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Abstract. In 1990, Boyar, Chaum, Damg̊ard and Pedersen introduced
convertible undeniable signatures which limit the self-authenticating prop-
erty of digital signatures but can be converted by the signer to ordi-
nary signatures. Michels, Petersen and Horster presented, in 1996, an
attack on the El Gamal-based seminal scheme of Boyar et al. and pro-
posed a repaired version without formal security analysis. In this paper,
we modify their protocol so that it becomes a generic one and it pro-
vides an advanced feature which permits the signer to universally convert
achronously all signatures pertaining to a specific time period. We sup-
ply a formal security treatment of the modified scheme: we prove, in the
generic group model, that the protocol is existentially unforgeable and
anonymous under chosen message attacks, assuming new assumptions
(though reasonable) on the underlying hash function.

1 Introduction.

In 1996, Michels, Petersen and Horster [16] proposed an efficient convertible
undeniable signature protocol whose security relies on the difficulty of the dis-
crete logarithm problem in the multiplicative group of a finite field. This scheme
has received little attention from the cryptographic community whereas we are
convinced that it deserves better than oblivion. This article focuses on the se-
curity treatment and on the proposal of an additional functionality for Michels-
Petersen-Horster convertible undeniable signatures. Our analysis points out new
security properties for the underlying hash functions which may be of indepen-
dent interest.

Related work. A property of conventional digital signature schemes is that
once a signature is released, everybody can check its validity. However there are
numerous situations where this self-authenticating property is not desirable. In
1989 Chaum and van Antwerpen [8] introduced the concept of undeniable signa-
tures whose purpose is to perform public key digital signatures which cannot be
verified without interacting with the signer. In addition to the confidentiality and
privacy concerns in themselves, this primitive finds applications in such different
fields as electronic payment systems, certificate management or cyberdemocracy.
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In 1991, the concept has been refined by giving the possibility to transform
an undeniable signature into an ordinary digital signature. These convertible
undeniable signatures, proposed in [3] by Boyar, Chaum, Damg̊ard and Pedersen,
provide individual and universal conversions of the signatures. Unfortunately,
this El Gamal-like scheme has been broken in 1996 by Michels, Petersen, and
Horster [16] who proposed a repaired version with heuristic security.

The universal conversion of all convertible undeniable signature protocols
proposed before 2005, consists in revealing a part of the signer’s secret key. This
conversion makes all signatures, past as well as future, be universally verifiable.
This property may be undesirable in some context since the corresponding keys
cannot be used to generate undeniable signatures any more. To overcome this
problem, Laguillaumie and the second author introduced and formalized, in 2005
[14], the time-selective convertible undeniable signatures which supports signers
in gradually converting the undeniable signatures in a controlled fashion. They
proposed a scheme which permits the signer to universally convert chronologi-
cally signatures pertaining only to a specific time period: given a time-selective
convertible undeniable signature σ for a time period t, it is computationally in-
feasible to determine which signing secret key was used to generate σ; but with
the knowledge of a matching universal receipt for some time period p′ ≥ p, it
is easy to determine whether σ is a valid time-selective convertible undeniable
signature or not. A tantalizing challenge is to generalize the concept of time-
selective convertible signature to event-selective convertible signature where a
signature becomes universally verifiable if a specific event happens that makes
the signer publish the corresponding receipt information. This primitive will
enable the signer to gradually convert signatures achronously (i.e. with time
periods made completely independent of each other). Up to now, no concrete
realization of this concept has been proposed in the literature.

Our contributions. In this paper, we revisit the Michels-Petersen-Horster con-
vertible undeniable signature scheme. First of all, we modify it such that it be-
comes a generic algorithm. This point of view allows to look at cryptographic
constructions in an abstract way and “move” them to other groups without the
original restriction of subgroup of the multiplicative group of a finite field. In
addition, we suggest a slight modification of this scheme which gives the first
realization of achronous gradually convertible undeniable signatures.

The security of many cryptographic tools relies on assumptions about the
hardness of certain algorithmic problems. Techniques from [20] suggest that it is
highly improbable to reduce the security of the Michels-Petersen-Horster signa-
tures to the discrete logarithm problem in the standard security model. There-
fore, we investigate their security in the so-called generic group model, following
previous work from [5, 23] where the security of a generic version of the proto-
col DSA was analyzed. However, it is worth noting that the real, non-generic
security of the scheme may be completely different in different groups [9].

This security analysis points out new sufficient security properties for the un-
derlying hash functions. These new notions of random affine preimage resistance
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and random linear collision resistance are satisfied by generic hash functions (i.e.
in the random oracle model [1]). The former property is necessary for our scheme
to be secure, while the latter is necessary for instance for the RSA-FDH signature
scheme [2].

Notations. The set of n-bit strings is denoted by {0, 1}n and the set of all
finite binary strings (or messages) is denoted by {0, 1}∗. Concatenation of two
strings x and y is denoted by x‖y. Let A be a probabilistic Turing machine
running in polynomial time (a PPTM, for short), and let x be an input for A.
The probability space that assigns to a string σ the probability that A, on input
x, outputs σ is denoted by A(x). The support of A(x) is denoted by A[x]. Given
a probability space S, a PPTM that samples a random element according to S

is denoted by x
R
←− S. For a finite set X , x

R
←− X denotes a PPTM that samples

a random element uniformly at random from X . A two-party protocol is a pair
of interactive PPTMs (Prove, Verify).

2 Gradually convertible undeniable signatures

In this section, we formalize the concept of gradually convertible undeniable
signatures.

2.1 Definition

As in ordinary digital signatures, undeniable signature schemes establish two
complimentary algorithms: one for signing (Sign) and the other for checking the
signature at some later time (Cont), but this algorithm is not publicly available
since it requires the knowledge of the signer’s secret key to be executed. Besides,
the signer can prove his authorship of an undeniable signature by running a
confirmation protocol (Conf) with a verifier and a falsely implicated signer may
deny his involvement by running a denial protocol (Deny) with a verifier.

Designated verifier proofs were introduced by Jakobsson, Sako and Impagli-
azzo in 1996 [12] and have been widely used as non-transferable confirmation
and denial protocols for undeniable signature schemes. In [13], Kudla and Pa-
terson present a security model for these signatures where the confirmation and
denial protocols are actually implemented with such proofs. They proposed non-
interactive designated verifier proofs suited to combination with Chaum-van
Antwerpen original undeniable signature scheme resulting in a secure1 and ef-
ficient undeniable signature scheme. Unfortunately, we cannot use these non-
interactive non-transferable proofs, to obtain the security results without the
random oracle model. Indeed, as far as we know, all the non-interactive proofs
are either highly inefficient or obtained by applying the Fiat-Shamir heuristic
to interactive designated verifier proofs. Therefore, in this paper, we will use
interactive version of the designated verifier proofs described in [13].

1 in the random oracle model, assuming the intractability of the decisional Diffie-
Hellman problem in the underlying group [19, 18, 10].
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In addition, the signer has at its disposal one algorithm (Convert) which
permits to

– convert a given undeniable signature into a regular, universally verifiable
signature. This operation does not affect other undeniable signatures.

– publish a universal trapdoor relative to a specific time period p by the means
of which all undeniable signatures for the time period p become universally
verifiable. The trapdoor has no impact whatsoever on undeniable signatures
pertaining to a time period2 p′ 6= p.

The verification of the converted signatures is performed thanks to the algorithm
Vf.

Definition 1 (Gradually Convertible Undeniable Signature). Let π ∈ N.
A gradually convertible undeniable signature scheme with π time periods Σ is a
9-tuple Σ = (Setup, SKg, VKg, Sign, Cont, Conf, Deny, Conv, Vf) such that:

– Σ.Setup, the common parameter generation algorithm, is a PPTM which takes
an integer k as input. The output are the public parameters P. k is called
the security parameter.

– Σ.SKeyGen, the signer key generation algorithm, is a PPTM which takes the
public parameters as input. The output is a pair (sks,pks) where sks is
called a signing secret key and pks a signing public key.

– Σ.VKeyGen, the verifier key generation algorithm, is a PPTM which takes the
public parameters as input. The output is a pair (skv,pkv) where skv is
called a verifying secret key and pkv a verifying public key.

– Σ.Sign, the signing algorithm, is a PPTM which takes the public parameters,
a message, an integer in [[1, π]] and a signing secret key as inputs and outputs
a bit string.

– Σ.Cont, the controlling algorithm, is a PPTM which takes the public param-
eters, a message m, a bit string σ, an integer p ∈ [[1, π]] and a signing key
pair (sks,pks) as inputs and outputs a bit. If the bit output is 1 then the bit
string σ is said to be a signature on m for pks for the time period p.

– Σ.{Conf.Deny}, the confirming/denying protocols (respectively), are two-party
protocols (Prove, Verify) such that:
• Prove and Verify take as input a message m, an integer p ∈ [[1, π]], a

bit-string σ, a signing public key pks and a verifying public key pkv and
the public parameters;
• Prove takes as input sks the signing secret key corresponding to pks;
• Verify takes as input skv the verifying secret key corresponding to pkv;

Conf.Verify ( resp. Deny.Verify ) outputs an element in {⊥, 1} ( resp. {⊥, 0}).
– Σ.Conv, the conversion algorithm, is a PPTM which takes as input the public

parameters, an integer p ∈ [[1, π]], a signing key pair (sks,pks) and a bit
string Υ .

2 In time-selective convertible undeniable signatures from [14], these universal receipts
makes it possible to universally verify all signature for any time period p′ ≤ p
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• If Υ consists of a message m and a signature σ on m for pks for the
time period p, then it outputs a bit string σ̃;
• if Υ is the empty string ε, then it outputs a bit string Ip;

– Σ.Vf, the verifying algorithm for converted signature, is a PPTM which takes
as input the public parameters, a message m, and a bit string σ, an integer
p ∈ [[1, π]], a signing public key pks and a bit string Λ and outputs a bit. If
the bit output is 1 then the bit string Λ is said to be a receipt of the validity
of σ.

where the protocols Σ.Conf and Σ.Deny are a designated verifier proof of mem-
bership system for the languages (respectively):

{(P , m, σ, p,pks) ∈ Σ.Setup[k]× {0, 1}∗
2
× [[1, π]]×Σ.SKg[P ]

˛̨
Σ.Vf[P , m, σ, p]} = {1}

{(P , m, σ, p,pks) ∈ Σ.Setup[k]× {0, 1}∗
2
× [[1, π]]×Σ.SKg[P ]

˛̨
Σ.Vf[P , m, σ, p]} = {0}

and for all k ∈ N, for all P ∈ Σ.Setup[k], for all S = (pks, sks) ∈ Σ.SKg[P ],
for all m ∈ {0, 1}∗ and for all p ∈ [[1, π]], we have:

∀σ ∈ Σ.Sign[P , m, p, sks], Σ.Cont[P , m, σ, p, (sks,pks)] = {1}

∀σ ∈ Σ.Sign[P , m, p, sks],∀Λ ∈ Σ.Conv[P , p,S , (m, σ)], Σ.Vf[P , m, σ, p,pks, Λ] = {1}

∀σ ∈ Σ.Sign[P , m, p,pks], ∀Λ ∈ Σ.Conv[P , p,S , ε], Σ.Vf[P , m, σ, p,pks, Λ] = {1}

∀σ, Λ ∈ {0, 1}∗, Σ.Vf[P , m, σ, p,pks, Λ] = {1} ⇒ Σ.Cont[P , m, σ, p, (sks,pks)] = {1}.

Remark 1. The first two properties capture the validity and the non-transferable
property of the protocols Conf and Deny (i.e. the use of designated verifier proofs
insures that a verifier will gain no information in an execution of one of these
protocols [13]). The latter properties are the properties of correctness :

– a well-formed signature is always accepted by the algorithm Cont;
– a receipt correctly constructed is always accepted by the algorithm Verify;
– and if there exists a bit-string Λ which makes accepted a bit-string σ by the

algorithm Verify, then σ is a valid signature.

2.2 Security model

Registered public key model. In public key cryptography, the notion of
anonymity is to be handled with great attention. For instance, in order to ensure
anonymity, it is important that users register their public key by a certifying
authority. Hence, in our security analysis, it is assumed that the users’ keys
have been already registered to an authority. The registration procedure would
always contain a proof of knowledge of the associated private key. To further
simplify the security analysis, we will assume that this procedure will be the
direct registration of the keys3.

3 It is often necessary to require the security of the schemes even if the adversary is
the key registration center. In this case, one must replace the proof of knowledge
associated to the key registration by a zero-knowledge one.
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Security against existential forgery under chosen message attack. The
standard notion of security for digital signatures was defined by Goldwasser,
Micali and Rivest [11] as existential forgery against adaptive chosen message
attacks (EF-CMA). In [14], the corresponding notion for time-selective convertible
undeniable signatures is defined along the same lines. The natural definition of
resistance to forgery for gradually convertible undeniable signatures that we
propose is identical. In fact, we suppose that the adversary has access to the
universal receipts Λp for every time period p ∈ [[1, π]] and is allowed to query a
converting oracle Cv, a confirming oracle C amd a denying oracle D on any couple
message/signature of its choice. As usual, in the adversary answer, there is the
natural restriction that the returned message/signature has not been obtained
from the signing oracle.

Definition 2 (Unforgeability - EF-CMA). Let π be a positive integer, let
Σ = (Setup, SKg, VKg, Sign, Cont, Conf, Deny, Conv, Vf) be a gradually convertible
undeniable signature scheme with π time periods and let A be an PPTM. We
consider the following random experiment, where k is a security parameter:

Experiment Expef−cma

Σ,A (k)

P
R
←− Σ.Setup(k),

(pks, sks)
R
←− Σ.SKg(P)

for j = 1 to π do Λj ← Σ.Convert(P , ε, j, sks, ε)

(m⋆, σ⋆, p⋆)
R
←− AS,Cv,C,D(params, pk, {Λj}j∈[[1,π]])˛̨

˛̨
˛̨
˛̨

S : (m,p) −→ Σ.Sign(P ,m, p, sks)
Cv : (m, p, σ) −→ Σ.Convert(P , p, (sks,pks), (m, σ))
C : (m, p, σ,pkv) −→ Σ.Conf(m, p, σ,pkv,pks)
D : (m, p, σ, pkv) −→ Σ.Deny(m, p, σ,pkv, pks)

return 1 if and only if the following properties are satisfied:

- Σ.Verify[P ,pks, m
⋆, σ⋆, Λp⋆ ] = {1}

- m was not queried to S

We define the success of A, via Succef-cma

Σ,A (k) = Pr
[

Expef-cma

Σ,A (k) = 1
]

.

Given (k, t) ∈ N2 and ε ∈ [0, 1], the scheme Σ is said to be (k, t, ε)-EF-CMA

secure, if no EF-CMA-adversary A running in time t has Succef-cma

Σ,A (k) ≥ ε. The
scheme Σ is said to be EF-CMA secure if, for any security parameter k ∈ N, any
polynomial function t : N → N, and any negligible function ε : N → [0, 1], it is
(k, t(k), ε(k))-EF-CMA secure.

Anonymity. We state the precise definition of anonymity under a chosen mes-
sage attack (Ano-CMA) which captures the notion that an attacker cannot de-
termine under which key a signature was performed [10]. We consider a Ano-
CMA-adversary A that runs in two stages. In the find stage, it takes as input
two signing public keys pks0 and pks1 and outputs a message m⋆, a time period
p⋆ together with some state information I. In the guess stage, A gets a challenge
gradually convertible undeniable signature σ⋆ formed by signing at random the
message m⋆ under one of the two keys for the time period p⋆ and it must say

6



which key was chosen. In both stages, the adversary has access to a signing
oracle S for both signing key pairs, to a converting oracle Cv, to a confirming
oracle C and to a denying oracle D. The attacker is also given the universal
receipts of both potential signers for all4 time period p ∈ [[1, π]] \ {p⋆}. The only
restriction on A is that it cannot query the triple (m⋆, σ⋆, p⋆) on the converting
and confirming/denying oracles.

Definition 3 (Anonymity - Ano-CMA). Let π be a positive integer, let
Σ = (Setup, SKg, VKg, Sign, Cont, Conf, Deny, Conv, Vf) be a gradually convertible
undeniable signature scheme with π time periods and let A be an PPTM. We
consider the following random experiment, for r ∈ {0, 1}, where k is a security
parameter:

Experiment Expano-cma−r
Σ,A (k)

P
R
←− Σ.Setup(k)

(pks0, sks0)
R
←− Σ.SKeyGen(P),

(pks1, sks1)
R
←− Σ.SKeyGen(P)

(m⋆, p⋆, I)
R
←− AS,Cv,C,D(find,P ,pks0,pks1)˛̨

˛̨
˛̨
˛̨

S : (m, p, i) −→ Σ.Sign(P ,m, p, sksi)
Cv : (m, p, σ, i) −→ Σ.Convert(P , p, (sksi,pksi), (m, σ))
C : (m, p, σ, pkv, i) −→ Σ.Conf(m,p, σ,pkv,pksi)
D : (m,p, σ,pkv, i) −→ Σ.Deny(m, p, σ,pkv, pksi)

σ⋆ R
←− Σ.Sign(P , m, sksr, p

⋆)
for j from 1 to π do

Λ0
j ← Σ.Convert(P , ε,pks0, sks0, j) and Λ1

j

R
←− Σ.Convert(P , ε,pks1, sks1, j)

d← AS,Cv,C,D(guess, I, {Λ0
j , Λ

1
j}j∈[[1,π]]\{p⋆})

Return d

We define the advantage of A, via

Advano−cma

Σ,A (k) =
∣

∣

∣
Pr

[

Expano−cma−1

Σ,A (k) = 1
]

− Pr
[

Expano−cma−0

Σ,A (k) = 1
]∣

∣

∣
.

Given (k, t) ∈ N2 and ε ∈ [0, 1], the scheme Σ is said to be (k, t, ε)-Ano-CMA

secure, if no Ano-CMA-adversary A running in time t has Advano−cma

Σ,A (k) ≥ ε.
The scheme Σ is said to be Ano-CMA secure if, for any security parameter k ∈ N,
any polynomial function t : N→ N, and any negligible function ε : N→ [0, 1], it
is (k, t(k), ε(k))-Ano-CMA secure.

3 Hash functions and new security properties

Hash functions take messages of arbitrary length and outputs a fixed length
string. In cryptographic uses of a hash function H : {0, 1}∗ −→ H , these prop-
erties are considered prerequisites:

4 This is the main difference with time-selective convertible undeniable signatures from
[14] where this universal receipts was given only for p ∈ [[1, p⋆ − 1]].
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– Preimage resistance: given h ∈ H , it should be computationally intractable
to find a message m such that H(m) = h.

– Collision-resistant: it should be computationnally intractable to find two
different messages m1 and m2 such that H(m1) = H(m2).

In this section, we formulate generalization of these security notions and study
their properties.

Definitions. The proof of security of our variant of Michels-Petersen-Horster
signatures makes use of new non-standard variations of the preimage resistance
and the collision resistance assumptions for hash functions. These assumptions
are of independent interest as they have interesting relations with the classical
ones. We call them random affine preimage resistance and random linear colli-
sion resistance. Despite, being stronger than the standard assumptions, they are
quite realistic.

According to [21], an hash function family is a family of functions (Hk :
Kk × {0, 1}∗ −→ {0, 1}k)k∈N, where Kk is a finite non-empty set. We will write
the first argument of Hk as a subscript, so that HK,k(m) = Hk(K, m). In the
following, we denote elements from {0, 1}k as the corresponding k-bits integers
in binary representation and we will denote for every integer N ∈ Z, HN

K,k the

map defined by: HN
K,k :

{

{0, 1}∗ −→ ZN

m 7−→ HK,k(m) mod N.

The new security definitions can be quantified as follows:

Definition 4 (Random affine preimage resistance). Let n be an integer,
let (Hk : Kk × {0, 1}∗ −→ {0, 1}k)k∈N be an hash function family and let A be a

PPTM. The success Succ
raPre(n)
H,A (k) of A against the n-random affine preimage

resistance of H = (Hk)k∈N is defined by:

max
2k−1≤N<2k

α1,...,αn∈Z
∗

N

β1,...,βn∈Z
∗

N







Pr





K
R
←− Kk; (m, i, j)

R
←− A(K, α1, . . . , αn, β1, . . . , βn)

m ∈ {0, 1}∗, (i, j) ∈ [[1, n]]2, i 6= j
αi + βjH

N
K,k(m) = 0 mod N











.

An adversary A against the n-random affine preimage resistance of a hash
function family (Hk)k∈N can be transformed easily into an adversary against the
classical preimage resistance of (Hk)k∈N with success probability greater than

Succ
raPre(n)
H,A (k)/n2 and time-complexity of A increased by the time necessary

to compute n modular multiplications modulo N . In particular, the 1-random
affine preimage resistance is equivalent to the classical preimage resistance.

Definition 5 (Random linear collision resistance). Let n be an integer, let
(Hk : Kk × {0, 1}∗ −→ {0, 1}k)k∈N be an hash function family and let A be a

PPTM. The success Succ
rlColl(n)
H,A (k) of A against the n-random affine preimage
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resistance of H = (Hk)k∈N is defined by:

max
2k−1≤N<2k

λ1,...,λn∈Z
∗

N







Pr





K
R
←− Kk; (m, m′, i, j)

R
←− A(K, λ1, . . . , λn)

m, m′ ∈ {0, 1}∗, (i, j) ∈ [[1, n]]2, m 6= m′

λi · HK,N (m) = λj · HK,N (m′) mod N











.

As for random affine preimage resistance, the 1-random linear collision re-
sistance is equivalent to the classical collision resistance. Unfortunately, it is
impossible to prove that the n-random linear collision resistance can be reduced
generically to the collision resistance for n ≥ 2.

Remark 2. This security requirement is however reasonable since if the hash
function family underlying the protocol RSA-FDH [2] does not satisfy it, then it
is existential forgery against a one chosen-message attack: given an RSA public
key (N, e), the adversary can simply pick at random r1, . . . , rn ∈ ZN , compute
λi = re

i mod N for all i ∈ [[1, n]], and try to find a random linear collision with
parameters N, λ1, . . . , λn. If a collision m, m′ ∈ {0, 1}∗, (i, j) ∈ [[1, n]]2, (such that
λi ·HK,N (m) = λj ·HK,N (m′) mod N is found), then the adversary queries the
signature σ on m to the signing oracle and can compute the signature of m′ as
σ′ = ri · σ · r

−1
j mod N .

Generic security . The best known general collision-finding attack against
a hash function family is the so-called birthday-attack. If we assume that the
values of the hash-function family (Hk)k∈N are uniformly distributed over {0, 1}k

and that the generalisation of the birthday attack5 against the random affine
preimage resistance and the random linear collision resistance of (Hk)k∈N is the
best possible attack (which is true in the random oracle model), then it is possible
to give exponential lower bounds on the minimum of n and of the number of
hash functions evaluation required to have non-negligible probability of success.
Indeed, for any integer N ≥ 2, and for (i, k) ∈ ZN , it is straightforward [?] that

#{j ∈ ZN |i · j mod N ≤ k} = gcd(i, N)×

(⌊

k

gcd(i, N)

⌋

+ 1

)

.

Therefore if D denotes the product of two independent random variables uni-
formly distributed over ZN , we have ∀k ∈ ZN

Pr(D ≤ k) =
1

N2

N−1
∑

i=0

gcd(i, N)

(⌊

k

gcd(i, N)

⌋

+ 1

)

,

and consequently, D is close to the uniform distribution ove ZN . The results
from [?] are sufficient to conclude; details will appear elsewhere.

5 These attacks consist in picking messages m1, . . . , mr, computing hi = Hk(mi)
mod N for i ∈ [[1, r]] and γi,j = −hiβj mod N (resp. γi,j = hiλj mod N) for
j ∈ [[1, n]]. They are successful if there is a triple (i, j, ℓ) in[[1, r]] × [[1, n]]2 (resp. a
4-tuple (i, i′, j, j′) ∈ [[1, r]]2 × [[1, n]]2) s. t. γi,j = αℓ (resp. γi,j = γi′,j′ and j 6= j′).
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4 Michels-Petersen-Horster convertible undeniable
signatures revisited

4.1 Description of the scheme

Let π be an integer. Following the notations in 2.1, the scheme can be described
as follows:

– Σ.Setup: we consider a group G of prime order q generated by the element
P , an encoding σ : G→ S, a reduction function6F : S → Zq, a hash function
h : {0, 1}∗ → Zq and two pseudo-random functions H1 : [[1, π]]×Zq → {0, 1}k

and H2 : {0, 1}∗ × {0, 1}k × S → Zq.

– Σ.SKg: u, v
R
←− [[1, q − 1]], compute U ← uP and V ← vP .

– Σ.VKg: w
R
←− [[1, q − 1]], compute W ← wP .

– Σ.Sign: on message m and period p, we do the following:

• r
R
←− [[1, q − 1]], R← rP . If F (R) = 0 we try with another value r.

• ep ← H1(p, v), d← H2(m, ep, R), T ← dP
• s← (F (T ) · d · h(m) · v − u · F (R)− 1)r−1 mod q

The signature is the tuple (R, T, s).
– Σ.Cont: check that: (v · F (T ) · h(m)) · T = F (R) · U + s · R + P using the

private key v.
– Σ.{Conf/Deny}: the signer provides a designated verifier proof of knowledge

of the equality/inequality of two discrete logarithms, namely, F (R) · U + s ·
R + P to the base (F (T ).h(m))T and V to the base P (see appendix 4.2).

– Σ.Convert: we allow two types of conversions, namely
• The gradual conversion for the signature corresponding to the time pe-

riod p could be done by releasing the value ep.
• The individual conversion can be achieved by releasing the value of d.

– Σ.Verify: The signature corresponding to the period p, once ep or d is re-
vealed, could be checked by any verifier using the equations: (d · F (T ) ·
h(m))V = F (R) · U + s · R + P and T = dP .

4.2 Proofs of equality/inequality of discrete logarithms

Let G be a group. To confirm or deny that a bit string is a signature in our
undeniable signature scheme, it is necessary to prove that a given quadruple
(U1, V1, U2, V2) ∈ G4 is a Diffie-Hellman quadruple (or not), i.e. belongs to the
set

EDL(G) = {(U1, V1, U2, V2) ∈ G
4, logU1

(V1) = log U2(V2)},

(or to the set IDL(G) = G4 \ EDL(G)).

To face blackmailing or mafia attacks against our undeniable signatures, we
use interactive designated verifier proofs, as introduced in [12] by Jakobsson,
Sako, and Impagliazzo, in Chaum’s proofs of equality (cf. Fig. 1) and inequality

6 See 5.1
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(cf. Fig. 2) of discrete logarithm of [6]. The idea is to replace the generic com-
mitment scheme by a trapdoor commitment, as defined in [4], and using classical
techniques, the proofs are readily seen to be complete, sound, and above all non-
transferable. The protocols, involve a point Y = yU1 where y is the secret key
of the verifier, and the prover must be convinced that Y is well-formed (in the
registered public key model, the registration protocol is used to force the users
to know the secret-key corresponding to their public key).

Protocol EDL.Prove

Common input: (U1, U2, V1, V2), Y

P ’s input: x

V’s output: b

① P
C1, C2, C3

−−−−−−−−−−−−−−−−→ V

(a, b, k)
R
←− [[1, q − 1]]3

C1 ← [k] · U1 ; C2 ← [k] · U2

C3 ← [a] · U1 + [b] · Y

❶ V
r

−−−−−−−−−−−−−−−−→ P

r
R
←− [[1, q − 1]]

② P
a, b, c

−−−−−−−−−−−−−−−−→ V
c← k − x(r + b) mod q

• V’s execution ending
fC1 ← [c] · U1 + [r + b] · V1

fC2 ← [c] · U2 + [r + b] · V2

fC3 ← [a] · U1 + [b] · Y

if (C1, C2, C3) = (fC1, fC2, fC3)
then b← Accept else b←⊥

Protocol EDL.Fake

Common input: (U1, U2, V1, V2), Y

P ’s input: y

V’s output: b

① P
C1, C2, C3

−−−−−−−−−−−−−−−−→ V

(c, d, k)
R
←− [[1, q − 1]]3

C1 ← [c] · U1 + [d] · V1 ; C2 ← [c] · U2 + [d] · V2

C3 ← [k] · U1

❶ V
r

−−−−−−−−−−−−−−−−→ P

r
R
←− [[1, q − 1]]

② P
a, b, c

−−−−−−−−−−−−−−−−→ V
b← d− r mod q ; a← k − by mod q

• V’s execution ending
fC1 ← [c] · U1 + [r + b] · V1

fC2 ← [c] · U2 + [r + b] · V2

fC3 ← [a] · U1 + [b] · Y

if (C1, C2, C3) = (fC1, fC2, fC3)
then b← Accept else b←⊥

Fig. 1. Interactive designated verifier proof of membership of the language EDL(G)

5 Security analysis

We note first that the property of non-transferability is fulfilled by our scheme as
a direct consequence of the use of designated-verifier proofs in the confirm/deny
protocols. Further, we state that our scheme resists existential forgeries and that
signatures are anonymous. Both security reductions stand in the generic group
model.

5.1 The generic group model

The model. A generic model of a group was first introduced by Nechaev [17].
Shoup [22] later improved these results and applied this model to cryptology. In

11



Protocol IDL.Prove

Common input: (U1, U2, V1, V2), Y

P ’s input : x

V’s output : b

① P
C0, C1, C2, C3

−−−−−−−−−−−−−−−−→ V

(a, b, k0, k1, k2)
R
←− [[1, q − 1]]5

C0 ← [k0] · (V2 − [x] · U2)
C1 ← [k1] · U1 − [k2] · V1

C2 ← [k1] · U2 − [k2] · V2

C3 ← [a] · U1 + [b] · Y

❶ V
r

−−−−−−−−−−−−−−−−→ P

r
R
←− [[1, q − 1]]

② P
a, b, c, d

−−−−−−−−−−−−−−−−→ V
c← k1 − xk0(r + b) mod q

d← k2 − k0(r + b) mod q

• V’s execution ending
fC1 ← [c] · U1 − [d] · V1

fC2 ← C0 + [c] · U2 − [r + b] · V2

fC3 ← [a] · U1 + [b] · Y

if (C1, C2, C3) = (fC1, fC2, fC3) ∧ C0 6= OG2

then b← Accept else b←⊥

Protocole IDL.Fake

Common input: (U1, U2, V1, V2), Y

P ’s input: y

V’s output: b

① P
C0, C1, C2, C3

−−−−−−−−−−−−−−−−→ V

(c, d, k1, k2)
R
←− [[1, q − 1]]4

C0
R
←− G \ {OG} ; C1 ← [c] · U1 − [d] · V1

C2 ← C0 + [c] · U2 − [k1] · V2

C3 ← [k2] · U1

❶ V
r

−−−−−−−−−−−−−−−−→ P

r
R
←− [[1, q − 1]]

② P
a, b, c, d

−−−−−−−−−−−−−−−−→ V
b← k1 − r mod q ; a← b− k2y mod q

• V’s execution ending
fC1 ← [c] · U1 − [d] · V1

fC2 ← C0 + [c] · U2 − [r + b] · V2

fC3 ← [a] · U1 + [b] · Y

if (C1, C2, C3) = (fC1, fC2, fC3) ∧ C0 6= OG2

then b← Accept else b←⊥

Fig. 2. Interactive designated verifier proof of membership to the language IDL(G)

this model, called also the black-box model, one assumes that group operations
in a group can be perfomed only by means of an oracle. More specifically, suppose
that G is an (additive) group of prime order q. Then G is isomorphic to the
additive group Zq and for any non-identity element P ∈ G, one can construct an
efficient isomorphism sending i ∈ Zq to iP , using some version of the repeated
squaring algorithm to perform the scalar multiplication in polynomial time. In a
generic group, one assumes that instead of having explicit formulas for the group
element iP , we have rather an “encording” σ(i) ∈ S ⊂ {0, 1}∗, that represents
the element iP . A generic algorithm A will then consult the oracle for two types
of queries:

– A requests the encoding of i: the oracle will select randomly a value σ(i), to
represent the element iP , from the given set of bit-srings.

– Given two encodings σ(i) and σ(j), A requests (without knowing necessarily
i and j) the encoding of (σ(i±j). Again the oracle responds with a randomly
chosen bit-string.

The only condition on the oracle responses is that if the same group element is
queried a second time, the same corresponding encoding must be returned.
Without loss of generality, one could group the above queries in a single type of
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query, namely, (
−→
i ,−→α ) where

−→
i refers to the set of indices of the group elements

whereas −→α denotes the set of exponents. In 5.2, we will give an interpretation of
the oracle’s behaviour regarding such a type of queries using polynomials over
Fq.
Finally, a security proof in this model assures the absence of an adversary who
behaves generally with respect to the given group. However, and as in the random
oracle model [7], a security proof in the generic model does not rule out the
existence of a successful adversary for a specific group [9, 23].

Reduction functions. A reduction or conversion function is a map that sends
an element of the group G to an integer modulo the group size q. In DSA, the
reduction function takes the group element, which is an integer modulo p, and
reduces it modulo q. In ECDSA, the reduction function consists in taking the
group element, which is a point (x, y) in the given elliptic curve (over Fp, where
p is not necessarily prime), interpret the x-coordinate as an integer in Zp, then
outputs x mod q.
A reduction function must satisfy the so called almost-invertibility: given an ar-
bitrary integer in Zq, then with nonnegligeable probability one can efficiently
find one preimage. The almost-invertibility property allows to transfer the in-
tractability of the discrete log problem on a generic group to Zq. ECDSA’s
reduction function satisfies this condition oppositely to DSA’s function.

Definition 6. Let F be a reduction function f : S → Zq. An almost-inverse of
F is a probabilistic algorithm g, possibly outputting ⊥, such that: Prb∈RZq

[g(b) ∈
S ∧ F (g(b)) = b] ≥ 1

3 .
Function F is (δ, t)-almost-invertible, with almost-inverse g, if furthermore:

D ≈δ U where Dg = {g(b) | b ∈R Zq ∧ g(b) ∈ G} and U = {a | a ∈R G}

The notation D ≈δ U means that no distinguisher with running time t can get
an advantage greater than δ.

5.2 Preliminaries and notations

The EF-CMA-adversary is denoted A and will output after a certain number of
queries to the group and the signing oracles (n and m respectively) a valid signa-

ture σ = (R, T, s) on a message (m, p) with success probability ε = Succef−cma
Σ,A .

This event, is divided into subevents according to whether R and T were created
during a signature or group query: a group element created during a group query
will have a “grp” tag whereas tag “sign” will correspond to elements created in
a signature query. Also, a signature query on (mi, pi) will be always answered
(Ri, Ti, si), where Ri, Ti ∈ S. Hence we need to specify the type of an element
that has the tag “sign”: we denote type(R) = 0 and type(T ) = 1.
The reduction, or more specifically the adversaries, B, C and D against random
affine preimage, random linear collision and preimage respectively will simulate
the group and signing oracles according to the alleged kind of forgery returned
by A.

13



The group oracle As said previousely, the group oracle will receive queries of

the type (
−→
i ,−→α ) . The answers to such queries are elements zi of S ⊂ {0.1}∗. Let

L = {z1, z2, z3, . . . , zn+2} be the sequence of queries’ answers where n denotes
the total number of queries to the group oracle. We use an interpretation similar
to the one in [23], using polynomials Fi(X) over Fq:

– Polynomials F1 and F2 are set to F1 = 1 and F2 = X , which correspond to
the generator and the public key respectively. The corresponding bit-strings
are z1 and Z2 respectively.

– At the ℓ-th query (
−→
i ,−→α ), the polynomial Fℓ is defined as

∑|−→α |
j=1 αjF−→

i j
. If

Fℓ is already listed7 as Fh, then Fℓ is marked and the corresponding answer
to Fh is returned. Otherwise, zℓ is selected at random from S, recorded using
Record 8 (zℓ‖Fℓ‖grp‖undef) and then returned to A.

It is easy to see that the behavior driven by this interpretation is similar to
the one of the regular algorithm provided that all the answers corresponding to
unmarked polynomials are distinct and no polynomial Fℓ vanishes at x. In these
conditions, we call the sequence of encodings a safe sequence. The probability of
such a sequence is given by the following lemma [23]:

Lemma 1. Assume n2 ≤ q. The probability of unsafe sequence is upper-bounded
by 5(n + 1)2/q.

Which follows from the following lemma:

Lemma 2. Let P be a non-zero affine polynomial in Zq[X ], then Prx∈Zq
[P (x) =

0] = 1
q

The signing oracle Σ The signing oracle Σ will receive queries, of the form
(m, p) and will respond then with a valid signature σ = (R, T, s) according to
the following simulation:

Simulation of Σ: on query (m, p) do the following:

– R
R
←− S, ep ← H1(p, v), d← H2(m, ep, R),

– Repeat: a, b
R
←− Zq, t ← (a− b · F (R))a−1d−1v−1h(m)−1 mod q Until T =

g(t) 6=⊥,
– Record (R‖aX + b‖sign‖0), Record(T ‖d‖sign‖1),
– s← (d · v · t · h(m)− 1)b−1 mod q,
– Return (R, T, s).

7 The reduction (the adversaries B, C and D) will maintain, in addition to the outputs’
list L, three further lists, namely, the list of corresponding polynomials, denoted F ,
the list of tags T to specify whether the group elements were created during a query
to the group or signing oracles and the list of types S specifying whether the element
is an R or a T .

8 The command Record (R‖F‖t‖s) will abort in some cases, namely when (R, ⋆, ⋆, ⋆)
already exists and ⋆ 6= F . The probability, taken over the random choices of R, F ,
t and s, of such an event to happen can be upper-bounded by n

q
, where n is the

number of queries to Γ (Lemma 2).
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The confirming/denying oracles The use of designated verifier proofs of
membership and of the registered public key model makes these oracles useless
for the attacker. Therefore, we do not describe them in our security proof.

5.3 Unforgeability proof

As mentioned before, the EF-CMA-adversary A will output after a certain num-
ber of queries to Γ and Σ a signature (R, T, s) on a message (m, p) with success

probability ε = Succef−cma
Σ,A . This event could be divided into sub-events, whose

probabilities sum up to ε, according to the tags (sign or grp) and types (0 or 1
) associated to both R and T .
The reduction (adversaries, B, C and D against random affine preimage, ran-
dom linear collision and preimage respectively) will generate four random coins
ci ∈ {0, 1}, 1 ≤ i ≤ 4, and then simulates Γ and Σ accordignly.
More precisely, adversary C will use the forgery to solve random linear collision
if it is of the form tag(R, T ) = (sign, sign)∧ type(R, T ) = (0, 1), whereas, D will
use exploit a forgery of the form tag(R, T ) = (grp, grp) to solve preimage, finally,
adversary B will tilize all the remaining cases to solve random affine preimage.

Theorem 1. Given an EF-CMA-adversary A, operating in time t, after n group
queries and m signing queries, such that m≪ n2 and n≫ 1, with success prob-
ability ε, then there exist adversaries B, C, and D operating in time t′ and at-
tempting to solve random affine preimage, random linear collision and preimage

with success probability Succ
raPre(n)
h,B , Succ

rlColl(n)
h,C and Succ

Pre(n)
h,D respectively

such that:

t′ ≤ t + 5nτg lnn + 5m lnn(2τg + τH1
+ τH2

+ τF + τh)

and

6Succ
raPre(n)
h,B + 2Succ

rlColl(n)
h,C + 3n2Succ

Pre(n)
h,D ≥

ε

8
− 5n4/q − 3mn3

where δ is the advantage of an adversary playing a distinguisher for g, τg, τF ,
τH1

, τH2
and τh are the running time for g, F , H1, H2 and h respectively.

Proof. Let (R, T, s) be the forgery output by A on (m, p). Due to space limita-
tions, we will detail only the case tag(R, T ) = (grp, sign) ∧ type(R, T ) = (0, 1)
and give a sketch of the cases tag(R, T ) = (sign, sign) ∧ type(R, T ) = (0, 1) and
tag(R, T ) = (grp, grp) .
Adversary B generates three random coins ci ∈ {0, 1}, 1 ≤ i ≤ 3 if c1 = 0∧c2 =
1 ∧ c3 = 1. This case corresponds to the event S0 : tag(R, T ) = (grp, sign) ∧
type(T ) = 1 whose success probability is Pr[S0] = ǫ1. Then, the forgery returned
by A satisfies the following equation9 a− b · F (R) = (ad− bc) · v · F (T ) · h(m),
where R = aU + bP and T = cU + dP . Since T was generated during a sig-
nature query as a T (type(T ) = 1) then c = 0 (the adversary must know the

9 this follows from the verification equation (v ·F (T ) · h(m))T = F (R) ·U + s ·R + P
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discrete logarithm of T in base P in case the attacker asks for the signature
conversion), the equation turns out to be a− b · F (R) = a · d · v ·F (T ) · h(m) or
1− a

b
F (R) = d·v·v·F (T )·h(m). Thus, in order to solve ( random affine preimage),

B must plunge α (β) in the group (signature) queries’ answers. More precisely,
he must answer group queries (a, b) by R such that 1 − a

b
F (R) = α, similarly,

signature queries must be answered by (R, T, s), such that −d · v · v · F (T ) = β:

– Game 1. We use the interpretation given in 5.2 which considers a safe
sequence L. This event’ s probability Pr[S1] satisfies |Pr[S1] − Pr[S0]| ≤
5(n + 1)2/q.

– Game 2. In this game we simulate Γ . On query (a, b) such that the corre-
sponding polynomial F = aX + b is unmarked, do the following:
• Repeat: pick α from the corresponding oracle - compute r ← (1 −

α)ab−1 - compute R̃ ← g(r) Until R̃ 6= Fail. However, we stop after
5 lnn trials. This event which we denote S2,1 differs from the previous

one if R̃ remains undefined. Since the experiments are mutually inde-
pendent (a and b are uniformly distributed), we may use a lemma from
elementary probability theory ([23],Lemma 5) to bound the correspond-
ing probability by 1/n2. The overall probability when l ranges the set of
queries indices is then 1/n. Hence Pr[S2,1] ≥ (1 − 1/n) Pr[S1].

• Replace R̃ by R. Since the inputs to g are uniformly distributed (α
is picked at random), we can use n times the almost-invertibility of F
(the so-called Hybrid Technique) to bound the probability of this event
( denoted S2,2): |Pr[S2,2]− Pr[S2,1]| ≤ nδg.
• Record(R‖aX+b‖grp). This event, which we denote S2,3 differs from the

previous one if the command Record fails. This won’t happen because
of the assumption that L is a safe sequence. So Pr[S2,3] = Pr[S2,2]
• Return R

– Game 3. In this game, we simulate the signing oracle. On query (m, p) do
the following:
• Event S3,1: Compute ep ← H1(p, v) - Pick from the corresponding oracle

- Compute d ← H2(m, ep, R). Again, this game does not differ from the
previous one, thus Pr[S3,1] = Pr[S2,3]
• Event S3,2: Repeat: pick β from the corresponding oracle - compute

t ← −d−1v−1β Until T̃ = g(t) 6= Fail. However, we abort after 5 lnn
trials. Following the same argument above, we have Pr[S3,2] ≥ (1 −
m/n2) Pr[S3,1].

• Event S3,3: Replace T̃ by T . Again, applying the same technique, we
get |Pr[S3,3]− Pr[S3,2]| ≤ mδg.
• Event S3,4: Record(T ‖d‖sign‖1). This game differs from the previous if

the command Record fails, du to the randomness of d, we can bound
this probability by |Pr[S3,4]− Pr[S3,3]| ≤ mn/q
• Event S3,5: Pick a ∈ Z∗

q , compute b← a(βh(m)− 1)F (R)−1. We clearly
have have Pr[S3,5] = Pr[S3,4]
• Event S3,6Record(R‖aX+b‖sign‖0), again, the diffence betwen the pre-

vious event is when Record fails. So |Pr[S3,6]− Pr[S3,5]| ≤ mn/q.
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• Event S3,7 compute s← −F (R)a−1. Due to the randomness of a, Pr[S3,7] =
Pr[S3,6].
• Return (R, T, s)

– Game 4. In this game, B exploits the forgery (R, T, s) returned by A. If
tag(R, T ) = (grp, sign)∧type(R, T ) = (0, 1) and B generated the correct bits,
then according to the above simulation there exits i, j such that R = Ri, T =
Tj and 1− ai

bi
F (Ri) = αi and −dj ·v·F (Tj) = βj , the equation satisfied by the

forgery turns out to be αi + βjh(m) = 0. B would then solve random affine
preimage with success probability AdvB ≥ ǫ1/8 + 5n2/q−nδ−mδ− 2mn/q
and time t′ ≤ t + 5n lnn + m(τH1

+ τH2
+ 5τg lnn + τh + 2τF ).

Adversary C generates four random bits ci ∈ {0, 1}. If (c1, c2, c3, c4) =
(1, 1, 0, 1), then C will simulate Γ and Σ such that the simulation exploits a
forgery (R, T, s) of the type tag(R, T ) = (sign, sign) ∧ type(R, T ) = (0, 1)).
Hence C will simulate Γ in the standard way described in 5.2. Furthermore,
he will have to plunge the λ’s in answers to signature queries in a way that the
returned signature (R, T, s) satisfies 1 − b

a
F (R) = λ. More precisely, on (m, p)

C does the following: Pick λ - Compute ep = H1(p, v)- Repeat: pick α ∈R Zq,
compute r ← λ−1

α
Until R = g(r) 6= Fail - Compute d = H2(m, R, ep) - Repeat:

pick a ∈R Zq, compute b = αa, compute t = (a − bF (R))(a · d · v · h(m))−1

Until T = g(t) 6= Fail - Record (R||aX + b||sign, 0) - Record (T ||d||sign||1) -
Compute s = (d · v · h(m) · F (T )− 1) · b−1 - Return (R, T, s).
It is easy to conclude that this simulation, together with the above forgery re-
turned by the attacker will lead to a solution to random linear collision.

Adversary D will attempt to exploit a forgery (R, T, s) such that tag(R, T ) =
(grp, grp) to find a preimage of a certain value, say a. The equation satisfied by
the forgery is ai − biF (Ri) = (aibj − ajbi)F (Rj) · v · h(m). For this, D will
simulate the signing oracle in the standard way given in 5.2. To simulate Γ , D
selects in advance i, j ∈R [[1, n]]. If i < j, then on the i-th query (ai, bi), D will
select Ri ∈R S and record it using Record(Ri‖aiX +bi‖grp). On the j−th query
(aj , bj), compute Tj ← g(a · (ai − biF (R))(aibj − ajbi)

−1v−1). With probability
at least 1/n2, D would have chosen the correct i, j and the success of having
Tj 6=⊥ is at least 1/3 (almost invertibility of F and randomness of a). If j ≤ i,
D will proceed in a similar manner.

5.4 Anonymity

Theorem 2. Given an Ano-CMA-adversary A, operating in time t, after n
group queries and m signing queries, with success advantage ε, such that m ≪
n2, m ≪ q and n ≫ 2, then there exist adversaries B1, B2 and C, operating
in time t′ and attempting to break the pseudo-randomness property of H1, the
pseudo-randomness of H2 and the random linear collision of h (respectively) with

success probability Succprf
H1,B1

, Succprf
H2,B2

and Succ
rlColl(n)
h,C such that:

t′ ≤ t + 5nτg lnn + 5m lnn(τH2
+ τh + τg) + mτH1
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and

Succprf
H1,B1

+ Succprf
H2,B2

+ 2
Succ

rlColl(n)
h,C

n
≥

ε

n
+

18n

q
− nδ + δ +

3mδ

n

where δ is the advantage of an adversary playing a distinguisher for g, τg, τF ,
τH1

, τH2
and τh are the running time for g, F , H1, H2 and h respectively.

6 Discussion

We properly defined security notions for convertible undeniable signatures that
support the additional property of achronous gradual conversion. Adapting the
scheme proposed by Michels, Petersen and Horster in 1996, we realized the first
scheme featuring this usefull notion of conversion. Moreover, we gave the first
security analysis of the Michels-Petersen-Horster protocol, thereby addressing a
problem left open since 1996. We have modified this scheme such that it becomes
a generic one, which allows to use it for instance in the setting of elliptic curves
(and therefore offers attractive practical advantages in terms of signature length
and performances). In this context, in comparison with the only previous time-
selective convertible undeniable signatures from [14], the computational costs for
the confirmation/disavowal protocols and the conversion algorithms, are much
smaller. We have proven the security of our scheme in the generic group model
under new computational assumptions on the underlying hash functions.
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