Lecture Notes Security on the Internet

Michael Nüsken
b-it

(Bonn-Aachen International Center for Information Technology) summer 2007

Technical part

- netarorle of notworks
- ctient - server/peer- to-
- tuper of data - transmission:
\longrightarrow duplex
\rightarrow point-to-point
\rightarrow multicast
- me cra of transmission:
\rightarrow wrieless
\rightarrow whirad
- Bouting (Soptwore \& Harolware) \rightarrow stiatic/dynamic
- Hourdurove innorived:
\rightarrow network card (modern (client') \rightarrow suataines (client P) / card (client 8 pracioler)
noturd \rightarrow Browser (chleut)

standards
\rightarrow internet marketing \rightarrow Cducetional.
- open to cvery one.
- proyide social groups (youtube, orkut)
- missuse of in fosmati. -on, network
\rightarrow piracy
\rightarrow propaganda
\rightarrow anomimity
\rightarrow addiction

Email'
Goal

- send moderate message, text-only
- fast
- soze fic.
- to specific destination
- fram same source
- easy to use
- reliable (msss should cornive, at least in most cases), availabke.
- cheap
+ multipte destinations
- asyuckronoos
- no acknowleglgement

Formah

- split into:

$$
\begin{aligned}
& \text { Fromu }\langle\text { address > ...dake>... } \\
& \text { Heacler 〈beywand): <information> } \\
& \text { Body mply line } \\
& \text { aney hext } \\
& \text { + remeinator }
\end{aligned}
$$

- bext anly

Tecknicalities

- veceive auy mail (process)
- relay/tarmard mails n'a vanous servers
- address information must be included and nou-eucopphed
- DNS servers necessary to provide in formation about the topology of the net work
- SMTP (Send Mail Transfer Pro focol

Relianlite

format rend o
syubere attacks
(badwriather, bad cables, ...)

Security

content semantic intentional att lacks

Security objectives

- only the intended addressee /recipiout get's the mail
- make sure that the sender is who he claims to be;
- make sure nobody uses my adelress as render address
- protect content from disclosure
- probed content from modification

Defend
Distributed Infrastructure
Fake in thermal senders from hijacked mail server

Sightly Faster DNS server to redirect requests to kep server

Stop mail server by DoS

Public kay infrastructure Kep sorer with certificates ard root certificate in locked nom Fiyerprizat

Distributed infrastructure.
Sea mails with in redid domain waves to block local DIVS

Block affected local mail server

Flood with mails

Flood
New servers
Read incomes mix
Sendback/ Re-DoS
Eucrrot!

Summary: Email
Security objectives

- Protect content from disclosure from modification
- Identify sender.
- Protect receiving hast
from attacks by incoming messages
- Mailing list handling (mary recipients)

Basics

- Address (\&mone) in the message (beadles)
- Text only
- Accept from anywhere
- No acknouledfement

Attacks

- on server - exploit vulnerabilities Solution! No ultimate rue.
\rightarrow Layered software, es. smap

$$
\text { - onchients - hoaxes } \begin{gathered}
\text { eg "Goa dimes" }
\end{gathered}
$$

$$
\begin{aligned}
& \text { I-T İ } \rightarrow \text { uses kuman fime } \\
& \text { for explaining }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \text { automatic, or, } \\
& \text { semi antomatic } \\
& \text { execution } \\
& \text { (macro (angrage), } \\
& \text { execotabkes,...) } \\
& \text { Spam }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 花 } 50 \text { - } \\
& \text { 药 } 0=\vec{\xi}
\end{aligned}
$$

Te dinology.
(1) Encryption
\rightarrow confidentiality: protect from disclosure
(2) Signature
\rightarrow identification! identify sender
\rightarrow integrity: protect from modification
\rightarrow authentication, endeni ability, chonrepudiation):
link document \& sendertsijuer
(3) Public Key Infrastructure

ENCRYPTION
Cesar
Replace every letter is the plainhext with its third successor.

$$
\begin{array}{ccc}
\text { EnC(YHQL YHGL YLFL } \\
\text { VEN I VEDa VICI }
\end{array}
$$

We have an alphabet

$$
\left.\sum=\begin{array}{ccccc}
\left\{\begin{array}{cccc}
A, & B, & C & \ldots
\end{array}\right. & Z_{4}^{\prime} \\
0 & 1 & 2 & \cdots, & 25
\end{array}\right\}
$$

and the possible Cesar ciphors are:

$$
C_{i}: \sum_{a} \longrightarrow \sum_{i} \longmapsto(a+i) \operatorname{rem} 26,
$$

remaincles
To decrypt mithect knowing $\}$ Brute force the key it suffices to try out all 26 hays. attack.

Bethe attack: Find most frequent character. This must then to tho most frequent character of the plain text's Langrage.
Even betti. a fine codes:

$$
A_{\alpha, i}: \sum_{a}^{\longrightarrow} \longrightarrow(\alpha a+i) \operatorname{rem} 26 .
$$

We have to cave that decryption as passible:
[CORRECTNESS]
For $\alpha=1$ we a gaveraliked Cesar C_{i} which is siple to decrypt (by C_{-i}).
But $\alpha=0$ is rear bad, any character be mapped to the same and no decryption is possible
with $\alpha=2$ we always have

Thus we canned decrypt.
The mathematical structure we weed here is the wing of inkeyors modulo 26.
this is an - class consisting of
(a set of legal values: $\frac{\left.Z_{6}=20,1,2, \ldots 25\right\} \text {, }}{2}$.
class two aparatious $t: \mathbb{Z}_{26} \times \mathbb{Z}_{26} \longrightarrow \mathbb{Z}_{26}$, $\left.\mathbb{Z}_{W_{6}}\right\}$

$$
(a, b) \longmapsto(a+b) \operatorname{rem} 26 .
$$

$$
\begin{aligned}
: & \mathbb{Z}_{26} \times \mathbb{Z}_{28} \rightarrow \mathbb{Z}_{26}, \\
& (a, b) \longmapsto(a \cdot b) \mathrm{cm} 26 .
\end{aligned}
$$

$$
\begin{aligned}
& A_{2, i}\binom{\hat{N}}{0}=A_{2, i}\binom{N}{13} \\
& \begin{array}{cc}
(2 \cdot 0+i) \operatorname{man}_{26} & (\underbrace{2 \cdot 13}_{n}+i) \operatorname{men} 26 \\
\because & \vdots
\end{array}
\end{aligned}
$$

Proporly defineds there is a set and the operations are well clefined.

A ssociativity :

$$
\begin{aligned}
& a+(b+c)=(a+b)+c \\
& a \cdot(b \cdot c)=(a \cdot b) \cdot c
\end{aligned}
$$

$A+1$.
N entral element(s): There is an elemut $0 \in \mathbb{Z}_{26}$:

$$
N+, N .
$$

$$
a+0=a=0+a
$$

there is on elemut $1 \in \mathbb{Z}_{26}$

$$
a \cdot 1=a=1 \cdot a
$$

$$
\forall a \exists b \quad a+b=0=b+a
$$

I+

Commutativily $a+b=b+a$

Distributin'ly :

$$
\begin{aligned}
& a \cdot(b+c)=a \cdot b+a \cdot c,
\end{aligned}
$$

$$
a \cdot(b+c)=a \cdot c+b \cdot c:
$$

Sometimes (for us almostalways) we further Comuntativity: $a \cdot b=b \cdot a$
(commatative ring: PANIC+, PANC, D,O\&1. If we further have I^{\prime}.
then we call it a Gield.

Examples
\mathbb{R} : ring, communing, field.
Z : ring, committing, not a field.
(1) : - - Field.
\mathbb{E}_{p} integers mechulo a prime p :
ring, comus, ring,
field? \rightarrow We have to check ι^{\prime}. whether any nou-zero element has a unelfipliative inverse.
Actually, it is a field.
we see that cater.
So we have the (coming \mathbb{Z}_{N} of ink gers modulo N defrd similarly.

$$
\left\{\begin{array}{l}
G \operatorname{cog} 0 L=100^{100} \\
G \log \theta L p l e x=100^{600 g o l}
\end{array}\right.
$$

back to ciphers:
we had Cesar : $\mathbb{Z}_{2_{6}} \rightarrow \mathbb{Z}_{26}$,

$$
a \longmapsto a+3
$$

genceratikel Cesar $C_{i}: \overline{\mathbb{Z}}_{26} \rightarrow \mathbb{Z}_{2 \sigma,}$

$$
a \longmapsto a+i
$$

affine Codes:

$$
\begin{aligned}
A_{\alpha, i}: \mathbb{Z}_{26} & \longrightarrow \mathbb{Z}_{26}, \\
a & \longmapsto \alpha a+i
\end{aligned}
$$

for $\alpha \in \mathbb{Z}_{26}^{x}, \quad i \in \mathbb{Z}_{26}$.
Try to dec rapt
4

$$
b=A_{\alpha, i}(a)=\alpha \frac{a}{\psi}+i
$$

wanked!
the

$$
\underbrace{\alpha^{-1}}_{?} \cdot(b-i)=a
$$

Problem: The inverse α^{-1} of $\alpha \in \neq \mathbb{Z}_{26}$ does not always exist even if we require $\alpha \neq 0$.
Eg: $\quad 2 \cdot b=1$ in \mathbb{Z}_{26} has no solution.
Proof: Ascus b exists:
 even
But 1 is not even! Il
Similarly, 13 has ar inverse. Achally! 21 l as an inverse $\rightarrow 5$!
still Encryption
nad seen
Cesar :
$\mathbb{Z}_{2 g} \rightarrow \mathbb{Z}_{26}$

$$
a \longmapsto a+3
$$

gen. Cesar
ciphers:
affine ciphers:
$A_{\alpha, i}: \quad \mathbb{Z}_{2 \sigma} \rightarrow \mathbb{Z}_{26}$
$a \longmapsto \alpha a+i$
where $\alpha \in \mathcal{Z}_{26}^{x}$
ie. α shall be invertible wot. multiplication $=\mathbb{Z}_{26}$.
attacks: (a) Boule force
Try all beys.
Feasible for all the above ciphers because they have on by most 12 nombles inedible in $\mathbb{Z}_{\boldsymbol{y}}$:

$$
1,26, \quad 12.26
$$

:1. $\pm 1=1$
$\pm 3 \cdot \pm 9=1$
$\pm 5 \cdot 75=1$
$\pm 7: 711=1$
$\pm 9:{ }_{3}=1$
± 11 if =1
The others camel
be in verlible because
ry we either even
ar clinisible by 13 .
permutation cipher
Fix any ${ }_{p}^{p}$ porncutation $\bar{a}: \mathbb{Z}_{2 r} \rightarrow \mathbb{Z}_{26}$ and replace letbrs accorgliugly.
How many suck maps ore there?
r permutations:
a map which is
(.injective.ie. (into)

In our case, , any of of the properties implies the other because the sets \mathbb{Z}_{26} and $\mathbb{Z}_{2 r}$ are both finite and of same size. b
There 26! such pernu rations of \mathbb{Z}_{26}.
This is very huge number.

$$
\begin{aligned}
& 26!>10^{26} \\
& 1 \times 10^{27}
\end{aligned}
$$

This uncle tho fa ar brute fare aback.

Every lete is still mapped to
the seure character.
So we can analyge the
frequencies in the cipter text.
ASCII-Histogramm von <startbeispiel-de.txt> (869 Zeichen) Häufigkeit (\%)

So most trequent lethes are identifiadhe.
All the ciphers so for are substitution ciphous

Another class are
permutation ciphers we peruke positions of leters. Like the Spartans used their

Sky tale

$$
\sim 5003 C .
$$

If stick is not entirely used
\rightarrow see group size.

- Brute force attack
\rightarrow try all stick sizes.
- Cousicher pairs of letters bo Kind probable 'distances', 'group sites'...

One of Giovanmi Battista Porta's cipher disks

Bell ciphers?
Vipenère
THIS IS SECURITY
\rightarrow CARE ca re careca
""
Read each lefter as a number in $\mathbb{Z}_{\text {er }}$
and add the key.
Bout force attack: 26^{e} beys of length e. if l is large enougí this is not feasible.
But: there is a way to detenmie the hay lough!
After that we can do foe quendy analogsis Cor bout force on the generalized (Cesar beys).

Bedder?
\rightarrow Use a bey as long as the message.
But still: the bey may have structure. $\xrightarrow{\longrightarrow}$ This can be used.
\rightarrow Use a randoms bey!

One-Tine-Pad
Given a plain hext

$$
p \in\{0,1\}^{l}
$$

and a bey

$$
k \in\{0,1\}^{e}
$$

the cipter text is

$$
c \in\{0,1\}^{e}
$$

give by $c_{i}=p_{i} \oplus k_{i}$
This is comphetely secure!
Prob (plaintext $=p$ | ciphertext $=c$)

$$
\begin{aligned}
& =\operatorname{prob}(P=p=c \oplus k \mid C=c) \\
& =\frac{\operatorname{prob}(k=k=p \oplus c, C=c)}{\operatorname{prob}(C=c)} \\
& =\ldots \operatorname{prob}(k=k)=2^{-e} .
\end{aligned}
$$

as Thesoen This is comptetely secure.

Probtem?

Bad usage: Using trice the same is bad:

$$
\left.\begin{array}{l}
c_{1}=p_{1} \oplus k \\
c_{2}=p_{2} \oplus k
\end{array}\right\} \quad c_{1} \oplus c_{2}=p_{1} \Theta p_{c}
$$

Even without redundancy is P_{1}, P_{2} this reveals half the information about then. (l ant $2 e$ bits ore revealed.)
Even with food usage:
Problem?
\rightarrow hard to generate so much rend an data
Too LONG KEYS.

The Advanced Encryption. Standard

AES, to. But...

Suppose y au calculate $=\mathbb{Z}_{256}$.
Is this a field?
Q: If $x \cdot y=0$ is a field, is it possible that both $x \neq 0$ and $y \neq 0$?
Then of cocerse $y=\underset{\substack{o h_{1} \\ h_{1} \neq 0}}{x^{-1} \cdot x y}=x^{-1} \cdot 0=0$, but $y \neq 0$. 合. $x \neq 0$. NC!
Fact In any field, we have

$$
x y=0 \Rightarrow x=0 \quad y=0 . a
$$

In \mathbb{Z}_{256} we lave ${ }^{2} \cdot 128^{\circ}=0$
so Hus is not a fickle!?

Standard

Field: You can divide by every non-zero element.

The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes

Polynomials over the field $\mathbb{F}_{2}{ }^{8}$
$R=\mathbb{F}_{2^{8}}[z] /\left(z^{4}+1\right) \ni a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}$,
where $a_{i} \in \mathbb{F}_{28}$.
Addition: coefficient-wise $(a+b)_{i}=a_{i}+b_{i}$, XOR
Multiplication: as for polynomials modulo $z^{4}+1$. Another way to express $d=a \cdot b$ is by the following matrix equation.

$$
\left[\begin{array}{l}
d_{0} \\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]=\left[\begin{array}{llll}
a_{0} & a_{3} & a_{2} & a_{1} \\
a_{1} & a_{0} & a_{3} & a_{2} \\
a_{2} & a_{1} & a_{0} & a_{3} \\
a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Not a field: $(z+1)^{4}=0$.

The MixColumns operation

Each column is considered as a polynomial and multiplied by $c=02+$ $01 z+01 z^{2}+03 z^{3}$

Inverse: Multiply with $d=0 \mathrm{E}+09 z+0 \mathrm{D} z^{2}+0 \mathrm{~B} z^{3}$

The field $\mathbb{F}_{2^{8}}$

$\mathbb{F}_{2^{8}} \ni a=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$, where $a_{i} \in \mathbb{F}_{2}=\{0,1\}$.

Representation: 8 bits for an element $=1$ byte.
Addition: XOR, $(a+b)_{i}=a_{i}+b_{i}$.
Multiplication: as for polynomials modulo $x^{8}+x^{4}+x^{3}+x+1$.
Example 57-83 $=\mathrm{C} 1$:

$$
\begin{aligned}
\left(x^{6}+x^{4}+x^{2}+1\right) \cdot\left(x^{7}+x+1\right)= & x^{13}+x^{11}+x^{9}+x^{8}+x^{7}+ \\
& x^{7}+x^{5}+x^{3}+x^{2}+x+ \\
& x^{6}+x^{4}+x^{2}+1 \\
= & x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1 \\
= & x^{7}+x^{6}+1 \quad \bmod x^{8}+x^{4}+x^{3}+x+1 .
\end{aligned}
$$

Field: You can divide by every non-zero element.

$$
\begin{aligned}
& a=1+x^{2} \hat{=} 10100000 \\
& a+b=1+x+\underset{=0}{(1+1) x^{2}} \leq 11000000 \\
& c:=a \cdot b=\left(1+x^{2}\right) \cdot\left(x+x^{2}\right) \\
& =1 \cdot x+1 \cdot x^{2}+x^{2} \cdot x+x^{2} \cdot x^{2} \\
& =x+x^{2}+x^{3}+x^{4}=01111000 \\
& c \cdot c=x^{2}+x^{4}+x^{6}+x^{8} ? \hat{=} \text { 00101010 ? ? } \\
& \equiv-1+-x+x^{2}+-x^{3}+0 \cdot x^{4}+x^{6}+0 \cdot x^{8} \\
& =1+x+x^{2}+x^{3}+x^{6} \\
& \ldots 1110010
\end{aligned}
$$

Feint: If we reduce machalo $x^{8}+1=\left(x^{4}+1\right)$ - ($x^{4}+1$) then we abteein not a field. Because the

$$
\begin{array}{cc}
\left(x^{4}+1\right) \cdot\left(x^{4}+1\right) & =0 \\
* & 0 \\
0 & -\forall N_{0} \text { field. }
\end{array}
$$

But I chain hat

$$
p=x^{8}+x^{4}+x^{3}+x+1
$$

comet be mitten as a product.'
If we have $p=p^{\prime} \cdot a_{2}$

$$
\text { and } \quad a=a_{7} \cdot a_{2}
$$

then $\quad \begin{gathered}p_{y}^{\prime} \cdot a \\ y{ }_{0}^{*}\end{gathered}=a_{r} \cdot\left(p^{\prime} a_{2}\right)=a_{r} \cdot p=0$.

The S-box

Highly nonlinear:
$y \mapsto 05 \cdot y^{254}+09 \cdot y^{253}+\mathrm{F} 9 \cdot y^{251}+25 \cdot y^{247}+\mathrm{F} 4 \cdot y^{239}+01 y^{223}+\mathrm{B} 5 \cdot y^{191}+8 \mathrm{~F} \cdot y^{127}+63$.
Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field $\mathbb{F}_{2}{ }^{8}$

$R=\mathbb{F}_{2^{8}}[z] /\left(z^{4}+1\right) \ni a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}$,
where $a_{i} \in \mathbb{F}_{2^{8}}$.
Addition: coefficient-wise $(a+b)_{i}=a_{i}+b_{i}$, XOR.
Multiplication: as for polynomials modulo $z^{4}+1$. Another way to express $d=a \cdot b$ is by the following matrix equation:

$$
\left[\begin{array}{l}
d_{0} \\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]=\left[\begin{array}{llll}
a_{0} & a_{3} & a_{2} & a_{1} \\
a_{1} & a_{0} & a_{3} & a_{2} \\
a_{2} & a_{1} & a_{0} & a_{3} \\
a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Not a field: $(z+1)^{4}=0$.

The MixColumns operation

Each column is considered as a polynomial and multiplied by $c=02+$ $01 z+01 z^{2}+03 z^{3}$.

Inverse: Multiply with $d=0 \mathrm{E}+09 z+0 \mathrm{D} z^{2}+0 \mathrm{~B} z^{3}$.

The AddRoundKey operation

Simple XOR with the round key.

SubBytes

Security of One -The Pad
What happens?
plantext: $p \in\{0,1\}^{n}$ string of a bits
Hows are they distributed?
Somehow! So: for any $p \in\{0,1\}^{n}$
U $\operatorname{prob}\left(01 P_{7}=9\right)=\pi_{q} \in[0,1]$
$\underset{\substack{\text { medium } \\ \text { vanish }}}{\substack{\text { specific } \\ \text { message }}}$
is given sack that $\sum_{p} \pi_{p}=1$
bey: $k \in\{0,1\}^{n} \quad$ sting of n bits
How are they distributed?
rae any $k \in\left(0,15^{4}\right.$ we kane:
II prob $(0) K(\omega)=k)=2^{-n}$.
randan
variable
And
$\int 1 \operatorname{prob}(P=p$ a $K=\varepsilon)$

$$
=\operatorname{prob}(P=p) \cdot \operatorname{prob}(K=k)
$$

in ether wade:
the riv. P and K are in de pendent.
Laxly spoken: we choose the key \therefore dependently of the plainest. cipberhats $c \in \alpha 0,13^{\prime \prime}$ hit strand of lengthen.

$$
\text { Let } C_{(v)}=P_{(\omega)} \otimes K_{(\omega)}
$$

What is H
$\operatorname{prob}(P=p \mid C=c)=?$
Example: $\quad \operatorname{prob}(P=0 \ldots 0)=1$
then Ere can easing guess the correct plain text.
But does the cipher text is that pes? No.
Theorem For any plaikext $p \in(0,1\}^{4}$, we have and any ciphortent $c \in\{0,1\}^{\prime \prime}$

$$
\operatorname{prob}(P=3 \mid C=c)=\operatorname{prob}(P=3)
$$

In ether the cipher text dues not he P Eve at $1 l$.

P

$$
\begin{aligned}
& \operatorname{prob}(P=p \mid C=c) \\
& \left.=\frac{\operatorname{prob}(P=p \wedge C=c)}{p r o b}(C=c)\right) \\
& =\frac{p r o b(P=p \wedge K=c \oplus p)}{p r o b(C=c)} \\
& =\frac{\operatorname{prob}(P=p) \cdot p \operatorname{cob}(K=c \otimes p)}{\operatorname{prob}(C=c)}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{prob}(C=c)=\operatorname{prob}(P \oplus K=c) \\
& =\sum_{p \in(a, 1)^{*}} \operatorname{prob}(P=p r=p \oplus K=c) \\
& =\sum_{P} \operatorname{prob}(P=p \hat{\uparrow} \quad K=c \in p)
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\sum_{p} \operatorname{prob}(P=p)}_{=1} \cdot \underbrace{p_{0 r b}(k=c \theta p)}_{=2^{-n}} \underbrace{3^{4.0}}_{(3)^{25.0 .7}} \\
& =2^{-n}=\operatorname{prob}(k=c \theta p)
\end{aligned}
$$

φ_{0},

$$
\begin{aligned}
& \operatorname{prob}(P=p \mid \quad(=c) \\
& =\operatorname{prob}(P=p) \cdot \underbrace{\frac{p r o b}{}(K=c \oplus p)}_{1} \\
& =\operatorname{prob}(C=c)
\end{aligned}
$$

That's best of all we can
hope for:
Eve does not learn anything from the Cipher text.

- Calculating and decidhiy invorses
zirst, let's summanire where we need thid: soppose $N \in \mathbb{N}_{>1}$.
\mathbb{Z}_{N} ring of integers mockele N.
eleneents $, d 0,1,2, \ldots, N-1\}$
operatiuns: $+:(a, b) \longmapsto(a+b)$ nam N,
- : $(a, b) \longmapsto(a \cdot b) \operatorname{rem} N$.
$-a \longmapsto \begin{cases}0 & \text { if } a=0, \\ N-a & \text { if } a \neq 0\end{cases}$
$=(-a)$ nem N.
TODO: $?^{-1}: \quad a \leftrightarrow \begin{cases}a^{-1} & \text { if exist } \\ \text { FAHC } & \text { offermise }\end{cases}$
Axious: PONT PANTS PAN(C).
raybe: (I'.
Suppose $N=\rho$ is prime. Then (as is lobe proved)
\mathbb{B}_{p} is a field, which we call \mathbb{F}_{3}.
Lansider polynowials withe coeflicimots in \mathbb{F}_{s}.
(Think of $p=2$.) Suppose m is a polgoamial of degrec $^{n} \geqslant d$.
$\pi_{p}[X] /\langle m\rangle$ mid of oolyacials moclues m with coefficients in F_{P}

$$
\begin{aligned}
& \begin{cases}\text { elements: } \quad & a_{0}+a_{1} X+a_{2} X^{2} \ldots \ldots+a_{n-1} X^{n-1} \\
& \text { mith } a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{F}_{p} . \\
\text { Qperations: }+:(a, b) \longmapsto(a+b) \text { vem } m\end{cases} \\
& =a+b=\left(a_{0}+b_{0}\right)+\left(a_{0}+b_{1}\right) X_{4} \\
& \ldots+\left(a_{\ldots},+b_{n .}\right) x^{-1} \\
& \begin{array}{l}
\therefore(a, b) \longmapsto(a \cdot b) \\
-a \longmapsto-a m m=-a .
\end{array}
\end{aligned}
$$

$$
\left\{\text { TODD: } ?^{-1}: a \longmapsto\left\{\begin{array}{l}
a^{-1} \text { if exist } \sum_{\text {FALL }}^{25.4 .07}
\end{array}\right.\right.
$$

Note that $\pi_{2}=\bar{F}_{256} \equiv \pi_{2}[x] /\langle\underbrace{\frac{\left.x^{8}+x^{4}+x^{3}+x+1\right\rangle}{7}}$
in AES, and this has no men-tiniel factors.
net's sweat with beth. known situation: inhegas mad A.
We are given $a \in \mathbb{Z}$.
Find $b \in \mathbb{Z}_{N}$ such that $\quad b_{i_{i_{N}}} a=1_{i n} \mathbb{Z}_{N}$.
ie. $\quad b \cdot a \quad$ rem $N=1 \quad$ in

- ie. $\exists t \in z$:

$$
b_{\dot{z}} a+t_{\dot{z}} N=\tau \quad \therefore \mathbb{Z}
$$

Fid $b, t \in \mathbb{Z}$ wet that

$$
B \cdot a+|A| \cdot N=1 \quad \text { in } \mathbb{Z}
$$

Let's try same excu-ples:

$$
N=42, \quad a=5
$$

Our ai is to b, t sued that $b a+t N$ is as sonde as possible (but positive).
Trivially: $b_{0}=1, t_{0}=0 ; \quad b_{0} a+t_{0} N=a=5$

$$
\begin{aligned}
& b_{2}=a, t_{a}=1: \quad b_{1} a+t_{a} N=N=42 . \\
& f_{2} a+f_{2} N=42-5=37 \\
& \text { _ . . 37-5 } \\
& \ldots \ldots=42-8 \cdot 5=2
\end{aligned}
$$

Sud new equation: And agai. Or all this at nance:

Thes we find

$$
17 \cdot 5+z_{z}(-2) i_{z} 42=1 \text { in } \mathbb{Z} \text {. }
$$

Tus

$$
\begin{aligned}
& \text { so } 17 \div_{42} 5=1 \text { is } \mathbb{Z}_{42}
\end{aligned}
$$

Fact: Time for acultiplying two u-bit integers
maxy • ryyyy $\because: \because:$.
$\therefore O\left(n^{2}\right)$ by sokool wethed, C(n $\mathrm{m}^{\operatorname{abs}_{2}{ }^{3}}$) by Karatsuba,
©(n $\left.\log _{n}(\log \log n)^{2}\right)$ by Strassen - Schönhage [BN!]. Same times for division mith drmariede.

Theorem
The above Extended Euclidean Alfanthon needs $O\left(n^{3}\right)$ operations.
Even $C\left(n^{2}\right)$ is trace.

Another example

$-\frac{(95)}{5} \cdot 25$
SToP
indicator
\rightarrow Use last a cross check: $0=5.95-19.25$ This line is always easy to chock but most easily if the last nonzero r : equals l.
Lemma The EEA computes the greatest common divisor g and s, t men that

$$
g=s \cdot a+t \cdot b
$$

lncleed, if, l is the number of the Ae with last nam-zero r_{i} then $g=r_{e}$.

Actually, in the aGontlem we chaose
a quaticut 9 : suitateles ond
then

$$
r_{i+1}=r_{i-1}-q_{i} \cdot r_{i}
$$

We de that untel $r_{e+1}=0$.
Then $\operatorname{gcc}(r_{e}, \underbrace{r_{e+1}}_{=0})$

$$
=\operatorname{gcd}\left(r_{e}, 0\right)=r_{e}
$$

Remind: 'the' greatest comman divisor g of two elencuts a, b is a_{n} elennent g moe' Heat'
(i) $g!a$ and $g l b$
cld
iff
\exists^{\prime} :
$c \cdot c^{\prime}=d$
(ii) $\forall h: h \mid a, h / b$ (δ divides a ac $(g$ din'cles b)

$$
\begin{array}{r}
\Rightarrow \quad k \perp g \\
\\
(h \leq g)
\end{array}
$$

Now, we can show

$$
\operatorname{gcd}\left(r_{i+1}, r_{i}\right)=\operatorname{gcd}\left(r_{i}, r_{i-1}\right)
$$

$r_{\text {Sug }} h$ is a comman alinisar of r_{i} ade r_{i-1}.
Then $r_{i+1}=r_{i-1}-q_{i} r_{i}=r_{i-1}^{1} k-q_{i} r_{i}^{i} k$
$=\left(r_{i-1}^{\prime}-q_{i} r_{i}^{\prime}\right) \cdot h$. Thus h dinides r_{i+1}.
Yo h dinides r : and $-n i+1$.

Now, the other wary round, say k is a common devisor of
r_{i+1} and r :
then $r_{i-1}=r_{i+1}+q_{i} r_{i}$
is a multiple of 6 .
Thus k is a conman divisor of r_{i} ae $\left(r_{i}-1\right.$. ㅁ]

By is ducting we have

$$
\begin{aligned}
\operatorname{gcd}(a, b) & =\operatorname{scd}\left(r_{0}, r_{1}\right) \\
& =\ldots=\operatorname{gcd}\left(r_{e}, 0\right)=r_{e} .
\end{aligned}
$$

Further, far any i we have

$$
r_{i}=s_{i} \cdot a+t_{i}-b
$$

This is trivially true far $i=0$ ad $i=1$ ane for $i>1$ we have

$$
\cdot\left(-g_{i-1}\right) \left\lvert\, \begin{array}{l}
r_{i-2}=s_{i-2} a+a f_{i-2} b \\
r_{i-1} \\
=s_{i-1} a+f_{i-1} b \\
r_{i} \\
r_{i-2}-q_{i-1} r_{i-1}
\end{array}=\underbrace{\left(s_{i-2}-q_{i-1} s_{i-1}\right.}_{s_{i}}\right.) a+(\underbrace{f_{i-2}-q_{i-2} f_{i-1}}_{t_{i}}) b
$$

In particular,

$$
g=r_{e}=s_{e}^{a}+\frac{t_{e}}{\frac{1}{t}} \text { claimed values. }
$$

Speed?
Claim: $\quad l \leq 2 n=2 \#$ bits $\quad \dot{a}$.
we choose g_{i} suck that

$$
\begin{aligned}
r_{i+1}= & r_{i-1}-q_{i} r_{i} \\
r_{i-1} & =q_{i} r_{i}+r_{i+1}
\end{aligned}
$$

$$
\left|r_{i+1}\right|<1 v_{i} \mid \text {. (fa integers). }
$$

It in easy to see that

$$
\begin{equation*}
\left|r_{i+1}\right|<\frac{1}{2}\left|r_{i-1}\right| \tag{x}
\end{equation*}
$$

Thus

$$
\left|r_{e}\right|<\frac{1}{2^{e^{2 / 2}} \max \left(\left|r_{1}\right|,\left|r_{0}\right|\right)} r_{0} \quad \text { max }\left|r_{1}\right|
$$

that in plies that $\quad \mathrm{e} / 2 \leq \underbrace{\text { Cog }_{2} \max \left(\left|v_{1}\right|,\left|v_{0}\right|\right)^{\top}}_{n}$

$$
l \leq 2 n .
$$

Thus the number of hies is at most trice the number of bits in a, b. Andeachsteps costs at most $O\left(u^{2}\right)$.
in total we have $C\left(n^{3}\right)$ bit operations
Actually, the baundi's bad, ans con prove that we reed $G\left(u^{2}\right)$ bit operations.

Recall that for the EEA
we only need

- a ring, ire a let fa epackity
- a division with remainder, ie. for any, a, b with $b \neq 0$ there exists $9, r$ suck that

$$
a=q \cdot b+r
$$

and $e(r)<k(b)$ ar roo.
for same suitable measure r.
Example.

$$
\mathbb{F}: \quad u(a)=|a|
$$

$F[X]$ with F a field :

$$
\begin{aligned}
k(a) & =\operatorname{dy} a \\
{[k(0)} & =-\infty .]
\end{aligned}
$$

Division is $F[x]$, say $F=F_{2}$.

$$
\begin{aligned}
& a=x^{7}+x^{3}+x^{2}+1 \\
& b=x^{4}+x+1 \\
& \frac{x^{7}+\quad+x^{3}+x^{2}+1=\left(x^{3}+1\right) \cdot b}{\left.x^{7}+x^{3}\right)} \begin{array}{l}
x^{4}+x^{2}+x^{2}+1 \\
\frac{-\left(x^{4}+x+1\right.}{2}+x
\end{array}
\end{aligned}
$$

Let's do an EEA fa

$$
\begin{aligned}
& a=x^{8}+x^{4}+x^{3} \\
& b=x \cdot(x-1)=x^{2}+x
\end{aligned}
$$

	voles
b	0
$x+1$	1
x	19
1	0

i	$r i$	$9 i$	$3 i$	$-t_{i}$
0	$x^{8}+x^{4}+x^{3}$		1	0
1	$x^{2}+x$	$x^{6}+x^{3}+x^{4} 4 x^{3}+x+1$	0	1
2	x	$x+1$	1	$x^{6}+x^{5}+x^{4}+x^{3}+x+1$
3	0	$x+1$	$x^{7}+x^{3}+x^{2}$	

Check: true!
ged: x
rear:

$$
\begin{aligned}
x & =\text { (1). }\left(x^{8}+x^{4}+x^{3}\right) \\
& +\left(x^{6}+x^{5}+x^{4}+x^{3}+x+1\right)\left(x^{2}+x\right)
\end{aligned}
$$

EFICIENT? Yes: eackstep reduces the degree by 1. Thus after clesree many steps $(+2)$ we are dame. $\frac{x^{3}+x^{2}}{\frac{x^{2}}{x}}$

We have beau tatry about the wigs
Z_{N} integers madura $l_{0} N$
(operation: modulo(N)
$\#_{9}[X] /\langle m\rangle$ polynomials over π_{9} modulo in
(operations like for polymonids bat taking renaides modulo m)
What about in these rigs?
In \mathbb{Z}_{N} we had translated the task
to hid b suck that $a b=1 i \mathbb{Z}_{N}$ to the last of firing b, t suck that
(*)

$$
b \cdot a+t \cdot N=1 \text { i } \mathbb{Z}
$$

Suck a solution can be found usia the EEA, if it exists...?
we know: if the $\operatorname{gcd}(a, N)=1$ then,
the EDt Lids b, t such that (t).
Othenvide, if $f \underset{!}{c d}(a, N) \neq 1$?
then $a=a^{\prime} g, N=N^{\prime} g$
Assumes
Hens $\quad b a+t N=\left(b a^{\prime}+t N^{\prime}\right) \cdot g \stackrel{\otimes}{=} 1$
we would have $g 11$, Hens g is trivial.
Yo $g=1$. If. Y, Bus no solution. So $a b=1$ is \mathbb{E}_{N} has no solution, ie. If inverse.

Them The EEA decides wether $a \in \mathbb{Z}_{N}$ has an inverse and in case it has computes it.
Actually, a has an inverse ($a \in \mathbb{Z}_{N}{ }^{x}$)

$$
\Leftrightarrow \quad \operatorname{gcd}(a, N)=1
$$

Or, $\quad \mathbb{Z}_{N}^{x}=\{$ a $1 \quad \operatorname{gcd}(a, N)=1\}$

Same for polynomials!:

$$
\begin{aligned}
& \left(\pi_{q}[x] /\langle m\rangle\right)^{x} \\
& =\{a \mid \operatorname{gcd}(a, m)=1\}
\end{aligned}
$$

and the EEA computes the inverse if it exists:

$$
\left.b \cdot a+t \cdot m=1 \rightarrow b=a^{-1} i=\cos \right] /(m)
$$

Example $\mathbb{Z}_{6}\lceil x] /\left\langle X^{2}+X+1\right\rangle$
b. $(x-1)=1$?

What happened?

$$
\begin{array}{lll}
\cdots & ? ? ? \\
& \geqslant & \frac{x^{2}+x+1}{x^{2}-x}=(x-1) \cdot(x+2) \\
2 x+1
\end{array}+3
$$

Answer: \mathbb{Z}_{6} is not $0 \cdot 3 \cdot \frac{2 x+1}{2 \cdot 3-0} \frac{2 x-2}{3}$
a field.
Thus there is no elivision withremandel f_{w} polgucunials over \mathbb{Z}_{6}. hues EEA needs not work.

Check the conch ions!

When is \mathbb{Z}_{N} a field?
If N is not inreckeible.

Trod definitions:
p is irreducible of whenever we mike $p=a \cdot b$ then a an b is unelifipicative, invertible ir. Trivia?
worn: if p cannot be mitten as a proper product.

$$
\forall a \cdot b: p=a \cdot b \Rightarrow a \mid l v b / 1 \text {. }
$$

p is prime iff whenever P divides a product $a \cdot b$
then p divides one of the factors a, b.

$$
\text { Fab: pla.b } \Rightarrow \text { pla } \mathrm{pp}^{1 b}
$$

Rare: p prime \Rightarrow pion.
Example where \leftarrow does not hold:

$$
\begin{aligned}
\mathbb{Z}[\sqrt{-5}]= & \{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\} \\
& (a+b \sqrt{-5})\left(a^{\prime}+b^{\prime} \sqrt{-5}\right) \\
= & a a^{\prime}+\left(b a^{\prime}+a^{\prime}\right) v-\widehat{-5}+6 b^{\prime} \cdot(-5) \\
= & \left(a a^{\prime}-5 b b^{\prime}\right)+\left(b a^{\prime}+a b^{\prime}\right) r-\overline{5} .
\end{aligned}
$$

Now:

$$
\begin{aligned}
6 & =2 \cdot 3 \\
& =(1+\sqrt{-5}) \cdot(1-\sqrt{-5})
\end{aligned}
$$

Actually, $2,3,1 \pm \sqrt{-5}$ are all ivechucible. So: $21(1+\sqrt{-5})(1-\sqrt{-5})$ but $21(1 \pm \sqrt{-5})$

Back to our interests?
When is \mathbb{Z}_{N} a field?
If N is not iareducerble
then it is not a field.
Pf wink $N=N_{i} N_{2}$ with N_{1}, N_{2} both nouttrinal ie. $N_{1} \neq \pm 1, N_{c} \neq \pm 1$.
then $\left(N_{1} \operatorname{mad} N\right) \cdot\left(N_{2} \operatorname{mad}(N)=0 i \frac{z_{N}}{2}\right.$
ad $N_{1} \operatorname{wod} N \neq 0$, Chbomise $N_{1}=c \cdot N$, ie.

$$
N_{2} \operatorname{mad} A \neq 0
$$

$$
N_{2}= \pm 18.2
$$

1]
Example: $\quad N=4: \quad 2 \cdot 2=0 \quad \therefore \mathbb{E}_{4}$.

$$
N=6: \quad 2 \cdot 3=0 \quad=\mathbb{Z}_{6}
$$

Y. these are no fields!

If $N=p$ is irreducible
then \mathbb{Z}_{N} is a field.
Pf we need to shun that all elements but 0 have a multiplicative inverse. We frow $z_{p}^{x}=\left\{a \in \mathbb{Z}_{p} / \operatorname{gcd}(a, p)=1\right\}$ Now the din'sars of p are $\pm 1, \pm p$ Consider $a \in z_{p}$, ie. $a \in\{0,1,2, \ldots, p-1\}$. Then

$$
\operatorname{gcd}(a, p) \neq \pm 1, \text { ff } a=0
$$

Than $\quad \mathbb{Z}_{p}^{x}=\{1,2, \ldots, p-1\}=$ if a is a multiple of p).

Yo we are done.
Concludis:
Theorem Z_{N} is a field of N is ineducable. (prime) is
$\left.\mathbb{H}_{9}[X]<m\right\rangle$
polynomials medulo save polfuivecianial us.

When is this a field?

Theorems $\pi_{9}[x] /\langle m\rangle$ is a field
iff in is irreducible.
PF If m is reduable
the mite $m=m_{1} \cdot m_{c}$ as a proper product.

$$
\begin{array}{ll}
\# & \# \\
\ldots
\end{array}
$$

$\mathcal{L}\left(m_{1} \bmod m\right) \cdots\left(m_{2} \bmod m\right)=0$ is $\left.\pi_{1} \pi / / m\right\rangle$.
If m is iveducible
the

$$
\left(\bar{\pi}_{q}[x] /\langle m\rangle\right)^{x}=\left\{a \in \mathbb{F}_{q}[x] /\langle m\rangle \mid \operatorname{scd}(a, m)=1\right\}
$$

Now, if m has no proper factors then a $\ngtr 0$ is enough bo ensure that $\mathrm{gcd}=1$, so any es enange peng onsere 0 has an inverse. \Rightarrow it's a field rs

Ex:

$$
\begin{aligned}
& \mathbb{Z}_{2}: 2 \text { is ior. } \\
& \{ \\
& Z_{2} \text { afield } \because: \bar{F}_{2}
\end{aligned}
$$

$\bar{\pi}_{2}[x]: \quad x^{2}+x+1$ is inr.
\}
$\pi_{2}[x] /\left\langle x^{2}+x+1\right\rangle$ a field: \mathbb{F}_{4}.

$$
\left\{a_{0}+a_{1} X \mid a_{0}, a_{1} \in \mathbb{H}_{2}\right\}=\{0,1, x, x+1\}
$$

$\#_{y}[y]: y^{3}+y+1$ is ior.
ξ

$$
\bar{H}_{4}[y]<\left\langle y^{3}+y+1\right\rangle \quad \text { a field }: \mathbb{F}_{4^{3}}=\pi_{64} \text {. }
$$

$"$

$$
\left.\alpha b_{0}^{\prime \prime}+b_{1} y+b_{2} y^{2} \mid b_{0}, b_{1}, b_{2} \in \mathbb{F}_{4}\right\}
$$

AES: $\pi_{2}[X]: x^{8}+x^{4}+x^{3}+x+1$ is ior.

$$
\begin{aligned}
& \xi \\
& \#_{256}=\pi_{28} .
\end{aligned}
$$

So! wouclerfal toal.
$\Gamma H_{2}[z], Z^{6}+\ldots$ ior.
$\{$
$F_{64}$$\quad$ If turns ouct theat his $\mathbb{H}_{64}^{\prime} \xlongequal{\approx} \mathbb{F}_{64}$ frim above. J

Additional information:
there exists a field with 9 elcenencts
iff 9 is a prime power and essentially are such.

$$
{ }_{0} 0_{0}
$$

a power af
a prince es. 7 !

Ser' of invertible numbers!

$$
\left.\begin{array}{l}
\mathbb{Z}_{N}^{X} \\
\left(\mathbb{\pi}_{9}[x] / \ll_{m}\right\rangle
\end{array}\right)^{x}
$$

Ex $\mathbb{Z}_{6}^{x}=\{1,5\}$

$$
\{0,1, x, x+18
$$

Addition stay not insicie:
in $\mathbb{Z}_{6}: \quad 1+1=\sum_{n}$

$$
\begin{aligned}
& 1+1=\frac{1}{n} \\
& Z_{6}^{n} \vec{Z}_{6}^{x} \mathbb{Z}_{6}^{n}
\end{aligned}
$$

Multiplication? Works! PANIC!

Whenever R is a ring, commutatire, then the set of R^{x} of invertibke elernnets is a
Q Commotative grencep unt. to unelfiplication

Ex $\quad z_{15}: \quad Z_{15}^{x}=(\{ \pm 1, \pm 2, \pm 4, \pm 7\}, \cdots)$ ai a caum. graup!

$$
\begin{aligned}
\bar{\pi}_{256}[z] /(z 41): & \left(\bar{\pi}_{256}[Z] /\left(z^{4}+1\right)\right)^{x} \\
& \text { is a camm. graup. }
\end{aligned}
$$

Def A caum. grevesp is a set usith ane operation suce that the axioms PAAIC hold.

How to exchange a key withe out pres shared secret?
How to hath secretly even if Eve
listens to every. thing induchinf the description of the scheme?

Diffie \& Hellman (1976) Key exchange:
Selma: a group :

$$
\begin{array}{cc}
\mathbb{Z}_{p}^{x} & \text { prime } \\
g \in \mathbb{Z}_{p}^{x} & q \mid(p-1) \text { prime } \\
& \text { mitt good properties } \\
\text { (solaced to } q!\text {) }
\end{array}
$$

Example: $\underbrace{\boldsymbol{Z}_{47}^{x}}_{\text {it is a grace }}$
of 46 eleavints.

$$
\begin{aligned}
& g=2: \quad G=\langle g\rangle \\
& \text { grown generated } L_{r} g \\
& :=\left\{1, g, g^{2}, \ldots, g^{22}, \ldots g^{15}, \ldots\right\} \\
& \begin{array}{ll}
\text { Alice } & \text { Bi, g Bobera) } \\
\text { (Cesar) } & \text { (Cleopatra) }
\end{array} \\
& x \sigma_{R} \\
& y \in \mathcal{Z}_{R} \\
& h_{A}=g^{x} \quad h^{h_{A}=g^{x} \quad h_{B}=g^{y}} \\
& h_{B}=g^{y} \\
& k_{B}=k_{A}^{y}
\end{aligned}
$$

Now

$$
k_{A}=\left(g^{y}\right)^{x}=g^{y \cdot x}=g^{x \cdot y}=\left(g^{x}\right)^{y}=k_{B} ;
$$

so Alice and Bol k have a shaved secret noon. They can use it to encipher further mes ages.
Carrectmess? This f is $b_{A}=k_{B}$. Efficiency? $O\left(n^{2}\right)$ flit operatives per multiplication.

Auction: We sell 2^{28}. Who does is one a pest?
First bid: 27 mull.
Dennis 15 sun if: ale 2^{14}, square.
Tillman 10 nett: call 2^{7}, square, square.
TiL 8 un et :
$(2), 2^{2}, 2^{3}, 2^{6}, 2^{7}, 2^{14}, 2^{18}$
23456
6 unetiplications!
we sell 2^{35} !
Sumit: 12 op's: calc 2^{7}, then vaices this to the fitth pomer.

Tilman 7 of's :

$$
2^{2}, 2^{4}, 2^{5}, 2^{10}, 2^{20}, 2^{30}, 2^{85}
$$

Tillman 6 op's:

$$
22^{2}, 2^{4}, 2^{8}, 2^{16}, 2^{17}, 2^{34}, 2^{35} 7 \cdot 9
$$

sumit 6af's

$$
2^{2}, 2^{4}, 2^{8}, 2^{16}, 2^{17}, 2^{33}, 2^{35} 7!i
$$

Square \& multiply (Repeated squaning) Note $35=100011$
Now compote: $2^{102} 2$ square

$$
\begin{aligned}
& \left.2^{200_{2}}\right)_{2} \text { squane } \\
& 2^{\left.100 \%_{2}\right) \text { spuare }} \\
& 10001_{2} \text { I square \& undt mith ? } \\
& 2^{100001_{2}} \text { Ysquare } 8 \text { mult' } \mathrm{m} \text { the }
\end{aligned}
$$

Thy: $g^{382}:$ Square 8 malt $\leadsto 14$ nuelt.
same thithij $\rightarrow 12$ maelh optinman: 11 malt.

Theovens Gefiven a group G and an slevent $g \in G$ we can compente the map

groop eperations.
to calcul.
Roor Proof? Imphencentation? $\rightarrow E x$
SECURITY?
What does EVE see?
Selups graup G, generater g
Communication: $h_{A}=g^{x}, h_{B}=g^{y}$
wauts: counmon lay: $g^{x y}$

- DHP (Diffie-Hellman-Probhen)

$$
L\left(g, g^{x} \cdot g^{y}\right) \longmapsto g^{x y}
$$

For excople mith $G=\mathbb{Z}_{17}{ }^{x}, g=2$ we might afte: $j=2, g^{x}=3, g^{y}=5$. What is $g^{x y}$?

It is enough to find x or y!
Because then, say we found x, we can compute $g^{x y}=\left(g^{y}\right)^{x}=5^{x}$.

Consider the
DLP (Discrete Logarithea Problem)

$$
I\left(g, g^{k}\right) \longmapsto \&
$$

Whet we have sack is:
If we Scan solve the $D L P$ then solve the DHP.
Yo we must choose the setup, group 6 and the generator g, such that at Bast the DCP is difficult.
F Necessary for the secorty:
DLP, is difficult

$$
(\operatorname{in} G=\langle g\rangle) .
$$

Good examples:
Use $g \subset \mathbb{Z}_{p}^{\lambda}$ such that $g^{9}=1, g \neq 1$ where g is a large prime (\& $q \mid p-1$).
lurerludiom
other groops, mith particulady difficult DLP:
Ellptic curves
Given on oquation.

$$
y^{2}=x^{3}+a x+b
$$

with $a, b \in \mathbb{F}, 219,319$.
Oner \mathbb{R} the picture is like this:

We require

$$
P+Q+R=C
$$

so we should define

$$
P+Q=-R=S
$$

this deflines a group dif we add owe point: $O=$ iero elemet.

Define:

$$
P+Q= \begin{cases}S \text { as alove if } P \neq Q, P \neq Q \vee \\ P \neq O \\ Q \neq 0, \\ P & \text { if } P=0 \\ P & \text { if } Q=0 \\ 0 & \text { if } Q=-P\end{cases}
$$

Group? $P r$
N by coustruction of θ. I unioror at x-ax is V cobrioust

For these groups the
DLP
is supposedly 'more' difficult.
Thus we can use smaller versions (measured by 9 say) get same security.

Eg. using \mathbb{Z}_{p}^{x} with $1024-$ nit $^{\text {th }} p$ corresponds to E over F_{P} with 160 -bit p.
In total: \mathcal{E} might be cheaper at same secund.
and iuker ludi'uns

Nov to $h=d$, say p, q, and g such that $g \in \mathbb{z}_{p}^{x}, g^{q}=1, g \notin 1$.

Neal to know more aback exponentiation, powering:
Say we are given $g \in G, G$ same group. (Think $G=\mathbb{Z}_{p}^{x}$, for example.)

Consider $\quad g, g^{2}, g^{3}, g^{4}, g^{5}, g^{6}, \ldots$

Ex $p=14 ; g=2$.
repeat Ais part!

DH Protocol
$G 7 g$
Bob
Alice
$x \in_{R} z$

Correctness
Efficiency v (Squaredmultiple)
Security
Ere hastofolve the DHP:

$$
\left(g, g^{x}, g^{y}\right) \longmapsto g^{x y}
$$

at least with ane probability.
THere, "amplification" is possible! From a solution for $\left(g, g^{x+d}, g^{y+\varepsilon}\right)$ we can derive $g^{x y}$, so try various $\delta_{r} \varepsilon$. If Ere can solve the $D L P$:
withe some probability ${ }^{\left(g, g^{x}\right)} \stackrel{x}{\longmapsto}$
then she can solve the DHP.
T Amplification" possithe. I

Beware of Eve becoming ac five:
Mallory.
(Wo)Men in the middle attach:

$$
\begin{aligned}
& \text { Alice Mallory } \\
& \text { Bob } \\
& \text { (wilma) }
\end{aligned}
$$

$$
\begin{aligned}
& =g^{x y^{\prime}}=\left(g^{\prime}\right) \quad\left(g^{y}\right)^{x}=g^{x^{\prime} y} ?^{\left(g^{x^{\prime}}\right)^{y}} \\
& E_{j^{\prime} y^{\prime}}(m) \quad \begin{array}{c}
\text { decrypt } \\
8 \\
\text { encrypt }
\end{array}, \bar{E}_{g^{\prime} y}(m) \quad, \\
& \text { Mallory can } \\
& \text { read everything }
\end{aligned}
$$

Somehow Alice should whom the is talking to!

ALWAYS: be aware of your mo del of security. Which type of attacks do you consicles?

We rocork is same group 6 and there is an element $g \in G$.
Question: when does $1, g, g^{2}, g^{3}, \ldots$ start repeating?

Than (Loggrenge) timike
Given $* \in G, G$ a group
then $x^{\# G}=A$.
in other words, the picture of $1, x, x^{2}, x^{5}, \ldots$ books mot andy like

divides \# 6 for any x.
Pf far G cournutative.
Take a list of all group elements:

$$
g_{1}, g_{2}, g_{3}, \ldots, g_{\# G}
$$

and multiply each element with x :

$$
x g_{4}, x g_{2}, x g_{3}, \ldots, x y_{* 6}
$$

Up to order, hies also a list of all grace elements!
$\Gamma_{(a)}$ if $x g_{i}=x g_{j}$ then $g_{i}=g_{j}$ ar $i=j$. [simply multiply $x g_{i}=x g_{j}$

$$
\begin{aligned}
& \text { with } x^{4} \rightarrow 0 \quad j_{i}=x^{-1} \times g_{i} \\
& \text { so then } i=j .
\end{aligned}
$$

(b) Take an arbitrary element of G, say g_{i}. Find it on the new lest!
wee look j with $x_{j}=g i$,
so lake $j \% \quad g_{j}=\underbrace{x^{-1} g_{i}}_{G G}$
then $\quad x g_{j}=x x^{-1} g_{i}=g_{i} \quad 1$
Thus up to order both lists are equal. Multiply all elements an each lest:
$g_{1} \cdot g_{2} \cdot \cdots \cdot g_{* G}=\frac{x}{\uparrow} \quad x g_{1} \cdot x g_{2} \cdot \ldots \cdot x g_{* G}$
G commatelive
$\&$ lists ore equal up to order.

$$
x^{\# G} \cdot \underbrace{g_{1} \cdot g_{2} \cdot \ldots: g_{\# G} a}
$$

Divide and obtain:

$$
x=x^{* G}
$$

Another example:

| | $p=23$, | $=5:$ | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
| i | Z_{23}^{x}, | $\# G=22$. | | | | | | | | | | |
| x^{i} | 1 | 5 | (2) | 10 | 4 | -3 | 8 | -6 | -7 | -12 | 9 | $\# G$ |
| | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | $22^{\prime \prime}$ |
| | -1 | -5 | -2 | -10 | -4 | 3 | -8 | 6 | 7 | 12 | -9 | 1 |

$$
\begin{aligned}
& p=23, x=2: \quad G=\mathbb{Z}_{23}^{x}, \quad \# G=22 . \\
& \frac{1}{x^{i}} \left\lvert\, \begin{array}{ccccccccccc}
9 \cdot 5 \cdot 07 \\
1 & 2 & 4 & 8 & -7 & 9 & -5 & -10 & 3 & 6 & 12 \\
p=23, & x=-1: & G=7_{23}^{x}, & \# 6=22 \\
p & x^{22}=1 \\
i & 0 & 1 & 2 & \rightarrow & x^{22}=1
\end{array}\right.
\end{aligned}
$$

Corollary (Euler)
Suppose $a \in \mathbb{Z}$, a coprime to N ie. $\operatorname{gcd}(a, N)=1$. then $a^{\varphi(N)}=1$ in \mathbb{Z}_{N}^{x}
where $\varphi(N):=\# \mathbb{E}_{N}^{x}$.
Pf This is sig fy the Thu of lagra-ape applied to $G=\mathbb{Z}_{N}{ }^{X}$.
Corollary (Lite Format Theorem) Yuguase p prime, $C<q<p$. Then $a^{p-1}=1$ in \mathbb{Z}_{p}^{x}.

Pf Apply the previous to Noprime and compute $\varphi(p)=p-1$.
Z_{p} is a fie d.
SEA

First consequence:
Square \& multiply or exponentíatiy may first recce the exponent'? by the group size (if Evan!).

Example

$$
2^{5324427}=2^{7}(=-7) \text { in } \underbrace{\mathbb{Z}_{11}^{x}}_{10 \text { elements! }}
$$

$$
\begin{aligned}
r \quad 2^{5324427} & =2^{10 \cdot 532442+7} \\
& =(\underbrace{\left(2^{10}\right)^{532442}}_{=1} \cdot 2^{7}=1^{58442} \cdot 2^{7} \\
& \text { fermat }
\end{aligned}
$$

$$
=1 \cdot 2^{7}=2^{7} \quad \text { in } \mathbb{Z}_{11}^{x} \cdot 1
$$

Consequence for Diffie-Hellman by y exchange: technical: choose $\times \in_{R} \mathbb{Z}$
in the interval $0 \leq x<\# G$.
security: $g^{k}=1$ should not happen for a smell k.
Def $\operatorname{ord}_{G} g=\min \left\{k \in \mathbb{N}_{s_{0}} 1 g^{k}=1\right\}$ is called the order of g in G.

Using this notion we can reformulate the theorem of Lagrange:
corollauy. Gin a grace G ad $E G G$.
Then ord x divicles $A G$.
Pf Suppose $x^{6}=1$ and a is minimal.
By Lagrange we have $x^{\neq 6}=1$.
Say, $H=10$ and $x^{3}=1$. $3+10$ so we have to shaw that
By EEA we obtain 3 is not minimal!)
g, s, t such that s. $k+t \cdot G=g$ and $g=\operatorname{gcd}(k, \# G)$.
then $x^{g}=(\underbrace{x^{k}}_{=1})^{3}(\underbrace{x^{* 6}}_{=1})^{t}=1^{3} 1^{t}=1$.
Sire k is minional we have $g \geq R$. But $g \mid k$, Hues $g=k$.
And of course $g \prime \# G$. Hues $k 1 \# G$

RSA (1978)
Rives
Shamir
Ad leman
Purpose: setup parameters and then send encrypted messages.

Seton Choose two primes ping (large! fay 512 bl each.)
Let $N=p \cdot q$.
(The will work in Z_{N}^{*}.)
Let $L=(p-1)(q-1)$
(Actually, $\# \mathbb{Z}_{N}{ }^{x}=L!$)
Tho ow away pig.
Choose $e, d \epsilon_{R} \mathbb{Z}_{L}^{x}$ suck that

$$
e \cdot d=1 \text { in } \mathbb{Z}_{L}^{x} \text {. }
$$

Throw away p, q, L.
Store: Private key (N, d).
Publish: Public bay (N, e).
Bob \rightarrow Alice, Encrypt a message $x \in \mathbb{Z}_{N}^{(x)}$.

$$
y \leftarrow x^{e} \text { in } \mathbb{Z}_{N} .
$$

Send
Correct ness
Alice, Decrypt this:

$$
z \leftarrow y^{d} \text { in } \mathbb{Z}_{N}
$$

Claim Always:

$$
z=x .
$$

CORRECT MESS
Easy: if $x \in \mathcal{E}_{N}^{x}$ the

$$
\begin{aligned}
z & =y^{d}=\left(x^{e}\right)^{d} \\
& =x^{e d}=x^{1+\frac{z \cdot b}{4}}
\end{aligned}
$$

Gorse t
recuse ed $=1 \therefore z_{L}$,

$$
\text { ie. } \quad e d=1+t L=z
$$

for same t.

$$
\begin{aligned}
=x \cdot & \left(x^{2}\right)^{t} \\
& =1 \text { by } \operatorname{Than}(\text { Eccles }) \\
& \text { using that } L=\# \mathbb{Z}_{N}^{x} .
\end{aligned}
$$

(Exercise 3.2):

$$
\#_{N}^{x}=\# Z_{p q}^{x}=(p-1)(q-1)=: L
$$

$$
=x \cdot 1=x
$$

Waw!
What if $x \notin \mathbb{Z}_{N}^{X}$?
First: The probalify is very small:

$$
\begin{aligned}
& \operatorname{prob}\left(\times \notin \mathbb{Z}_{N}^{x} \mid x G_{R} \mathbb{Z}_{N}\right) \\
& =\frac{p+q-1}{p q} \approx 2^{-511} \neq 10^{-153} \ldots \\
& p .9 \approx 2^{512} \approx 1 \begin{array}{l}
\text { very small }
\end{array}
\end{aligned}
$$

very small
Second: Sup such 'bad' message x reveals p and q by computing $g e d(x, 1)$.

Third: $\quad x^{e d}=x$
even in the 'bad' cases.
First proof for this: use ad hoe $x=x^{2} p$ or $x=\hat{x} g$ and sec whet happens.

Second proof: new tool:

Chinese Remainder Theorem

$$
\begin{aligned}
& \mathbb{P}_{m} \\
& \quad(\text { as in exk.2) }
\end{aligned}
$$

If $\operatorname{gcd}(m, n)=1 g$ is not one
then $\quad \frac{m \cdot n}{g}\left\{\begin{array}{ll}=\frac{m}{g} \cdot a=0 \text { in } & \mathbb{Z}_{n} \\ =\frac{u}{g} \cdot(\underline{n} & =0\end{array} \quad \mathbb{Z}_{m}\right.$.
so the cell $(0,0)$ gets 0 and $\frac{m u}{g}$ s and Hues \mathbb{Z}_{mn} canon f fill the table. But if $\operatorname{gcd}(m, n)=1$ the the table gets fillet owe any cell gets exactly one elencont.

CRT 'naive' fommelition.
soppese min are coprime intefers. Given $x \in \mathbb{Z}_{m}, y \in \mathbb{Z}_{n}$
find a munfor $z \in \mathbb{Z}_{m i n}$
such that $z=x$ is $\mathbb{Z}_{\text {ars }}$

$$
z=y \quad i \quad \mathbb{Z}_{4} .
$$

Given $x \in \mathbb{Z}, \quad \theta \leq x<m, \quad y \in \mathbb{Z}, \quad 0 \leq y<n$
$f: d$ a msumber $z \in \mathbb{Z}$
suen tha:-

$$
\begin{aligned}
& z=m y \\
& z \equiv_{n} y
\end{aligned}
$$

efletually sue hame a muap:

$$
\begin{aligned}
& \mathbb{Z}_{m \cdot n} \longrightarrow \mathbb{Z}_{m} \\
& \text { I: } \hat{x} \bmod \min \rightleftharpoons>\hat{x} \bmod \operatorname{mr}
\end{aligned}
$$

This is a nice map: for x, y are have

$$
\bar{n}(x+y)=\pi(x)+\pi(y)
$$

ád $\pi(x \cdot y)=\pi(x) \cdot \pi(y)$
Γ This is fanclion obrious if π is alefined by choosing $\hat{x} \in \mathbb{Z}$ sucte $x=\hat{x} \operatorname{mad} \mathrm{mu}$ then $\bar{a}(x+y)=\widehat{x+y} \bmod m$

$$
\begin{aligned}
& \frac{?}{z}(\hat{x}+\hat{y}) \bmod m \\
& =\hat{x} \bmod (\ln +\hat{y} \bmod m \\
& =\pi(x)+\lambda(y) . \quad \cdots 1
\end{aligned}
$$

Consider Hies:
C^{\prime} Suppose m, n are coprime.
Then the map

$$
\mathbb{Z}_{m n} \quad \longrightarrow \mathbb{E}_{m} \times \mathbb{Z}_{n}
$$

es a bijective sing morphisue. ie, a ring iso morphism.
In particular, sue often: a prop iso morphisur

$$
\mathbb{Z}_{m u}^{x} \longrightarrow \mathbb{Z}_{m}^{x} \times \mathbb{Z}_{n}^{x} .
$$

So we often the corollary:

$$
\begin{aligned}
& \# \mathbb{Z}_{m n}^{x}=\not \mathbb{Z}_{m}^{x} \cdot \# \mathbb{Z}_{n}^{x} \\
& u_{1}^{\prime} \\
& \varphi(m \cdot n)=\varphi(m) \cdot \varphi(n)
\end{aligned}
$$

provided m, n are coprime.
[Woke that $\varphi(4)=2 \neq \varphi(2) \cdot \varphi(2)!]$

Proof. (CRT')
Assume the waive version.
It says that the map is cunjective and bless $\mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{4}$ is runjective.
Now, since $\# \mathbb{Z}_{m n}=m \cdot n=A Z_{m}$. $\# \mathbb{E}_{n}=\mathbb{F}\left(\mathbb{Z}_{m} \times Z_{n}\right)$. the map must also be infective.

Preof (CRT)
So given $x \in \mathbb{Z}_{n}, y \in \mathbb{Z}_{n}$
Aer $Z \in \mathbb{Z}$ sucte

$$
\begin{aligned}
& z=x i \mathbb{Z}_{m}, \\
& z=y \quad i \mathbb{Z}_{u} .
\end{aligned}
$$

Cocsicier $(x, y)=(1,0) \leadsto z_{1}$
and $(x, y)=(0,1) \leadsto z_{L}$
so

$$
\begin{array}{ll}
z_{1}=1 & \therefore \mathbb{Z}_{m} \\
z_{1}=0 & \therefore \mathbb{Z}_{n}
\end{array} \quad \begin{aligned}
& z_{2}=0=\mathbb{z}_{m} \\
& z_{z}=-1=\mathbb{Z}_{4} .
\end{aligned}
$$

Clain. If we canfind z_{r} add z_{2} the

$$
z=x z_{1}+y z_{2} \text { solues the }
$$

original proble.

$$
\begin{aligned}
& z=\sum_{m} \times \underbrace{z_{1}}_{1}+y \underbrace{z_{2}}_{0}=x \cdot 1+y \cdot 0=x i \dot{\mathbb{Z}_{m}}, \\
& z=n \underbrace{z_{1}}_{0}+y \underbrace{z_{2}}_{1}=x \cdot 0+y \cdot 1=y i \mathbb{Z}_{n},
\end{aligned}
$$

By sy mumery is'suffices te fine' z_{1} : Y. we book for

$$
z_{1}=1-a \cdot m \quad \text { for soure }
$$

ad $z_{1}=0+b \cdot n$ for some b.
Thekis: $1=a \cdot m+\underbrace{b_{1} \cdot n}_{z_{1}}$ for soume $a_{1}!$.
and atso

Toe find a,b bay EEA sice min are coprime.

Then $z_{1}=b_{i n}$ gives $z_{1}=1$-am $=1$ in z_{m}
1-am
$z_{1}=b_{1 n}=0 \therefore Z_{n}$
ad $z_{2}=a_{4} \cdot m$ gives $z_{2}=a \cdot m=0 \therefore z_{m}$

$$
1-6 n
$$

$$
z_{2}=1-b n=-\dot{z_{n}} .
$$

So we are olune

CRA In: $x \in \in \mathbb{E}_{m}, y \in \mathbb{Z}_{n}$
af: $z \in \mathbb{Z}_{m n}$.
Eompute $1=a m+b_{n}$, then $z=\left(x \cdot b_{n}+y \cdot a \cdot m\right)$ mod m.n.

RSA Exmple:

$$
\begin{aligned}
& p=5, \quad q=7 \\
& N=35 \\
& L=24
\end{aligned}
$$

Yuess $e=17$. (unifoum manan ckaice!)
Then $d_{0}=17$.
By coincidure
24 is very special
any number in \mathbb{Z}_{24}^{x}
has squave 1 ! $\& C R T$

24	1	0	
17	1	0	1
7	2	1	-1
3	2	-2	3
1	3	5	-7
0		-17	24

Wow, CRT is fork!
Alice hus to calculate

$$
y^{d} \text { in } z_{p q}
$$

Why not do blues is $\mathbb{B}_{p} \times \mathbb{Z}_{q}$?
Compute $z_{p}=(y \operatorname{mosel} p)^{d}$
add $z_{q}=(y \operatorname{med} q)^{d}$
and then use $C R T$ find

$$
\left.\begin{array}{r}
z=z_{p} \quad \text { in } z_{i}, \\
z=z_{q} \quad \text { in } z_{q},
\end{array}\right\} \Rightarrow z=y^{\prime \prime}
$$

Say Alice' Job is ho revere His value z.
And" further say Alice is a smart card and we can disforb Alice so she makes an error in exactly one place.
So we jet

$$
\begin{aligned}
& z^{\prime}=z_{p} \quad \therefore \quad \mathbb{Z}_{p} \\
& z^{\prime} \neq z_{q} \quad \text { is } \quad z_{q}
\end{aligned}
$$

Bat we may tare prepared $y=x^{e}$ then $x=y^{d} i z^{\prime}$ ad $z^{\prime}-x=0$ is $z_{i p}$

$$
z^{\prime}-x \neq 0 \quad \text { in } \mathbb{Z}_{q}
$$

Thus $\operatorname{gcd}\left(z^{\prime}-X, d \cdot\right)=P$.

Recunid:
CRT Given m, n copnime
then

$$
\mathbb{Z}_{m i n} \xrightarrow{\cong} \mathbb{Z}_{m} \times \mathbb{Z}_{n}
$$

Example of its use:
Say min are both prime.
Howe mung $x \in Z_{m n}$ are there

$$
\text { with } x^{2}=1 \text { in } \mathbb{Z}_{\text {mu }} \text { ? }
$$

Answer: look for solution $二 \mathbb{Z}_{m}$ and fid $\pm \rightarrow \in \mathbb{E}_{n}$ there. Since m is prime, \mathbb{Z}_{m} is a field and there can $G e$ wo ate soturtious. r if p is \& polynomial over same field and $p(x)=0$ the

$$
\text { field! } \Rightarrow\left\{\begin{array}{cc}
p(T)=q(T) \cdot(T-x)+r \\
\text { mith } & \operatorname{deg}_{\text {II }}(T)< \\
0 \text { or }-\infty & \operatorname{def}(T-x)=1
\end{array}\right.
$$

Now,

$$
\underbrace{p(x)}_{=0}=q(x) \cdot \underbrace{(x-x)}_{=0}+r
$$

so $\quad r=0$. Then $p(T)=q(T) \cdot(T-x)$.
Thus there cane be at most $\mathrm{dkg}_{\mathrm{g}}(p)$ zeros.
Also is Z_{n} we $1 \rightarrow d \pm 1$ as only solutions. thus $=\mathbb{Z}_{\mathrm{m}} \times \mathbb{Z n}_{\mathrm{n}}$ we have 4 solutions:

$$
\left(+1_{\substack{1}}^{\substack{1 \\-1}}, \underset{\substack{1 \\-1}}{(-1),(+1,-1),(-1,+1)}\right.
$$

$[-x]$

RSA is correct: $x^{e \phi}=x$
in all cases!
Pf we cont this epretra in $\bar{Z}_{p q}$.
By CRT

$$
\mathbb{Z}_{p q} \cong \quad \mathbb{Z}_{p} \times \mathbb{Z}_{q}
$$

So is $x^{e d}=x$ in \mathbb{Z}_{p} ?
Now, we know Meat

$$
x^{p-1}=1 \quad \therefore \mathbb{Z}_{p}^{x}
$$

by fermat provided $x \neq 0$.
Thus

$$
x^{P}=x \quad \therefore \quad \mathbb{Z}_{P}
$$

for $x \neq 0$. But this is truce for $x=0$ as nell! Inductively Ming gives

$$
x=x^{?}=x^{1+2(p-1)}=x^{1+3(p-1)}
$$

$$
=\cdots=x^{1+t \cdot(p-1)} \text { in } \mathbb{Z}_{P} \text { prang } t \geqslant 0 .
$$

Now, ed $=1+1(p-1)(p-1)$;
so $x^{\text {ed }}=x^{1+\frac{3(q-1)}{t}} \cdot(r-1)$

$$
=x \text { in } \mathbb{Z}_{p}
$$

Pi fig Similarly, $x^{\text {ed }}=x=\mathbb{Z}_{q}$.
So $\quad x^{e d}=x$ is $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$
so

$$
x^{\text {ed }}=x \quad \therefore \quad \quad \mathbb{Z}_{79}^{112}
$$

RSA is efficient
Tasks:
Setup: generate primes
 practical: $Q\left(u^{3}\right)$ - pseecio aram,

- Hest whether it is prime
\rightarrow good probabilistic bests prog available $C\left(n^{3}\right)$
multiply
$\sigma\left(n^{2}\right)$
simeling ed:
- generate a reindolon-momber $G\left(n^{3}\right)$
- EA $G\left(n^{2}\right)$

Encryption:
one exponentiation $O\left(n^{3}\right)$
Decryption:
same.

So every thing is pregenomial time.
In gauctise: Setup for 1024 or 2048 bits takes, say a mimule.
Encr/Dee takes a few milliseconds.

Is RSA secure?
What waled be a total Pirate?
Eve burnous (N, C) and same y ind lots of pairs (x, x^{e}) Land maybe the can get same pairs ($\left.\tilde{y}_{1} \tilde{y}^{d}\right)$...].
ie Eve can find the primes i if sadethet
(ii) Ere con find the rep. length L. $N=p q$.
(ii.) Ere can clerive d.
(iv) Eve finds x with $x^{e}=y$.

Obvious: $(i \leftrightarrow \ll$
SECURITY
$r \leftarrow:$ Consider $(T-p)(T-q)$

$$
=T^{2}-(\underbrace{p+q}) T+\underbrace{p q}_{=N}
$$

Ene band $L=(p-1)(q-1)$

$$
\begin{aligned}
& =p q-p-q+1 \\
& =M+1-(p+q)
\end{aligned}
$$

$$
\text { so } \quad p+q=N+1-L
$$

Yo Eve bones this polynomial. And thees can compute its zeroes. (midnight furan (a!)

$$
(i i) \Rightarrow(i i i)
$$

2.(ii) \Rightarrow (ii): (in) gives d with $e d-1=t \cdot L$.

Second (iii fives d^{\prime} mitch $e^{\prime} d^{\prime}-1=t^{\prime} L$.
Here \hat{t} is small! So $\operatorname{gcel}\left(\operatorname{ed}-1, e^{\prime} d^{\prime}-1\right)=\tilde{E} \cdot L$.

So compote

$$
\hat{t}=\frac{\Gamma}{N}
$$

and ling $\hat{t}, \hat{t}+1, \ldots$.
this gives L then...
$(i i i) \Rightarrow(i v$
OPEN PROBLEM: Does (iv inly (ii)?
"The security of $R S A$ is
bused an the difficulty of factoring.

Vt 9 du ld (1) iv le enough? (assumis that factoring is difficult)

Suppose on tacker can given
compote $B i X_{0}(x)$.
Is that a problem? YES?
say $s_{i} f_{0}(x)=0$ then $x=2 x^{\prime}$
"Scared corp
Haws $y=2^{e} x^{e}$ Gif"
so $\quad y^{\prime}=y^{\prime} 2^{e}=x^{e}$
Now Si to $\left(x^{\prime}\right)=B_{1} Y_{1}(x)$!
Phis fives x !

Defimition of Seconty is a very intricale probhem!
Best to dave:
There stould vor be an probabilistic polynonavial time Trering mackine that can decide a oft-muestion an x with non-aggligible advantage.

Signatures

- idoutities thes sifno
- maber sure the doccunas is no of maditiect
- binds, Joadinim, to his yesinday's sharment

EL Gamal sijnatures (1978.)

, strictly: $G=z_{p}^{x}$.
p a lare prime
so that the discrete of prothe. is difficalt!
(Iu particula: $p-1=F$ should ne! be a product of suall primes.)
$l:=\operatorname{arder}(\mathrm{g})$ is loase, ccctually it shauelab,

 ad computes $a=g^{\alpha} \in G$ as a publice bey.
synature.
Vevify: If $* a^{b^{*}} b^{F}=g^{\text {ms }}, \quad r \in \mathbb{Z}_{e}, b \in G$ then $(b, 8)$ is a valid sigmature for the message msg.
ventier knows $g \in G$ from seíp, afrouthepthis ad meg, b,8 from signed doccemut on, Necessanily, $\quad \delta \in \mathbb{Z}_{e}, \quad b \in G$.

Total break
(1) Find (b.8) so that it is a sijuaticure to msg.
ie. 承d a solution of Θ.
(ii) Split the probes ad solve the tho equations $d=a^{b^{*}}$

$$
\text { d. } 6^{8}=g^{\operatorname{mgg}}
$$

and the brute farce...
Plan: Choose d, the Fid b^{*} by baking a d log.
Chase b such this gives the Gand b^{*}.
Ad ed amative dog to get 8 :

$$
b^{y}=g^{m s g} / d
$$

Need 2 DIs to save the 'ElGamal Frobten'.
(iii) Choose b then compute a clog:

$$
b^{(D)}=g^{\operatorname{mig} a^{-b^{x}}}=
$$

Need 102 to solve the $E P$.
(iv) Other plan: choose 8 and try to find $b \ldots$

$$
a^{b^{k}} b^{y}=\operatorname{stt}
$$

seems to be even move difficult...

Sipmateve The signer can use the secret bey α so she has to solve

$$
g^{\alpha b^{*}} b^{\gamma}=g^{m s g}
$$

So Alice chooses b as $g^{\beta}=: b$, The chooses $\beta \in \mathbb{Z}_{e}^{x}$ ad computes $b:=g$. Wow she hes to sabre

$$
\begin{aligned}
& g^{\alpha b^{x}} g^{\beta 8}=g^{m s g} \\
& g^{\alpha b^{*}+\beta \delta}
\end{aligned}
$$

So solving

$$
\alpha b^{x}+\beta 8=m \text { sg in } \mathbb{Z}
$$

gives a solution.
(So if we make sure that β is invertible:

$$
\beta \in \mathbb{Z}_{e}^{x}
$$

Hen

$$
x=\beta^{-1}\left(m s g-\alpha b^{*}\right) \text { in } \vec{B}_{e} .
$$

$\frac{\text { Sign (msg) }}{\beta}$
$\beta \in \mathbb{Z}_{c}^{X}$
$b:=g^{\beta}$
$\gamma \in Z_{e}$ solves $\quad \alpha^{b^{*}}+\beta \gamma=m$ sg.
return $(6,8)$
Technical problem: the signed dor omit is $3 x$ askayg as the unsifted oke.

We use a hash function value insteal of the message itself.
砬 $k: 10,13^{*} \rightarrow \mathbb{Z}_{e}$.
be a hask (?) punction, easich compuxtabho.
h shoult be one-way. given $i \in \mathbb{Z}$ It should be difficult to find a masage msg $\in\{0,1\}^{*}$ with we heme hash value $h(m s g)=$ l
h should be collision-resistemat

In shanld be secand preimage resistent, It a haulal be difficult given a message mosge $\in\{0,1\}^{*}$ to find unartion mersage $\mathrm{msgg}_{2} \in\{0,1\}^{*}$ such that $h\left(m \lg _{1}\right)=h\left(m \lg _{2}\right)$.
he should the collesion resistant:
It skoold be difficult to
fhind two messages misg, ungge $\in S 0,73^{*}$ that ore deftemat msga $\neq \mathrm{msg} \mathrm{m}_{2}$ with sume hash value $h\left(m s g_{1}\right)=h\left(m s g_{c}\right)$?

Tefinition Secunity of a siguature An a thacker that can
given signatures for any number, of chosen document's (which may depend on eack otherl ATIACK
can farge a new document EXISTENTMC FORGERY with a ralid siguature with a non-wegligethe properabilite is polynanial fime breaks the scecone.
A signature sobeme is consibered secure if there is no suck a tidfer.
Dehails \rightarrow 'Prorab́re secunity' or Reductionist's seconity

Let's apply this to the ElGand sokeme:

Setup Choose a group G, say $G=z_{p}^{x}$, choose un element $g \in G$ of large, order $e=\operatorname{ard}_{G}(g)$.
(Soy e ~ 160 hit , and p~1014 bit.) Ls same security d wat the known attacks an DL

$$
\begin{aligned}
& \alpha \in_{R} \mathbb{Z}_{e}, \quad \text { \& second signing bey } \\
& a:=g^{\alpha} \in G \leftarrow \text { politic signing bay }
\end{aligned}
$$

Signature generatic.
Given a message m.
Choose $\beta \in_{R} \mathbb{Z}_{e}$,
compote $b=g \beta^{\prime} \in G$, and
solve $\left\langle\alpha b^{*}+\beta \gamma=h(m)\right|$
where $*: G \rightarrow \mathbb{Z}_{e}$ is sure simple, (atemast in vertible) function
and $k:\{0,1\}^{*} \rightarrow \mathbb{Z}_{e}$ is a hast function. output: (b, y) as a sigunteve.

Verification

$$
\begin{aligned}
& \text { check } b \in G_{1} \gamma \in \mathbb{Z}_{e}, a c^{\prime} \\
& a^{b^{*}} b^{8}=g^{k(m)} \text { in } G .
\end{aligned}
$$

Suppose l is not $2^{\text {nd }}$ preimage resistant, ie. there is an alfontem TWO which complies given msgr another msg with $h\left(m s g_{1}\right)=h\left(m i s g_{2}\right)$ msg ${ }^{4}$. is poly-time with man-negligible probability.
Then
A:
Choose msg, urbitramily.
Ask the signer for a signature un mage $\rightarrow(b, \gamma)$ with $a^{b^{*}} b^{\gamma}=g$ hang).

Ask Two for msg $+g_{2}$ mg tenth $k\left(m s g_{2}\right)=k\left(m s g_{1}\right)$
Output (mage, (6.8)),
Clearly, of runs in 'same' dime as Two. and of succeeds if TWO succeeds.
So if TWO is too good then If is ha o food and thus the selene is insecure.

Topether:
if the signatiove soleme is secure then the hash must be $2^{\text {kd }}$ preimage resistent.

Suppose h is not collision-vesistenct, ie. There is an alportion Collision which outpots $\mathrm{m} s g_{7} \neq m \mathrm{mg}$ e with $h\left(m_{s g_{1}}\right)=h\left(m s g_{2}\right)$
is poly-finn mith now neglifible probability.
Thes
CA': Call coulsion to get masge \neq wisse mith a (unsge) $=$ himongo). Ask the sigmer for a sijuature (b.g) anmigg.. Output: (moge, (b,8)).

ufai: if collision is bo groot then of is tropiocl. 2:
Theorms. If the scheme is secure
then the hask functim nund be collision-vesistund. similarly
$\{$ If the sohme is secure

Theree poopartiesfor hasi fructions:
h is one-way
令
c_{h} is $2^{n d}$
介
h is collision resistant.

Pf if ©W atticks one-wayners
then Two': stopent mssa
Ase, for a preimage ungz of C (uargn).
Quapot mosge.
is a sligltly worse atecker on $2^{\text {ud }}$ primageresistunce. Souall gap!

JW0 a tacks $2^{\text {add }}$ preimage resistance then Collosion', Chaose msgr randomey.

Lall Jwo witle msge to of tain $m s g_{2} \neq m s g_{1}$ with $h\left(m \leq g_{2}\right)=h\left(m s g_{-}\right.$!.
Oufpot: (msg, misge
is a poly. Lie atheder with seme success prob. as $\sqrt{200}$.

Brake farce on these three pozperties:
Say $h:\{0,1\}^{*} \rightarrow \mathbb{Z}_{e}$,
with e an u-hit number.
one -way:
(e xp)

$$
\begin{aligned}
& E[\operatorname{soob}(\text { him }(\text { msg })=k 1 \text { msgranden })] \\
& =\frac{1}{\# Z_{e}}
\end{aligned}
$$

so we expect $\# Z_{e}=e$
trials until we hid urns with $h($ msg $)=k$.
2 ind primgege: We expect e trials.

$$
e \approx 2^{n}
$$

collision: teacher: Repeat chase a new msg:.
until hensgi)

$$
\sqrt{l} \approx 2^{n / 2}
$$

Trailer on Signatures
we have seen EL Gamal sifnatures

$$
b^{*} b^{8}=g^{h(m)}
$$

- need to soork in a proup avith difficuelt DLP
- need a collision-resistant hark functione.

For voriculs of theis scheme oeductiour to these two uecessary couditions ave availabhe.

Problem: Mask con'sis!
MD4 128-bit BROKEN,
(Garounds) need cunly 2 ar 3 haste compobations
\rightarrow secouds far a new collision
MD5 $\rightarrow 128$ 6it
(80 romals) \rightarrow aboul 15 mintes for a new collision
Cinstead of, say, a year
for 2^{64} has 人 comprlations)

$$
\text { SHAT } \rightarrow 160 \mathrm{~b} .7
$$

(storands)

RIPEMO \rightarrow 1606t
BROKEN
atack needs 'only' z^{63} hask computatious vo collision published yet (ataile)
(80 ramds) similar desifu!

One further family: SHA -2
SHK-2S6 $\rightarrow 256$ hits: similar design (>80 rounds)
probably, secure \therefore practice because of its dimensions.

No rested replacement, yet.

Practical security
IWo butter attack than "generic" ones.

For your information he following slides snow the definition of MDY, MDS and sHAll.

Algorithm. MD4.
Input: A message $x \in\{0,1\}^{*}$.
Output: A hash value $H \in\{0,1\}^{128}$.

Constants and round functions:

1. $h \leftarrow(67452301$, EFCDAB89, 98BADCFE, 10325476).

$$
K_{j} \leftarrow \begin{cases}00000000, & 0 \leq j<16, \\ 5 A 827999, & 16 \leq j<32, \\ 6 \text { ED9EBA1, } & 32 \leq j<47, \\ z[j]= \begin{cases}j, & 0 \leq j<16, \\ j, & \text { bits of } \sqrt{2}) \\ j_{1} j_{0} j_{3} j_{2}, & 16 \leq j<32, \\ j_{0} j_{1} j_{2} j_{3}, & 32 \leq j<48,\end{cases} \end{cases}
$$

where j_{i} denotes bit i of the binary rep/esentation of j.

$$
\begin{aligned}
& s[0 . .15]=[3, \vee 11,19,3,7,11,19,3,7,11,19,3,7,11,19] \\
& s[16 . .31]=[3,5,13,3,5,9,13,3,5,9,1,3,5,9,13] \\
& s[32 . .47]=[3,9,11,15,3,9,11,15,3,9,11,15,3,9,11,15] \\
& f_{j}(B, C, D)=\left\{\begin{array}{lc}
(\beta \wedge C) \vee(\bar{B} \wedge D), & 0 \leq j<16 \\
(B \wedge C) \vee(C \wedge D) \vee(D \wedge B) \\
B \oplus C \wedge D, & 32 \leq j<48
\end{array}\right.
\end{aligned}
$$

Precalculations:
2. Padding: $\tilde{x} \leftarrow x|1| 0^{d} /\langle | x| \rangle_{64}$ with $0 \leq d<512$ such that $|\tilde{x}|$ is a multiple of $512=16 \cdot 32$.
3. Cut \tilde{x} into 32 -bit words: $\tilde{x}=x_{0} x x_{2} \ldots x_{16 m-1}$.
4. Initialize: $\left(H_{1} H_{2}, H_{3}, H_{4}\right) \leftarrow h$.

Main calculation
5. For $i=0 . m-1$ do $6-10$
6. $(A, B, C, D) \leftarrow\left(H_{1}, H_{2}, H_{3}, H_{4}\right)$.
7. For $j=0 . .47$ do $8-9$
8.
9.
10.

$$
\begin{array}{cc}
\text { 8. } & t \leftarrow\left(A+f_{j}(B, C, D)+x_{z[j]}+K_{j}\right) \&<[j] . \\
\text { 9. } & (A, B, C, D) \leftarrow(D, t, B, C) . \\
\text { 10. } & \left(H_{1}, H_{2}, H_{3}, H_{4}\right) \leftarrow \\
& \left(H_{1}+A, H_{2}+B, H_{3}+C, H_{4}+D\right) . \\
\text { 11. Return } H_{1}\left|H_{2}\right| H_{3} \mid H_{4} .
\end{array}
$$

Algorithm. MD5.
Input: A message $x \in\{0,1\}^{*}$.
Output: A hash value $H \in\{0,1\}^{128}$.

COnstants and round functions:

1. $h \leftarrow(67452301$, EFCDAB89, 98BADCFE, 10325476).
$K_{j} \leftarrow 32$ Bits von $|\sin (j+1)|$.
$z[j]= \begin{cases}j, & 0 \leq j<16, \\ j_{1} j_{0} j_{3} j_{2}, & 16 \leq j<32, \\ j_{0} j_{1} j_{2} j_{3}, & 32 \leq j<48,\end{cases}$
where j_{i} denotes bit i of the binary representation of j.
$s[0 . .15]=[7,12,17,22,7,12,17,22,7,12,17,22,7,12,17,22]$,
$s[16 . .31]=[5,9,14,20,5,9,14,20,5,9,14,20,5,9,14,20]$,
$s[32 . .47]=\{4,11,16,23,4,11,16,23,4,11,16,23,4,11,16,23]$,
$s[48 . .63]=[6,10,15,21,6,10,15,21,6,10,15,21,6,10,15,21]$.
$f_{j}(B, C, D)=\left\{\begin{array}{lr}(B \wedge C) \vee(\bar{B} / D), & 0 \leq j<16, \\ (B \wedge D) \vee(C \wedge \bar{D}), & 16 \leq j<32, \\ B \oplus C \oplus /, & 32 \leq j<48, \\ C \in(B \vee \bar{D}), & 48 \leq j<64 .\end{array}\right.$

Precalculation:

2. Padding: $\tilde{x} \leftarrow x|1| 0^{d} /\langle | x| \rangle_{4}$ with $0 \leq d<512$ such that $|\tilde{x}|$ is a multiple of $512=16 \cdot 32$.
3. Cut \tilde{x} into 32 -bit words: $\tilde{x}=x_{0} x_{1} x_{2} \ldots x_{16 m-1}$.
4. Initialize: $\left(H_{1} H_{2}, H_{3}, H_{4}\right) \leftarrow h$.

Main calculation.
5. For $i=0 .$. h -1 do $6-10$
6. $(A, H, C, D) \leftarrow\left(H_{1}, H_{2}, H_{3}, H_{4}\right)$.
7. Fo $j=0 . .63$ do $8-9$
8.

$$
t \leftarrow\left(A+f_{j}(B, C, D)+x_{z[j]}+K_{j}\right\rangle \otimes s[j] .
$$

9. $(A, B, C, D) \leftarrow(D, B+t, B, C)$.
10
$\left(H_{1}, H_{2}, H_{3}, H_{4}\right) \leftarrow$
$\left(H_{1}+A, H_{2}+B, H_{3}+C, H_{4}+D\right)$.
10. Return $H_{1}\left|H_{2}\right| H_{3} \mid H_{4}$.

Algorithm. SHA-1.
Input: A message $x \in\{0,1\}^{*}$.
Output: A hash value $H \in\{0,1\}^{160}$.
Constants and round functions:

1. $h \leftarrow(67452301$, EFCDAB89, 98BADCFE, 10325476, C3D2E1F0).

Precalculations:
2. Padding: $\tilde{x} \leftarrow x|1| 0^{d} \mid\langle | x| \rangle_{6}$ mit $0 \leq d<512$ so, that $|\tilde{x}|$ is a multiple of $512=16 \cdot 32$.
3. Cut \tilde{x} in 32-bit words: $\tilde{f}=x_{0} x_{1} x_{2} \ldots x_{16 m-1}$.
4. Initialize: $\left(H_{1}, H_{2}, H /, H_{4}, X_{5}\right) \leftarrow h$.

Main calculation:
5. For $i=0 . . m-1$ 6-13
6.

For $j=0 . .15$ do $W_{j} \leftarrow x_{16 i+j}$.
7. For $j=10 . .79$ do
8. $\quad W / \rho \leftarrow\left(W_{j-3} \oplus W_{j-8} \oplus W_{j-14} \oplus W_{j-16}\right) \otimes 1$.
9. $(A, B, C, D, E) \leftarrow\left(H_{1}, H_{2}, H_{3}, H_{4}, H \vee\right)$.
10. Fo $j=0 . .79$ do $11-12$
11. $\quad t \leftarrow A \ominus 5+f_{j}(B, C, D)+E+W_{j}+K_{j}$.

12
13.
$(A, B, C, D, E) \leftarrow(t, A, B \otimes 30, C, D)$.

$$
\begin{aligned}
& \left(H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right) \leftarrow \\
& \left(H_{1}+A, H_{2}+B, H_{3}+C, H_{4}+D, H_{5}+E\right)
\end{aligned}
$$

14. Return $H_{1}\left|H_{2}\right| H_{3}\left|H_{4}\right| H_{5}$.

Figure 1-21. The TCP/IP reference model.

Bear

Layer (OSI names)

Figure 1-22. Protocols and networks in the TCP/IP model initially.

AH - authentication header
ESP - encapsulating seconity protocal
Task

Access control
Connectionless inbegrity
Data origin anfaentication
Rejection of replayed packets
Conficleutialiky
limited traffic flow confidandioli, $-+t+$
$S A$ - secunty association
4 SPI (security parameter index) (32by)
conturis:

- IP destionation adduess
- \mathbb{P} destionation adduesS
- seconity protocol identition $\longrightarrow A H$
$\longrightarrow E S P-$ ourricy
- sequence nomber counker (32b.7) Banth.
- sequence coonter ovesflow
- anti-replay
- AH-into: Autuentication a fornthen, beys key life tivere...
- ESP-into: Encoyption, afonthen, (\& authentication alfon than)
koys,
feop Qife times,
in itial values...
- life time of SA (usvally 8 hours)
- IPsec pootocol mode:
to unel, transport, wild card
- path MTU: max packed sise \& aging rania bhe es

SPD - secority policy database
$S A P \rightarrow$ entries far eack $S A$
$S P D \rightarrow$ allowed I_{s}
turhentication Cender
AH

authentication daha
$\hat{=}$ siguatere
= essantially Ghis is a secore hask value keyed

Encapsulating Security Protocol header
ESP

SA, Secunty Association

- simplex protected connection

SAD - clatabase of all inbound \&ontbound
SA 3
SPD - database of rules: which packets to \backslash
dISCARD BY PASS
Protect
AHIESP - security envelopes
Tunnel and transport made
Situation:

Tunnel Mode

Figure 17-1. Transport Mode and Tunnel Mode

Tounsport made is best suited for station to station connectives.
Tunnel mode also allows to comet two sublets.

Side remark:
AH protects IP header. It is unclear why his is necessary; fur t even if so ESP in bunuel de would proviele that!

NAT - netseraok address fruaslanion

AM protects destination IP address, so exchanging it destroys the signature.

Firewalls

$$
\begin{aligned}
& \rightarrow \text { Wilher packers accordiff to } \\
& \text { source } 1 P
\end{aligned}
$$

used, pooticol
maybe porrt\# + in encrypted Mree.

$$
\left|P_{v} 4 /\right| P_{v} \sigma
$$

IPV4

$$
\begin{aligned}
& 4=1 P \\
& 6=T C P \\
& 17=0 D P
\end{aligned}
$$

19. 6

IPv 6

AH
cuthenticates all inmmbabhe fielals $=I P$ and the claka.

IPry imunutable : type of serrice "s pay load Length ir fragmene fach? mulable: fragnuntotheti ASCII IPs \sim trobe eplaeed? \checkmark always 0 , but similarto payload tengh.

Pr6 FyPE of eack oplion idicates whether, it's nuluble or nol.eg. type of service : wutable
other thigs: clestination aclotress
unutable but predictalte
\rightarrow use predicted value for signature

ESP
can do encryption and optionally authebiahe it does not in clude any IP header info in the sigua have!
\rightarrow You can use 'uall-encorption' if you dan't woult to encryet.

PAse : more details
say we look again at tunnel mode:
before:
IP hd o
data

Specifically, ESP-: ESP ado. fellows : Encryption or auth. or Goth.

Figure 1. Top-Level Format of an ESP Packet

* If included in the Payload field, cryptographic synchronization data, e.g., an Initialization Vector (IV, see Section 2.3), to as being part of the ciphertext.

Wist io done?
Table 1. Separate Encryption and Integrity Algorithms

intercity check value
[1] $\mathrm{M}=$ mandatory; $0=$ optional; $\mathrm{D}=$ dummy
If transport mode \rightarrow next header and data
[3] ciphertext if encryption has been selected
[4] Can be used only if payload specifies its "real" length
[5] See section 2.2 .1
[6] mandatory if a separate integrity algorithm is used
How to apply this enos. \& an th?
(1) encapsu late for trons port't tonal unode ns payload
(2) ed padding (IFC and enar. paddif) as needled / wanted.
(3) encoypt as specified by SAt and IV
(4) Sign (authenticate) the (emarrypted) packet iscualis ICV paddlif, ESN but excluding ICV
Yob ere: first encripgt then au then ticate'sion

Paradigita
Homie

* signature must always protect the plain text.

One solution: first authenticate.
then encrypt.
Advantage of the other order: we can check in hegriby first and s ave elocryption if it fails.
Note: encrypted text + encryption bey also fixes/identities the plain text uniquely.
Second solution: First encrypt
then authenticate this + the beys.
ESP does that in a weak sense: the authenticated port includes the SPI, yet nat the keys itself.

Encryption an cuetrentication afforithms
RFC 4305°
Encraption alforiblums:
MOST (NULL
MUST- Triple DES-CBC (RFC245*)

SHONLD AES-CTR (RFC 3686)
SHOULD NOT DES - CBC (RFC 2.405)
ututhentication affernthous

$$
\begin{array}{l|ll}
\hline \text { MOST } & \text { HMAC-SHA1-96 (RFC2404) } \\
\text { MUST } & \text { HCLL } \\
\text { SHOULDH } & \text { AES - XCBC-MAC-96 } \\
\text { MAY } & \text { HMAC - MDS-96 }
\end{array}
$$

RFC 3602 AES-CBC encryption

RFC 3686 AES - CTR encarption

where

$$
c h r=\overbrace{\begin{array}{c}
\text { NONCE } \\
1 \\
\text { ass.with } \\
\text { SA }
\end{array}}^{32} \overbrace{\substack{\text { ass.arkh } \\
\text { apachet }}}^{64} \| \overbrace{0}^{32}
$$

Advantage: - mucteasies to resyuc

- Lon'f need to de corpt in arder (sufficient to know the position i)
RFC 3566 AES-XCRC-MAC-96 authentication
$\longrightarrow \quad{ }_{128-\left|r_{n}\right|}$

where $K_{1}=A E S_{K}(0 \times 0101 \ldots 01)$

$$
\begin{aligned}
& K_{2}=A E S_{k}(0 \times 0202 \ldots 02) \\
& K_{3}=A E S_{k}(0 \times 0303 \ldots 03)
\end{aligned}
$$

where K_{2} is usea vochen there is no padchif ad K_{3} ather mise.

Ask jourse if: what would heoppan if somebody tries to change the message? Can the attender grant the same signature (ICV)? Last ency specifically vulnerable.

RFC 2404 /2104 HMAC-SMAT-96
 repeated repeated take the First 96 bits of this.

These Recture notes contain a description of SHA 1 an an earlier page \rightarrow see there.

Tunnel Details \mid Route Details \mid Firewall

Address Information

Client: $\quad 131.220$.
Server: 131.220.

Bytes

Received: 28469355
Sent: 62937820
Packets
Encrypted: 80253
Decrypted:62291
Discarded: 95
Bypassed: 147

Connection Information
Entry:
Time: 0 day [s], 02:30.41

Crypto

Encryption:
Authentication: HMAC-SHA 1

Transport

Transparent Tunneling:Active on TCP port 10000
Local LAN: Enabled
Compression: None

Internet Key Exchange version?
lnitial coutact comprises 4 messages, ouly the first two are not eucryphed.
luitiator
Respouder

Hdr, $S A_{i} 1, K E_{i}, N_{i} \xrightarrow{-n g \cdots}$

wesaw:

$$
\begin{gathered}
\mathbb{Z}_{p}^{x} \nexists g \\
q /
\end{gathered}
$$

6ooop 1:

$$
768-B_{i} 6 \text { MODP }
$$

$$
\begin{aligned}
p \text { 1: } & 2^{768}-2^{704}-1 \\
& +2^{64}\left(L^{238} \pi_{1}+149686\right) \\
g & =2
\end{aligned}
$$

(Too sumall in practice
Group 2: anly for DES-CBC)

$$
\begin{aligned}
& p=2^{1024}-2^{960}-1+2^{64}\left(L^{294} \pi+129093\right) \\
& y=2
\end{aligned}
$$

Holr, CAmt, WEr, Nu

(DrH growp, enars, auth)

Now both parties kave $g^{a b}$. ancl dorive kays from it:

$$
S K=\left(S K_{-} e, S K-a\right)
$$

fur eack direction.

Soum ary
$\cdots y^{1 p}$

$$
\leftarrow \cdots g^{p} \cdots
$$

$\operatorname{sK}\left\langle D_{i} \ldots 3\right.$ may contian CERT

$$
\left.\leq \sin ^{\prime} D_{r}^{\omega} \ldots\right\}
$$

This establestres 1 KE-SA. All funthar messages are protected by
beys derived from this (and possibte forther DH bey exchanges; REKEY 二小s)
Rekeying possible at any time duy further by any partwer. duy further by anchange consists of a request ad CREATE_CHILD_SA \sum arespouse.
$H_{C G}, \operatorname{SK}\left\{\left[N_{1}\right] S A, N_{i},\left[K E_{i},\right]\left[T S_{i}, T S r\right]\right]$
Morepores
ept. REKEY_SA $\begin{aligned} & \text { proposed Nonce } \\ & \text { afor }\end{aligned} \begin{aligned} & \text { DHvalue } \\ & \text { in predickd }\end{aligned}$

identifying the group SA bring rekeyed Cimaybe a CHILD.SA or $\operatorname{IKE}, ~(A$ ikself)

If the predicted group is not the chosen ane an infonnationel msg with the chose group is seen back and the initiator has to retry - with same proposals!.

INFORMATICNAL exchanges
... for notifications (error msg), delete, configuration.
\rightarrow always msg \& response. so empty msg is interpreted as "Are you still hare?".
\rightarrow always protected uncle r IKE.SA
Es. if a connection should be closed:
ESP SA, A64 SA exist i pairs \rightarrow both have to be closed. close inconid (ESP) SR $\xrightarrow{\text { DELETE }}$ close outgoing S A close outgoing $S A<$ DELETE close incoming SK

- Node crash ar similar
\rightarrow incoming SPI va known
\rightarrow it another CSESA exists with that sender \rightarrow may send informational msg using that.
else \rightarrow may send unprotected notification.
The other noddle Must Not trust this kind of answers. Instead sack half closed Its are considered ancualous, and the - sher node should retry some times

The other node sends emp ty ufo ms f If the node respruels :SA STILL ALIVE If the anode does not respond in a Frozen (or so) athungts: ken only assume $S A$ is dead cunt rose it.

Never delete an SA be cause of unprotected information.

IPSEC \& IKE

Michael Nüsken

25 June 2007

Before all: we are talking about a collection of protocols. Each partner of the exchange has to keep some information on the connection. This is in our context called the security association (SA). It contains specification about the algorithms that should be used for encryption and authentication, it contains keys for these, it may contain traffic selectors (filtering rules), and more. Each SA manages a simplex connection for one type of service. In each direction there will be an SA for the key exchange (IKE_SA) and one for the encapsulating security payload or for the authentication header. So each partner has to maintain at least four SAs. Such an SA is selected by an identifier, the socalled security parameter index (SPI). It is chosen randomly but so that it is unique.

1. IPsec

The secure internet protocol modifies the internet protocol slightly. We have the choice between transport and tunnel mode. In tunnel mode, an IP packet

IP header	IP payload

is wrapped in with a new IP header and an IPsec header to

new IP header	IPsec header	IP header	IP payload

In transport mode, only the IPsec header is added:

IP header	IPsec header	IP payload

There are two types of IPsec headers: the encapsulating security payload (ESP) and the authentication header (AH).
1.1. IPsec encapsulating security payload. The ESP specifies that and how its payload is encrypted and (optionally) authenticated. Actually, this 'header' is split into a part before and one after the data:

Security Parameter Index (SPI)	
Sequence number	
IV (optional)	
Payload data [variable]	
TFC padding [optional, variable]	
Padding (0-255 octets)	
Padding length	Next header
Integrity Check Value (ICV) [variable]	

The security parameter index identifies the SA and thus all necessary algorithms and key material. To create the secured packet from the original one, it is first padded. Padding is used to enlarge the data length to a multiple of a block size that might be associated with the encryption. Traffic flow confidentiality (TFC) padding can be used to disguise the real size of the packet. Then the data is encrypted; in tunnel mode including the old IP header. To be precise, all the information from Payload data to Next header is encrypted. Next, a message authenticion code is calculated for this encrypted text and security parameter index, sequence number, initialization vector (IV) and possibly further padding; actually the message authentication code covers the entire packet but the header and the integrity check value plus the extended sequence number and integrity check padding if any.
1.2. IPsec authentication header. The AH authenticates its payload and also parts of the IP header. (Yes, this does violate the hierarchy.)

2. Internet key exchange (version 2)

Any message in the internet key exchange starts with a header of the form

IKE_SA initiator's SPI						
IKE_SA responder's SPI						
Next payload	Major version	Minor version	Exchange type	X	I V / R	X
Message ID						
Length						

Clearly, the version is 2.0 with the present drafts (major version: 2, minor version: 0). The flags X are reserved, the I (nitiator) bit is set whenever the message comes from the initiator of the SA, the V(ersion) bit is set if the transmitter can support a higher major version, the R (esponse) bit is set if this

Exchange type	Value
Reserved	$0-33$
IKE_SA_INIT	34
IKE_AUTH	35
CREATE_CHILD_SA	36
INFORMATIONAL	37
Reserved to IANA	$38-239$
Reserved for private use	$240-255$

The C(ritical) bit indicates that the payload is critical. In case the recipient does not support a critical payload it must reject the entire message. A non-critical payload can be simply skipped. All the payloads defined in RFC4306 are to handled as critical ones whatever the C bit says.

Next payload	Notation	Value
None		0
RESERVED		$1-32$
Security Association	SA	33
Key Exchange	KE	34
Identification - Initiator	IDi	35
Identification - Responder	IDr	36
Certificate	CERT	37
Certificate Request	CERTREQ	38
Authentication	AUTH	39
Nonce	Ni, Nr	40
Notify	N	41
Delete	D	42
Vendor ID	V	43
Traffic Selector - Initiator	TSi	44
Traffic Selector - Responder	TSr	45
Encrypted	E	46
Configuration	CP	47
Extensible Authentication	EAP	48
Reserved to IANA		$49-127$
Private use		$128-255$

2.1. Initial exchange.

Protocol 2.1. IKE_SA_INIT.

1. Prepare SAi1, the four lists of supported cryptographic algorithms for Diffie-Hellman key exchange (groups), for the pseudo random function used to derive keys, for encryption, and for authentication. Guess the group for Diffie-Hellman and compute $\mathrm{KEi}=g^{a}$.
Choose a nonce Ni. Hdr, SAi 1, KEi, Ni
2. Choose SAr1 from SAi1 unless no variant is supported.

Compute $\mathrm{KEr}=g^{b}$ if the group was guessed correctly. (Otherwise send:
Hdr, N(INVALID_KE_PAYLOAD, group)
.)
Choose a nonce Nr.
3. Both parties now derive the session keys. We assume that prf is the selected pseudo random function which gets a key and a bit string as input.

$$
\begin{aligned}
& \text { SKEYSEED }=\text { prf }\left(N i \mid N r, g^{a b}\right) \text {, } \\
& \text { SK_d|SK_ai }\left|S K _a r\right| S K _e i\left|S K _e r\right| S K _p i \mid S K _p r \\
& =\text { prf+(SKEYSEED, Ni }|\mathrm{Nr}| \text { SPIi } \mid \text { SPIr })
\end{aligned}
$$

where $\operatorname{prf}+(K, S)=T_{1}\left|T_{2}\right| T_{3} \mid \ldots$, and $T_{1}=$ $\operatorname{prf}(K, S \mid 0 x 01), T_{i}=\operatorname{prf}\left(K, T_{i-1}|S| i\right)$ for $i>1$. SK_d is used for the derivation of keys in a child SA. SK_ai and SK_ei are used for authenticating and encrypting messages sent by the initiator, SK_ar and SK_er for messages sent by the responder.
4. The initiator send its identity IDi, optionally one or more certificates CERT, a certificate request CERTREQ (possibly including a list of trusted CAs), and optionally the responders identity IDr (it may be that the responder serves multiple identities 'behind' it).
Further she computes an authentication AUTH (using the key from the first CERT payload) for the entire first message concatenated with the responder's nonce Nr and the value $\operatorname{prf}\left(\mathrm{SK} _\right.$pi, IDi). The authentication method can be RSA digital signature (1), shard key message integrity code (2), or DSS digital signature (3).

$0,-1, N, \pi, 10,0,1$			
Next payload	C	Reserved(0)	Payload length
Auth method			Reserved
Authentication data			

The initiator starts to negotiate a child SA in SAi 2 with proposed traffic selectors TSi, TSr.

Hdr, SAr 1, KEr, Nr, [CERTREQ]
$\operatorname{Hdr}, \mathrm{SK}\left\{\begin{array}{l}\mathrm{IDi},[\mathrm{CERT},] \\ {[\mathrm{CERTREQ},]} \\ {[\mathrm{IDr},]} \\ \mathrm{AUTH}, \mathrm{SAi} 2, \\ \mathrm{TSi}, \mathrm{TSr}\end{array}\right\}$
5. The responder sends its identity IDr, certificate(s). He computes an authentication AUTH for the entire second message concatenated with the initiator's nonce Ni and the value prf(SK_pr, IDr).
Further he supplies the answer SAr 2 to the child SA creation and sends the accepted traffic selectors TSi, TSr.
$\left.\stackrel{H d r, S K}{ } \begin{array}{l}\text { IDr, }[\text { CERT },] \\ \text { AUTH, SAr } 2, \\ \mathrm{TSi}, \mathrm{TSr}\end{array}\right\}$
If this initial exchange is completed successfully the IKE_SA and a CHILD_SA are ready for use. Keying material for the childs is generated similar to the IKE_SA keys:

$$
\text { KEYMAT }=\text { prf+(SK_d, Ni } \mid \mathrm{Nr})
$$

2.2. Creating additional child SAs. Further childs can be created under this IKE_SA using a CREATE_CHILD_SA exhange:

In case a CHILD_SA shall be rekeyed the notification payload N of type REKEY_SA specifies which SA is rekeyed. This can be used to established additional SAs as well as to rekey ages ones. Create new ones and afterwards delete the old ones. Also the IKE_SA can be rekeyed similarly.

In a CREATE_CHILD_SA exchange including an optional Diffie-Hellman exchange new keying material uses also the new Diffie-Hellman key $g^{i r}$, it is concatenated left to the nonces. (Though the Diffie-Hellman key exchange is optional, it is recommended to either used it or at least to limit the number of uses of the original key.)
2.3. Denial of Service. If the server has a lot of half open connections (ie. the first message arrived, the second was sent but the third message is pending) it may choose to send a cookie first. (In order to defeat a denial of service attack.) It is suggested to use a stateless cookie consisting of a version identifier and a hash value of the initiator's nonce Ni, her IP IPi, her security parameter index SPIi and some secret:

$$
\text { Cookie }=\text { verID } \mid \text { hash }\left(N i, \text { IPi, SPIi, secret }{ }_{\text {verID }}\right)
$$

This way the secret can be exchanged periodically, say every second, and the server only needs to store the last few (randomly) generated secrets.

The authentication AUTH then refers to the second version of the corresponding message, so the one including the cookie or responding to that, respectively. So the protocol becomes:

	Hdr, SAi 1, KEi, Ni	式
	Hdr, N(Cookie)	
	Hdr, N(Cookie), SAi 1, KEi, Ni	
	Hdr, SAr 1, KEr, Nr, [CERTREQ]	
	Hdr, SK $\left\{\begin{array}{l}\text { IDi, [CERT, }][\text { CERTREQ, }][\mathrm{IDr},] \\ \text { AUTH, SAi } 2, \mathrm{TSi}, \mathrm{TSr}\end{array}\right\}$	
	Hdr, SK $\left\{\begin{array}{l}\text { IDr, [CERT,] } \\ \text { AUTH, SAr 2, TSi, TSr }\end{array}\right\}$	

2.4. Extended authentication protocols. The initiator may leave out AUTH and thereby tell the responder that she wants to perform an extensible authentication which is then carried out immediately.
2.5. IP compression. The parties can negotiate IP compression.
2.6. ID payload. The ID payload

can be an IP address (ID type 1), a fully-qualified domain name string (2), a fully-qualified RFC822 email address string (3), an IPv6 address (5), an ASN. 1 X. 500 Distinguished Name [X.501] (9), an ASN. 1 X. 500 general name [X.509] (10), a vendor specific information (11).
2.7. CERT payload. The CERT payload

can be encoded in various widely used formats. Note that it can also carry revocation lists.

3. IKE version 1

The version 1 of the internet key exchange distinguishes between a main mode and an aggressive mode. Further it allows four variants in each mode depending on the desired type of authentication. Authentication can be based on

- public signature keys,
- public encryption keys, originial protocol,
- public encryption keys, revised protocol, or
- a pre-shared secret.

We only give the bare protocol summaries here, using notation similar to the one used for version 1. (They are not based on RFC240x but on the book Kaufmann et al. 2002.)

3.1. Main mode, public signature keys.

3.2. Aggressive mode, public signature keys.

$\mid \underset{y}{\bullet}$	SAi, KEi, Ni, IDi	¢
	SAr, KEr, Nr, IDr, AUTH, [CERT]	
	SK \{AUTH, [CERT]\}	

3.3. Main mode, public encryption keys, original protocol.

$\begin{array}{\|l} \stackrel{\ddot{y y}}{4} \\ \hline \end{array}$	SAi
	SAr
	KEi, $\{\mathrm{Ni}\}_{\text {Bob }},\{\mathrm{IDi}\}_{\text {Bob }}$
	$\mathrm{KEr},\{\mathrm{Nr}\}_{\text {Alice }},\{\mathrm{IDr}\}_{\text {Alice }}$
	$\mathrm{SK}=f\left(g^{a b}, \mathrm{Ni}, \mathrm{Nr}\right)$ SK \{AUTH, [CERT]\}
	SK \{AUTH, [CERT]\}

3.4. Aggressive mode, public encryption keys, original protocol.

艺	SAi, KEi, $\{\mathrm{Ni}\}_{\text {Bob }},\{\mathrm{IDi}\}_{\text {Bob }}$	¢
	SAr, $\mathrm{KEr},\{\mathrm{Nr}\}_{\text {Alice }},\{\mathrm{IDr}\}_{\text {Alice }}$, AUTH	
	AUTH	

3.5. Main mode, public encryption keys, revised protocol.

3.6. Aggressive mode, public encryption keys, original protocol.

3.7. Main mode, pre-shared secret.

$\begin{array}{\|l} \stackrel{y y y}{*} \\ \stackrel{y y}{*} \end{array}$	SAi	
	SAr	
	KEi, Ni	
	KEr, Nr	
	$\begin{gathered} \mathrm{SK}=f\left(\text { secret }, g^{a b}, \mathrm{Ni}, \mathrm{Nr}, \text { cookiei, cookier }\right) \\ \text { SK }\{\mathrm{IDi}, \mathrm{AUTH}\} \end{gathered}$	
	SK \{IDr, AUTH $\}$	

3.8. Aggressive mode, pre-shared secret.

References

Charlie Kaufmann, Radia Perlman \& Mike Speciner (2002). Network Security. Prentice-Hall, Inc., New Jersey. ISBN 0-13-046019-2.

Michael NüSken
b-it, Bonn, Germany

Have seen:

History of IKE:
Phot eris
SKIP

NSA-propesal: ISAKMP

- only framework
- ruled out both candidates
\rightarrow IETF could lake UP, the development.

OAKLEY, SKEME... (new drafts)
WE pots O ito ISAKMP.
Problem: no clear design

- too many variants
- ≥ 150 pages, ≥ 3 RFC. partially very unclear \& difficult to read.

MÉvZ: Cear, simple roles

- any request gets a response
"initial exchange: $\begin{aligned} & 1 \text { way, (MEN1 } \\ & 4 \text { msg.s. "phaset") }\end{aligned}$
- create clilalsA $=2$ musgs.
- enior varicuts
- functionatity of all the IKEv 1 variants is still there bu f now as optious or acldotional request.
e.g. Hdr, Shancertreq...\}

HCN, SKR ... CERT...3

Fact-findiry committees
(1) WErT aggressive mode
(2) WENt main mode
(3) HEr

Look at:
PRos \& Cows!?

Specific questions:
(0) SECURITY, SECURITY SECURITY.
(1) Session key agreement

- How Cong? Random?
- Do both parties contribute to it?
- Main in the middle
(2) Perfect forward security
- Can on attacker given the long-hevon servers afthmond all messages decrypt?
Escrow foilage
- Is the conversation secret even if the loug-hnm secret's are known to the attacker in advance.
(3) Deuial of Sernice
(4) Endpoint identifier hiding
- Does an eavesdropzar get info about identitis?
- Desu an active attacker get identification information fram initiaten (clpent) or the responcler (server).
(5) Live portenes reassormuce
\rightarrow Replony?
(6) Plausible demability

Does the prorocol lof prove
that - fice talked?

- Bol kalfed?
- Alice ralked to BOS?
- Bos ratteed or tice?
(7) Ifrean prorection

How is a logicel dasa shreaca
\rightarrow hecked? \rightarrow con ficlential
\rightarrow couthentic it its entirecty
(8) Niegotiating crypto pavameters
\rightarrow Pros
\rightarrow Cous

IKEv1 agressive mode

PROs	"O CONs
less \#messages \Rightarrow faster	authentication without using a
authentication with a pre-shared key	session key
allows for a wide range of identifiers	not all modes hide the identities (4)
(not only Ip addresses)	original protocol (pke): does not use
reply not possible, because we use	cookies
ponces	
revised protocol (public key encryption):	
cookies for counter measuring DOs	

IKEvZ
0) see below \downarrow

1) Key exchange: two Diffie-Hellman groups / size of group Min 768 bits.
Randomness. : PSeudo-Random function

* IkE va has one Single fonkmessage exchange.
* no entity-in-the-middle with Certificate.

3) * it does, but better than Versioncl) in terms of Dos attack.
*InSecure Because
4) *An outside Attacker cant get any info when listening to a conversation
An active attacker can REQ first 6 get the certificate
5) Due to randomness of b the chance to be able to reuse an old conversation is minute
6) Since $a \& b$ are short-term-secrets: No

SSL Secure Socket Layer
ILS Transport Layer Security.
First steps: 1994(?) Netreape

Decision:

Phys.
Reasons: - Wanted fut, easily embeclfable solution.

- Should link application (Browses) to application (websorvod) rather than station to station
- Encryption maybe, bot definitely authentication - . f server and - optionally of client needed.
iPsec was not there yet.
'Same' shape
Initial handshake (-1 IKESA_(NIT)

hash ($\left.\begin{array}{l}\text { 'SRrR' } \\ \text { 'serves finished' }\end{array}, K, \begin{array}{cc}\text { ms } & 182 \\ (23 & 3\end{array}\right)$
From K we derive, 2 encryption beys
2 authentication lintegnity hays
2 IV (for CBC mede...)

If a session. id was fixed, another TCP session may use the some keys usduy the 'Session resump tie'

Protocol 19-3. Session resumption if both sides remember session-id
Further purpose: this allows ho upgrade to higher security ciphers.
[Background: US export restriction on any crypt to graph using no are than 40-bit beys it he symume bic scenario or more than 512 bit RSA... $\}$
That restriction has been dropped in the meantime...
SSL pulfitted this restriction by aftenif modes tat publish 88 of 188 kits secredkey.
further reasons may be chat Robs policies have changed... Why? How does Alice know?

Encroption 8 anthentication $-S S L$

muchlouger than ai IPrec
SSLITLS daps not have to cave about fragmentation, res ewching,...

Nole: shape of the protected recound is:
$H d r, E N C_{k_{e}}\left(m\left|M A C_{k_{a}}(\mathrm{~m})\right|\right.$ pad $)$
possible cipheos

CipherSuite
TLS_NULL_WITH_NULL_NULL TLS_RSA_WITH_NULL_MD5 TLS_RSA_WITH_NULL_SHA TLS_RSA_WITH_RC4_128_MD5 TLS_RSA_WITH_RC4_128_SHA TLS_RSA_WITH_IDEA_CBC_SHA TLS_RSA_WITH_DES_CBC_SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA TLS_DH_DSS_WITH_DES_CBC_SHA TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA TLS_DH_RSA_WITH_DES_CBC_SHA TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA TLS_DHE_DSS_WITH_DES_CBC_SHA TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA TLS_DHE_RSA_WITH_DES_CBC_SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA TLS_DH_anon_WITH_RC4_128_MD5 TLS_DH_anon_WITH_DES_CBC_SHA
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA

Key Exchange
NULL
RSA
RSA
RSA
RSA
RSA
RSA
DH_DSS
DH_DSS
DH_RSA
DH_RSA
DHE_DSS
DHE_DSS
DHE_RSA
DHE_RSA
DH_anon
DH_anon
DH_anon

Cipher	Hash
${ }_{l}$	
NULL	NULL
NULL	MD5
NULL	SHA
RC4_128	MD5
RC4_128	SHA
IDEA_CBC	SHA
DES_CBC	SHA
3DES_EDE_CBC	SHA
DES_CBC	SHA
3DES_EDE_CBC	SHA
DES_CBC	SHA
3DES_EDE_CBC	SHA
DES_CBC	SHA
3DES_EDE_CBC	SHA
DES_CBC	SHA
3DES_EDE_CBC	SHA
RC4_128	MD5
DES_CBC	SHA
3DES_EDE_CBC	SHA

Key size limit
None
None
None
None
None
RSA = none
N/A
None

| | Key
 Material | | | | Expanded
 Key Material |
| :--- | :--- | ---: | :--- | :--- | :---: | | IV |
| :--- |
| Size | Block | Size |
| :---: |

Oor questions?

- Session koy agreement:
\rightarrow need PKI to renty seover ichentity With hitps or remail aver SSLITLS browsors ad email client are osvally delivered mith builtim noot eertitirates, so that we com easily recrity certificates geing to one of those. Aud it's there.
- Perfect formard secenty /Es erow atteck. SSL semes to be vuluerabhe to this atlach
If S is used as in this top-level n'ew, we simply decayp $t\{S\}_{30 b}$ and denive all further kays as necessary...
- Demial af Sern'ce
- No extra protectio a
- and His is not necersacy because lowers Lay eors mil care for thris.
- Endpoint identifer hrioling
- Servir id is noh hidden.
- Chientid is hidden as loug as it closely inspeds and remifies the server's certificate.
- Live partner reassurence
\rightarrow Message id's and reundom urubous (ured ar nonces) protect from that
- Deuiability?
- Atice camuot prove that ZOS ha Ched to her.
- The ofther way round: mith logim/passovord: NO.

Stream protection
The boys and their use guavanke that all records belong to the same session

- Neg otiate cryplo pareuneteus
- Yes, Here are.
- Downgrade? . A the First place: yes,
- Certificates
may coukin upgracle but have 'o forge ins 4. informer cion allowing
the client to resume e the session with bear ciphers.
- Use of reosion 泙s.

Apart from $S S L_{r} 2$ we have conto L here.

SSH

1995 Tatu Y/önen
started as a secure replacement of remok herminale (teluet, rsk,...)

1996 ssh 2
1999 open SSH $\leftrightarrow \rightarrow$ ssh tectía
Now: . siftp, scp: Fiks tromsfer

- forward $\times 1 /$
- funnel TCPIIP

Idantification: RSA certificute
Crather than X.Sog certificate or similar
Key exchange: DH
Eucryption: AES 128 botmany ghthes possible
suthentication: - HMAC SHAT lent a the possible

aes128-ctr	RECOMMENDED	AES (Rijndael) in SDCTR mode, with 128-bit key
aes192-ctr	RECOMMENDED	AES with 192-bit key
aes256-ctr	RECOMMENDED	AES with 256-bit key
3des-ctr	RECOMMENDED	Three-key 3DES in SDCTR mode
blowfish-ctr	OPTIONAL	Blowfish in SDCTR mode
twofish128-ctr	OPTIONAL	Twofish in SDCTR mode, with 128 -bit key
twofish192-ctr	OPTIONAL	Twofish with 192-bit key
twofish256-ctr	OPTIONAL	Twofish with 256-bit key
serpent128-ctr	OPTIONAL	Serpent in SDCTR mode, with 128-bit key
serpent192-ctr	OPTIONAL	Serpent with 192-bit key
serpent256-ctr	OPTIONAL	Serpent with 256 -bit key
idea-ctr	OPTIONAL	IDEA in SDCTR mode
cast128-ctr	OPIIONAL	CAST-128 in SDCTR mode, with 128-bit key
3des-cbc	REQUIRED	three-key 3DES in CBC mode
blowfish-cbc	OPTIONAL	Blowfish in CBC mode
twofish256-cbc	OPTIONAL	Twofish in CBC mode, with a 256-bit key
twofish-cbc	OPTIONAL	alias for "twofish256-cbc" (this is being retained for historical reasons)
twofish192-cbc	OPTIONAL	Twofish with a 192-bit key
twofish128-cbc	OPTIONAL	Twofish with a 128-bit key
aes256-cbc	OPTIONAL	AES in CBC mode, with a 256-bit key
aes 192-cbc	OPTIONAL	AES with a 192-bit key
aes128-cbc	RECOMMENDED	AES with a 128-bit key
serpent $256-\mathrm{cbc}$	OPTIONAL	Serpent in CBC mode, with a 256-bit key
serpent192-cbc	OPTIONAL	Serpent with a 192-bit key
serpent $128-\mathrm{cbc}$	OPTIONAL	Serpent with a 128-bit key
arcfour	OPTIONAL	the ARCFOUR stream cipher with a 128-bit key
idea-cbc	OPTIONAL	IDEA in CBC mode
cast128-cbc	OPTIONAL	CAST-128 in CBC mode
none	OPTIONAL	no encryption; NOT RECOMMENDED

hmac-shal	REQUIRED	HMAC-SHA1 (digest length $=$ key length $=20$)
hmac-shal-96	RECOMMENDED	first 96 bits of HMAC-SHA1 (digest length $=12$, key length $=20$)
hmac-md 5	OPIIONAL	HMAC-MD5 (digest length $=$ key length $=16$)
hmac-md5-96	OPTIONAL	first 96 bits of HMAC-MD5 (digest length $=12$, key length $=16$)
none	OPTIONAL	no MAC; NOT RECOMMENDED

diffie-hellman-group1-sha1 MUST
Oakley Group 2 [RFC2409] (1024-bit MODP Group)
diffie-hellman-groupl4-shal MUST
Oakley Group 14 [RFC3526] (2048-bit MODP Group)

Public Key Infrastructos

- Manage certificaks \rightarrow Trust
- Distribute certificates \rightarrow AVAILABILITY.

Trust models

- An archy model, web of truest
users sign: thews bay and manage 'key wings'

(as i PGP)
- Monopoly model

One world CA Prose Mathematically appealing

- Simple
- Cu's Epobtic lay certificate \rightarrow ease of use
Cons: . Higkload on CA: identify users?
- Vary critical, only one paid
- High cost
- High concentration of power (selecting users to cerdity)

Hugh damper of treackors, sabotage...
Monopoly model + registration anthorties(RA)
\rightarrow solves boffeneck
but still high risk
Oligarchy

$$
C A_{1} \quad C A_{2} \quad C A_{3} \quad \cdots
$$

- even less secure because even one compromised $C A$ is a problem (need several certificates to resolve it)
\rightarrow CAs trusted by vendor of your software
\rightarrow might be easy to introduce a bogus $C A$ in such a list
\rightarrow In practice decking all these root CAI is difficult to impossible.
\rightarrow Users do not understand]

Psychology

Warning. This was signed by an unknown CA.
would you like to accept the certificate anyway?
[OK]

Would you like to accept this certificate without being asked in the future?
[OK]

Would you like to always accept certificates from the CA that issued that certificate?
[OK]

Would you like to always accept certificates from any CA?
[OK]
(User thinks: Grrrr.... isn't it enough by now?)

Since you're willing to trust anyone for anything, would you like me to make random edits to the files on your hard drive without bothering you with a pop-up box?
[OK]
(User thinks: Gosh, another box.... No more pop-ups? YES!)

Nobs added - proof

- PGP web of trust reveals social network: Who knows me? Who do I know? \rightarrow Not the hey serves.
- Ask"Who generates the private bey?" P6P: Your own compute.
Thaw le (acaminty 10L): The (Ad does!

Organizatian
(3) Go to the public course this afbernoon on
intrusion delection $\left|\begin{array}{ll}\text { Today } & 16 \pm 0 \\ \text { Romeostr. } 160 \\ \text { limits of } \\ \text { Gorrsoal } & C\end{array}\right|$
or allerriatively inform yourself on the lopric
(2) Nent menday we discuss the 1 .
(3) No corrse next weduerday

