $\mathbb{Z}_{12}^{ imes}$, | | | | | | | | , (viii) | | | | (ix) | Consider all previous examples as vertices of a graph, arrange them nicely and draw green lines when the moduli divide and no other vertex fits inbetween. [If, say, you have the nodes \mathbb{Z}_3 , \mathbb{Z}_9 , \mathbb{Z}_{18} it is enough to draw a line from \mathbb{Z}_3 to \mathbb{Z}_9 and one from \mathbb{Z}_9 to \mathbb{Z}_{18} . The connection \mathbb{Z}_3 to \mathbb{Z}_{18} is already represented by the two lines.] | | | | | | | | (x) | (x) Add blue lines similarly when the sizes of the multiplicative groups divide. | | | | | | | | (xi) | (xi) Explain how this continues | | | | | | | | | | | | | | | | | Exercise 5.2 (Remainders). (5+1 points) | | | | | | | | | Consider rings \mathbb{Z}_{mn} with the following pairs (m, n) . In each case make a table with \mathbb{Z}_m on one axis and \mathbb{Z}_n on the other, then write each number $a \in \mathbb{Z}_{mn}$ at position $(a \mod m, a \mod n)$ as in this example: | | | | | | | | | | | | $ \begin{array}{c cc} \mathbb{Z}_2 \backslash \mathbb{Z}_3 & 0 \\ \hline 0 & 0 \\ 1 & 3 \end{array} $ | 1 2
4 2
1 5 | 2
2 | | | | (i) | (m,n) = (2,4) | 1), | (| (iii) (| (m,n)=(4,6), | | | | (ii) | (m,n) = (3,5) | 5), | (| (iv) (| (m,n)=(3,8). | | | | (v) In which of the previous cases do the numbers fill the entire table? When 1 | | | | | | | | (vi) Give a simple criterion on (m, n) to tell when the numbers fill the table. ## **Exercise 5.3** (MuPAD and finite rings). (8+4 points) The computer algebra system MuPAD is able to handle all these things. It is installed on the b-it computers and you can download it from the MuPAD webpage and ask for a 30-day trial key at the webpage http://www.mupad.de/download/. (i) Try this: 4 3 +4 ``` F5:=Dom::GaloisField(5); a := F5(3); b := F5(-1); a+b; a*b; 1/a; F2:=Dom::GaloisField(2); FX:=Dom::UnivariatePolynomial(X, F2); m := FX (X^8 + X^4 + X^3 + X + 1); f := FX(X^6+X^2+1); g := FX(X^3 + X + 1); f+g; f*q; gcd(f,g); (f*g) \mod m; divide(f*g, m, Rem); ``` Hint: if you mark a word and press F2 you get help on the marked part. (You can also type ?divide to get help.) - (ii) Use MuPAD to find the complete factorization of $X^i 1 \in \mathbb{F}_2[X]$ for each $i \in \mathbb{N}'_{< 16}$. - (iii) Look at the result to see for which degrees an irreducible factor occurs in the above list. [For automating this task consider the MuPAD help on Factored, further map and {op(expression)} may be helpful.] - (iv) Use Dom::AlgebraicExtension to define \mathbb{F}_{256} . Check your solution of Exercise 4.4. [Also Dom::GaloisField allows the definition of \mathbb{F}_{256} with a given polynomial. Can you spot differences?]