
GAUSS PERIODS� ORDERS

AND CRYPTOGRAPHICAL APPLICATIONS

SHUHONG GAO� JOACHIM VON ZUR GATHEN AND DANIEL PANARIO

Abstract� Experimental results on the multiplicative orders of Gauss
periods in �nite �elds are presented� These results indicate that Gauss
periods have high order and are often primitive �self�dual� normal ele�
ments in �nite �elds� It is shown that Gauss periods can be exponenti�
ated in quadratic time� An application is an e�cient pseudorandom bit
generator�

�� Introduction

Fq denotes a �nite �eld with q elements� Let n and k be positive integers
such that r � nk�� is a prime� not dividing q� and K the unique subgroup
of order k of the multiplicative group of Zr � Z�rZ� For any primitive rth
root � of unity in Fqnk � the element

� �
X
a�K

�a

is a Gauss period of type �n� k� over Fq � It is easy to see that � � Fqn �
Adleman 	 Lenstra ��
��� and Mullin et al� ��
��� used Gauss periods to

construct �eld extensions and normal bases with special properties over �nite

�elds� A normal basis for Fqn over Fq is a basis of the form �� �q� � � � � �q
n��

generated by some � � Fqn � Any such � is called a normal element�
A Gauss period of type �n� k� over Fq generates a normal basis for Fqn

over Fq if and only if gcd�e� n� � �� where e denotes the index of q modulo
r � nk � � �Wassermann �

� �

�� Gao et al� �

��� Gao et al� ��

��
present a method for fast multiplication and division under the normal bases
generated by Gauss periods� thus exponentiation in �nite �elds can be sped
up� We refer to that paper and the books by Jungnickel ��

�� and Menezes
et al� ��

�� for a discussion of the literature�
Gauss periods of type �n� �� over F� also have other remarkable prop�

erties� Gao 	 Vanstone ��

�� proved that they can be exponentiated in
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O�n�� bit operations� This is faster than any known algorithm for exponen�
tiation of an arbitrary element in F�n by a factor of loglogn� The orders
of Gauss periods of type �n� �� over F� were also computed for n � ���
The experimental results in their paper show that Gauss periods have high
multiplicative order� and in fact are often primitive elements over F�� This
is useful in cryptosystems where a �xed element needs to be raised to many
large powers�
Naturally� one can ask if the above properties hold for Gauss periods of

type �n� k� over F� with k � �� In the next section� we prove that� for
any �xed k and q� a Gauss period of type �n� k� over Fq can indeed be
exponentiated in O�n�� operations in Fq � We computed the multiplicative
orders of all Gauss periods of type �n� k� over F� for n � �� and � �
k � � that generate normal bases for F�n over F� as far as the known
factorizations of �n � � permit� Our experiments show that Gauss periods
of type �n� k� for k � � also have high orders and are often primitive� This
means that Gauss periods are often primitive normal elements� When k is
even� the normal bases generated by Gauss periods of type �n� k� over F� are
self�dual� Gauss periods thus are often primitive self�dual normal elements
as well� In Section �� we summarize our experimental results� state some
conjectures about primitive normal elements� and show how to construct a
primitive element from an element with high order� The experimental data
appears in the micro�che supplement� Finally� we mention in Section � some
cryptographical applications� In particular� we describe a pseudorandom
bit generator based on exponentiation in F�n � and discuss its security and
e�ciency�
Our work also contributes to the construction of primitive polynomials

and primitive normal polynomials� since their irreducible polynomials are
normal and primitive when Gauss periods are primitive� The related litera�
ture is mentioned at the end of Section ��

�� Fast exponentiation of Gauss periods

In this section we show that� for �xed k and q� a Gauss period of type
�n� k� can be exponentiated in O�n�� operations in Fq � see also Gao et al�
��

���
A pair �n� k� is a Gauss pair over Fq if r � nk� � is a prime not dividing

q and gcd�e� n� � �� where e is the index of q modulo r� i�e�� e � nk�ordr�q��
When q is understood� we simply say that �n� k� is a Gauss pair� It is always
assumed that �n� k� is a Gauss pair in the sequel�
In the notation of the introduction� K is the unique subgroup of order k

of Z�r � and

� �
X
a�K

�a�

where � is a primitive rth root of unity� Let

Ki � qiK � faqi mod r � a � Kg for  � i � n�
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Then Z�r is the disjoint union of K��K�� � � � �Kn��� We write �i � �q
i
for

 � i � n� Then ���� ��� � � � � �n��� is a normal basis for Fqn over Fq � It is
shown in Gao et al� ��

�� that

� � �i � 	ik �
X

��j�n
tij�j

where tij � j�� � Ki� � Kj j� 	i � � if i � i� and  otherwise� and i� is such
that �� � Ki� � Note that each � ��i has at most k nonzero terms� and thus
there are at most nk nonzero terms in total� We store all the nonzero tij in
a table� called the multiplication table of Gauss periods of type �n� k��

Theorem ���� Let � be a Gauss period of type �n� k� over Fq and  � e �
qn� Then �e can be computed in O�n�qk� operations in Fq�

Proof� We want to compute �e expressed in the normal basis ���� ��� � � � �
�n���� We use a redundant representation of 
 � Fqn � writing


 �

� X
��i�n

ai�i

�
� an�

where a�� � � � � an��� an � Fq � Thus 
 is represented by an �n � ���tuple
�a�� � � � � an��� an�� Of course� this representation is not unique� we just want
to compute any one of the representations� For example� the unit � can either
be represented as �� � � � � � �� or ���� � � � ���� �� since �� �

P
��i�n �i�

Our algorithm bene�ts from this �exibility�
Thus 
q is the �n����tuple obtained from that of 
 by shifting cyclically

the �rst n coordinates to the right by one position �the last coordinate
remains �xed�� So the cost for computing a qth power is negligible�
For any 
 � �

P
��i�n ai�i� � an � Fqn and  � j � n�

�j
 �

� X
��i�n

ai���i�j�q
j

�
� an�j �

Since ��i is a sum of at most k terms and can be looked up from the
multiplication table� �j
 can be computed in O�nk� operations in Fq �
Now to compute �e� we use the q�ary representation e �

P
��j�� ejq

j �
with  � ej � q for all j and e� �� � Then � � n� and

�e �
Y

��j��

�
�q

j
�ej

�
Y

��j��
�
ej
j �

This suggests that we compute �e iteratively� Initially� set 
 �� �� For j
from  to � set 
 �� �

ej
j 
� Then� at the end� we have 
 � �e� We compute

�
ej
j 
 iteratively as �ij
 for i from � to ej � This algorithm computes �e in

O

�� X
��j�n

ej

�
nk

�
� O��q�e�nk�
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operations in Fq � where �q�e� is the sum of digits of e in q�ary representation�
Now �q�e� � �q � ��n � qn implies the claim� �

Thus �e can be computed in O�n�� operations in Fq � when the values of q
and k are �xed� This is faster than any known algorithm for exponentiation
of an arbitrary element� Furthermore� one needs only to store e� 
 and the
multiplication table� a total of O�nk� elements of Fq �
Exponentiation of an arbitrary element in Fqn �with q bounded� can be

performed with O�n� loglog n� operations in Fq by the currently fastest al�
gorithm� with storage for O�n� log�q n� elements in Fqn �Shoup �

�� Gao et
al� �

���
Recently� von zur Gathen 	 Pappalardi ��

�� proved under ERH that�

for any �xed k and q� there are in�nitely many values of n such that �n� k� is a
Gauss pair over Fq � In fact� they determine a positive density for the primes
nk � �� where �n� k� is a Gauss pair� in the set of all primes� Thus� there
are in�nitely many �elds Fqn in which Gauss periods can be exponentiated
easily�

�� Experimental results

In this section� we present experimental results which indicate that Gauss
periods almost always have high order� When �n� k� is a Gauss pair over Fq �
Gauss periods of type �n� k� are algebraic conjugates of each others� hence
they have the same multiplicative order� That is� the order of � �

P
a�K �

a

does not depend on the choice of the primitive r�th root � of unity� By the
algorithm in the previous section� � can exponentiated under the normal
basis generated by � itself without knowing �� one just needs to precompute
the multiplication table for Gauss periods of type �n� k�� We computed the
multiplicative orders of � for all Gauss pairs �n� k� over F� with � � k � �
and � � n � ��
� and also did the corresponding calculations for ��
 � n �
�� as far as current knowledge of the factors of �n�� permits� The results
are tabulated in the table of the micro�che supplement� where �Ind� denotes
index� which equals �n�� divided by the corresponding multiplicative order�
An entry with a question mark �i�� in the �Ind� column means that the
corresponding index was computed from the partial factorization of �n � �
known to the authors at the time of writing� Thus the true index is i times
some of the unknown prime factors of �n � �� we believe that these extra
factors are unlikely to occur�
Our experiments show that Gauss periods have the expected multiplica�

tive properties� they almost always have high multiplicative orders and
are frequently primitive� More precisely� in the range � � n � ��
 and
� � k � � there are ���� Gauss pairs �n� k�� all the corresponding Gauss
periods have order � ��n����n except for � pairs� and 
�� of them are prim�
itive� In the range ��
 � n � �� and � � k � �� there are ���� Gauss
pairs �n� k�� and the corresponding Gauss periods have order � ��n � ���n
except for � pairs� and �
� of them are primitive� provided that the corre�
sponding index entries i� are the true indices�
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All the Gauss periods in the table generate normal bases over F�� When
the index is �� the corresponding basis is a primitive normal basis� Thus
Gauss periods yields many primitive normal bases over F� � Also� when k
is even� the normal basis generated by a Gauss period of type �n� k� over
F� is self�dual �Gao et al� �

��� We see that Gauss periods generate many
primitive self�dual normal bases as well�
Gao 	 Vanstone ��

�� observe that if n and �n�� are both primes then

Gauss periods of type �n� �� are primitive elements in F�n for n � ��� Our
experimental data show that their observation still holds for general Gauss
periods� It is formulated as follows�

Conjecture ���� If n and nk�� are both primes and k � log��n���� then
Gauss periods of type �n� k� form a primitive normal basis for F�n over F��

We note that normality is not a problem here� Since the order m of �
modulo nk � � is at least log��nk � �� � log��n � �� � k� it follows that n
divides m � nk�e and thus gcd�e� n� � ��
Wassermann ��

�� proves that for a given n there exists a Gauss pair

�n� k� over F� if and only if � � n� There are �� values of n � �� with � � n
for which there is no Gauss pair �n� k� with k � �� For each of these n� we
list in the table the smallest Gauss pair �n� k� and the corresponding index
�or index���
Our computations lead us to believe that for every n not divisible by �

there is a Gauss pair �n� k� yielding a primitive Gauss period F�n over F� �
As an experiment� we veri�ed this for all n � ��
� If there is no primitive
Gauss period for k � �� then the last entry of k is the smallest k whose
Gauss period is primitive and normal in F�n � The largest such k occurs in
��
� �
��

Conjecture ���� For any positive integer n not divisible by �� there exists
an integer k � � such that the Gauss period of type �n� k� is primitive normal
in F�n over F��

Motivated by this work and the previous work of Gao 	 Vanstone ��

���
von zur Gathen 	 Shparlinski ��

�� prove that Gauss periods of type �n� ��

have order at least �
p
�n���

Next� we show how to construct primitive elements from elements of high
order� The constructed primitive elements will still be essentially as easy to
exponentiate as Gauss periods�

Theorem ���� Let � � F�n with index e� A primitive element can be con�
structed from � deterministically in time polynomial in e and n�

Proof� The order of � is m � ��n����e� Write e � e�e�� where gcd�e�� m� �
� and every prime divisor of e� divides m� Let �� � F�n satisfy

�e�� � ��

and let �� be a primitive e�th root of unity in F�n � Then �� has order
me�� and ���� has order me�e� � �n � �� as gcd�me�� e�� � �� This means
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that ���� is primitive in F�n � Also� �� and �� can be constructed in time
polynomial in e and n� �

Thus if the order of � is at least ��n � ���nc for a constant c� then a
primitive element in F�n can be constructed in polynomial time nO	�
� In

the special case e � �k� �� the equation xe�� can be written as x�
k
� �x�

which corresponds to a system of linear equations over F� � and can be solved
by any e�cient algorithm for linear equations� Our experimental data shows
that many Gauss periods have indices �� �� ��� etc� which are of the form
�k��� Thus from our table of Gauss periods� it is easy to construct primitive
elements if one really needs primitive elements instead of elements of high
orders� In the table� we give for each n � ��
 and � � n� the smallest k such
that a Gauss period of type �n� k� has index at most n� One can see that
for these n it is possible to �nd a reasonably small such k�
Finally� we make some comments on the related work in the literature�

As mentioned in the introduction� our work also contributes to the construc�
tion of primitive polynomials and primitive normal polynomials� since their
irreducible polynomials are normal and primitive when Gauss periods are
primitive� Hansen 	 Mullen ��

�� and Morgan 	 Mullen ��

�� give tables
of primitive polynomials and primitive normal polynomials of degree m over
Fp for all prime powers pm � ��� with p � 
�� �Zivkovi�c ��

�a� �

�b�
gives a more extensive table of primitive polynomials of degree m � ��
�and a few values of m between �� and �� over F� when the factoriza�
tion of �m � � is known� In their work� they search for sparse polynomials�
i�e�� those with the smallest number of nonzero terms� Such polynomials
are useful in e�cient implementation of feedback shift registers� Gao 	 Pa�
nario ��

�� provide a construction of in�nite families of sparse irreducible
polynomials� In the extreme case� there is much interest in constructing
irreducible trinomials over F� � Zierler 	 Brillhart ��
��� �
�
� give a table
of irreducible trinomials of degree � �� Blake et al� ��

�� extend this
list to all irreducible trinomials of degree � � over F� �and a table for
degree � � is available from those authors��
It is� however� not clear how primitive elements from sparse polynomi�

als can be exponentiated faster than an arbitrary primitive element� The
primitive polynomials from Gauss periods may not in general be sparse� but
they do provide computational advantage in fast exponentiation as shown
by Theorem ����

�� Cryptographical applications

Let � � Fqn be a primitive element �or an element of high order� say at
least �qn� ���nc for some constant c�� Computing the exponentiation func�
tion that maps x � f� � � � � qn � �g to �x is easy� but computing its inverse
function� i�e�� computing x given �x� called the discrete logarithm problem�
is believed to be hard in general� This one�wayness of exponentiation has
found many applications in public�key cryptography� Di�e�Hellman key
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exchange �Di�e 	 Hellman �
���� password schemes �Lamport �
���� El�
Gamal cryptosystem �ElGamal �
���� cryptosystems over F� �Agnew et al�
�

�� Agnew et al� �

��� smart cards �Beth �
��� Schnorr �

� �

���
US Digital Signature Algorithm �NIST �

��� pseudorandom bit genera�
tors �Blum 	 Micali �
��� Long 	 Widgerson �
���� Pseudorandom bit
generators based on discrete logarithms in �nite �elds are used by Zheng
	 Seberry ��

�� �

�� and Lim 	 Lee ��

�� to construct cryptosystems
that leak no partial information and are secure against adaptively chosen
ciphertext attacks� In these applications� one needs a �xed element of high
order and computes �t for many random large integers t� For example� in a
signature scheme� for each signature one needs to generate a random integer
t and compute �t� Sometimes the computing power of the signature gen�
erating device is limited� e�g�� in a smart card� So � has to be chosen such
that exponentiation of � is easy� In practice� the currently popular choice
for � is from elements in Fp � If the prime p has n bits� then computing �t

needs O�n�� bit operations using repeated square and multiply method� or
O�n� logn loglogn� bit operations using FFT�based fast multiplication algo�
rithms� However� if we choose � to be a Gauss period of type �n� k� in F�n
for a small k then the cost of exponentiating � is reduced to O�n�� bit oper�
ations� which is just the cost of one multiplication by the �classical� method�
Our experimental results show that � almost always has high order and is
often primitive� Our exponentiation algorithm is also easy to implement�
Gauss periods are therefore highly attractive in these applications�
In the following� we describe Blum 	 Micali�s pseudorandom bit gener�

ator based on exponentiation in Fp� then we adapt it to the �elds F�n and
comment on its security and e�ciency�
A pseudorandom bit generator produces sequences of bits � or �� that

cannot be distinguished from truly random sequences of bits of equal length
by any �probabilistic� polynomial time algorithm� Blum 	 Micali ��
���
presented the following pseudorandom bit generator� Let m � � be a �xed
integer� Given n � �� select an odd prime p of n bits� and a primitive root �
modulo p� Pick a random integer a� �the seed� in the range � � a� � p� ��
Set

ak�� 	 �ak mod p for k � �

and
bk�� � � if ak�� � �p� ����� and bk�� �  otherwise�

Then fbk � � � k � nm � mg is a sequence of nm � m bits generated
from the n�bit seed a�� Blum 	 Micali ��
��� proved that if the discrete
logarithm problem in Fp is hard then this much longer sequence of bits is
pseudorandom� Blum 	 Micali�s generator outputs only one bit at each
iteration� i�e�� each bit costs one exponentiation mod p� Long 	 Wigderson
��
��� extended this to output about logn bits at each iteration�
We now adapt the above generator to the �elds F�n � Under a �xed basis

for F�n over F�� an element x � F�n is represented as a sequence of n bits
� and ��� We use x to denote the integer whose binary representation is
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the same as x� Let � � F�n be a primitive element �or an element of high
order�� Pick a random element x� � F�n � Set

xk�� � �xk for k � �

and let zk�� be the least signi�cant bit

zk�� � xk�� mod �� ���

Then fzk � � � k � nm �mg is a sequence of bits generated from the seed
x�� We want to show that this sequence is pseudorandom�
Let f be a one�way function� i�e� it is easy to compute but hard to invert�

A Boolean predicate B �i�e�� B�x� �  or �� is said to be hard for f if
an oracle for B�f�x�� allows one to invert f easily� Blum 	 Micali ��
���
Theorem �� proved that if B is a hard predicate for a one�way function f
then the following sequence is pseudorandom�

B�f�a���� B�f
��a���� B�f

��a���� � � � � B�f
k�a���� � � �

where a� is randomly chosen� To show that our sequence is pseudorandom�
it is enough to prove Theorem ��� below� For any � � F�n � the smallest
positive integer x such that � � �x is called the discrete logarithm of �
with respect to �� denoted by log� �� If no such x exists� we set �arbitrarily�
log� � � �

Theorem ���� Every bit of the discrete logarithm in F�n is a hard predicate
�for the exponentiation function��

Proof� Let B�x� be the least signi�cant bit of an integer x� We show how to
compute discrete logarithms via an oracle for B�log� ��� which returns the
least signi�cant bit of the discrete logarithm of any � � F�n � Note that for
any integer i� log� �

�i 	 �i log� � mod �n � �� Suppose that

log� � �
n��X
k��

ak�
k � �a�� a�� � � � � an�����

Then for i � N

�i log� � 	

n��X
k��

ak�
k�i 	

n��X
k��

ak�i�k mod �n � ��

where the subscripts of a are computed modulo n� and

log� �
�i � �an�i� � � � � an��� a�� � � � � an�i�����

Therefore
B�log� �

�i� � an�i for  � i � n� ��

and
log� � � �B�log� ��� B�log� �

�n���� � � � � B�log� �
�����

This means that log� � can be computed by n calls to the oracle� Since the
bits can be shifted cyclically� log� � can also be computed by n calls to an
oracle for any bit� Therefore every bit is a hard predicate� �
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Corollary ���� If the discrete logarithm problem in F�n is hard� then the
bit sequence z�� z�� � � � de�ned in ��� is pseudorandom�

We have assumed that the oracle is perfect� that is� it always gives correct
answers� Blum 	 Micali ��
��� dealt with the more general case of nonper�
fect oracles �an oracle that may give wrong answers� but it gives correct
answers su�ciently more frequently than incorrect ones�� It seems likely
that Theorem ��� still holds for nonperfect oracles�
Our theorem says that every bit of the discrete logarithms is a hard predi�

cate� that is� every bit is individually secure� provided the discrete logarithm
is hard to compute� This is di�erent from the discrete logarithms modulo an
odd prime p� where its least signi�cant bit is not secure while the most sig�
ni�cant bit is indeed secure �Peralta �
���� It seems also possible to modify
the proof in Long 	 Wigderson ��
��� to show that any O�logn� consecu�
tive bits of the discrete logarithms in F�n are simultaneously secure� In this
case� the modi�ed pseudorandom bit generator could output O�logn� bits
per iteration� The discrete logarithm problem in F�n seems easier than that
in Fp� and one may need to pick a bigger �eld F�n than for Fp to maintain
the same level of security�
In implementing our pseudorandom bit generator in F�n � one can choose �

to be a Gauss period of type �n� k� for a small k� The cost of exponentiating
� at each iteration is only O�n�� bit operations� This is advantageous com�
pared to the generator in Fp � where exponentiation needs O�n

� logn loglogn�
bit operations by using fast multiplication algorithms�
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