# Security on the Internet, summer 2007 

Michael NÜSKEN

## 6. Exercise sheet <br> Hand in solutions until Thursday, 17 Mai 2007.

Any claim needs a proof or an argument.

Exercise 6.1 (High powers).
(3 points)
Compute $3^{98765432101}$ in $\mathbb{Z}_{101}$.

## Exercise 6.2 (Finite sets and nice pictures).

Use one of the introduced rings $\mathbb{Z}_{N}$.
(i) Start at $a_{0}=0 \in \mathbb{Z}_{43}$ and compute its square plus one: $a_{1}=a_{0}^{2}+1$. 1 Continue doing so. Draw a picture!
(ii) Start at $a_{0}=0 \in \mathbb{Z}_{42}$ and compute its square plus one: $a_{1}=a_{0}^{2}+1$. 1 Continue doing so. Draw a picture!
(iii) Start at a random point $a_{0} \in_{R} \mathbb{Z}_{42}$, let $b_{0}=a_{0}$, and compute $a_{i}=a_{i-1}^{2}+1 \quad 2$ and $b_{i}=\left(b_{i-1}^{2}+1\right)^{2}+1$. Compute $\operatorname{gcd}\left(a_{i}-b_{i}, 42\right)$.
(iv) Play with further examples as in (iii) where $N$ is a four digit number.
(v) What do you observe? $\quad 1$

MuPAD-Hints: R:=Dom: :IntegerMod ( $N$ ) : helps. To force a shorter output use R::print := x->extop(x,1):.

Exercise 6.3 (Exponentiation \& discrete logarithms). ( $15+3$ points)
Suppose $G$ is a group and $g$ is an element of order $\ell$. In the course we have defined exponentiation as a map from the integers $\mathbb{Z}$ to some group $G$.
(i) Show that it makes sense to view it as a map

$$
\begin{aligned}
\exp _{g}: & \longrightarrow G, \\
\mathbb{Z}_{\ell} & \longmapsto g^{x} \\
x & \longmapsto
\end{aligned}
$$

(ii) Let $G=\mathbb{Z}_{10001}^{\times}, g=42$. Write a procedure to compute $\exp _{g}$ efficiently. 3 [Group operations are allowed as primitives. Other predefined procedures may not be used.]
(iii) Same for $G=\mathbb{Z}_{241576501}^{\times}, g=23$.
(iv) Now let $p=241576501$, and $g=23^{1500}=-46436978 \in \mathbb{Z}_{p}^{\times}$.
(a) Compute $g^{11^{4}}$ and $g^{11^{5}}$.
(b) Prove that the order of $g$ is $11^{5}$.
(c) Prepare a table with all powers of $h:=g^{11^{4}}=23^{(p-1) / 11}$ in $\mathbb{Z}_{p}^{\times}$.
(d) Compute the discrete logarithm $x$ of $42^{1500}=105868544 \in \mathbb{Z}_{p}^{\times}$with respect to $g$. [Note that $(p-1)=1500 \cdot 11^{5}$ and consider $42^{1500 \cdot 11^{4}}=$ $g^{x \cdot 11^{4}} \ldots$ ]
(e) What does the result tell us about the discrete logarithm of $42 \in \mathbb{Z}_{p}^{\times}$ with respect to the base $23 \in \mathbb{Z}_{p}^{\times}$?

Exercise 6.4 (Diffie Hellman key exchange).
Perform a toy example of a Diffie Hellman key exchange: Fix $p=47$ and $g=2 \in \mathbb{Z}_{p}^{\times}$.
(i) Show that the order of $g$ is 23 .
[If you are clever then you only need to calculate $g^{23}$.]
(ii) Choose $x \in \mathbb{Z}_{23}$ (take $x \notin\{0,1\}$ to get something interesting) and calculate $h_{A}:=g^{x}$.
(iii) Choose $y \in \mathbb{Z}_{23}$ (take $y \notin\{0,1, x\}$ to get something interesting) and calculate $h_{B}:=g^{y}$.
(iv) Now compute $h_{B}^{x}$ and $h_{A}^{y}$ and compare.

## Exercise 6.5 (Square and multiply).

Use paper and pencil for this exercise. How many multiplications do you need to compute $x^{382}$ ?
(i) Find an algorithm that uses 14 multiplications.
(ii) Find an algorithm that uses 12 multiplications.
(iii) Can you find an algorithm that uses 11 multiplitations?

Some side calculations: $382=101111110_{2}=112011_{3}=11332_{4}=3012_{5}=$ $1434_{6}=1054_{7}=576_{8}, 382=2 \cdot 191,190=2 \cdot 5 \cdot 19,189=7 \cdot 3^{3}$.

