
FACTORIZATION AND DECOMPOSITIONOF POLYNOMIALSArtile for the Handbook of the Core of AlgebraJoahim von zur GathenJune 15, 2000Carl Friedrih Gau� proved that (multivariate) polynomials over a �eld or overthe integers form a Unique Fatorization Domain. The omputational versionof this fundamental result asks for an algorithm whih, given a polynomial asinput, �nds its irreduible fators. And the omplexity-theoreti version asksto do this as eÆiently as possible. This question and its answers form one ofthe suessful areas of omputer algebra.An easy kind of fatorization is to alulate the greatest ommon divisor(gd) of two polynomials. Eulid's algorithm|the granddaddy of all algorithms(Knuth (1981), p. 318)|does this for univariate polynomials over a �eld. Ithas numerous appliations, for example in the Chinese Remainder Algorithm,for modular arithmeti and omputation in algebrai extensions, in odingtheory (Berlekamp-Massey algorithm), and for fast linear algebra on \sparse"matries. The theory of subresultants gives important strutural insights andleads to eÆient algorithms, for example the modular methods for integer andfor multivariate polynomials.If f1; : : : ; fr are the distint irreduible moni fators of f = f e11 � � � f err 2F [x℄ over a �eld F , then f1 � � � fr is the squarefree part of f . It an be omputedas f= gd(f; f 0) in harateristi zero, while in harateristi p > 0, also pthroots have to be extrated. This is easy over all �elds of pratial interest, suhas �nite �elds or funtion �elds over them, but there are suÆiently bizarre(but still \omputable") �elds over whih squarefreeness is undeidable, in thesense of Turing. The squarefree part is useful in the symboli integration ofrational funtions.Algorithms for the fatorization of polynomials are built in a hierarhialway: One starts with univariate polynomials over �nite �elds, then over Q , andthen over algebrai extensions and of multivariate polynomials.The �rst modern fatorization methods for f 2 Fq [x℄ of degree n, where Fqis a �nite �eld with q elements, are due to Berlekamp. His motivation amefrom oding theory, and he found an algorithm based on linear algebra that
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2 Joahim von zur Gathenuses O�(n3 + nq) operations in Fq . Here, the \soft Oh" notation O� meansthat we ignore fators of logn. This is ok for small q, suh as q = 2, whih ispartiularly important in oding theory. But for large q, this is not polynomialin the \input length" n log q of f . A milestone was Berlekamp's inventionof a polynomial time algorithm, using O�(n3 + n log q) operations. This is aprobabilisti algorithm of Las Vegas type, whose output is always orret butwhose running time is a random variable whose mean is given above.A deade later, Cantor and Zassenhaus presented an algorithm whih pro-eeds in two stages. In the distint-degree fatorization stage, the (squarefree)input is fatored into a produt of polynomials eah of whose irreduible fatorshas the same degree. This is ahieved by taking the gd with gi = xqi � x fori = 1; 2; : : : ; and based on the fat that gi is the produt of all moni irreduiblepolynomials in Fq [x℄ whose degree divides i. This fat, and the squarefree andthe distint-degree fatorization are in Gau�' Nahla� (posthumous works).The seond equal-degree fatorization stage fators a polynomial all of whoseirreduible fators have the same degree. This is done by a probabilisti algo-rithm, the rudiments of whih an already be found in Legendre's work. Itremains an open question for the theory whether this an be ahieved deter-ministially in polynomial time.These algorithms have been improved in the 1990's and there is now a va-riety of algorithms whih are optimal in a spei� range of the proportion ofdegree n to �eld length log q. The orresponding software an attak enor-mously large problems; in 2000, polynomials of degree one million (over F2)an be fatored.The next task is to fator integer polynomials. Gau�' Lemma redues thisto fatoring in Q [x℄ and in Z. The latter seems omputationally hard (atour state of knowledge). Zassenhaus' algorithm for fatoring in Q [x℄ works by�rst fatoring modulo a (small) prime p, then applying Hensel lifting to geta fatorization modulo a suÆiently large power of p, and �nally trying outall ombinations of the modulo fators to �nd the true fators. This workswell for small inputs but uses exponential time. Lenstra, Lenstra and Lov�aszgave an eÆient algorithm to �nd \short" vetors in integer latties. Amongmany other omputational appliations, this also provides a polynomial-timealgorithm for fatoring in Q [x℄.The next task are bivariate polynomials. Again, a judiious appliationof modular fatorization, Hensel lifting, and an (eÆient) fator ombinationyields an eÆient fatorization algorithm. Fatorization over algebrai exten-sions an be handled in a similar way.For polynomials in more than two variables, one may apply the same teh-



Fatorization and deomposition of polynomials 3nology. However, the input length of the dense representation of polynomials,where the oeÆient of eah term up to the degree has to be spei�ed, grows tooquikly in size. It is more desirable to use onise forms suh as the sparse rep-resentation, where only the nonzero oeÆients are given. It is a remarkableahievement, mainly due to Kaltofen, to fator polynomials probabilistiallyin time polynomial in the input length for even more onise representations,namely by arithmeti iruits (a.k.a. straight-line programs) or by blak boxes.The main ingredient are eÆient versions of Hilbert's irreduibility theorem,as proved by Kaltofen and this author.Fatorizaton in Zm[x℄, for m 2 N , exhibits a number of unusual properties.For example, there are polynomials with exponentially many fatorizations intoirreduible polynomials, but these an all be represented by a polynomial-sizeddata struture.Detailed disussions, referenes, and reports on implementations an befound in von zur Gathen & Gerhard (1999).The omposition of two univariate polynomials g; h 2 F [x℄ is gÆ = g(h) 2F [x℄. In the deomposition problem, we are given f 2 F [x℄ and ask whetherthere exist g; h 2 F [x℄ so that f = g Æ h and 2 � deg g < deg f . The �rstpolynomial-time algorithm was presented by Kozen und Landau in 1986, andthe fastest one, by this author, uses O(n log2 n log logn) operations in F , wheren = deg f and r = deg g is presribed, with har F - r (the so-alled tamease). Ritt showed in 1922 that suh deompositions are essentially unique.Many generalizations have been studied: rational funtions by Zippel, algebraifuntions by Kozen, Landau, and Zippel, and multivariate deompositions byseveral authors. The problem has important appliations in the simpli�ationof parametrizations of algebrai urves and of the inverse kinemati equationsin robotis. ReferenesJoahim von zur Gathen & J�urgen Gerhard (1999). Modern Computer Alge-bra. Cambridge, UK.Donald E. Knuth (1981). The Art of Computer Programming, vol.2, Seminumer-ial Algorithms. Reading MA, 2nd edition.
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