Security on the Internet, summer 2007 MICHAEL NÜSKEN, DANIEL LOEBENBERGER

9. Exercise sheet Hand in solutions until Thursday, 14 June 2007.

Exercise 9.1 (Hidden message).

(8 points)

Once again a new mission is waiting for her Majesty's finest agent. Old Q has received an assignment from M to find a way how 007 may send a secret message to the London headquarters *unnoticed*.

In the guise of a broker James Bond has easy access to the Internet. Q has learned that, at the stock market, buyers' and sellers' orders are signed using the ElGamal signature scheme. The mastermind of the Q-Branch starts from there:

- **Q:** Here is the solution, 007. Naturally you are well acquainted with the signing of electronic messages using the ElGamal scheme.
- **007:** I have read the Russian translation of the article, Q.
- **Q:** Splendid! We will use this scheme to hide the message you want to send to M. The present system uses the prime number $p=311\,303$ and the group \mathbb{Z}_p^{\times} . The element g=5 is the generator of \mathbb{Z}_p^{\times} that was adopted. The secret part of the key is $\alpha=34\,567$.

Is everything quite clear so far, 007?

- **007:** Yes, Q. Everything quite standard. So where is the trick?
- **Q:** 007, for the first time you are showing some interest in my work! Instead of the random number β used for signing the message m you will use your secret message \widehat{m} . This is the date (formatted TTMMJJ) on which we how would you put this must be prepared for a surprise. Good luck, 007!
- (i) What is/are the "conventional" purpose(s) of a randomly chosen component for a digital signature (e.g. the β in the ElGamal scheme)?
- (ii) Explain why Q assumes that the transmission of \widehat{m} is secure.
- (iii) After some time Q receives the following signature: $(54\,321, 6\,193, 132\,622)$. 2 Check whether this message originates with 007. What is the date that 007 predicts for the surprise?
- (iv) Which conditions (with respect to the variables) must be met so that this computation works?

2

2

2

2

Exercise 9.2 (Attacks on the ElGamal signature scheme).

(4 points)

After prior failures princess Jasmin and Genie have been doing a lot of thinking and research. Genie has proposed to use the ElGamal signature scheme. They have chosen the prime number $p=1\,334\,537$ and the generator g=3. The public key of the princess Jasmin is $a=143\,401$.

(i) They have sent the message $(x,b,\gamma)=(7\,654,335\,037,820\,465)$. Unfortunately, Genie was not very careful. He wrote down the number β somewhere and forgot to burn the piece of paper after calculating the signature. Now Jaffar knows the number $\beta=377$. Compute the secret key α .

(ii) Princess Jasmin has changed her secret key. She now has the public key $a=568\,267$. This time Jaffar could not find the number β . Because of this he used an enchantment so that Jasmin's random number generator has output the same value for β twice in a row. This was the case for the messages $(2\,001,576\,885,1\,323\,376)$ and $(234,576\,885,1\,161\,723)$. Now compute Jasmin's secret key α .

Exercise 9.3 (Expected runtime).

(8+4 points)

Algorithm. Loop.

Input: None.

Output: The runtime N.

- 1. $N \leftarrow 0$,
- 2. Repeat
- $3. N \leftarrow N+1$
- 4. Until rnd() = 0
- 5. Return N

Algorithm. TWO.

Input: Some parameter $k \in K$. Output: The runtime N_k .

- 1. $N \leftarrow 0$,
- 2. Repeat 3–4
- $N \leftarrow N+1$,
- 4. $m \leftarrow \text{rnd}()$
- 5. Until h(m) = k
- 6. Return N

Consider the algorithm Loop where the probability that rnd() = 0 is exactly p in each round. Denote $q := prob(rnd() \neq 0) = 1 - p$.

- (i) Compute prob(N = n). (You might want to consider prob(N = 1), prob(N = 2), prob(N = 3), first.)
- (ii) Show that the expected value of N, ie. $E(N) = \sum_{n \in \mathbb{N}} n \operatorname{prob}(N = n)$, equals $\frac{1}{p}$.

Recall: $\sum nq^{n-1}$ is the derivative of the limit of the geometric series $\sum q^n$ with respect to q, and the latter is $\frac{1}{1-q} = \frac{1}{p}$.

What happens if the probabilities are not always the same? In the course we have considered the case of guessing a second preimage for a hash function $h\colon\{0,1\}^*\to K$. $T\mathcal{WO}$ where the probability p_k for $h(\mathrm{rnd}())=k$ may depend on k. Actually, we consider the case where p_k is the same as the probability that k occurs as an input; in particular, $\sum_{k\in K}p_k=1$. As above, we obtain $E(N_k)=\frac{1}{p_k}$.

- (iii) Assume that any input is chosen with the same probability $p_k = 1/\#K$. 1 What is the average runtime?
- (iv) Consider $K = \{1, 2\}$ and $p_1 = p \in]0, 1[$, $p_2 = q = 1 p$. What is the average runtime now? Evaluate it for the unbalanced value p = 1/501 and compare to (iii).
- (v) Assume that each K occurs almost uniformly in the sense that $p_k \geq \frac{1}{2\#K}$. 2 Tightly bound the runtime now.
- (vi) Relax the condition 'almost uniform' with a still reasonable (What's reasonable?) bound on the runtime.

Exercise 9.4 (Hash crisis).

(0 points)

Study SHA-1, the recent attacks, and devise a new fast hash function invulnerable to the known attacks.