
Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

Security on the Internet, summer 2007
MICHAEL NÜSKEN, DANIEL LOEBENBERGER

8. Exercise sheet
Hand in solutions until Thursday, 7 June 2007.

Exercise 8.1 (Exam date). (0 points)

The exam should take place between 10 July and 12 October 2007. Look up 0
your calendar. Suggest a date.

Exercise 8.2 (Repetition). (0 points)

Use the excursion week as a chance to repeat the course. 0

Exercise 8.3 (ElGamal signatures). (7 points)

Compute an ElGamal signature for your student identification number repre-
sented in binary. Use p = 467 and g = 3 ∈ Z

×
p and work in G = 〈g〉. For sim-

plicity, we take the function HASH : {0, 1}∗ → Z233, x 7→ (
∑

0≤i<|x| xi2
i) mod 233.

(Eg. 18 translates to the string 10010 which in turn translates into the number
18 mod 233.)

(i) Here #G = 233 and thus expg : Z233 → G, a 7→ ga is an isomorphism. 1
[Note that 1662 = 3 and thus g233 = 1. Since g 6= 1. . .]

(ii) Setup: Compute Alice’ public key with α = 9. 1

(iii) Sign: Sign the hash value of your student identification number. 3

(iv) Verify: Verify the signature. 2

Exercise 8.4 (Hash crisis). (11+3 points)

Read Arjen Lenstra’s article on Colliding X.509 Certificates <http://eprint.
iacr.org/2005/067.pdf>.

(i) What is the purpose of X.509 certificates? 2

(ii) Where are they used? 1
(iii) How does such a certificate ensure a connection between a secret key

2
and identification information (name, birth, and so on) of a person?

(iv) Who verifies this connection? 1

(v) How can I check that this verification was done (assuming the verifica- 2
tion authority is honest)? In other words, how can I check the certificate?

(vi) What is the consequence of Lenstra’s observation? 3

(vii) Add further observations. +3

Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

2

Exercise 8.5 (Security estimate). (6+1 points)

On 21 May 2007 a new factoring record was announced. Using computer clus-
ters in various locations, NTT in Japan, Franke and Kleinjung at the university
of Bonn, and A. Lenstra at the EPFL in Lausanne have successfully factored
21039 − 1. See links on the webpage.

RSA is a public-key encryption scheme that can also be used for generating
signatures. It is neccessary for its security that it is difficult to factor large
numbers (which are a product of two primes). The best known factoring algo-
rithms achieve the following (heuristic, expected) running times:

method year time for n-bit integers
trial division −∞ O∼(2n/2)

Pollard’s p − 1 method 1974 O∼(2n/4)

Pollard’s % method 1975 O∼(2n/4)
Pollard’s and Strassen’s method 1976 O∼(2n/4)

Morrison’s and Brillhart’s continued fractions 1975 2O(1)n1/2 log1/2

2
n

Dixon’s random squares 1981 2(
√

2+o(1))n1/2 log1/2

2
n

Lenstra’s elliptic curves method 1987 2(1+o(1))n1/2 log1/2

2
n

quadratic sieve 2(1+o(1))n1/2 log1/2

2
n

general number field sieve 1990 2((64/9)1/3+o(1))n1/3 log2/3

2
n

It is not correct to think of o(1) as zero, but for the following rough estimates
just do it. Factoring the 663-bit integer RSA-200 needed about 165 1GHz CPU
years (ie. 165 years on a single 1GHz Opteron CPU) using the general number
field sieve. Estimate the time that would be needed to factor an n-bit RSA num-
ber assuming the (strongest of the) above estimates are accurate with o(1) = 0
(which is wrong in practice!)

(i) for n = 1024 (standard RSA),1

(ii) for n = 2048 (as required for Document Signer CA),1
(iii) for n = 3072 (as required for Country Signing CA).

1

Repeat the estimate assuming that only Pollard’s % method is available

(iv) for n = 1024,1

(v) for n = 2048,1
(vi) for n = 3072.

1

Remark: The statistics for discrete logarithm algorithms are somewhat similar
as long as we consider groups Z

×
p . For elliptic curves (usually) only generic

algorithms are available with running time 2n/2.

(vii) Why don’t we take into account the latest record that was mentioned+1
above?

Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

3

Exercise 8.6 (Key exchange threats). (0+15 points)

We have considered the Diffie-Hellman key exchange: Given a group G con-
sisting of powers of a generator g, so G =

{

1, g, g2, . . . , g#G−1
}

such that the
discrete log problem is difficult, ie. given h ∈ G there is no efficient (ie. ran-
domized polynomial time) algorithm to determine i with h = gi. To fix a
shared secret key, Alice sends ga and Bob sends gb. Then both can compute the
shared key gab.

Protocol 8.7. Diffie-Hellman key exchange.

1. Alice chooses a ∈ N<#G and computes ga. ga

−−−−−−−−−−−−−−−−−−−−−−−→

2. Bob chooses b ∈ N<#G and computes gb. gb

←−−−−−−−−−−−−−−−−−−−−−−−

3. Alice computes (gb)a = gab.
4. Bob computes (ga)b = gab.

Now both can use gab to derive common secrets for the subsequent message
exchanges. What if Wilma puts herself in the middle? She will have a common
secret gaw with Alice and a common secret gw′b with Bob, and as long as she
continues to pass all messages on, neither Bob nor Alice will notice anyhting
apart possibly from a slighlty slower connection. So we modify this.

Protocol 8.8. Signed and acknowledged Diffie-Hellman key exchange.

1. Alice chooses a ∈ N<#G, computes ga and signs
[’Alice’, ga]. [’Alice’, ga]Alice

−−−−−−−−−−−−−−−−−−−−−−−→

2. Bob chooses b ∈ N<#G, computes gb and signs
[’Bob’, gb]. [’Bob’, gb]Bob

←−−−−−−−−−−−−−−−−−−−−−−−

3. Alice computes (gb)a = gab and a hash. hash(0, gab)
−−−−−−−−−−−−−−−−−−−−−−−→

4. Bob computes (ga)b = gab and a hash. hash(1, gab)
←−−−−−−−−−−−−−−−−−−−−−−−

Sorry, we forgot to be polite. We should first say Hello, shouldn’t we?

Protocol 8.9. Polite Diffie-Hellman key exchange with a cookie.

1. Alice wants to talk. I want to talk
−−−−−−−−−−−−−−−−−−−−−−−→

2. Bob agrees and chooses a cookie c, which is a suit-
ably random number, for example, the hash value
of her IP address and some fixed secret of Bob.
(It’s nice if the number is deterministically deter-
mined!) Ok, I listen for cookie c.

←−−−−−−−−−−−−−−−−−−−−−−−

3. Alice chooses a ∈ N<#G, computes ga and signs
[’Alice’, ga]. c, [’Alice’, ga]Alice

−−−−−−−−−−−−−−−−−−−−−−−→

4. Bob chooses b ∈ N<#G, computes gb and signs
[’Bob’, gb].

5. Bob computes (ga)b = gab and a hash. [’Bob’, gb]Bob, hash(1, gab)
←−−−−−−−−−−−−−−−−−−−−−−−

6. Alice computes (gb)a = gab and a hash. hash(0, gab)
−−−−−−−−−−−−−−−−−−−−−−−→

Here is a further polite variant.

Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

4

Protocol 8.10. Modified Diffie-Hellman key exchange.

1. Alice chooses a ∈ N<#G, computes ga. I want to talk, ga.
−−−−−−−−−−−−−−−−−−−−−−−→

2. Bob chooses b ∈ N<#G, computes gb. Ok, gb.
←−−−−−−−−−−−−−−−−−−−−−−−

3. Alice computes (gb)a = gab and uses it to encrypt
her name and a signature to her share ga. Egab(’Alice’, [ga]Alice)

−−−−−−−−−−−−−−−−−−−−−−−→

4. Bobd computes (ga)b = gab and uses it to encrypt
his name and a signature to his share gb. Egab(’Bob’, [gb]Bob)

−−−−−−−−−−−−−−−−−−−−−−−→

Consider each of the above protocols in the following questions. (Be brief, but
don’t forget the essential arguments.)

(i) Woman in the middle: Try to put Wilma in the middle. What happens?+2

(ii) Mutual authentication: Examine which of the given protocols ensure that+2
Alice’ partner is Bob.

(iii) Perfect Forward Security: Next, suppose that the Beagle Boys intercepted+2
the conversation between Alice and Bob. Then after the conversation is
terminated the Beagle Boys take over Alice’ and Bob’s entire equipment
including their secret keys. Will they be able to read what Alice and Bob
told each other?

(iv) Denial of Service: Daniel is a weird person that only wants to prevent say+2
Bobs’ computer to do good work. So he floods Bob with tons of requests.
For each of these requests Bob’s computer is forced to compute and send
an answer. Consider vaguely the effort which Daniel and Bob have to
spend for their first messages and vote for the ‘best’ protocol.

(v) Endpoint Identifier Hiding: Eve does not want to be spotted, so she only+2
listens on the conversation. If she can detect who the partners are, this is
already valuable information for her. Which protocols hide the identity
of Alice and/or Bob?

(vi) Live Partner Reassurance: Romeo likes repetions and so after listening to a+2
conversation, he calls Bob with replayed messages from the overheared
talk making him think he is Alice. (Imagine this could be successfully
done when you log in to your home banking account!) Examine the
given protocols under this attack.

(vii) Devise a protocol that Romeo cannot trick. (Do not forget to argue!)+3

(viii*) Devise a protocol that is not vulnerable to any of these attacks.+0

