Security on the Internet, summer 2007 MICHAEL NÜSKEN

6. Exercise sheet Hand in solutions until Thursday, 17 Mai 2007.

Any claim needs a proof or an argument.

Exercise 6.1 (High powers).	(3 points)	
Compute $3^{98765432101}$ in \mathbb{Z}_{101} .		3
Exercise 6.2 (Finite sets and nice pictures).	(5+5 points)	
Use one of the introduced rings \mathbb{Z}_N .		
(i) Start at $a_0 = 0 \in \mathbb{Z}_{43}$ and compute its square plus one: Continue doing so. Draw a picture!	$a_1 = a_0^2 + 1.$	1
(ii) Start at $a_0 = 0 \in \mathbb{Z}_{42}$ and compute its square plus one: Continue doing so. Draw a picture!	$a_1 = a_0^2 + 1.$	1
(iii) Start at a random point $a_0 \in_R \mathbb{Z}_{42}$, let $b_0 = a_0$, and compute and $b_i = (b_{i-1}^2 + 1)^2 + 1$. Compute $gcd(a_i - b_i, 42)$.	$a_i = a_{i-1}^2 + 1$	2
(iv) Play with further examples as in (iii) where N is a four dig	it number.	+2
(v) What do you observe?		1
MuPAD-Hints: R:=Dom::IntegerMod(N): helps. To force a s use R::print := x->extop(x,1):.	horter output	+3

Exercise 6.3 (Exponentiation & discrete logarithms). (15+3 points)

Suppose *G* is a group and *g* is an element of order ℓ . In the course we have defined exponentiation as a map from the integers \mathbb{Z} to some group *G*.

(i) Show that it makes sense to view it as a map

$$\exp_g \colon \begin{array}{ccc} \mathbb{Z}_\ell & \longrightarrow & G, \\ x & \longmapsto & g^x \end{array} .$$

3

(ii) Let $G = \mathbb{Z}_{10001}^{\times}$, g = 42. Write a procedure to compute \exp_g efficiently. 3 [Group operations are allowed as primitives. Other predefined procedures may not be used.]

	+3	3
--	----	---

1 +1 1

2

+1

+2

1

(iii) Same for $G = \mathbb{Z}_{241576501}^{\times}$, g = 23.

- (iv) Now let p = 241576501, and $g = 23^{1500} = -46436978 \in \mathbb{Z}_p^{\times}$.
 - (a) Compute g^{11^4} and g^{11^5} .
 - (b) Prove that the order of g is 11^5 .
 - (c) Prepare a table with all powers of $h := g^{11^4} = 23^{(p-1)/11}$ in \mathbb{Z}_p^{\times} .
 - (d) Compute the discrete logarithm x of $42^{1500} = 105868544 \in \mathbb{Z}_p^{\times}$ with respect to g. [Note that $(p-1) = 1500 \cdot 11^5$ and consider $42^{1500 \cdot 11^4} = g^{x \cdot 11^4} \dots$]
 - (e) What does the result tell us about the discrete logarithm of $42 \in \mathbb{Z}_p^{\times}$ with respect to the base $23 \in \mathbb{Z}_p^{\times}$?

Exercise 6.4 (Diffie Hellman key exchange). (5+1 points)

Perform a toy example of a Diffie Hellman key exchange: Fix p = 47 and $g = 2 \in \mathbb{Z}_p^{\times}$.

(i) Show that the order of g is 23.

[If you are clever then you only need to calculate g^{23} .]

- (ii) Choose $x \in \mathbb{Z}_{23}$ (take $x \notin \{0, 1\}$ to get something interesting) and calculate $h_A := g^x$.
- (iii) Choose $y \in \mathbb{Z}_{23}$ (take $y \notin \{0, 1, x\}$ to get something interesting) and calculate $h_B := g^y$.
- (iv) Now compute h_B^x and h_A^y and compare.

Exercise 6.5 (Square and multiply).

(0+5 points)

1

Use paper and pencil for this exercise. How many multiplications do you need to compute x^{382} ?

- (i) Find an algorithm that uses 14 multiplications.
- (ii) Find an algorithm that uses 12 multiplications.
- (iii) Can you find an algorithm that uses 11 multiplitations?

Some side calculations: $382 = 101111110_2 = 112011_3 = 11332_4 = 3012_5 = 1434_6 = 1054_7 = 576_8, 382 = 2 \cdot 191, 190 = 2 \cdot 5 \cdot 19, 189 = 7 \cdot 3^3.$