Security on the Internet, summer 2007 Michael Nüsken, Daniel Loebenberger

7. Exercise sheet Hand in solutions until Thursday, 24 Mai 2007.

Any claim needs a proof or an argument.

Exer	cise 7.1 (Close the gap).	(5 points)	
In th in \mathbb{Z}_p	e first proof of the correctness of RSA we restricted to inve $_q$.	ertible elements	
	Fill the gap and proof $x^{ed} = x$ for $x = sp$ ($0 < s < q$), for $x = tq$ ($0 < t < p$), and for $x = 0$. [Do not use the Chinese Remainder Theorem here.]		
Exer	cise 7.2 (Square roots of 1).	(10 points)	
(i)	Determine all solutions of $x^2 = 1$ in the ring $\mathbb{Z}_{89.97}$. [Recall p is prime then $+1$ and -1 are all solutions of this equation		4
In th	e ring \mathbb{Z}_N ,		
N	= 73651864476948106312793115348803282352462469116891	031 264 550 157,	
some	ebody found the solution		
<i>x</i> =	= 1149297474786569466598404005582841715060139871138	75892871679.	
(ii)	Verify that $x^2 - 1 = 0$ but $x - 1 \neq 0$ and $x + 1 \neq 0$ in \mathbb{Z}_N .		2
(iii)	Use this information to factor N .		4
Exer	cise 7.3 (Cracking RSA).	(9 points)	
Write	e a program for the following:		
(i)	Generate random RSA keys with N about 200 Bits. Keep (N,d) secret and tell only the public key. Do not throw this time. [You may assume that MuPAD's random (a . b tion(!) outputting <i>uniformly random</i> numbers in the interval.	away anything) yields a func-	2
(ii)	Use only N and L to recover the primes.		3
(iii)	Compute a second pair (e^{\prime},d^{\prime}) and use the two pairs (and recover L .	possibly N) to	4

2

2

4

2

4

+2

Exercise 7.4 (RSA signatures).

(15+2 points)

Compute a signature! And find out what it is...

- (i) Generate random RSA keys with N about 30 Bits. Keep the private key (N, d) secret and tell only the public key.
 - (ii) You are given a document, say x is your student identification number. Compute $y \leftarrow x^d$ in \mathbb{Z}_N .
 - (iii) Verify that $y=x^d$ without using the secret key. [So you may only use the public key here!]
 - (iv) Give a defintion explaining when y is a signature of x.
 - (v) Explain how a signature on xr^e can be used to get a signature on x.
 - (vi) Use the previous to decide whether the scheme is good (secure) or not.
 - (vii) Explain why using the same RSA key for encryption and signing is a very bad idea in practice.