Security on the Internet, summer 2007 Michael Nüsken

5. Exercise sheet Hand in solutions until Thursday, 10 Mai 2007.

Any claim needs a proof or an argument.

do they not collide?

		F	8				
Exercise 5.1 (The group of invertible elements). (12+4 points)							
List the elements of and count the group							
(i)	$\mathbb{Z}_2^{ imes}$,	(iii) \mathbb{Z}_4^{\times} ,	(v)	$\mathbb{Z}_8^{ imes}$,	(vii)	$\mathbb{Z}_{12}^{ imes}$,	
					, (viii)		
(ix)	Consider all previous examples as vertices of a graph, arrange them nicely and draw green lines when the moduli divide and no other vertex fits inbetween. [If, say, you have the nodes \mathbb{Z}_3 , \mathbb{Z}_9 , \mathbb{Z}_{18} it is enough to draw a line from \mathbb{Z}_3 to \mathbb{Z}_9 and one from \mathbb{Z}_9 to \mathbb{Z}_{18} . The connection \mathbb{Z}_3 to \mathbb{Z}_{18} is already represented by the two lines.]						
(x)	(x) Add blue lines similarly when the sizes of the multiplicative groups divide.						
(xi)	(xi) Explain how this continues						
Exercise 5.2 (Remainders). (5+1 points)							
Consider rings \mathbb{Z}_{mn} with the following pairs (m, n) . In each case make a table with \mathbb{Z}_m on one axis and \mathbb{Z}_n on the other, then write each number $a \in \mathbb{Z}_{mn}$ at position $(a \mod m, a \mod n)$ as in this example:							
			$ \begin{array}{c cc} \mathbb{Z}_2 \backslash \mathbb{Z}_3 & 0 \\ \hline 0 & 0 \\ 1 & 3 \end{array} $	1 2 4 2 1 5	2 2		
(i)	(m,n) = (2,4)	1),	((iii) ((m,n)=(4,6),		
(ii)	(m,n) = (3,5)	5),	((iv) ((m,n)=(3,8).		
(v) In which of the previous cases do the numbers fill the entire table? When 1							

(vi) Give a simple criterion on (m, n) to tell when the numbers fill the table.

Exercise 5.3 (MuPAD and finite rings).

(8+4 points)

The computer algebra system MuPAD is able to handle all these things. It is installed on the b-it computers and you can download it from the MuPAD webpage and ask for a 30-day trial key at the webpage http://www.mupad.de/download/.

(i) Try this:

4

3

+4

```
F5:=Dom::GaloisField(5);
a := F5(3);
b := F5(-1);
a+b;
a*b;
1/a;
F2:=Dom::GaloisField(2);
FX:=Dom::UnivariatePolynomial( X, F2 );
m := FX (X^8 + X^4 + X^3 + X + 1);
f := FX(X^6+X^2+1);
g := FX(X^3 + X + 1);
f+g;
f*q;
gcd(f,g);
(f*g) \mod m;
divide(f*g, m, Rem);
```

Hint: if you mark a word and press F2 you get help on the marked part. (You can also type ?divide to get help.)

- (ii) Use MuPAD to find the complete factorization of $X^i 1 \in \mathbb{F}_2[X]$ for each $i \in \mathbb{N}'_{< 16}$.
- (iii) Look at the result to see for which degrees an irreducible factor occurs in the above list. [For automating this task consider the MuPAD help on Factored, further map and {op(expression)} may be helpful.]
- (iv) Use Dom::AlgebraicExtension to define \mathbb{F}_{256} . Check your solution of Exercise 4.4. [Also Dom::GaloisField allows the definition of \mathbb{F}_{256} with a given polynomial. Can you spot differences?]