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Abstract

Among the bivariate polynomials over a finite field, most are irreducible. We count
some classes of special polynomials, namely the reducible ones, those with a square
factor, the “relatively irreducible” ones which are irreducible but factor over an
extension field, and the singular ones, which have a root at which both partial
derivatives vanish.
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1 Introduction

We investigate four “accidents” that can happen to a bivariate polynomial
over a finite field: it can have a nontrivial factor, or a square factor, or a
factor over an extension field, or a singular root, where all partial derivatives
also vanish. The main results are quantitative versions of the intuition that a
random polynomial is unlikely to suffer an accident.

We have a ground field F . The accidents may occur at two places: in F (“ratio-
nal”) or in an algebraic closure of F (“absolute”). We then have four notions:
rationally or absolutely reducible, and rationally or absolutely singular. We
also consider squareful polynomials, where the rational and absolute notions
coincide.
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We take the set Bn(F ) ⊆ F [x, y] of bivariate polynomials with total degree
not exceeding some integer n, and certain natural sets An(F ) ⊆ Bn(F ) of
“accidents”, as above. We phrase our results in two languages, a geometric
and a combinatorial one. Namely, geometrically Bn(F ) is an affine or vector
space over F , and our An(F ) will be a union of images of polynomial maps, and
thus a (reducible) subvariety. It has Zariski-irreducible components of maximal
dimension, and we take the codimension of An(F ) to be the codimension of
these maximal components; the geometric goal is its determination. In order
for the required algebraic geometry to work, it is usually easiest to assume F
to be algebraically closed. For the combinatorial results, we take F = Fq to
be a finite field with q elements, and our goal is to find functions αn(q) and
βn(q) so that ∣∣∣∣∣#An(Fq)

#Bn(Fq)
− αn(q)

∣∣∣∣∣ ≤ αn(q) · βn(q),

with βn(q) tending to zero as q and n grow. Thus a random element of Bn(Fq)
is in An(Fq) with probability about αn(q). We provide functions βn(q) that go
to zero like q−n exponentially both in log q and n. But when we simplify αn(q)
to a power q−m of q, with an integer m, then the relative error estimate βn(q)
becomes only O(q−1), since that is the quality with which q−m approximates
αn(q). The Weil bound also gives an estimate based on the geometric result,
but with an even larger relative error of nO(1)q−1/2.

Figure 1.1 gives a picture of the combinatorial results. The ellipse in the top
half represents all bivariate polynomials and shows the subsets that we study.
In the bottom half, we have excised five pieces. A power 1/qe of q attached to
an edge means that the fraction of bivariate polynomials in the piece within
all polynomials is q−e(1 + O(q−1)). This is valid for sufficiently large n, and
more precise statements are given in the paper. The ε at the right hand edge
is given in Theorem 4.1.

For univariate polynomials, the fractions of irreducible and of non-squarefree
(and non-r-powerfree) polynomials among the monic ones of degree n are well
known: 1

n

∑
k|n μ(k)qn/k−n ≈ 1/n and ≈ 1/q, respectively.

When counting multivariate polynomials, one has two obvious options of defin-
ing the base set of all polynomials: by bounding the total degree or the indi-
vidual degree in each variable. The first “triangular” approach may look more
natural, but is complicated by the fact that the base dimension is a binomial
coefficient. We take this route but simplify our task by concentrating on bi-
variate polynomials. The general case requires more involved calculations. The
second “rectangular” approach is often taken in the literature. Now the base
dimension is just the product of the individual degree bounds (augmented by
1), but even here Cohen (1968) comes to “a fairly long, complicated argument,
which we shall omit”, and warns the interested reader that “the derivation of
the above results is increasingly complicated. Each further computation, using
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this method, would require considerable calculation.”.

Carlitz (1963) provided the first count of irreducible multivariate polynomi-
als. His work is discussed after Corollary 2.14. In Carlitz (1965), he went on
to study the fraction of irreducibles in the rectangular model. Gao & Lauder
(2002) considered our problem in yet another model, namely where one vari-
able occurs with maximal degree. The natural generating function (or zeta
function) for the irreducible polynomials in two or more variables does not
converge anywhere outside of the origin. Wan (1992b) notes that this explains
the lack of a simple combinatorial formula for the number of irreducible poly-
nomials. But he gives a p-adic formula, and also a (somewhat complicated)
combinatorial formula.

Cohen (1970) gave asymptotic estimates for various arithmetical functions,
including the number of r–power–free multivariate polynomials, again with
the individual degrees being bounded. Ragot (1997) estimated the number
of reducible bivariate polynomials, and in Ragot (1997, 1999), he calculated
exactly the number of polynomials in Bn(Fq) with a singular root in F2

q. An
improved version of this result, due to Hendrik W. Lenstra, Jr., is presented
in Section 5. Ragot derived his bounds for the general multivariate case.

This study originated from the desire to understand these “accidents” for al-
gorithms in multivariate polynomial computation. As one example, in various
methods for estimating the size of plane algebraic curves (see Huang & Ierardi
(1993), von zur Gathen & Shparlinski (1995, 1998), Cafure & Matera (2002))
the relatively irreducible (or “exceptional”) curves had to be treated as a spe-
cial case. One desires error estimates that are relatively good with respect to
the true size. By Weil’s Theorem, this size can be challengingly small in and
only in this special case. This difficulty can be overcome by applying methods
that are quite different from those that work in the case of polynomials that
are not relatively irreducible. The results of Section 4 present good estimates
on how (in)frequent these special cases are. In fact, Guillermo Matera and
Antonio Cafure asked the author for this frequency, thus triggering this inves-
tigation. No estimates for reducible polynomials of the precision needed seem
to be in the literature; so they are included here as well. In his algorithms
for multivariate absolute irreducibility testing, Ragot (1997) had been able
to do with weaker bounds. Finally, the singular polynomials form the most
general “accident”. In applying results from algebraic geometry such as Weil’s
bounds, one often has to assume the variety to be nonsingular. The nice results
of Ragot (1997, 1999) are improved, with the help of Hendrik Lenstra, and
supplemented in areas that arise naturally from the approach of the present
paper. Multivariate analogs of our results appear in von zur Gathen & Viola
(2008).
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Figure 1.1. Special types of polynomials

2 Reducible polynomials

Let F be a field and n ≥ 0. We set

Bn(F ) = {f ∈ F [x, y] : deg f ≤ n},
In(F ) = {f ∈ Bn(F ) : f irreducible},
Rn(F ) = Bn(F ) \ (In(F ) ∪ F ),

where deg f is the total degree of f . Thus Rn(F ) consists of the reducible
polynomials. The constants in F = B0(F ) are neither irreducible nor reducible,
and R1(F ) = ∅. Bn(F ) is a vector space over F of dimension

bn =

(
n + 2

2

)
=

n2 + 3n + 2

2

4



n #B=
n (Fq) #R=

n (Fq)

1 q3 − q 0

2 q6 − q3 (q5 + q4 − q2 − q)/2

3 q10 − q6 (3q8 + 2q7 − 2q6 − 3q5 − q4 + 2q3 − q)/3

4 q15 − q10 (4q12 + 6q11 − 2q10 − 5q9 − 7q8 + 6q6

−2q4 − q3 + q2)/4

5 q21 − q15 (5q17 + 5q16 + 5q15 − 10q13 − 15q12 − 6q11

+11q10 + 10q9 − 5q7 − q6 + q5 + q3 − q)/5

6 q28 − q21 (6q23 + 6q22 + 6q20 + 3q19 − 3q18 − 21q17

−23q16 − 10q15 + 18q14 + 32q13 + 10q12 − 15q11

−12q10 + 3q8 − q7 + 2q5 − 3q3 + q2 + q)/6

Table 2.1
The numbers of reducible polynomials of degrees up to 6.

for n ≥ 0. We also consider the polynomials of degree exactly n:

B=
n (F ) = Bn(F ) \ Bn−1(F ),

R=
n (F ) = Rn(F ) ∩ B=

n (F ),

I=
n (F ) = In(F ) ∩ B=

n (F ),

with B−1(F ) = {0} and

#B=
n (Fq) = qbn − qbn−1 = qbn(1 − q−n−1).

Our results transfer to the projective space of equivalence classes of associate
polynomials, consisting of the multiples by a nonzero constant of one of them,
and also to homogeneous (trivariate) polynomials.

The first “accident” we study is reducibility, in particular, the probability for
a polynomial of degree n in Fq[x, y] to be reducible. For n ≤ 6, Table 2.1 gives
the exact value of #R=

n (Fq), calculated with the method of von zur Gathen
& Viola (2008). These expressions are fairly complicated, and the goal of this
section is to derive simple bounds that are generally valid.

Theorem 2.1. Let n ≥ 2.

(i) For an algebraically closed field F , Rn(F ) is a subvariety of codimension
n − 1 in Bn(F ).

5



(ii) Let ρn(q) = (q + 1)q−n. Then for n ≥ 3 we have∣∣∣∣∣#R=
n (Fq)

#B=
n (Fq)

− ρn(q)

∣∣∣∣∣ ≤ ρn(q) · 2q−n+3,

#R=
2 (Fq)

#B=
2 (Fq)

=
ρ2(q)

2
.

(iii) For n ≥ 6, we have ∣∣∣∣∣#R=
n (Fq)

#B=
n (Fq)

− q−n+1

∣∣∣∣∣ ≤ 2q−n.

Proof. (i) For 1 ≤ k < n, we consider the multiplication map

μn,k :
B=

k (F ) × B=
n−k(F ) −→ B=

n (F ),

(g, h) 
−→ g · h,

whose images form a stratification of R=
n (F ) :

R=
n (F ) =

⋃
1≤k≤n/2

im μn,k. (2.2)

For any (g, h) ∈ B=
k (F ) × B=

n−k(F ) and a ∈ F× = F \ {0}, we have

μn,k(ag, a−1h) = μn,k(g, h). (2.3)

Hence the fiber under μn,k of each polynomial in im μn,k includes a copy of
F× and thus has dimension at least 1. It follows that

dim im μn,k ≤ bk + bn−k − 1 = bn − k(n − k) ≤ bn − n + 1 < bn.

Thus the Zariski closure of im μn,k is a proper irreducible subvariety of Bn(F ),
and its complement intersected with B=

n (F ) is a dense open subset of B=
n (F )

and contained in I=
n (F ). (In fact, im μn,k is closed (von zur Gathen (1985),

Lemma 4.1), but we do not need this here.) Let 1 ≤ k ≤ n/2 and (g, h) ∈
B=

k (F ) × I=
n−k(F ). If k < n/2 or h is an associate of g, the fiber of gh =

μn,k(g, h) under μn,k is isomorphic to F×. If k = n/2 and h is not an associate
of g, the fiber

μn,k(gh) = {(ag, a−1h), (ah, a−1g) : a ∈ F×} (2.4)

has two one-dimensional components. Thus in all cases the generic fiber di-
mension is 1, and

dim im μn,k = bk + bn−k − 1 = bn − k(n − k). (2.5)
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The maximal dimension occurs at k = 1, where it equals bn −n + 1. It follows
that codimB=

n (F ) R=
n (F ) = n − 1. Since the complement of B=

n (F ) in Bn(F )
has codimension n + 1, we also have codimBn(F ) Rn(F ) = n − 1.

(ii) We start with the special case n = 2. When g, h ∈ I=
1 (Fq) = B=

1 (Fq)
are not associate, then the fiber (2.4) of μ2,1 at gh has 2(q − 1) elements.
Given an arbitrary g, there are q3 − q − (q − 1) = (q − 1)(q2 + q − 1) choices
for h. Furthermore, there are q3 − q polynomials bg2 with b ∈ F×

q and g ∈
I=
1 (Fq); then μ−1

2,1(bg
2) = {(abg, a−1g) : a ∈ F×

q }. Together, these make up all
of im μ2,1 = #R=

2 (Fq). Therefore

#R=
2 (Fq)

#B=
2 (Fq)

=
(q3 − q)(q − 1)(q2 + q − 1)

2(q − 1)(q6 − q3)
+

q3 − q

q6 − q3
=

ρ2(q)

2
. (2.6)

We now may assume that n ≥ 3. From (2.3), we know that each fiber of μn,k

has at least q − 1 elements. Thus

# im μn,k ≤ 1

q − 1
· #B=

k (Fq) · #B=
n−k(Fq) (2.7)

<
qbk(1 − q−k−1) · qbn−k

q − 1
(2.8)

=
ρn(q) · #B=

n (Fq) · qn−1−k(n−k)(1 − q−k−1)

(1 − q−2)(1 − q−n−1)
.

Now the quadratic function u(k) = −k(n− k) of k has the two roots 0 and n,
and is monotonically strictly decreasing for 2 ≤ k ≤ n/2, so that

∑
2≤k≤n/2

qu(k) < qu(2)
∑
k≥0

q−k =
q−2n+5

q − 1
. (2.9)

Thus

#R=
n (Fq)

#B=
n (Fq)

≤ 1

#B=
n (Fq)

∑
1≤k≤n/2

# im μn,k (2.10)

<
ρn(q)

1 − q−n−1
· ∑

1≤k≤n/2

qn−1−k(n−k)(1 − q−k−1)

1 − q−2

≤ ρn(q)

1 − q−n−1
·
(

1 + qn−1
∑

2≤k≤n/2

q−k(n−k)

1 − q−2

)
(2.11)

<
ρn(q)

1 − q−n−1

(
1 +

q−n+4

(q − 1)(1 − q−2)

)
.

Now we have

(q − 1)(q2 − 1)(2q4 − 1 − 2q−n+3) − q7 ≥ 0,

7



since the product is monotonically increasing with n, so that it is sufficient to
check the case n = 3. The resulting expression increases monotonically with
q, and is positive for q = 3 (and negative for q = 2). Thus for q ≥ 3, we have

1 +
q−n+4

(q − 1)(1 − q−2)
≤ (1 − q−n−1)(1 + 2q−n+3),

#R=
n (Fq)

#B=
n (Fq)

≤ ρn(q)(1 + 2q−n+3). (2.12)

For q = 2, the estimate in (2.9) is too coarse for further usage. We refine it
for n ≥ 8 by observing that the summands q−2(n−2)+i for i = 1, 2 do not occur
in the left hand sum, since 3(n − 3) ≥ 2(n − 2) + 3. Thus

∑
2≤k≤n/2

q−k(n−k) ≤ q−2n+4

(
q

q − 1
− 1

q
− 1

q2

)
.

Plugging this into (2.11) yields

#R=
n (Fq)

#B=
n (Fq)

≤ ρn(q)

1 − q−n−1

(
1 +

q−n+3(q3 − q2 + 1)

(q − 1)(q2 − 1)

)
< ρn(q)(1 + 2q−n+3),

for any q ≥ 2. For q = 2 and 3 ≤ n ≤ 7, we take the exact value of the
right hand sum in (2.11). (We may even ignore the factor 1− q−k−1 except for
n = 6, k = 2.) This yields the upper bound (2.12) also for q = 2.

As a consequence, we have a lower bound on the number of irreducible poly-
nomials for n ≥ 3. First, we have from (2.12) that

#I=
n (Fq) = #B=

n (Fq) − #R=
n (Fq)

≥ qbn(1 − q−n−1)(1 − ρn(q)(1 + 2q−n+3))

≥ qbn(1 − (q + 2)q−n). (2.13)

The last inequality holds when n ≥ 5, except when (n, q) is one of (5, 2), (5, 3),
or (6, 2). The remaining cases again require special consideration to show the
lower bound (2.13). For n = 2, it follows from (2.6), and when n = 3 or
(n, q) = (5, 3), the bound in (2.11) is sufficient. For n = 4 and for (n, q) either
(5, 2) or (6, 2), we use bounds that are easily derived from Table 2.1:

#R=
4 (Fq) ≤ q12 + 3q11/2, #R=

5 (Fq) ≤ q17 + q16 + q15,

#R=
6 (Fq) ≤ q23 + 3q22/2.

Corollary 4.9 will improve this by showing the lower bound (2.13) for the
absolutely irreducible polynomials.
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For a lower bound on #Rn(Fq), we have the equalities in (2.3) under μn,1.
However, when n ≥ 3 and h has no linear factor, in particular, when it is
irreducible, then no other such equalities exist. It follows that for n ≥ 3

#R=
n (Fq)

#B=
n (Fq)

≥ # im μn,1

#B=
n (Fq)

≥ #B=
1 (Fq) · #I=

n−1(Fq)

(q − 1)#B=
n (Fq)

≥ (q3 − q) · qbn−1(1 − (q + 2)q−(n−1))

(q − 1)qbn(1 − q−n−1)

=
ρn(q)(1 − (q + 2)q−n+1)

1 − q−n−1

≥ ρn(q)(1 − 2q−n+2)

> ρn(q)(1 − 2q−n+3).

(iii) We have for n ≥ 6, and for n = 5 if q ≥ 3, the bound∣∣∣∣∣#R=
n (Fq)

#B=
n (Fq)

− q−n+1

∣∣∣∣∣ ≤
∣∣∣∣∣#R=

n (Fq)

#B=
n (Fq)

− ρn(q)

∣∣∣∣∣+ ∣∣∣ρn(q) − q−n+1
∣∣∣

≤ 2(q + 1)q−2n+3 + q−n

≤ 2q−n. �

For n = 3, the bound in (ii) needs to be strengthenend, and in fact we have

#R=
3 (Fq)

#B=
3 (Fq)

− ρ3(q) = ρ3(q) · −(3q2 + 2q − 2)

q2(q + 1)(q2 + 1)
;

the last factor is absolutely not more than 3q−3.

We note two features that will recur in other sections. The constant 2 in the
estimates is really 1 + ε with ε going to 0 as q and n grow, but the bound
would in general be invalid if one replaced 2 by 1. The thrust of the argument
is as follows: obtain an upper bound on reducibility, yielding a lower bound
on irreducibility, and then from this a lower bound on reducibility. This “self-
reducibility” will be visible in other proofs as well.

Viewing #R=
n (Fq) as a polynomial in q, Theorem 2.1 (ii) says that its leading

n−3 coefficients are xm +xm−1 with m = bn −n+1. Table 2.1 illustrates this
for n ≥ 4.

For later usage, we record from (2.13) the number of polynomials that are
irreducible of degree exactly n.

Corollary 2.14. We have #I=
1 (Fq) = q3 − q, and for n ≥ 2

#I=
n (Fq) ≥ qbn · (1 − (q + 2)q−n).

9



Carlitz (1963) counts irreducible multivariate polynomials. His result (11) says,
in the case of two variables and transformed to our notation, that

#R=
n (Fq)

#B=
n (Fq)

= 1 − #I=
n (Fq)

#B=
n (Fq)

= O((q − 1)q−n−1).

The reader might think that this conflicts with Theorem 2.1 (ii), which gives
the bound Θ((q+1)q−n). However, Carlitz considers q as fixed, and thus factors
like (q − 1)−1 or q + 1 are absorbed by his O-notation. A few lines further on,
Carlitz observes that “as the referee pointed out, [it] can be proved by a crude
counting argument” that

1 − q−n+4

(q − 1)3
≤ #I=

n (Fq)

#B=
n (Fq)

≤ 1.

The left hand bound is correct and has the same order of magnitude as Corol-
lary 2.14, but is marginally worse in the second-order term.

Ragot (1997), Section 5.3, pages 91–97, shows the following:

q−n+1(1 − 5

q
) ≤ #R=

n (Fq)

#B=
n (Fq)

≤ q−n+1(1 +
6

q
).

Gao & Lauder (2002) consider the set of polynomials in Fq[x, y] that have
total degree n and in which xn has coefficient 1. They prove that the fraction
of reducible polynomials is asymptotically q−n+1, with a relative error bound
of (1 − q−n/2+1)−1. Wan (1992b) gives a p-adic zeta function, mentioned in
the Introduction. In Wan (1992a) he considers a much more general situation,
namely the irreducible ones within a family of polynomials whose coefficients
are parametrized by an algebraic variety.

Bodin (2008) has the asymptotic approximation (q + 1)q−n to

#R=
n (Fq)

#B=
n (Fq)

= 1 − I=
n (Fq)

B=
n (Fq)

,

for large n, without an explicit error term, and includes experimental results
for q = 2.

3 Powerful polynomials

For a positive integer s, a polynomial is called s-power-ful if it is divisible by
the sth power of some nonconstant polynomial, and s-power-free otherwise; it

10



n #Q=
n,2(Fq)

1 0

2 q3 − q

3 q5 + q4 − q3 − q2

4 q8 + q7 + q6 − 2q5 − 2q4 + q2

5 q12 + q11 − q7 − 2q6 − q5 + q4 + q3

6 q17 + q16 − q12 + q10 − q9 − 4q8 − q7 + 2q6 + 3q5 − q3

Table 3.1
The number of squareful polynomials of degrees up to 6.

is squarefree if s = 2. We let

Qn,s(F ) = {f ∈ Bn(F ) : f is s-power-ful},
Q=

n,s(F ) = Qn,s(F ) ∩ B=
n (F ).

For n ≤ 6, Table 3.1 gives the exact value of #Q=
n,2(Fq).

Theorem 3.1. Let 2 ≤ s ≤ n.

(i) For an algebraically closed field F , Qn,s(F ) is a subvariety of codimension
dn,s = (2ns − s2 + 3s − 4)/2 in Bn(F ).

(ii) Let

ηn,s(q) =
q−dn,s(1 + q−1)(1 − q−n+s−1)

1 − q−n−1
.

Then ∣∣∣∣∣#Q=
n,s(Fq)

#B=
n (Fq)

− ηn,s(q)

∣∣∣∣∣ ≤ ηn,s(q) · 6q−2n+6.

(iii) If n ≥ 8, then ∣∣∣∣∣#Q=
n,s(Fq)

#B=
n (Fq)

− q−dn,s

∣∣∣∣∣ ≤ q−dn,s−1.

Proof. (i) For any positive integer k ≤ n/s, we consider the map

σn,k : B=
k (F ) × B=

n−sk(F ) → B=
n (F )

(g, h) 
→ gsh.

Then
Q=

n,s(F ) =
⋃

1≤k≤n/s

im σn,k,

and for nonzero a ∈ F and (g, h) as above we have

σn,k(ag, a−sh) = σn,k(g, h). (3.2)
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Thus each fiber of σn,k includes a copy of F×, and im σn,k ⊆ B=
n (F ) is an

irreducible subvariety of dimension at most bk + bn−sk − 1 < bn. We set

u(k) = bk + bn−sk − 1 − bn = −k(2ns + 3s − 3 − s2k − k)/2,

so that the codimension of Q=
n,s(F ) is at least −u(k). In particular, the Zariski

closure of Q=
n,s(F ) is a proper subvariety of Bn(F ). Now if

(g, h) ∈ B=
k (F ) × (B=

n−sk(F ) \ Q=
n−sk,s(F )), (3.3)

so that h is s-power-free, then the fiber of σn,k(g, h) is isomorphic to F×, since
an irreducible polynomial dividing gsh with multiplicity e occurs �e/s� many
times in g and e − s�e/s� many times in h, so that g and h are uniquely
determined up to associates. Thus (3.2) describes the fiber exactly in this
case, and since the set in (3.3) is dense in B=

k (F ) × B=
n−sk(F ), we have

codimBn(F ) Qn,s(F ) = −u(k). This quantity takes its minimal value in the
admissible range for k at k = 1, where it equals (2ns − s2 + 3s − 4)/2 = dn,s.

(ii) Since each fiber of σn,k (with F = Fq) has at least q− 1 elements, we have

#Q=
n,s(Fq)

#B=
n (Fq)

≤ ∑
1≤k≤n/s

qbk(1 − q−k−1) · qbn−sk(1 − q−n+sk−1)

(q − 1) · qbn(1 − q−n−1)

= ηn,s(q)
(
1 +

qdn,s

1 − q−2

∑
2≤k≤n/s

qu(k)(1 − q−k−1)(1 − q−n+sk−1)

1 − q−n+s−1

)

≤ ηn,s(q)
(
1 +

qdn,s

1 − q−2

∑
2≤k≤n/s

qu(k)
)
. (3.4)

The quadratic function u(k) of k takes only integer values and has the two
roots k0 = 0 and

k1 =
2ns + 3s − 3

s2 + 1
.

For 2 ≤ k ≤ k1 −2, we have u(k) ≤ u(2). We let t = s/n, so that 2/n ≤ t ≤ 1.
In case that t > 1/3, we have n/s < 3 and the sum in (3.4) consists of the
single term qu(2). In the other case we have 2/n ≤ t ≤ 1/3, 1/3 ≤ 1 − 2t, and

5t + 1

t2
≤ n2 + 9n

3
.

This inequality holds for t = 2/n, and follows in general because the left hand
side is monotonically decreasing for t ≥ 2/n. It follows that

0 ≤ t2n(n + 9)

3
− (5t + 1) ≤ (1 − 2t)t2n2 + 3t2n − (5t + 1),

12



and multiplying by n we find

0 ≤ (n − 2s)s2 + 3s2 − 5s − n,

n

s
≤ 2ns + 3s − 5 − 2s2

s2 + 1
= k1 − 2.

Thus each k occurring in the sum in (3.4) lies in the interval from 2 to k1 − 2,
each value u(k) occurs at most twice, and u(k) ≤ u(2).

In either case, the sum in (3.4) is less than

qu(2) · 2∑
k≥0

q−k =
2qu(2)

1 − q−1
.

In the range 2 ≤ s ≤ (2n − 3)/3, the quadratic function u(2) + dn,s = 3 +
s(−2n+3s−3)/2 of s takes its maximum −2n+6 at s = 2. If s > (2n−3)/3,
then the index set for the sum in (3.4) is empty and hence the sum vanishes,
with the exception of (n, s) = (4, 2), in which case the sum equals qu(2) = q−9

and qd4,2−9(1−q−2)−1 ≤ 4
3
q−2 < 6q−2n+6. Furthermore, 2/(1−q−2)(1−q−1) ≤ 6.

Thus in all cases,

#Q=
n,s(Fq)

#B=
n (Fq)

≤ ηn,s(q)

(
1 +

2qu(2)+dn,s

(1 − q−2)(1 − q−1)

)
≤ ηn,s(q)(1 + 6q−2n+6).

As a lower bound, we have for n ≥ 2 and 2 ≤ s ≤ n − s

#Q=
n,s(Fq)

#B=
n (Fq)

≥ #I=
1 (Fq) · #(B=

n−s(Fq) \ Q=
n−s,s(Fq))

(q − 1)#B=
n (Fq)

(3.5)

≥ (q3 − q) · qbn−s(1 − q−n+s−1)(1 − ηn−s,s(q)(1 + 6q−2n+2s+6))

(q − 1) · qbn(1 − q−n−1)

= ηn,s(q)(1 − ηn−s,s(q)(1 + 6q−2n+2s+6)).

The exponent

−dn−s,s = 2 + s(−2n + 3s − 3)/2 = u(2) + dn,s − 1

of q in ηn−s,s is a quadratic function of s. As above, in the range 2 ≤ s ≤
(2n − 3)/3 it assumes its maximal value −2n + 5 at s = 2. The only two
exceptions where our assumption s ≤ n− s does not imply s ≤ (2n− 3)/3 are
(n, s) equal to (4, 2) or (5, 2); but we may obviously again use the bound for
s = 2. Furthermore we have

1 − q−n+2s−1

1 − q−n+s−1
≤ 1, (3.6)

1 + q−1 ≤ 3/2,

1 + 6q−2n+2s+6 ≤ 8. (3.7)
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The last inequality holds for s ≤ n − 3. When s ≥ n − 2, then n ≤ 4 since
s ≤ n − s, and hence (n, s) = (4, 2). Thus we have, except for (4, 2),

(1 + q−1)(1 + 6q−2n+2s+6) ≤ 6,

ηn−s,s(q)(1 + 6q−2n+2s+6) ≤ q−2n+5(1 + q−1)(1 − q−n+2s−1)(1 + 6q−2n+2s+6)

1 − q−n+s−1

≤ 8q−2n+5 < 6q−2n+6,

#Q=
n,s(Fq)

#B=
n (Fq)

≥ ηn,s(q)(1 − 6q−2n+6). (3.8)

For (n, s) = (4, 2), one substitutes into (3.5), using q3 − q = #Q=
2,2(Fq) from

Table 3.1, and (3.8) again follows.

When s > n − s, then (3.5) holds with Q=
n−s,s(Fq) = ∅ and ηn−s,s = 0, and

(3.8) is valid.

(iii) Abbreviating w = (1 + q−1)(1 − q−n+s−1), we have for n ≥ 8∣∣∣∣∣#Q=
n,s(Fq)

#B=
n (Fq)

− q−dn,s

∣∣∣∣∣ ≤
∣∣∣∣∣#Q=

n,s(Fq)

#B=
n (Fq)

− ηn,s(q)

∣∣∣∣∣+
∣∣∣∣∣ηn,s(q) − q−dn,s

∣∣∣∣∣
≤ q−dn,s

1 − q−n−1
(w · 6q−2n+6 + |w − (1 − q−n−1)|)

=
q−dn,s−1

1 − q−n−1
(1 − q−n+s − q−n+s−1 + q−n + 6wq−2n+7)

≤ q−dn,s−1. �

From the proof it is clear that one can also get sharper error bounds that
tend to zero with growing s, but we have preferred to state a bound that is
independent of s.

For 2 ≤ s ≤ n ≤ 3, we have in fact

#Q=
n,s(Fq)

#B=
n (Fq)

= ηn,s(q).

We specialize the results of Theorem 3.1 to the case s = 2 of squareful poly-
nomials.

Theorem 3.9. Let n ≥ 1.

(i) For n ≥ 2, Qn,2(F ) is a subvariety of codimension 2n − 1 in Bn(F ).
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(ii) Let

ηn,2(q) =
q−2n+1(1 + q−1)(1 − q−n+1)

1 − q−n−1
.

Then ∣∣∣∣∣#Q=
n,2(Fq)

#B=
n (Fq)

− ηn,2(q)

∣∣∣∣∣ ≤ ηn,2(q) · 6q−2n+6,

and for n ≤ 3
#Q=

n,2(Fq)

#B=
n (Fq)

= ηn,2(q).

(iii) If n ≥ 8, then ∣∣∣∣∣#Q=
n,2(Fq)

#B=
n (Fq)

− q−2n+1

∣∣∣∣∣ ≤ q−2n.

With the simpler value

η′
n(q) = q−2n+1(1 + q−1),

we have ∣∣∣∣∣#Q=
n,2(Fq)

#B=
n (Fq)

− η′
n(q)

∣∣∣∣∣ ≤ η′
n(q) · q−n+1

for n ≥ 9, using the triangle inequality.

There is no need to consider the “absolute” problem here, because any “ab-
solutely squareful” polynomial is also “rationally squareful”. Namely, suppose
that f = g2h with f ∈ B=

n (Fq), g ∈ B=
m(Fqk) irreducible and normalized so that

one of its coefficients equals 1, h ∈ B=
n−2m(Fqk) and g /∈ B=

m(Fq�) for any 	 < k.
Then for any σ ∈ G = Gal(Fqk : Fq) with σ = id, also g2h = f = fσ = (gσ)2hσ,
and gσ does not divide g. Therefore (gσ)2 divides h, and f =

∏
σ∈G(gσ)2 · h∗

with

h∗ = h/
∏
σ∈G
σ �=id

(gσ)2 ∈ B=
n−2km(Fqk) ∩ Fq(x, y) = B=

n−2km(Fq).

The last equality can be shown via multivariate division with remainder; see
e.g. von zur Gathen & Gerhard (2003), Section 21.2. Since

∏
σ∈G gσ ∈ B=

km(Fq),
it follows that f ∈ Q=

n,2(Fq).

Cohen (1970), Theorem 7, shows that the fraction of s-power-free bivariate
polynomials among the q(m+1)(n+1) many with the degree in each variable
bounded by m ≤ n, respectively, is (1 − q1−ms) + O(nq−m−n−1).

Gao & Lauder (2002) show that in their model of bivariate polynomials in
which xn occurs, the squareful ones form a fraction of q−2n+1, with a relative
error bound of (1 − q−3n/4+1)−1.
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n #E=
n (Fq)

1 0

2 (q5 − q4 − q2 + q)/2

3 (q7 − q6 + q4 − 2q3 + q)/3

4 (2q11 − 2q10 + q9 − q8 − 2q6 + 2q4 + q3 − q2)/4

5 (q11 − q10 + q6 − q5 − q3 + q)/5

6 (3q19 − 3q18 + 3q17 − q16 − 2q15 − 2q13 + 2q12

−3q11 + 3q8 + q7 − 2q5 + 3q3 − q2 − q)/6

Table 4.1
The numbers of relatively irreducible polynomials of degrees up to 6.

4 Relatively irreducible polynomials

Following the terminology of Hodge & Pedoe (1952), Section X.11, we call an
irreducible polynomial relatively irreducible if it is not absolutely irreducible,
that is, if it factors over some extension field. See (5.21) for an example. Over
an algebraically closed field there are no relatively irreducible polynomials,
and so we only consider the combinatorial problem in this section.

A univariate polynomial f ∈ Fq[x] is called exceptional if all irreducible factors
of (f(x)−f(y))/(x−y) are relatively irreducible. This property is equivalent to
f being a permutation polynomial over infinitely many finite extension fields of
Fq. There is substantial literature about this topic; see e.g. Lidl & Niederreiter
(1983), §7.4, Guralnick & Müller (1997) and the references therein. By slight
abuse of notation, also relatively irreducible polynomials and their products
have been called exceptional (von zur Gathen et al. (1996)).

A relatively irreducible polynomial is the product of all conjugates of an irre-
ducible polynomial over some extension field. We denote as E=

n (Fq) ⊆ I=
n (Fq)

the set of all relatively irreducible polynomials, of degree exactly n.

Theorem 4.1. Let n ≥ 2, let 	 ≥ 2 be the smallest prime divisor of n, and

εn(q) =
q−n2(�−1)/2�(1 − q−1)

	(1 − q−�)(1 − q−n−1)
,

δn(q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2q−2n+2 if n is prime,

2q−n+�+1 if n = 6,

2q−n+� otherwise.

Then

16



(i)

∣∣∣∣∣#E=
n (Fq)

#B=
n (Fq)

− εn(q)

∣∣∣∣∣ ≤ εn(q) · δn(q).

(ii) εn(q) ≤ q−n2(�−1)/2�/	 ≤ q−n2/4/2 and

#E=
n (Fq) < #B=

n (Fq) · q−n2/4 ≤ q(n2+6n+4)/4.

(iii) If n is prime, then εn(q) ≤ q−n(n−1)/2/n and

#E=
n (Fq) = (q − 1)(q2n + qn − q2 − q)/n.

Proof. For a positive integer divisor k of n, an automorphism σ ∈ Gk =
Gal(Fqk : Fq) and a polynomial g over Fqk , the application of σ to the coeffi-
cients of g yields a polynomial gσ. We consider

ϕn,k :
Bn/k(Fqk) −→ Bn(Fq),

g 
−→ ∏
σ∈Gk

gσ.

Then the restriction of ϕn,k to constants is the norm of Fqk over Fq, and
indeed im ϕn,k ⊆ Bn(Fq). The k conjugates gσ, with σ ∈ Gk, are pairwise
non-associate unless and only unless the coefficients of some nonzero constant
multiple ag of g are contained in a proper subfield of Fqk , that is, ag ∈ Fqs[x, y]
with a ∈ F×

qk and s|k, s < k. If a = 1 and g is irreducible, then for the smallest
such s,

h =
∏

τ∈Gs

gτ∈ I=
ns/k(Fq)

is irreducible of degree ns/k, and ϕn,k(g) = hk/s. If no such s exists, then
ϕn,k(g) is irreducible in Fq[x, y]. Furthermore, if g (or one of its constant
multiples) is relatively irreducible in Fqk [x, y], then ϕn,k(g) = ϕn,j(h) for an
appropriate multiple j of k and h ∈ In/j(Fqj ). Thus we set for any integer m

I+
m(Fqk : Fq) = I=

m(Fqk) \
(
E=

m(Fqk) ∪ ⋃
1�=s|k

F×
qk · I=

m(Fqk/s)
)
⊆ Bm(Fqk), (4.2)

En,k = ϕn,k(I
+
n/k(Fqk : Fq)),

where A · B = {ab : a ∈ A, b ∈ B}. Then the En,k ⊆ I=
n (Fq) are pairwise

disjoint, and

E=
n (Fq) =

⋃
1�=k|n

En,k. (4.3)

What are the fibers in I+
n/k(Fqk : Fq) of ϕn,k over En,k? If ϕn,k(g) = ϕn,k(h),

then, since h is irreducible, it divides one of the factors in ϕn,k(g). Since the
degrees are equal, it follows that h = agσ for some σ ∈ Gk and a ∈ Fqk with
ϕn,k(a) = 1. We denote as N = {a ∈ Fqk : ϕn,k(a) = 1} the set of elements of
norm 1. Then we have seen that the fiber of ϕn,k(g) is a subset of {agσ : (a, σ) ∈
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N ×Gk}. On the other hand, for g ∈ I+
n/k(Fqk : Fq) the polynomials agσ, with

(a, σ) ∈ N × Gk, are pairwise distinct for the following reason. Suppose that
g = agσ. If we let g0, ..., gr ∈ Fqk be the nonzero coefficients of g, then gi = agσ

i ,
gi/g0 = (gi/g0)

σ, and gi/g0 ∈ F ⊆ Fqk for all i, where F is the fixed field of σ.
Now for any g ∈ I+

n/k(Fqk : Fq), F is not a proper subfield, so that σ = id and

a = 1. It follows that each fiber of ϕn,k has #(N × Gk) = k(qk − 1)/(q − 1)
elements. Thus

#En,k =
q − 1

k(qk − 1)
#I+

n/k(Fqk : Fq)

≤ (q − 1)(qk)bn/k(1 − (qk)−n/k−1)

k(qk − 1)

=
(q − 1)(1 − q−n−k)q3n/2+n2/2k

k(1 − q−k)
. (4.4)

If 	 = n, so that n is prime, then

I+
1 (Fqn) = I=

1 (Fqn) \ F×
qn · I=

1 (Fq),

#E=
n (Fq) = #En,n =

(q − 1)
(
q3n − qn − qn−1

q−1
(q3 − q)

)
n(qn − 1)

= (q − 1)(q2n + qn − q2 − q)/n,

#E=
n (Fq)

#B=
n (Fq)

− εn(q) = −εn(q) · q−2n+2(1 + q−1 + q−2 − q−n − q−n−1) (4.5)

> −εn(q) · 2q−2n+2,

#E=
n (Fq)

#B=
n (Fq)

< εn(q) ≤ q−n(n−1)/2/n < q−n2/4.

This proves all claims in the case 	 = n. We may now assume that n ≥ 4
and 	 < n, so that in fact 	 ≤ √

n. The quantity in (4.4) is monotonously
decreasing in k, since k is a divisor of n and

1 − q−n−k = (1 − q−k)(1 + q−k + q−2k + · · ·+ q−n).

Among the admissible values of k, its maximum is obtained at k = 	, and all
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other values are not more than that for k = 	 + 1. Thus

#En(Fq)

#Bn(Fq)
≤ 1

qbn(1 − q−n−1)

∑
1�=k|n

#En,k

≤ 1

qbn(1 − q−n−1)

∑
1�=k|n

(q − 1)(1 − q−n−k)q3n/2+n2/2k

k(1 − q−k)

= εn(q)

(
1 − q−n−� +

∑
�<k|n

	(1 − q−�)(1 − q−n−k)q−(k−�)n2/2k�

k(1 − q−k)

)

< εn(q)

(
1 − q−n−� +

∑
�<k|n

q−(k−�)n2/2k�

)
.

We let K = {k ∈ N : k|n, 	 < k}, so that #K = d(n) − 2 = no(1), where d(n)
is the number of divisors of n (Hardy & Wright (1985), Theorem 315), but
only use the coarse estimate #K ≤ n−2 ≤ 2n/6 ≤ qn/6; the middle inequality
holds for n ≥ 29, and one checks that #K ≤ 2n/6 for 4 ≤ n ≤ 28. Since n is
composite, K is nonempty, and we let k0 be its minimal element. Furthermore,
we let S =

∑
k∈K q−(k−�)n2/2k�. When n = 6, we have S = q−3 + q−30 < 2q−3 =

2q−n+�+1. For the upper bound in (i), it is now sufficient to show that for n = 6

S ≤ 2q−n+�. (4.6)

The summands of S are monotonically decreasing with k, and therefore S ≤
#K · q−(k0−�)n2/2k0�, so that it is sufficient to prove that

7n

6
≤ (k0 − 	)n2

2k0	
+ 	. (4.7)

We now distinguish three cases. The first case is where k0 = 	+1. If 	 ≥ 3, then
	 + 1 is even and 2 would also be a divisor of n, contradicting the minimality
of 	. Thus 	 = 2, k0 = 3, and (4.7) holds for all multiples n ≥ 12 of 6. The
exceptional case n = 6 has been dealt with above.

For the other cases, we may assume that k0 ≥ 	 + 2. Since the right hand side
in (4.7) is monotonically increasing with k0, we may substitute k0 = 	+2, and
(4.7) will follow from the claim

7n

6
≤ n2

	(	 + 2)
+ 	. (4.8)

The second case is when 	 ≤
√

n/3. Then n ≥ 3	2 ≥ 12, and we have

n2

	(	 + 2)
≥ n2√

n/3 · (
√

n/3 + 2)
=

n2

n/3 + 2
√

n/3
≥ 3n

2
>

7n

6
− 	.
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The remaining case is 	 >
√

n/3. If n has three or more prime factors (not

necessarily distinct), then n ≥ 	3 > 3−3/2n3/2 and thus n < 27; all such

numbers are even, and 2 = 	 >
√

n/3 leaves only n = 8, in which case (4.6)

is valid. Thus n now is either 	2 or 	k0 with 	 + 2 ≤ k0 < n and k0 prime. If
n = 	2, then K = {n} and

S = q−(n−�)n/2� ≤ q−n+�,

since n ≥ 2	 and n − 	 ≤ (n − 	)n/2	. If n = 	k0 with 	 + 2 ≤ k0 < n, then
K = {k0, n} and

S ≤ q−2n2/2n + q−(n−�)n2/2n� ≤ 2q−n < q−n+�,

since 3	 < 	k0 = n. Thus (4.6) is proved in all cases.

As a lower bound, we have for composite n

#E=
n (Fq) ≥ #En,� ≥ q − 1

	(q� − 1)

(
#I=

n/�(Fq�) − #(F×
q� · I=

n/�(Fq))
)
,

since 	 is prime and there are no proper intermediate fields between Fq and
Fq� . Corollary 2.14 implies that

#E=
n (Fq)

#B=
n (Fq)

≥
(q − 1)

(
(q�)bn/�(1 − (q� + 2)(q�)−n/�) − (q�−1)q

bn/�

q−1

)
	(q� − 1)qbn(1 − q−n−1)

= εn(q)

(
1 − (q� + 2)q−n − (q� − 1)q−(�−1)bn/�

q − 1

)
.

In order to estimate the last summand, we first note that

1 +
2	

n
≤ 1 +

2√
n
≤ 2 ≤ 	,

since 2 ≤ 	 ≤ √
n. It follows that n + 2	 ≤ n	 and

n2 + 3n	 + 2	2 = (n + 	)(n + 2	) ≤ (n + 	)n	 = n2	 + n	2,

n ≤ (	 − 1)(n2 + 3n	 + 2	2)

2	2
− 	 = (	 − 1)bn/� − 	,

(q� − 1)q−(�−1)bn/�

q − 1
< q−(�−1)bn/�+� ≤ q−n,

#E=
n (Fq)

#B=
n (Fq)

≥ εn(q)(1 − (q� + 3)q−n) ≥ εn(q)(1 − 2q−n+�).
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The estimates in (ii) follow from the fact that n, 	 ≥ 2 and

1 − q−1 ≤ (1 − q−�)(1 − q−n−1),

εn(q) ≤ q−n2(�−1)/2�/	 ≤ q−n2/4/2,

δn(q) ≤ 1. �

We denote by
A=

n (Fq) = I=
n (Fq) \ E=

n (Fq)

the set of absolutely irreducible polynomials over Fq of degree n. Then the
partition (4.3) with (4.2) leads to the exact formula

#E=
n (Fq) =

∑
1�=k|n

d|k

μ(d)(q − 1)

k(qk/d − 1)
#A=

n/k(Fqk/d),

where μ is the Möbius function. When n is prime, this is the formula in
Theorem 4.1(iii). We also obtain a lower bound on the number of absolutely
irreducible polynomials.

Corollary 4.9. For n ≥ 2, we have

#I=
n (Fq) ≥ #A=

n (Fq) > qbn(1 − (q + 2)q−n).

Proof. We abbreviate

wn = q−1 + qn−bn(#R=
n (Fq) + #E=

n (Fq)).

It is sufficient to show that

wn ≤ q + 2, (4.10)

since then

#A=
n (Fq) = #B=

n (Fq) − #R=
n (Fq) − #E=

n (Fq)

= qbn(1 − q−n−1) − qbn−n(wn − q−1)

= qbn(1 − wnq−n)

≥ qbn(1 − (q + 2)q−n).

We have from (2.12) and Theorem 4.1 (ii) that

wn ≤ q−1 + qn−bn(qbn(1 − q−n−1)(q + 1)q−n(1 + 2q−n+3) + qbn(1 − q−n−1)q−n2/4)

< q−1 + (q + 1)(1 + 2q−n+3) + qn−n2/4 ≤ q + 2

for n ≥ 7. The last inequality also holds when n ≥ 5 and q ≥ 4, but we now
have to consider the cases n ≤ 6 separately. An alternative to the following
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rather tedious calculations is to substitute upper bounds given by appropriate
leading terms in Tables 2.1 and 4.1. Throughout the computations, we use
Theorem 4.1 without explicit mention, and also qi ≤ 2−jqi+j for all i, j. For
n = 3, 5, or 6, we examine the proof of Theorem 2.1 (ii) in detail. From (2.6)
we find

w2 < q−1 + q−4(
q6(q + 1)q−2

2
+

(q − 1)q4

2
) = q−1 + q < q + 2.

#R=
3 (Fq) = # im μ3,1 ≤ 1

q − 1
(q3 − q)q6(1 − q−3) < q8(1 + q−1),

#E=
3 (Fq) <

1

3
q6(q − 1)(1 + q−3),

w3 < q−1 + q−7(q8 + q7 +
1

3
(q7 − q6 + q4 − q3))

= q +
4

3
+

2

3
q−1 +

1

3
q−3 ≤ q +

41

24
< q + 2.

For n = 4, we have from Tables 2.1 and 4.1 that

#R=
4 (Fq) ≤ q12 +

3

2
q11 − 1

2
q10 − 5

4
q9,

#E=
4 (Fq) ≤ 1

2
q11 − 1

2
q10 +

1

4
q9,

w4 ≤ q−1 + q−11(q12 + 2q11 − q10 − q9) = q + 2 − q−2 < q + 2.

For n = 5, we use

# im μ4,1 ≥ 1

q − 1
(#I=

1 (Fq) × I=
3 (Fq)) ≥ (q3 − q)q10(1 − (q + 2)q−3)

q − 1

= q12(1 + q−1)(1 − q−2 − 2q−3),

R=
5 (Fq) = μ5,1(B

=
1 (Fq) × (B=

4 (Fq) \ im μ4,1)) ∪ μ5,2(B
=
2 (Fq) × B=

3 (Fq)),

#R=
5 (Fq) ≤ 1

q − 1

(
(q3 − q) · (q15(1 − q−5) − q12(1 + q−1)(1 − q−2 − 2q−3))

+ q6(1 − q−3) · q10(1 − q−4)

)
= q17 + q16 + q15 − q13 − q12 + 2q11 + 4q10 + q9

≤ q17 + q16 + q15 − q13 +
9

8
q12,

#E=
5 (Fq) ≤ (q − 1)(q10 + q5)/5 < q11/5.

w5 ≤ q−1 + q−16(q17 + q16 + q15 − q13 +
9

8
q12 +

1

5
q11)

≤ q + 2 − 31

80
q−3 < q + 2.
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For n = 6, we use

R=
6 (Fq) = im μ6,1 ∪ μ6,2(I

=
2 (Fq) × B=

4 (Fq)) ∪ im μ6,3

and the fact that #μ−1
6,3(fg) ≥ 2(q − 1) if f, g ∈ B=

3 (Fq) are distinct. Thus

#R=
6 (Fq) ≤ 1

q − 1

(
(q3 − q) · q21(1 − q−6)

+ q6(1 − q−3)(1 − (q + 1)q−2

2
) · q15(1 − q−5)

+
1

2
q10(1 − q−4)(q10(1 − q−4) + 1)

)

≤ q23 + q22 + q20(1 − q−3)(1 +
q−1

2
) +

1

2
q19(1 + q−1 + q−2 + q−3)

= q23 + q22 + q20 + q19 +
1

2
q18 − 1

2
q17 < q23 +

45

32
q22,

#E=
6 (Fq) ≤ q28(1 − q−7) · q−9(1 − q−1) · (1 + 2q−3)

2(1 − q−2)(1 − q−7)

=
q19(1 + 2q−3)

2(1 + q−1)
≤ 1

2
q19 ≤ 1

16
q22,

w6 ≤ q−1 + q−22(q23 +
47

32
q22) ≤ q +

1

2
+

47

32
< q + 2. �

Carlitz (1936) considers the special case of irreducible bivariate polynomials
over Fq that factor into linear polynomials over some extension field of Fq. He
calls these polynomials factorable and determines their number exactly as

1

n

∑
k|n

μ(
n

k
)
q2(q2k − 1)

qk − 1
.

Simply replacing 2 by r in Carlitz’ formula yields the corresponding value for
r variables.

Fredman (1972) determines the number of absolutely irreducible bivariate
polynomials. He gives an exact formula and the fraction 1 − q−m as approxi-
mation, when m = degx f is fixed.

5 Singular polynomials

A plane algebraic curve is nonsingular (or smooth) at a point P on it if the
tangent at P is well-defined, that is, the two partial derivatives of the defining
equation do not vanish simultaneously; otherwise, it is singular at P . The
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curve is nonsingular if it is nonsingular at all points on it, and singular oth-
erwise.

Many useful properties of algebraic curves, for example the Weil bounds, take
their simplest form for nonsingular curves. Singularities also complicate the
analysis of some algorithms dealing with curves. The goal of this section is
to show quantitatively that there are few singular curves. We only deal with
affine curves.

Rather than speaking about plane curves, we consider bivariate polynomials
f ∈ F [x, y] over a field F . The (affine) curve V (f) of f is the set

V (f) = {(u, v) ∈ F 2 : f(u, v) = 0} ⊆ F 2

of zeroes of f . A point P ∈ F 2 is singular on V (f) if and only if

f(P ) =
∂f

∂x
(P ) =

∂f

∂y
(P ) = 0. (5.1)

When P = (u, v) with u, v ∈ F , then mP = (x − u, y − v) ⊆ F [x, y] is the
maximal ideal of P , and the singularity ideal

sP = m2
p = (x − u, y − v)2 ⊆ F [x, y]

contains precisely the polynomials satisfying (5.1). The quotient ring

F [x, y]/sP =F + (x − u)F + (y − v)F (5.2)

is a 3-dimensional vector space over F , and

Sn(F ) = {f ∈ Bn(F ) : f ∈ sP for some P ∈ F 2}

is the set of polynomials with a rational singularity.

This section presents the following material:

• an exact determination of #Sn(Fq) for sufficiently large degree, due to Ragot
and to Lenstra,

• an approximate count, valid also for small degree,

• bounds for absolutely but not rationally singular polynomials,

• some examples.

Ragot (1997), Proposition 5.4.6, page 105, and Ragot (1999), Propositions 4.1
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and 5.5, show that
#Sn(Fq)

#Bn(Fq)
= 1 − (1 − q−3)q2

(5.3)

for n ≥ 4q − 2. Ragot derives his results for the general multivariate case.
Hendrik Lenstra found the exact degree condition for (5.3) to hold.

Theorem 5.4. (Lenstra 2006) (5.3) holds if and only if n ≥ 3q − 2.

Proof. For two distinct points P and Q in F2
q , the maximal ideals mP and

mQ in R = Fq[x, y] are comaximal, so that mP +mQ = 1. Hence also sP = m2
P

and sQ are comaximal. The Chinese Remainder Theorem says that

R/
∏

P∈F2
q

sP
∼=

∏
P∈F2

q

R/sP .

We denote as

ϕ : R −→ ∏
P∈F2

q

R/sP

the product of the canonical ring homomorphisms, so that

f singular at P ⇐⇒ f ∈ sP ⇐⇒ (ϕ(f))P = 0,

f rationally nonsingular ⇐⇒ (ϕ(f))P = 0 for all P ∈ F2
q.

We write ϕn = ϕ � Bn(Fq) for the restriction of ϕ to Bn(Fq) ⊆ R. Then

Bn(Fq) \ Sn(Fq) = ϕ−1
n

( ∏
P∈F2

q

((R/sP ) \ {0})
)
. (5.5)

For each P ∈ F2
q, R/sP has q3 elements, and thus the product in (5.5) has

(q3 − 1)q2
elements.

Now ϕn is a linear map of vector spaces over Fq. We claim that (5.3) holds if
and only if ϕn is surjective. If it is, then each fiber of ϕn has qbn−3q2

elements,
and

#Sn(Fq)

#Bn(Fq)
= q−bn · (qbn − qbn−3q2 · (q3 − 1)q2

)

= 1 − (1 − q−3)q2

,

so that (5.3) holds. On the other hand, ϕ−1
n (ϕn(f)) ⊆ Sn(Fq) for all f ∈ Sn(Fq).

Thus if we write

#Sn(Fq)

#Bn(Fq)
=

#ϕn(Sn(Fq))

#ϕn(Bn(Fq))
=

a

b
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with a, b ∈ N coprime, then b divides #ϕn(Bn(Fq)). If (5.3) holds, then b =
q3q2

= #
∏

P∈F2
q
R/sP , so that ϕn is surjective.

We have ∏
P∈F2

q

mP = (xq − x, yq − y),

since the right hand ideal is included in the left hand one, and both have
codimension q2. It follows that∏

P∈F2
q

sP =
∏

P∈F2
q

m2
P = (

∏
P∈F2

q

mP )2 = (xq − x, yq − y)2

=

(
(xq − x)2, (xq − x)(yq − y), (yq − y)2

)
.

We denote this ideal as I and have the following system UI of 3q2 representa-
tives for R/I as a vector space over Fq:

UI = {xiyj : (0 ≤ i < 2q and 0 ≤ j < q) or

(0 ≤ i < q and q ≤ j < 2q)}.

Bn(Fq) has an Fq-basis

Tn = {xiyj : i + j ≤ n}

of size (n + 1)(n + 2)/2. Figure 5.1 gives a graphical representation of the two
sets of exponents, in a case where n ≥ 3q − 2.

We claim that im ϕn is the vector space spanned by UI ∩ Tn. For any xiyj ∈
UI ∩ Tn, we have xiyj = ϕn(xiyj) ∈ im ϕn. On the other hand, for any
xiyj ∈ Tn with i ≥ 2q, the left hand side in

xiyj − xi−2q(xq − x)2yj ≡ xiyj mod I

is a linear combination of monomials in Tn with degree in x at most i−q+1 < i.
Continuing by induction on the degree, one finds that each element of Tn is
congruent modulo I to a linear combination of monomials with degree in x
less than 2q. The corresponding reduction by (yq − y)2 makes the degree in y
less than 2q, and finally reduction by (xq − x)(yq − y), if necessary, leads to
monomials in UI ∩ Tn. Thus dim im ϕn = #(UI ∩ Tn), and we have

ϕn surjective ⇐⇒ #(UI ∩ Tn) = 3q2 = #UI

⇐⇒ UI ⊆ Tn ⇐⇒ n ≥ 3q − 2. �

What can we say about #Sn(Fq) when n < 3q − 2? The binomial expansion
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Figure 5.1. The exponents making up UI and Tn.

of (5.3) yields

q2 · q−3 −
(
q2

2

)
q−6 + − · · · = q−1 − q2/2 + − · · · .

We now prove an estimate that is valid also for small n and consistent with
the first two terms of this expansion.

Theorem 5.6. Let n ≥ 2.

(i) Let F be algebraically closed. Then Sn(F ) is an irreducible subvariety of
Bn(F ) with codimension 1 and degree at most (n + 1)n2.

(ii) For n ≥ 3, we have

1

q
− 1

2q2
≤ #Sn(Fq)

#Bn(Fq)
≤ 1

q
.
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Proof. (i) We consider the singularity correspondence

C = {(f, P ) ∈ Bn(F ) × F 2 : f singular at P ∈ V (f)}

Bn(F ) F 2

π1 π2
(5.7)

with its two projections π1 and π2. For any P ∈ F 2, the fiber π−1
2 (P ) ∼= sP ⊆

Bn(F ) is a linear subspace of codimension 3.

We want to use the theorem on the fiber dimension to show that C is irre-
ducible of codimension 3. In order to apply this theorem, we have to consider
the projective version of our situation. So we take P2 ⊃ F 2 with projective
coordinates x, y, z. The projective version of some

f =
∑

i+j≤n

fijx
iyj ∈ Bn(F )

is the ternary form

f̃ =
∑

i+j≤n

fijx
iyjzn−i−j ∈ F [x, y, z]n

of degree n, and any form g ∈ F [x, y, z]n can be written in this way: g =
˜g(x, y, 1). (Note that ˜ depends on n, not on the degree of f if that is less

than n.)

F [x, y, z]n is a vector space of dimension bn, and its projectivization T− that
is, the nonzero forms modulo multiplication by F×− is a projective space of
dimension bn − 1 with coordinate functions fij for i + j ≤ n. Our notation

will not distinguish between a form f̃ and its class in T . We thus have a map˜: Bn(F )\{0} → T and C̃ ⊆ B̃n(F )×F 2 = T ×F 2 ⊆ T ×P2. Denoting partial
derivatives by subscripts, we have

(f̃)x = f̃x =
∑

i+j≤n

ifijx
i−1yjzn−i−j ,

and similarly for (f̃)y = f̃y and (f̃)z = f̃z. For any h ∈ T , we have

nh = xhx + yhy + zhz. (5.8)

We define the subvariety

X = {(h, P ) ∈ T × P2 : h(P ) = hx(P ) = hy(P ) = hz(P ) = 0}.
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Then (5.8) shows that

C̃ = X ∩ {z = 0}.

It was noted above that for P ∈ F 2 = {z = 0} ⊆ P2, the fiber π−1
2 (P ) is a

linear subspace of Bn(F ) with codimension 3. If we denote as

π̃2 : X → P2

the second projection, then for such P we have π̃−1
2 (P ) = ˜π−1

2 (P )\{0}. Since
both ambient space and fiber lose one dimension under projectivization, this
is a projective linear subspace of T with codimension 3. Furthermore, the
definition of X is symmetric in x, y, z, so that the latter statement is also true
over the other two standard open sets {y = 0} and {z = 0}, and each fiber of
π̃2 is a Pbn−4. By the theorem on the fiber dimension (see Shafarevich (1974),
Theorem I.6.8; Harris (1992), Theorem 11.14), X is an irreducible variety of
dimension 2 + bn − 4 = bn − 2, and so is its dense open subset C̃. It follows
that C is an irreducible affine variety of dimension bn − 1 and codimension 3.
Furthermore, the set

Sn(F ) = im π1 ⊆ Bn(F )

of singular polynomials is an irreducible affine subvariety of codimension c
with 1 ≤ c ≤ 3, since its projectivization is the closed set im π̃1 ⊆ T . Any
squarefree f ∈ Sn(F ) has only a finite number of singularities, and these form
an open subset of Sn(F ) by Theorem 3.9 (i). This subset contains for example
xn + y, hence is dense, the generic fiber of π1 is zero-dimensional, and thus
c = 1.

C is described by the three equations (5.1) in the coefficients of f and the
coordinates of P . These equations have degrees n + 1, n, n, respectively, and
thus deg C ≤ (n+1)n2, where deg is the usual degree of an affine variety. Since
the degree does not increase under a projection, it follows that Sn(F ) ⊆ Bn(F )
is an irreducible hypersurface of degree at most (n + 1)n2.

(ii) For P ∈ F2
q, we have

#(Bn(Fq) ∩ sP ) = qbn−3,

and thus
#Sn(Fq) ≤ q2 · qbn−3 = q−1 · #Bn(Fq),

since Sn(Fq) =
⋃

P∈F2
q

(Bn(Fq) ∩ sP ). Furthermore

#Sn(Fq) ≥ #{f ∈ Bn(Fq) : f has exactly one singularity in F2
q}

≥ ∑
P∈F

2
q

#(Bn(Fq) ∩ sP ) − ∑
P,P ′∈F

2

P �=P ′

#(Bn(Fq) ∩ sP ∩ sP ′).
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So let P = (u, v), P ′ = (u′, v′) ∈ F2
q, P = P ′, n ≥ 3, and

f =
∑

2≤i+j≤n

fij(x − u)i(y − v)j ∈ Bn(Fq) ∩ sP .

The condition that f ∈ sP ′ corresponds to three linear equations in the fij .
When we just look at the coefficients of f20, f11, and f30, we have the following
3 × 3 matrix of coefficients in the linear equations:⎛⎜⎜⎜⎜⎜⎝

(u′ − u)2 (u′ − u)(v′ − v) (u′ − u)3

2(u′ − u) v′ − v 3(u′ − u)2

0 u′ − u 0

⎞⎟⎟⎟⎟⎟⎠ . (5.9)

The second row, e.g., comes from

0 =
∂f

∂x
(u′, v′) =

∑
ifij(u

′ − u)i−1(v′ − v)j

= 2(u′ − u) · f20 + (v′ − v) · f11 + 3(u′ − u)2 · f30 + · · · .

The determinant of this matrix is −(u′ − u)5. If u′ = u, then

codimBn(Fq)∩sP
(Bn(Fq) ∩ sP ∩ sP ′) = 3,

and hence codimBn(Fq)(Bn(Fq) ∩ sP ∩ sP ′) = 6. If u′ = u, then v′ = v and the
codimension is again 6, by symmetry. Thus

#Sn(Fq) ≥ q2 · qbn−3 − q2(q2 − 1)/2 · qbn−6

≥ q−1#Bn(Fq) · (1 − 1

2q
). �

In the case n = 2, we have dim B2(Fq) = 6 and f = ((v − v′)(x − u) − (u −
u′)(y − v))2 ∈ B2(Fq) ∩ sP ∩ sP ′ is nonzero, and hence the codimension of
sP ∩ sP ′ in B2(Fq) is at most 5. The inequalities used above would only yield
a lower bound of #Bn(Fq)/2q. (In fact, the codimension equals 5, since the
2× 2 matrix corresponding to f20 and f11 has determinant −(u′ − u)2(v′ − v),
which implies this claim if u = u′ and v = v′, and one also verifies it if, say,
u = u′.)

In fact, we can determine the number of singular quadratic polynomials f ,
that is, of those that are the product of two linear factors (over the field or a
quadratic extension), as follows. Each of them is obtained by a linear shift of

30



condition f (u, v) #(u, v) #(a, b, c) #shifts

b2 = 4ac f (0, 0) 1 q3 − q2 q2 · (q3 − q2)

b2 = 4ac, a = 0 1
4a(2ax + by)2 (−bv, 2av) q q(q − 1) q · q(q − 1)

a = b = 0, c = 0 cy2 (u, 0) q q − 1 q · (q − 1)

a = b = c = 0 0 (u, v) q2 1 1

Table 5.1
The singular quadratics for odd q.

variables from a quadratic

f = ax2 + bxy + cy2

with a singularity at (0, 0). Two shifts of distinct such f are distinct, and for
most f , two distinct shifts of f are distinct. The squareful f form an exception,
where the q2 shifts only generate q pairwise distinct polynomials. The total

#S2(Fq) = q5 − q4 + q3 − q + 1

is the sum of the last column in Table 5.1, for odd q. Thus

#S2(Fq)

#B2(Fq)
= q−1 − q−2 + q−3 − q−5 + q−6.

In this table, the column “(u, v)” is the set of singularities of f , where u and v
denote arbitrary elements of Fq, and “#(u, v)” is their number. “#(a, b, c)” is
the number of choices for (a, b, c), and “#shifts” is the number (q2/#(u, v)) ·
#(a, b, c) of polynomials that are linear shifts of the f satisfying the “condi-
tion”. For even q, in the second line we have b = 0, a = 0, f = (aq/2x+ cq/2y)2,
and (u, v) = (cq/2v, aq/2v). The other entries and the final count do not change.

Next we study the question of absolute singularity, that is, of polynomials
without rational singularity but with one in an algebraic closure. For a finite
algebraic field extension F ⊆ E of degree k = [E : F ] and P ∈ E2, we let

deg P = min{[D : F ] : D a field with F ⊆ D ⊆ E and P ∈ D2},
A = {P ∈ E2 : deg P = k}. (5.10)

If E is Galois over F , then A is the set of P = (u, v) that are not fixed under
any automorphism σ = id of E over F : (u, v) = (σu, σv). If F = Fq, then

q2k =
∑
d|k

#{P ∈ E2 : deg P = d},
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and by Möbius inversion

#A =
∑
d|k

μ(k/d)q2d = q2k(1 − ε) < q2k,

with
ε = − ∑

d|k,d�=k

μ(k/d)q2d−2k ≤ ∑
�|k,� prime

q−2k(�−1)/�.

Furthermore, for any subset C ⊆ E2 we set

Sn(C : F ) = {f ∈ Bn(F ) : f is singular at some P ∈ C}.

We take some P = (u, v) ∈ E2, the natural embedding ϕ : F [x, y] −→ E[x, y],
the singularity ideal sP ⊆ E[x, y], and

sP,F = ϕ−1(sP ). (5.11)

We have a commutative diagram of F -linear maps:

0 −→ sP,F −→ F [x, y] −→ F [x, y]/sP,F −→ 0

↓ ϕ ↓ ϕ ↓
0 −→ sP −→ E[x, y] −→ E[x, y]/sP −→ 0

Its rows are exact, the bottom row is E-linear, ϕ is injective and hence also the
right hand downward arrow, and dimE E[x, y]/sP = 3, so that dimF E[x, y]/sP =
3k. It follows that dimF F [x, y]/sP,F ≤ 3k, and we only need to find a lower
bound on this dimension.

Lemma 5.12. Let E be separable over F , #F ≥ 1+ log2 k, and P ∈ A. Then

(i) codimF [x,y]sP,F = 3k,

(ii) codimBn(F )(sP,F ∩ Bn(F ))

⎧⎪⎪⎨⎪⎪⎩
= 3k if 2k − 1 ≤ n,

≥ 2n − k + 2 if k ≤ n < 2k − 1,

≥ n + 1 if n < k.

Proof. (i) Let P = (u, v). We first assume that both u and v have degree k
over F , and let hu, hv ∈ F [t] be the minimal polynomials of u, v, respectively.
Both have degree k. It is sufficient to prove that the following 3k polynomials
in F [x, y] are linearly independent modulo sP,F over F , since the lower bound
3k on the codimension follows:

xi, hu(x)xi, hv(y)yi for 0 ≤ i < k. (5.13)
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So suppose that

f =
∑

0≤i<k

λix
i + hu(x)

∑
0≤i<k

μix
i + hv(y)

∑
0≤i<k

νiy
i ∈ sP,F ,

with all λi, μi, νi ∈ F . Now hu(u) = hv(v) = 0, and 0 = f(P ) =
∑

0≤i<k λiu
i

implies that all λi are zero, since u has degree k. Furthermore,

0 =
∂f

∂x
(P ) = (hu(x)

∑
i<k

iμix
i−1 +

∂hu

∂t
(x)

∑
i<k

μix
i)(P )

=
∂hu

∂t
(u) ·∑

i<k

μiu
i.

Since E is separable and hence the derivative of hu does not vanish at u, the
left hand factor is nonzero, and thus the right hand factor vanishes. Again
from the degree of u we conclude that all μi are zero. Finally, the vanishing
of ∂f/∂y at P implies in the same way that all νi are zero.

Now we come to the general case, where u and v together generate E, but
not each of them individually. By the Theorem of the Primitive Element in
Mihăilescu (2006), u + tv generates E for nonzero t ∈ F with at most ω(k)
exceptions, at most ω(k′) exceptions, where k′ = gcd([F (u) : F ], [F (v) : F ])
is a proper divisor of k, and ω(m) is the number of distinct prime divisors
of an integer m. Thus ω(k′) < ω(k) < log2 k and hence #F ≥ 3 + ω(k′).
Therefore we can take two distinct values t0 and t1 in F× with the above
property. Now each coordinate of P ′ = (u + t0v, u + t1v) generates E, and
by the argument above we have codimF [x,y]sP ′ ,F = 3k. Furthermore the linear
transformation of variables in E[x, y] mapping (x, y) to (x+ t0y, x+ t1y), with
inverse (x, y) 
→ ( t1x−t0y

t1−t0
, x−y

t0−t1
), maps sP to sP ′ and leaves F [x, y] invariant.

Thus also sP,F has codimension 3k.

For (ii), we note that the number of polynomials in (5.13) that lie in Bn(F )
equals 3k, 2n − k + 2, and n + 1, respectively, in the three cases, as stated. �

Theorem 5.14. Let k ≥ 2, q ≥ 1+ log2 k be a prime power, n ≥ 2k− 1, and
A as in (5.10). Then

#Sn(A : Fq)

#Bn(Fq)
< q−k.

Proof. We have

#Sn(A : Fq) ≤
∑
P∈A

#(sP,Fq ∩ Bn(Fq))

≤ #A · q−3k#Bn(Fq) < q−k#Bn(Fq). �
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For a lower bound on #Sn(A : Fq), it would be sufficient to bound appropri-
ately the codimension of sP,Fq ∩sQ,Fq in Bn(Fq) for “most” P, Q ∈ A. For large
k, the previous results do not yield good bounds. However, Weil’s Theorem
gives an estimate for polynomials with singularities in any extension.

Theorem 5.15. For n ≥ 3, the number τn(q) of absolutely singular and
rationally nonsingular polynomials in Bn(Fq) satisfies

τn(q) < #Bn(Fq) · 13n13q−3/2.

Proof. We consider an algebraic closure F of Fq and the rational points
over Fq on Sn(F ), that is

T = Sn(F : Fq) = Sn(F ) ∩ Bn(Fq).

We recall that bn = dim Bn(F ) = (n+1)(n+2)/2 and that the Zariski closure
of Sn(F ) is an absolutely irreducible hypersurface in Bn(F ) of degree at most
d = (n + 1)n2, by Theorem 5.6 (i). The explicit form of Weil’s Theorem in
Cafure & Matera (2006), Theorem 5.2, implies that∣∣∣#T − qbn−1

∣∣∣ ≤ (d − 1)(d − 2)qbn−3/2 + 5d13/3qbn−2 < 13n13qbn−3/2 − qbn−2/2.

The last inequality holds for q = 2 and n = 3, and follows in general by
monotonicity. Any polynomial with a rational singularity is in T , so that

Sn(Fq) ⊆ T.

Its complement consists precisely of those absolutely singular f ∈ Bn(Fq) that
are rationally nonsingular. We have by Theorem 5.6 (ii)

τn(q) = #(T \ Sn(Fq))

≤ qbn−1 + 13n13qbn−3/2 − qbn−2/2 − (q−1 − q−2/2)qbn

= 13n13qbn−3/2. �

Thus τn(q) < q−1#Bn(Fq) when q > 132n26.

Unlike our previous estimates, this upper bound is unlikely to be sharp, and
a more precise estimate remains an open question.

Conjecture 5.16. For n ≥ 3, we have∣∣∣∣∣ τn(q)

#Bn(Fq)
− q−2

∣∣∣∣∣ = O(q−3).

We now make some remarks about the singular points on squareful and rela-
tively irreducible polynomials.
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Remark 5.17. When f ∈ F [x, y] is squareful, so that the square of some
nonconstant g ∈ F [x, y] divides f , then each point on {g = 0} is singular for
f , and f is singular unless {g = 0} = ∅. On the other hand, suppose that f is
squarefree and g ∈ E[x, y] is an irreducible common factor of f = gh, fx, and
fy, where F ⊆ E are perfect fields and fx and fy are the two partial derivatives
of f . Then g divides gxh = fx − ghx, hence it divides gx and thus gx = 0.
Similarly, gy = 0. It follows that p = char F > 0, and if E contains a pth root of
any of its elements, then g is the pth power of some polynomial, contradicting
its irreducibility. Thus over a finite field, a polynomial is squareful if and only
if its singular locus contains a curve given by a nonconstant polynomial or
each of its multiple factors defines the empty set over Fq. (Such factors will
define many points over sufficiently large extension fields.)

Remark 5.18. Does every relatively irreducible polynomial, as considered
in Section 4, have a rational singular point? In the smallest case, where g ∈
Fq2 [x, y]�Fq[x, y] is linear, σ generates Gal(Fq2 : Fq), and f = g ·gσ ∈ Fq[x, y],
this is indeed true unless the coefficient of x or that of y in g vanishes.

To see this, we write g = ax+ by + c, with a, b, c ∈ Fq2 , and Fq2 = Fq[β], where
β is the square root of a nonsquare in Fq. Then βσ = −β. We may assume
a = 0, divide g by a and thus assume a = 1. The only solution (u, v) ∈ F2

q

of g(u, v) = gσ(u, v) = 0 is given by v = (c − cσ)/(bσ − b)∈ Fq, provided that
bσ = b, and u = −bv − c. One checks that (cσ − c)/(bσ − b), v, and u are in
Fq. If bσ − b = 0, so that b ∈ Fq, then c ∈ Fq, the two lines given by g and gσ

are parallel with rational slope, and their common point is at infinity, that is,
in P2(Fq) � F2

q. It is a rational singularity for f .

However, already for a quadratic polynomial like g = x2 + βy2 − aβ ∈
Fq2 [x, y], where a ∈ Fq is a nonsquare, f = g · gσ has no rational point in
P2(Fq), and in particular no singular one. If we take Fq3 = Fq(β), σ generating

Gal(Fq(β) : Fq), g = x + βy + β2 ∈ Fq3[x, y], then f = g · gσ · gσ2
also does not

have any rational points in P2(Fq).

Remark 5.19. How many singularities can a curve have? An irreducible
smooth (planar) curve of degree n has genus (n−1)(n−2)/2, and if there are
	 singularities, the genus is at most (n − 1)(n − 2)/2 − 	. Since the genus is
nonnegative, the curve has at most (n − 1)(n − 2)/2 singularities. If a curve
of degree n has r distinct irreducible components of degrees n1, . . . , nr, with∑

1≤i≤r ni = n, then there are at most

M(n1, . . . , nr) =
∑

1≤i≤r

(ni − 1)(ni − 2)

2
+

∑
1≤i≤j≤r

ninj

many singular points. The second sum corresponds to the intersections of
different components. Now M takes its maximum value n(n−1)/2 at (1, . . . , 1),
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since M is symmetric and M(n1, . . . , nr) < M(n1, . . . , nr − 1, 1) if nr ≥ 2. In
other words, a union of n distinct lines has the maximal number of singularities
among the squarefree polynomials of degree n.

Remark 5.20. What is the largest k for which a polynomial of degree n has
a singularity in F2

qk? Suppose that P ∈ F2
qk is a singular point for f , and its

coordinates do not lie in a proper subfield of Fqk . Then the k conjugates under
Gal(Fqk : Fq) of P are pairwise distinct and also singular for f . It follows that
k ≤ n(n−1)/2. Based on a suggestion by Cathy O’Neil, the following example
gives an extension of degree n and the maximal number of singularities, for
large enough q. We have some integer n ≥ 1 and elements a, b ∈ Fqn which
together generate Fqn as a field over Fq, let G = Gal(Fqn : Fq), and take the
relatively irreducible polynomial

f =
∏
σ∈G

(x + σ(a)y + σ(b)) ∈ Fq[x, y]. (5.21)

Thus V (f) consists of n lines, and each intersection point of two of them is
singular for f . There are exactly n(n−1)/2 such points if and only if no three
lines share a common point. We now translate this into a condition on a and
b. Namely, suppose that the point (u, v) lies on three distinct lines belonging
to ρ, σ, τ ∈ G, so that

u + ρ(a)v + ρ(b) = u + σ(a)v + σ(b) = u + τ(a)v + τ(b) = 0.

Elimination of n and v leads to the condition R(a, b) = 0, where

R(a, b) = (ρ(a) − τ(a))(ρ(b) − σ(b)) − (ρ(a) − σ(a))(ρ(b) − τ(b)).

Any σ ∈ G can be represented by a polynomial, namely σ(x) = xqi
for some i

with 0 ≤ i < n. Thus also R can be represented by a polynomial r ∈ Fq[x, y].
Its degree is at most qn−1 + qn−2 < 2qn−1, since ρ, σ, τ are pairwise different
and the two terms ±ρ(a)ρ(b) cancel. On the other hand, the term −ρ(a)σ(b) =
−xqi

yqj
for some i, j < n does not cancel with any other summand, so that

r = 0.

Now we let s be the product of these r ∈ Fq[x, y] for all ρ, σ, τ ∈ G. Then
s = 0 and deg s < 2n3qn−1. Any (a, b) ∈ F2

qn with s(a, b) = 0 will provide the
maximal number of singular points for f , and such a, b exist as soon as qn ≥
2n3qn−1 by the nonzero preservation lemma (sometimes called the Schwartz-
Zippel Lemma; see Lemma 6.44 in von zur Gathen & Gerhard (2003)).

A related question is: what is the maximal degree of the field extension gen-
erated by the coordinates of all singularities?
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6 Conclusion

We have presented several estimates for special types of multivariate polyno-
mials, with exponentially decreasing relative error bounds. An open question
is the exact determination for polynomials with nonrational singularities, for
which Theorem 5.15 contains only a rough upper bound.

Most polynomials in Fq[x, y] are absolutely irreducible. One may wonder if
interesting subclasses of these can be counted, for example those with a given
Galois (over Fq(x)) or monodromy group, or sparse polynomials, in particular
separated polynomials of the form f(x)− g(y), or even (f(x)− f(y))/(x− y).
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CORRECTION TO

“COUNTING REDUCIBLE AND

SINGULAR BIVARIATE POLYNOMIALS”

Joachim von zur Gathen

1. Correction

The penultimate paragraph on page 951 of von zur Gathen (2008) should be
corrected to:

“For n = 3, the bound in (ii) needs to be strengthened, and in fact we have

#R=
3 (Fq)

#B=
3 (Fq)

− ρ3(q) = ρ3(q) ·
−(q4 + 2q3 + 4q2

− 1)

3q2(q + 1)(q2 + 1)
;

the last factor is absolutely not more than (3q)−1(1 + q−1 + 2q−2).”
Thanks go to Konstantin Ziegler for noting the discrepancy between the

erroneous statement on page 951 and the correct result in Table 2.1 on page
948.
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