
Lecture Notes

Security on the Internet

Michael Nüsken

b-it

(Bonn-Aachen International Center

for Information Technology)

summer 2007

c©2007 Michael Nüsken

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

nuesken
Text Box
Lecture Notes
electronic passports & biometrics
Michael Nüsken
b-it
(Bonn-Aachen International Center
for Information Technology)
winter 2006/2007
c�
2006/07 Michael Nüsken

ECDSA Setup:
◦ Implement an elliptic curve E (so we can add
and subtract points, multiply points with an
integer) and choose a point P of prime order q.
(In fact, we work in the q-element group �P�
generated by P.) We assume that q is a, say,
160-bit prime.
◦ Fix a cryptographic hash function HASH. The
DSS chooses SHA-1 which produces a 160-bit
value.
◦ Alice chooses a secret key α ∈R Zq and
publishes her public key A = α · P ∈ E.
Algorithm. ECDSA sign.
Input: Global parameters: the base point P, Alice’
public key A, her secret key α and a
message m ∈ {0, 1}∗.
Output: A signature (b∗, c) ∈ Zq.
1. Calculate e = HASH(m) ∈ Zq.
2. Repeat 3–5
3. Choose β ∈R Z×q
at random.
4. Calculate β · P = (x1, y1) in the elliptic
curve E and let b∗ = x1 rem q.
5. Solve βc = e + αb∗ in Zq for c ∈ Zq.
6. Until b∗ �= 0 and c �= 0
7. Return (b∗, c).
Michael Nüsken electronic passport and biometry, 14 November 2006 1
Algorithm. ECDSA verify.
Input: Global parameters: the base point P, Alice’
public key A, the message m ∈ {0, 1}∗ and
the signature (b∗, c) ∈ Zq × Zq.
Output: A boolean value stating whether the
signature is valid.
1. Verify that b∗, c ∈ Zq. Else Return FALSE.
2. Calculate e = HASH(m) ∈ Zq.
3. Calculate (x1, y1) = c−1e · P + c−1b∗ · A ∈ E.
4. If x1 rem q �= b∗ then Return FALSE
5. Else Return TRUE
If both parties are honest then
c−1e · P + c−1b∗ · A = c−1(e + b∗α) · P
= c−1βc · P = β · P
and so the x-coordinate of this point is the same
that was used to define b∗ and the signature is
valid.
Michael Nüsken electronic passport and biometry, 14 November 2006 2

9
Figure 1. Enciphering computation.
DES flow: a Feistel network
DES: the function f is composed of S-boxes
SHA-1
Algorithm. SHA-1.
Input: A message x 2 {0, 1}�.
Output: A hash value H 2 {0, 1}160.
Constants and round functions:
1. h (67452301, EFCDAB89, 98BADCFE, 10325476, C3D2E1F0).
Kj
8>>>><>>>>:
5A827999, 0 � j < 20, (32 bits of p2)
6ED9EBA1, 20 � j < 40, (32 bits of p3)
8F1BBCDC, 40 � j < 60, (32 bits of p5)
CA62C1D6, 60 � j < 80. (32 bits of p7)
fj (B,C,D) =
8>>>><>>>>:
(B ^ C) _ (B ^ D), 0 � j < 20,
B � C � D, 20 � j < 40,
(B ^ C) _ (C ^ D) _ (D ^ B),
B � C � D, 60 � j < 80.
Precalculations:
2. Padding: ˜x x|1|0d| h|x|i64 mit 0 � d < 512 so, that
|˜x| is a multiple of 512 = 16 · 32.
3. Cut ˜x in 32-bit words: ˜x = x0x1x2 . . . x16m−1.
4. Initialize: (H1,H2,H3,H4,H5) h.
Main calculation:
5. For i = 0..m − 1 do 6–13
6. For j = 0..15 do Wj x16i+j .
7. For j = 16..79 do
8. Wj (Wj−3 �Wj−8 �Wj−14 �Wj−16) <1 .
9. (A,B,C,D,E) (H1,H2,H3,H4,H5).
10. For j = 0..79 do 11–12
11. t A <5 + fj (B,C,D) + E +Wj + Kj .
12. (A,B,C,D,E) (t,A,B <30,C,D).
13. (H1,H2,H3,H4,H5)
(H1 + A,H2 + B,H3 + C,H4 + D,H5 + E).
14. Return H1|H2|H3|H4|H5.
Michael Nüsken Electronic passports and biometrics, December 7, 2006 1

Algorithm. SHA-1.

Input: A message x ∈ {0, 1}∗.

Output: A hash value H ∈ {0, 1}160.

Constants and round functions:

1. h← (67452301, EFCDAB89, 98BADCFE, 10325476, C3D2E1F0).

Kj ←





5A827999, 0 ≤ j < 20, (32 bits of
√

2)

6ED9EBA1, 20 ≤ j < 40, (32 bits of
√

3)

8F1BBCDC, 40 ≤ j < 60, (32 bits of
√

5)

CA62C1D6, 60 ≤ j < 80. (32 bits of
√

7)

fj(B, C, D) =





(B ∧ C) ∨ (B ∧D), 0 ≤ j < 20,

B ⊕ C ⊕D, 20 ≤ j < 40,

(B ∧ C) ∨ (C ∧D) ∨ (D ∧B),

B ⊕ C ⊕D, 60 ≤ j < 80.

Precalculations:

2. Padding: x̃← x|1|0d| 〈|x|〉64 mit 0 ≤ d < 512 so, that

|x̃| is a multiple of 512 = 16 · 32.

3. Cut x̃ in 32-bit words: x̃ = x0x1x2 . . . x16m−1.

4. Initialize: (H1, H2, H3, H4, H5)← h.

Main calculation:

5. For i = 0..m− 1 do 6–13

6. For j = 0..15 do Wj ← x16i+j .

7. For j = 16..79 do

8. Wj ← (Wj−3 ⊕Wj−8⊕Wj−14⊕Wj−16) <© 1 .

9. (A, B, C, D, E)← (H1, H2, H3, H4, H5).

10. For j = 0..79 do 11–12

11. t← A <© 5 + fj(B, C, D) + E + Wj + Kj .

12. (A, B, C, D, E)← (t, A, B <© 30, C, D).

13. (H1, H2, H3, H4, H5)←

(H1 + A, H2 + B, H3 + C, H4 + D, H5 + E).

14. Return H1|H2|H3|H4|H5.

Michael Nüsken Electronic passports and biometrics, December 7, 2006 1

nuesken
Line

nuesken
Line

nuesken
Text Box
But do not forget the secrecy: See Exercise 11.3.

nuesken
Note
Unmarked set by nuesken

nuesken
Text Box
Aka. as Horton's principle:

nuesken
Stempel

IPSEC & IKEMichael Nüsken25 June 2007Before all: we are talking about a collection of protocols. Each partner ofthe exchange has to keep some information on the connection. This is in ourcontext called the security association (SA). It contains speci�cation about thealgorithms that should be used for encryption and authentication, it containskeys for these, it may contain tra�c selectors (�ltering rules), and more. EachSA manages a simplex connection for one type of service. In each direction therewill be an SA for the key exchange (IKE_SA) and one for the encapsulatingsecurity payload or for the authentication header. So each partner has tomaintain at least four SAs. Such an SA is selected by an identi�er, the so-called security parameter index (SPI). It is chosen randomly but so that it isunique. 1. IPsecThe secure internet protocol modi�es the internet protocol slightly. We havethe choice between transport and tunnel mode. In tunnel mode, an IP packetIP header IP payloadis wrapped in with a new IP header and an IPsec header tonew IPheader IPsec header IP header IP payloadIn transport mode, only the IPsec header is added:IP header IPsec header IP payloadThere are two types of IPsec headers: the encapsulating security payload (ESP)and the authentication header (AH).

2 Michael Nüsken1.1. IPsec encapsulating security payload. The ESP speci�es that andhow its payload is encrypted and (optionally) authenticated. Actually, this`header' is split into a part before and one after the data:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Security Parameter Index (SPI)Sequence numberIV (optional)Payload data [variable]TFC padding [optional, variable]Padding (0-255 octets)Padding length Next headerIntegrity Check Value (ICV) [variable]The security parameter index identi�es the SA and thus all necessary algo-rithms and key material. To create the secured packet from the original one,it is �rst padded. Padding is used to enlarge the data length to a multiple of ablock size that might be associated with the encryption. Tra�c �ow con�den-tiality (TFC) padding can be used to disguise the real size of the packet. Thenthe data is encrypted; in tunnel mode including the old IP header. To be pre-cise, all the information from Payload data to Next header is encrypted. Next,a message authenticion code is calculated for this encrypted text and secu-rity parameter index, sequence number, initialization vector (IV) and possiblyfurther padding; actually the message authentication code covers the entirepacket but the header and the integrity check value plus the extended sequencenumber and integrity check padding if any.1.2. IPsec authentication header. The AH authenticates its payload andalso parts of the IP header. (Yes, this does violate the hierarchy.)

IPsec & IKE 32. Internet key exchange (version 2)Any message in the internet key exchange starts with a header of the form0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31IKE_SA initiator's SPIIKE_SA responder's SPINext payload Majorversion Minorversion Exchange type X I V R XMessage IDLengthClearly, the version is 2.0 with the present Exchange type ValueReserved 0-33IKE_SA_INIT 34IKE_AUTH 35CREATE_CHILD_SA 36INFORMATIONAL 37Reserved to IANA 38-239Reserved for private use 240-255
drafts (major version: 2, minor version: 0).The �ags X are reserved, the I(nitiator) bitis set whenever the message comes from theinitiator of the SA, the V(ersion) bit is setif the transmitter can support a higher ma-jor version, the R(esponse) bit is set if thismessage is a response to a message with thisMessage ID. The header is usually followed by some payloads like0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Next payload C Reserved(0) Payload lengthPayloadThe C(ritical) bit indicates that the payloadis critical. In case the recipient does notsupport a critical payload it must reject theentire message. A non-critical payload canbe simply skipped. All the payloads de�nedin RFC4306 are to handled as critical oneswhatever the C bit says.

4 Michael NüskenNext payload Notation ValueNone 0RESERVED 1-32Security Association SA 33Key Exchange KE 34Identi�cation - Initiator IDi 35Identi�cation - Responder IDr 36Certi�cate CERT 37Certi�cate Request CERTREQ 38Authentication AUTH 39Nonce Ni, Nr 40Notify N 41Delete D 42Vendor ID V 43Tra�c Selector - Initiator TSi 44Tra�c Selector - Responder TSr 45Encrypted E 46Con�guration CP 47Extensible Authentication EAP 48Reserved to IANA 49-127Private use 128-2552.1. Initial exchange.
Initiator

Hdr, SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Hdr, SAr 1, KEr, Nr, [CERTREQ]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Hdr, SK{ IDi, [CERT,][CERTREQ,][IDr,]AUTH, SAi 2,TSi,TSr }

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Hdr, SK{ IDr, [CERT,]AUTH, SAr 2,TSi,TSr}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Responder
Protocol 2.1. IKE_SA_INIT.1. Prepare SAi1, the four lists of supported crypto-graphic algorithms for Di�e-Hellman key exchange(groups), for the pseudo random function used toderive keys, for encryption, and for authentication.Guess the group for Di�e-Hellman and computeKEi = ga.Choose a nonce Ni. Hdr, SAi 1, KEi, Ni

−−−−−−−−−−−−−−−−−−−−−→2. Choose SAr1 from SAi1 unless no variant is sup-ported.

IPsec & IKE 5Compute KEr = gb if the group was guessed cor-rectly. (Otherwise send:Hdr,N(INVALID_KE_PAYLOAD, group).)Choose a nonce Nr. Hdr, SAr 1,KEr,Nr,
[CERTREQ]

←−−−−−−−−−−−−−−−−−−−−−3. Both parties now derive the session keys. We as-sume that prf is the selected pseudo random func-tion which gets a key and a bit string as input.SKEYSEED = prf(Ni|Nr, gab),

SK_d|SK_ai|SK_ar|SK_ei|SK_er|SK_pi|SK_pr

= prf+(SKEYSEED,Ni |Nr |SPIi |SPIr)where prf+(K,S) = T1|T2|T3| . . . , and T1 =prf(K,S|0x01), Ti = prf(K,Ti−1|S|i) for i > 1.
SK_d is used for the derivation of keys in a childSA. SK_ai and SK_ei are used for authenticat-ing and encrypting messages sent by the initiator,
SK_ar and SK_er for messages sent by the respon-der.4. The initiator send its identity IDi, optionally oneor more certi�cates CERT, a certi�cate requestCERTREQ (possibly including a list of trustedCAs), and optionally the responders identity IDr (itmay be that the responder serves multiple identities`behind' it).Further she computes an authentication AUTH (us-ing the key from the �rst CERT payload) for theentire �rst message concatenated with the respon-der's nonce Nr and the value prf(SK_pi, IDi). Theauthentication method can be RSA digital signa-ture (1), shard key message integrity code (2), orDSS digital signature (3).0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Next payload C Reserved(0) Payload lengthAuth method ReservedAuthentication dataThe initiator starts to negotiate a child SA in SAi 2with proposed tra�c selectors TSi, TSr. Hdr, SK




IDi, [CERT,]

[CERTREQ,]

[IDr,]AUTH, SAi 2,TSi,TSr




−−−−−−−−−−−−−−−−−−−−−→

6 Michael Nüsken5. The responder sends its identity IDr, certi�cate(s).He computes an authentication AUTH for the en-tire second message concatenated with the initia-tor's nonce Ni and the value prf(SK_pr, IDr).Further he supplies the answer SAr 2 to the childSA creation and sends the accepted tra�c selectorsTSi, TSr. Hdr, SK


IDr, [CERT,]AUTH, SAr 2,TSi,TSr 


←−−−−−−−−−−−−−−−−−−−−−If this initial exchange is completed successfully the IKE_SA and a CHILD_SAare ready for use. Keying material for the childs is generated similar to theIKE_SA keys: KEYMAT = prf+(SK_d,Ni |Nr)2.2. Creating additional child SAs. Further childs can be created underthis IKE_SA using a CREATE_CHILD_SA exhange:
Initiator Hdr, SK{

[N,] SAi 2,Ni, [KEi,]
[TSi,TSr] }

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Hdr, SK{ SAr 2,Nr, [KEr,]]
[TSi,TSr] }

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ResponderIn case a CHILD_SA shall be rekeyed the noti�cation payload N of typeREKEY_SA speci�es which SA is rekeyed. This can be used to establishedadditional SAs as well as to rekey ages ones. Create new ones and afterwardsdelete the old ones. Also the IKE_SA can be rekeyed similarly.In a CREATE_CHILD_SA exchange including an optional Di�e-Hellmanexchange new keying material uses also the new Di�e-Hellman key gir, it isconcatenated left to the nonces. (Though the Di�e-Hellman key exchange isoptional, it is recommended to either used it or at least to limit the number ofuses of the original key.)2.3. Denial of Service. If the server has a lot of half open connections(ie. the �rst message arrived, the second was sent but the third message ispending) it may choose to send a cookie �rst. (In order to defeat a denial ofservice attack.) It is suggested to use a stateless cookie consisting of a versionidenti�er and a hash value of the initiator's nonce Ni, her IP IPi, her securityparameter index SPIi and some secret:Cookie = verID | hash(Ni, IPi, SPIi, secretverID)

IPsec & IKE 7This way the secret can be exchanged periodically, say every second, and theserver only needs to store the last few (randomly) generated secrets.The authentication AUTH then refers to the second version of the cor-responding message, so the one including the cookie or responding to that,respectively. So the protocol becomes:
Initiator

Hdr, SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Hdr, N(Cookie)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Hdr, N(Cookie), SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Hdr, SAr 1, KEr, Nr, [CERTREQ]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Hdr, SK{ IDi, [CERT,][CERTREQ,][IDr,]AUTH, SAi 2,TSi,TSr }

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Hdr, SK{ IDr, [CERT,]AUTH, SAr 2,TSi,TSr}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Responder
2.4. Extended authentication protocols. The initiator may leave outAUTH and thereby tell the responder that she wants to perform an exten-sible authentication which is then carried out immediately.2.5. IP compression. The parties can negotiate IP compression.2.6. ID payload. The ID payload0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Next payload C Reserved(0) Payload lengthID type ReservedIdenti�cation datacan be an IP address (ID type 1), a fully-quali�ed domain name string (2), afully-quali�ed RFC822 email address string (3), an IPv6 address (5), an ASN.1X.500 Distinguished Name [X.501] (9), an ASN.1 X.500 general name [X.509](10), a vendor speci�c information (11).2.7. CERT payload. The CERT payload0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Next payload C Reserved(0) Payload lengthCert encoding Certi�cate dataCerti�cate data

8 Michael Nüskencan be encoded in various widely used formats. Note that it can also carryrevocation lists. 3. IKE version 1The version 1 of the internet key exchange distinguishes between a main modeand an aggressive mode. Further it allows four variants in each mode dependingon the desired type of authentication. Authentication can be based on
◦ public signature keys,
◦ public encryption keys, originial protocol,
◦ public encryption keys, revised protocol, or
◦ a pre-shared secret.We only give the bare protocol summaries here, using notation similar tothe one used for version 1. (They are not based on RFC240x but on the bookKaufmann et al. 2002.)3.1. Main mode, public signature keys.

Alice
SAi

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→KEr, Nr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(gab,Ni,Nr)SK {IDi,AUTH, [CERT]}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SK {IDr,AUTH, [CERT]}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bob
3.2. Aggressive mode, public signature keys.

Alice SAi, KEi, Ni, IDi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SAr, KEr, Nr, IDr, AUTH, [CERT]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−SK {AUTH, [CERT]}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob

IPsec & IKE 93.3. Main mode, public encryption keys, original protocol.
Alice

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−KEi, {Ni}Bob, {IDi}Bob−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→KEr, {Nr}Alice, {IDr}Alice←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−SK = f(gab,Ni,Nr)SK {AUTH, [CERT]}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SK {AUTH, [CERT]}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bob
3.4. Aggressive mode, public encryption keys, original protocol.

Alice SAi, KEi, {Ni}Bob, {IDi}Bob−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SAr, KEr, {Nr}Alice, {IDr}Alice, AUTH←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−AUTH
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob
3.5. Main mode, public encryption keys, revised protocol.

Alice
SAi

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KA = hash(Ni, cookiei)
{Ni}Bob, KA {KEi}, KA {IDi}, KA {CERT}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
KB = hash(Nr, cookier)
{Nr}Alice, KB {KEr}, KB {IDr}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−SK = f(gab,Ni,Nr, cookiei, cookier)SK {AUTH}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SK {AUTH}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bob

10 Michael Nüsken3.6. Aggressive mode, public encryption keys, original protocol.
Alice KA = hash(Ni, cookiei)SAi, {Ni}Bob, KA {KEi}, KA {IDi}, KA {CERT}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

KB = hash(Nr, cookier)SAr, {Nr}Alice, KB {KEr}, KB {IDr}, AUTH
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−SK = f(gab,Ni,Nr, cookiei, cookier)SK {AUTH}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bob
3.7. Main mode, pre-shared secret.

Alice
SAi

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→KEr, Nr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−SK = f(secret, gab,Ni,Nr, cookiei, cookier)SK {IDi,AUTH}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SK {IDr,AUTH}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bob
3.8. Aggressive mode, pre-shared secret.

Alice SAi, KEi, Ni, IDi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SAr, KEr, Nr, IDr, AUTH
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−AUTH
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→SK = f(secret, gab,Ni,Nr, cookiei, cookier) Bob

ReferencesCharlie Kaufmann, Radia Perlman & Mike Speciner (2002). Network Secu-rity. Prentice-Hall, Inc., New Jersey. ISBN 0-13-046019-2.Michael Nüskenb-it, Bonn, Germany

	Binder1.pdf
	DSCN1222.JPG
	DSCN1223.JPG
	DSCN1229.JPG

