
Shift-invariant polynomials

and Ritt’s Second Theorem

Joachim von zur Gathen

Abstract. Ritt’s Second Theorem deals with compositions g ◦ h = g∗ ◦ h∗

of univariate polynomials over a field, where deg g = deg h∗. Joseph Fels Ritt
(1922) presented two types of such decompositions. His main result here is
that these comprise all possibilities, up to some linear transformations. A
recently established normal form describes Ritt’s compositions concisely. This
form is unique unless the characteristic divides the larger of the two component

degrees. The present paper studies this case, which is best understood with
methods from invariant theory. Examples of nonuniqueness are presented, as
well as a method for determining all of them and estimating their number.
Some of the results are conjectural.

Section 1. Introduction

For several problems concerning the composition of polynomials (univariate
over a field), one has to understand the “collisions” g ◦ h = g∗ ◦ h∗. There are
two obvious types of such collisions, called exponential and trigonometric; details
are given below. Ritt’s Second Theorem, from Ritt (1922), is a celebrated result
in this area. It says that, under certain mild conditions, the above two types are
essentially the only possibilities. The history and the sharpest previous versions of
this result are given in Zannier (1993) and Schinzel (2000).

In the usual versions of Ritt’s Second Theorem, a total of four unspecified
linear functions appear. This makes the Theorem somewhat difficult to use, since a
uniqueness property in Ritt’s Second Theorem is not obvious. Indeed, Beardon &
Ng (2000) are puzzled by its absence. On their page 128, they write, translated to
the notation used below, “Now these rules are a little less transparent, and a little
less independent, than may appear at first sight. First, we note that [the First
Case], which is stated in its conventional form, is rather loosely defined, for the k
and w are not uniquely determined by the form xkw(x`); for instance, if w(0) = 0,
we can equally well write this expression in the form xk+`w̃(x`), where w̃ = w/x.
Next, T2(x, 1) = x2 − 2 differs by a linear component from x2, so that in some
circumstances it is possible to apply [the Second Case] to T2(x, 1), then [a linear
composition], and then (on what is essentially the same factor) [the Second Case].
These observations perhaps show why it is difficult to use Ritt’s result.”
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These well-motivated concerns are essentially settled in von zur Gathen (2008b),
where a normal form for such collisions is provided. The exponential collisions
(“First Case”) are parametrized by a polynomial w and a field element a; see Fact 2.1
below. This normal form is uniquely determined by the composition and the larger
value m of the two component degrees involved, provided that the characteristic p
does not divide m. The present paper studies the ambiguities in this parametriza-
tion when p does divide m.

For perspective, we note that the tame case, where p does not divide the degree
of the composition, is now reasonably well understood. The present contribution
deals with the more difficult wild case, with divisibility by p.

There is a sequence of papers whose overall goal it is to approximate, with small
relative error, the number of decomposable polynomials of degree n over Fq. One
readily finds that the major contribution to this number comes from components
of degrees ` and n/`, where ` is the smallest prime factor of the composite integer
n. An essential step is to estimate the number of collisions with these degrees. The
present paper throws more light on these collisions, in a special case. See von zur
Gathen (2008a) for the counting result, and also von zur Gathen (2008b) for the
multivariate case. Bodin et al. (2009) state estimates for these problems.

Section 2. Distinct-degree collisions of decompositions

A nonzero polynomial f ∈ F [x] over a field F is monic if its leading coefficient
equals 1. We call f original if its graph contains the origin, that is, f(0) = 0. For
g, h ∈ F [x],

f = g ◦ h = g(h) ∈ F [x]

is their composition. If deg g, deg h ≥ 2, then (g, h) is a decomposition of f . One
can normalize any decomposition so that h is monic and original. By a harmless
(and unique) linear transformation, one may also assume f and g to be monic and
original. See von zur Gathen (2008a) for more details.

The following is an example of a collision, called exponential :

xkw` ◦ x` = xk`w`(x`) = x` ◦ xkw(x`),

for any polynomial w ∈ F [x, y], where F is a field (or even a ring). We define the
(bivariate) Dickson polynomials of the first kind Tm ∈ F [x, y] by T0 = 2, T1 = x,
and

Tm = xTm−1 − yTm−2 for m ≥ 2.

The monograph of Lidl, Mullen & Turnwald (1993) provides extensive information
about these polynomials. We have Tm(x, 0) = xm, and Tm(x, 1) is closely related
to the Chebyshev polynomial Cn = cos(n arccosx), as Tn(2x, 1) = 2Cn(x). Tm is
monic (for m ≥ 1) of degree m, and

Tm =
∑

0≤i≤m/2

m

m− i

(

m− i

i

)

(−y)ixm−2i ∈ F [x, y].

Furthermore,

Tm(x, y`) ◦ T`(x, y) = T`m(x, y) = T`(x, y
m) ◦ Tm(x, y),

and if ` 6= m, then substituting any z ∈ F for y yields a collision, called trigono-
metric.
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Ritt’s Second Theorem is the central tool for understanding distinct-degree
collisions. It says that, under certain conditions, the examples above are essentially
the only distinct-degree collisions. It was first proved by Ritt (1922). He worked
with F = C and used analytic methods. Subsequently, his approach was replaced by
algebraic methods, in the work of Levi (1942) and Dorey & Whaples (1974), and
Schinzel (1982) presented an elementary but long and involved argument. Thus
Ritt’s Second Theorem was also shown to hold in positive characteristic p. The
original versions of this required p > deg(g ◦ h). Zannier (1993) reduced this to
the milder and more natural requirement g′(g∗)′ 6= 0. His proof works over an
algebraically closed field, and Schinzel’s 2000 monograph adapts it to finite fields.
The following normal form is proved in von zur Gathen (2008b).

Fact 2.1. Let F be a field of characteristic p, let m > ` ≥ 2 be integers, and
n = `m. Furthermore, we have monic original f, g, h, g∗, h∗ ∈ F [x] satisfying

gcd(`,m) = 1, deg g = deg h∗ = m, deg h = deg g∗ = `,(2.2)

f = g ◦ h = g∗ ◦ h∗,(2.3)

g′(g∗)′ 6= 0,(2.4)

where g′ = ∂g/∂x is the derivative of g. Then either (i) or (ii) hold, and (iii) is also
valid.

(i) (First Case) There exist a monic polynomial w ∈ F [x] of degree s and
a ∈ F so that

(2.5) f = (x− ak`w`(a`)) ◦ xk`w`(x`) ◦ (x+ a),

where m = s`+k is the division with remainder of m by `, with 1 ≤ k < `.
Furthermore

kw + `xw′ 6= 0 and p - `.(2.6)

Conversely, any (w, a) for which (2.6) holds yields a collision satisfying
(2.2) through (2.4) via the above formulas. If p - m, then (w, a) is uniquely
determined by f and `.

(ii) (Second Case) There exist z, a ∈ F with z 6= 0 so that

f = (x− Tn(a, z)) ◦ Tn(x, z) ◦ (x+ a).

Now (z, a) is uniquely determined by f . Furthermore we have p - n.
Conversely, if p - n, then any (z, a) as above yields a collision satisfying
(2.2) through (2.4) via the above formulas.

(iii) When ` ≥ 3, the First and Second Cases are mutually exclusive. For
` = 2, the Second Case is included in the First Case.

In each case, there are also explicit formulas for the four components, which we
omit. Based on this normal form, one can determine the number of distinct-degree
collisions exactly in the tame case. One generalization covers the case where g′(g∗)′

is allowed to vanish. A second generalization allows ` and m to have a nontrivial
gcd, but assumes that p - `m; this is based on a result by Tortrat (1988).

The goal in the present paper is to investigate the (lack of) uniqueness in
(2.5). As a simplification, we leave out the left hand linear component. (5.2) and
Conjecture 8.3 justify this. Furthermore, xk`w`(x`)◦(x+a) = x`◦xkw(x`)◦(x+a),
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and if two such expressions are equal, then so are their `th roots, since w is monic.
Thus we set for monic w ∈ F [x] and a ∈ F

(2.7) ρw,a = xkw(x`) ◦ (x+ a)

and ask:

when is ρw,a = ρw̃,ã for monic w, w̃ ∈ F [x] and a, ã ∈ F?(2.8)

Section 3. The ring of invariants under additive shifts

We embed the additive group of a field F of positive characteristic p into
GL(2, F ) by mapping a ∈ F to

(

1 −a
0 1

)

∈ GL(2, F ).

The minus sign makes the notation compatible with the nomenclature in the
motivating example (2.7), since the resulting action τ on F [x, y] is given by

τa(x) = x+ ay, τa(y) = y.

This is the 2-dimensional special case of transvections; see e.g., Neusel & Smith
(2002), Section 6.2. For an additive subgroup G ⊆ F , this induces an action of G
on F [x, y]. A standard task of invariant theory is, in this special case, to determine
the ring of invariants

F [x, y]G = {f ∈ F [x, y] : ∀a ∈ G τa(f) = f}.

Our application is somewhat nonstandard, in that we start, a priori, with arbi-
trary subsets G ⊆ F and P ⊆ F [x, y]. We first note that F [x, y]G and the stabilizer
(or isotropy group)

stabP = {a ∈ F : ∀f ∈ P τa(f) = f} ⊆ F

are subrings and subgroups, respectively.

Lemma 3.1. Let P ⊆ F [x, y] and G ⊆ F be nonempty.

(i) stabP ⊆ F is an additive subgroup.
(ii) F [x, y]G ⊆ F [x, y] is a subring containing F .
(iii) If G = {0}, then F [x, y]G = F [x, y].

Proof. (i) For a, b ∈ stabP , we have for all f ∈ P

f(x+ (a− b)y) = f((x− by) + ay) = f(x− by) = f((x− by) + by) = f(x).

(ii) and (iii) are clear. �

This action provides an (antitone) Galois correspondence between the sub-
groups of F and the subrings of F [x, y].

For an integer r, we denote as rN≥1 = {ri : i ≥ 1} the set of powers of r. When
r ∈ pN≥1 and Fr ⊆ F , a polynomial λ ∈ F [x] is an r-polynomial (or linearized) if
and only if λ(a + b) = λ(a) + λ(b) and λ(ua) = uλ(a) for all a, b ∈ F and u ∈ Fr.
Equivalently, xi has a nonzero coefficient in λ only if i ∈ rN≥1 . For a finite additive
subgroup G ⊆ F , we let

λG =
∏

a∈G

(x− a) =
∏

a∈G

(x+ a).
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Then λG is a p-polynomial of degree #G. Since 0 ∈ G, the coefficient λG0 of x in
λG =

∏

a∈G(x− a) equals

(3.2) λG0 =
∏

a∈G
a 6=0

a 6= 0.

(3.2) implies that (x−1λG)(0) 6= 0. We let λ̃G = y#G · λG(x/y) =
∏

a∈G(x− ay) ∈

F [x, y] be the homogenization of λG.
A result of Kemper (1996) determines F [x, y]G as follows. This is also shown

in Smith (1995), Theorem 8.2.13.

Theorem 3.3. Let G ⊆ F be a finite subgroup. Then

F [x, y]G = F [λ̃G, y].

Proof. For any b ∈ G, we have

τb(λ̃
G) =

∏

a∈G

(

(x− by)− ay
)

= λ̃G,

so that λ̃G is invariant. So is y, and the two are algebraically independent. We
have deg λG ·deg y = #G, and Kemper (1996), Proposition 16, implies the claim.�

Theorem 3.3 generalizes a result of Landweber & Stong (1987), who show that
for G = F = Fq, we have

Fq[x, y]
G = Fq[x

q − xyq−1, y];

see also Smith (1995), Proposition 8.2.5. Here, xq − xyq−1 = λ̃G. Almkvist (1983)
considers the situation G = Fp ⊆ F = Fq.

Invariant theory usually works with homogeneous polynomials. But our moti-
vating question is inhomogeneous, and for just two variables, the inhomogeneous
version becomes typographically somewhat simpler. In content, the two versions
are equivalent, and the transitions both ways are standard. Namely, a homoge-
neous f ∈ F [x, y] becomes f(x, 1) ∈ F [x], and g ∈ F [x] of degree n becomes
yng(x/y) ∈ F [x, y]. In this language, corresponding to τ we have the shift (or
translation, or transvection) action σ of the additive group F on F [x], given by
σa(f) = f ◦ (x+ a) for a ∈ F and f ∈ F [x]. For P ⊆ F [x],

stabP = {a ∈ F : ∀f ∈ P σa(f) = f} ⊆ F(3.4)

is the stabilizer of P , an additive subgroup of F . For G ⊆ F , we let

F [x]G = {f ∈ F [x] : ∀a ∈ G σa(f) = f}

be the ring of polynomials that are invariant under shifts from G. In the case of

singletons, we write stabf and F [x]a for stab{f} and F [x]{a}, respectively. In char-
acteristic 0, there are no nonconstant shift-invariant polynomials. σ corresponds to
the homogeneous transvection action ρ of G on F [x, y]. The inhomogeneous version
of Theorem 3.3 reads as follows.
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Corollary 3.5. Let G ⊆ F be a finite additive subgroup. Then

F [x]G = F [λG].

For all a ∈ G and f ∈ F [x]G, we have f(a) = f(0). If G ⊂ H ⊆ F are subgroups,

then degλG < deg λH . It follows that stabF [x]G = G.
As an aside, we note that F (x) ⊇ F (λG) is the splitting field of the irreducible

polynomial λG(t) − λG(x) ∈ F (λG)[t], where t is a new indeterminate. Its Galois
group is G.

Section 4. Shift-invariant polynomials in x`

We now consider the following variation on shift-invariant polynomials. We are
given a positive integer ` coprime to p and a finite additive subgroup G ⊆ F , and
set

F [x]G` = {w ∈ F [x] : w(x`) ∈ F [x]G}.

Theorem 4.1. Let G ⊆ F be a finite additive subgroup and ` ≥ 1. The following
hold.

(i) If x−1λG /∈ F [x`], then F [x]G` = F .
(ii) If x−1λG ∈ F [x`], say x−1λG = u(x`) with u ∈ F [x], then p - ` and

F [x]G` = F [xu`].

Proof. Both claims are clear when G = {0} or ` = 1, and we now assume
G 6= {0} and ` ≥ 2.

(i) We always have F ⊆ F [x]G` , and so suppose that w ∈ F [x]G` r F . Thus
w(x`) ∈ F [x]G = F [λG], so that w(x`) = v(λG) for some v ∈ F [x] \ F . We let
#G = pd with d ≥ 1 and write

(4.2) λG =
∑

0≤i≤d

λix
pi

, v =
∑

j

vjx
j

with all λi, vj ∈ F and λ0 6= 0, by (3.2). We let

I = {i ≤ d : λi 6= 0, ` - pi − 1},

b = min{j : j ≥ 1 and vj 6= 0}.

We first assume I 6= ∅, and let h = min I. The unique term of smallest positive
degree in

v(λG) = v0 + vb(λ
G)b + · · ·(4.3)

is vbλ
b
0x

b, so that ` | b, since v(λG) ∈ F [x`]. Now the term in (4.3) of the smallest
degree not divisible by ` is

vb · (λ0x)
b−1λhx

ph

= vbλ
b−1
0 λhx

b+ph−1.

Now it follows that ` | b + ph − 1 and hence ` | ph − 1, contradicting h ∈ I. We
conclude that I = ∅ and hence x−1λG ∈ F [x`].

(ii) We first note that ` | deg(x−1λG) = pd − 1, so that p - `. Furthermore, we
have

(4.4) x` ◦ λG = x` ◦ (x · u(x`)) = xu` ◦ x` ∈ F [x`],
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and now show that

F [x]G` ◦ x
` = F [x` ◦ λG].(4.5)

For one inclusion, let w ∈ F [x]G` . Then w ◦x` ∈ F [x]G = F [λG], say w ◦x` = v ◦λG

for some v ∈ F [x]. We claim that v ∈ F [x`], and use induction on degw ≥ 0. The
claim is clear for degw = 0, since then v ∈ F . For degw > 0, we write t = deg v
and have ` · degw = t · #G and gcd(`,#G) = 1, so that ` | t and xt ∈ F [x`]. If
v = xt, the claim is proven. Otherwise, we have from (4.4)

xt ◦ λG = xt/` ◦ xu` ◦ x` ∈ F [x`].

We let w∗ = w − xt/` ◦ xu`. Then

w∗ ◦ x` = w ◦ x` − xt/` ◦ xu` ◦ x`

= v ◦ λG − xt/` ◦ x` ◦ λG

= (v − xt) ◦ λG ∈ F [λG] = F [x]G,

so that w∗ ∈ F [x]G` and degw∗ < degw. By induction, we have v− xt ∈ F [x`] and
hence v ∈ F [x`], as claimed. Writing v = v∗ ◦ x` with v∗ ∈ F [x], we have

w ◦ x` = v∗ ◦ x` ◦ λG ∈ F [x` ◦ λG],

F [x]G` ◦ x
` ⊆ F [x` ◦ λG].

For the reverse inclusion in (4.5), we take v ∈ F [x] and w = v ◦ xu`. Then

v ◦ x` ◦ λG = v ◦ xu` ◦ x` = w ◦ x`,

so that w ∈ F [x]G` , v ◦ x` ◦ λG ∈ F [x]G` ◦ x
`, and hence F [x` ◦ λG] ⊆ F [x]G` ◦ x

`.
This proves (4.5).

For any w ∈ F [x], we have

w ∈ F [x]G` ⇐⇒ w ◦ x` ∈ F [x]G` ◦ x
` = F [x` ◦ λG] = F [xu` ◦ x`] = F [xu`] ◦ x`

⇐⇒ w ∈ F [xu`]. �

In terms of the coefficients (4.2) of λG, we set

µG
` = x(

∑

0≤i≤d

λix
(pi−1)/`)` = xu` = x · (x−1λG(x1/`))`,

where the assumption x−1λG ∈ F [x`] justifies the notation x1/`. Then we have
shown that

F [x]G` =

{

F [µG
` ] if x−1λG ∈ F [x`],

F otherwise.

For all a ∈ G and w ∈ F [x]G` , we have µG
` (a

`) = 0 and w(a`) = w(0).
Fq contains a primitive `th root of unity ζ if and only if ` | q − 1. Kemper

(2009) has pointed out that if F contains such a ζ, then F [x`] = F [x]〈ζ〉 and
F [x`]∩F [x]G = F [x]H , where 〈ζ〉 is the multiplicative group generated by ζ acting
on F [x] via x 7→ ζx, and H = 〈G, ζ〉 consists of all transformations of the form
x 7→ ζix + a with a a sum of terms ζjb with b ∈ G. In Theorem 4.1(ii), one can
conclude that F [x]H = F [(λG)`] and #H = `#G, so that H is a semidirect product
of G and 〈ζ〉. It is not clear whether this observation may lead to a simpler proof
of Theorem 4.1.

We can characterize the assumption in Theorem 4.1(ii) as follows.
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Lemma 4.6. Let F be a field of characteristic p, let ` ≥ 1 with p - `, c = ord` p,
r = pc, and G ⊆ F a nonzero finite additive subgroup. The following hold.

(i)

Fr ⊆ F and G is Fr-linear⇐⇒ λG is an r-polynomial

⇐⇒ x−1λG ∈ F [x`].

(ii) If x−1λG ∈ F [x`], then F contains a primitive `th root of unity.

Proof. (i) Let λG be an r-polynomial
∑

λix
ri , and embed F and Fr in a

common superfield. Then for all a ∈ G, z ∈ Fr, and i ∈ N we have zr
i

= z and
λG(za) = zλG(a) = 0, so that za ∈ G ⊆ F and G is Fr-linear. Taking a nonzero
a ∈ G ⊆ F , we find z = za/a ∈ F , and thus Fr ⊆ F . The other direction in the
first equivalence follows from Theorem 3.52 of Lidl & Niederreiter (1983). (Their
context and statement assume F to be finite, but their explicit calculations in the
proof do not make use of this assumption.) For the second equivalence, we write

#G = pd and λG =
∑

0≤i≤d λix
pi

with all λi ∈ F . Then

λG is an r-polynomial

⇐⇒ ∀i ≤ d λi = 0 or c | i

⇐⇒ ∀i ≤ d λi = 0 or pi ≡ 1mod `

⇐⇒ ∀i ≤ d λi = 0 or ` | pi − 1

⇐⇒ x−1λG ∈ F [x`].

(ii) Let s be the largest power of p so that λG is an s-polynomial, and write

λG =
∑

i λix
si and I = {i ≥ 0: λi 6= 0}. Then gcd(I) = 1, by the maximality of

s. We take ti ∈ Z for i ∈ I with
∑

i∈I iti = 1. For all i ∈ I, we have xs
i−1 ∈ F [x`]

and hence si ≡ 1mod `. It follows that

s− 1 =
∏

i∈I

(si)ti − 1 ≡ 0mod `.

(We can also conclude that s ∈ rN≥1 .) Using (i), we have Fs ⊆ F and ` | s− 1, so
that Fs contains a primitive `th root of unity. �

Lidl & Niederreiter (1983) also give an explicit description of λG in terms of
an Fr-basis, via “q-Vandermonde” determinants.

Section 5. Shift-invariant polynomials of the form xkw(x`)

Next we take positive integers k and ` with p - `, a finite additive subgroup
G ⊆ F , and, with a view to (2.7), we set

F [x]Gk,` = {w ∈ F [x] : x
kw(x`) ∈ F [x]G}.
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Theorem 5.1. Let k and ` be positive integers with p - `, and let G ⊆ F be a
finite additive subgroup. If x−1λG ∈ F [x`], say x−1λG = u ◦ x` with u ∈ F [x],
then F [x]Gk,` = uk · F [x]G` = uk · F [xu`], and for a ∈ G and w ∈ F [x]Gk,` we have

akw(a`) = 0.

Proof. The claim is trivial for G = {0}, and we now assume G 6= {0}.
For the inclusion “⊆”, we take some w ∈ F [x]Gk,`, so that xkw(x`) ∈ F [x]G =

F [λG], and there is some h1 ∈ F [x] with xkw(x`) = h1 ◦ λ
G. By (3.2) and since

xk | h1 ◦ λ
G, it follows that xk | h1. We set h = x−kh1 ∈ F [x]. Then

xkw(x`) = (xkh) ◦ λG = (x · x−1λG)k · (h ◦ λG)

= xk · (u ◦ x`)k · (h ◦ λG),

w ◦ x` = (uk ◦ x`) · (h ◦ λG),

uk ◦ x` | w ◦ x`.

We take the division with remainder w = suk+r with s, r ∈ F [x] and deg r < deguk.
Then

uk ◦ x` | w ◦ x` − (s ◦ x`) · (uk ◦ x`)

= (w − suk) ◦ x` = r ◦ x`,

so that r = 0 and uk | w. It follows that

(u−kw) ◦ x` = h ◦ λG ∈ F [λG] = F [x]G,

u−kw ∈ F [x]G` = F [xu`],

w ∈ uk · F [xu`],

where we have used Corollary 3.5 and Theorem 4.1.
We have shown one inclusion. For the reverse, we take some w ∈ uk · F [xu`],

so that w = uk · v(xu`) for some v ∈ F [x]. Then, using (4.4) we find

xkw(x`) = xk ·
(

(uk · v(xu`)) ◦ x`
)

= xk · (u ◦ x`)k · (v ◦ xu` ◦ x`)

= xk · (x−1λG)k · (v ◦ x` ◦ λG)

= (xk · (v ◦ x`)) ◦ λG ∈ F [λG] = F [x]G,

and hence w ∈ F [x]Gk,`. We conclude that uk · F [x]G` = F [x]Gk,`. The last claim
follows from

akw(a`) = (xkw(x`))(a) = (h1 ◦ λ
G)(a) = h1(0) = 0.(5.2)

�

When the assumption of Theorem 5.1 is not satisfied, we offer the following
conjecture.
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Conjecture 5.3. Let ` < p be a prime, 1 ≤ k < `, and let G ⊆ F be a nonzero
finite additive subgroup. If x−1λG /∈ F [x`], then F [x]Gk,` = {0}.

1

More generally we might allow any positive integers k and ` with p - `. But the
above is sufficient for our final goal of counting decomposable polynomials.

We obtain a partial answer to the question (2.8) by splitting the map ρ into
two components:

Ps × F
τ
−→ Ps × Pm

π2−→ Pm.
ϕ ↓
F

(5.4)

Here Pd consists of the monic polynomials in F [x] of degree d for any d ≥ 0,
τ(w, a) = (w, ρw,a), and ϕ and π2 are the second projections. Thus π2 ◦ τ = ρ. If
Conjecture 8.3 below holds, then π2 is injective, and to understand the fibers of ρ,
it is sufficient to know those of τ .

For any w ∈ F [x], stabw
k,` = stabxkw(x`), as in (3.4), is a subgroup of F .

Lemma 5.5. Let w ∈ F [x] be monic of degree s, and G = stabw
k,`. Then the sets

ϕ(τ−1((w, ρw,a))) for a ∈ F are precisely the cosets of G. When F = Fq, then
#{ρw,a : a ∈ Fq} = q/#G.

Proof. Let a, b ∈ F . Then

ρw,a = ρw,b ⇐⇒ xkw(x`) ◦ (x+ a) = xkw(x`) ◦ (x + b)

⇐⇒ xkw(x`) = xkw(x`) ◦ (x+ b− a)

⇐⇒ b− a ∈ G.

Thus each nonempty fiber of the map Fq → Pm (over Fq) with a 7→ ρw,a is a coset
of G and has #G elements. �

This implies that over Fq, we have

# im τ =
∑

w∈Ps

q

# stabw
k,`

.(5.6)

Section 6. The regularity condition

In the normal form of Ritt’s Second Theorem, we have the regularity condition
(2.6):

kw + `xw′ 6= 0.

We evaluate this for w ∈ F [x]Gk,`, using the explicit description of Theorem 5.1. So

let G and u be as in Theorem 4.1(ii), λG =
∑

0≤i λix
pi

with all λi ∈ F and λ0 6= 0

1The published journal version has the typographical error ∅ instead of {0}.
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by (3.2), v ∈ F [x] monic and w = ukv(xu`). We have

−x−1u(x`) + x−1λ0 = −x−2λG + x−1(λG)′ = (x−1λG)′

= (u(x`))′ = u′(x`) · `x`−1,

(−u+ λ0) ◦ x
` = −u ◦ x` + λ0 = `x`u′(x`) = `xu′ ◦ x`,

−u+ λ0 = `xu′,

kw + `xw′ = kw + `x
(

kuk−1u′v(ux`) + ukv′(xu`)(u` + `xu`−1u′)
)

= kukv(xu`) + (−kuk + kλ0u
k−1)v(xu`)

+ `xukv′(xu`)(u` − u` + λ0u
`−1)

= kλ0u
k−1v(xu`) + `λ0xu

k+`−1v′(xu`)

= λ0u
k−1 · ((kv + `xv′) ◦ xu`).

Since λ0u
k−1 6= 0, we have

(6.1) kw + `xw′ 6= 0⇐⇒ (kv + `xv′) ◦ xu` 6= 0⇐⇒ kv + `xv′ 6= 0.

We write t = deg v and v =
∑

0≤i≤t vix
i with all vi ∈ F and vt = 1. Then

kv + `xv′ = 0⇐⇒ ∀i ≤ t (k + i`)vi = 0

⇐⇒ ∀i ≤ t p | k + i` or vi = 0.

Since ` | r − 1, ` is invertible modulo p, and the latter condition fixes all vi to be 0
except when p | k + i`. In particular, we have

(6.2) p - k + t` =⇒ (2.6) holds.

If p | k + t`, then there are exactly qbt/pc values of v of degree t that violate the
condition in (6.1).

Section 7. Generating and counting invariant polynomials

This section describes a way of generating the elements of some fixed degree
in F [x]Gk,`. We start with an arbitrary field F of characteristic p, and then find a
more precise description when F is finite.

For fields E ⊆ F and d ≥ 0, we denote as GE(d, F ) the set of d-dimensional vec-
tor spaces G ⊆ F over E. For Fr ⊆ Fq, with q = rb, the size of this Grassmannian
is

#GFr
(d,Fq) =

∏

0≤i<d(r
b − ri)

∏

0≤i<d(r
d − ri)

.

Given q, `, and m, the following algorithm constructs ambiguities as in (2.8).

Algorithm 7.1. Generating shift-invariant polynomials of the form xkw(x`).
Input: A finite field Fq of characteristic p, and integers m > ` ≥ 2 with gcd(`,m) =

1 and p | m.
Output: A set S of (w,G), where w ∈ Fq[x] is monic of degree s and G = stabw

k,`.
Here m = s`+ k is the division with remainder, with 1 ≤ k < `.

1. Set S ← ∅, write q = pe, c← ord` p, r ← pc, and let µ be the multiplicity of p
in m. If c - e or µ < c, then return ∅.

2. For d = bµ/cc down to 1 do Steps 3 through 5.
3. t←− (mr−d − k)/`.
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4. For all G ∈ GFr
(d,Fq) and for all monic v ∈ Fq[x] of degree t do Steps 4 and 5.

5.

λG =
∑

0≤i≤d

λix
ri ←−

∏

a∈G

(x− a),

u←−
∑

0≤i≤d

λix
(ri−1)/`,

w ←− uk · (v ◦ xu`).

6. If (w,H) ∈ S for some H ⊆ F then S ←− S else S ←− S ∪ {(w,G)}.
7. Return S.

Theorem 7.2. Let S be the output of Algorithm 7.1. For any (w,G) ∈ S, w ∈ F [x]
is monic of degree s and G = stabw

k,`. If Conjecture 5.3 holds, then S consists of all
such (w,G). If (w,G) ∈ S and v is chosen in Step 3, then (2.6) is equivalent to

kv + `xv′ 6= 0.(7.3)

When d = µ/c, this is satisfied for any v.

Proof. We have r ≡ 1mod ` and m = kmod `, so that ` | mr−d − k and in
Step 3, t is an integer. Furthermore, mr−d − k ≥ 1 − k > −`, so that t ≥ 0. The
assignment to u in Step 5 is well-defined by Lemma 4.6, and x−1λG = u◦x` ∈ Fq[x

`].
We first verify that any (w,G) ∈ S as computed in the algorithm satisfies the

output conditions. We have #G = rd = degλG ≥ r and deg u = (rd − 1)/`. Since
u and v are monic, so is w, and

degw =
k(rd − 1)

`
+ t(1 + (rd − 1))

=
k(rd − 1)

`
+

(mr−d − k)rd

`
=
m− k

`
= s.

From Theorem 5.1, we have w ∈ uk · Fq[xu
`] = Fq[x]

G
k,`. If w ∈ Fq[x]

H
k,`

and G ⊂ H , then also w ∈ Fq[x]
G
k,`. The condition in Step 6 guarantees that

only the maximal such H , namely (w, stabw
k,`), is included in S. Thus the output

specifications are satisfied. The theorem’s last claim follows from (6.1).
For the reverse inclusion, we take some monic w ∈ Fq[x]

G
k,` of degree s with

G = stabw
k,` 6= {0}. By Conjecture 5.3 and Theorem 5.1, there exist monic ũ, ṽ ∈

Fq[x] so that

x−1λG = ũ(x`)

and w = ũk · ṽ(xũ`). Lemma 4.6 implies that Fr ⊆ Fq and thus c | e, so that the
return statement in Step 1 is correct. Furthermore, G is a vector space over Fr,
and we claim that for d = dimFr

G and t = deg ṽ, the value (w,G) is included in S
at Step 5. We note that G ∈ GFr

(d,Fq), so that G is one of the choices in Step 4.
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Since deg ũ = ((deg λG)− 1)/` = (rd − 1)/`, we have

s = degw =
k(rd − 1)

`
+ trd,

m = `s+ k = (`t+ k)rd,

t =
mr−d − k

`
≥ 0,

rd = pcd | m,

cd ≤ µ.

The conditions in the algorithm are satisfied, and for the choice v = ṽ in Step 4,
(w,G) is included in S. �

In the algorithm, we have k+ t` = mr−d. According to (6.2), for d = µ/c all v
in Step 4 satisfy (7.3). For smaller values of d and any G, the number of v violating
(7.3) equals mr−d/p = mp−cd−1 ≥ 1.

Due to the inclusion-exclusion of Step 6, the size of S is somewhat complicated
to determine. We obtain an upper bound by ignoring the exclusion, and a lower
bound by just taking d = 1. We have S = ∅ if c - e or µ < c, and otherwise

re/c − 1

r − 1
re(m/r−k)/`c ≤ #S ≤

∑

1≤d≤µ/c

∏

0≤i<d(r
e/c − ri)

∏

0≤i<d(r
d − ri)

re(mr−d−k)/`c.

Our next goal is to compute # im τ . We let

X0 = {(w,G) : w ∈ Fq[x] monic of degree s, G = stabw
k,`},

so that #X0 = qs. According to Lemma 5.5, each fiber of τ � {w} × F has size
q · (# stabw

k,`)
−1, and hence

# im τ =
∑

(w,G)∈X0

q

#G
,

as in (5.6). Setting

X = {(w,G) ∈ X0 : G 6= {0}}

isolates the “interesting” cases, and

# im τ = q ·#X0 − q ·#X +
∑

(w,G)∈X

q

#G

= qs+1 − q
∑

(w,G)∈X

#G− 1

#G
.

Example 7.4. As a concrete example, we take F = F9, m = 9 > 2 = `, so that
s = 4, k = 1, c = 1 | 2 = e, r = 3, and µ = 2. We start with d = 2 = µ/c. We
have t = 0 and the only choices F9 ∈ GF3

(2,F9) and v = 1 in Step 4. This yields
λF9 = x9 − x, u = x4 − 1 = w, and (x4 − 1,F9) is added to S.

Next comes d = 1. We have t = 1 and v = x + v0 with v0 ∈ F9 = F3[α] with
α2 = −1. Each of the four G ∈ GF3

(1,F9) can be written as G = a · F3, with some
nonzero a ∈ F9. In Step 5, we have w = u · (xu2 + v0) = xu3 + v0u. Table 7.1 gives
the relevant quantities for the four G.
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a λG u xu` u3 w
1 x3 − x x− 1 x3 + x2 + x x3 − 1 x4 − x+ v0(x− 1)
α x3 + x x+ 1 x3 − x2 + x x3 + 1 x4 + x+ v0(x+ 1)

α+ 1 x3 + αx x+ α x3 + αx2 − x x3 − α x4 − αx+ v0(x + α)
α− 1 x3 − αx x− α x3 + αx − x x3 + α x4 + αx+ v0(x − α)

Table 7.1. The four F3-lines in F9 and their polynomials.

We have 4 · 9 = 36 pairs (a, v0), but since G ⊆ F9, four of them yield the same
w = x4 − 1, namely (1, 1), (α,−1), (α + 1, α), and (α − 1,−α), which are already
taken care of by (x4 − 1,F9). We thus have one (w,G) ∈ S with #G = 9, and 32
with #G = 3.

Thus X consists of (x4 − 1,Fq) and the 4 · 8 = 32 pairs (w,G) with #G = 3 in
Table 7.1, with x4 − 1 excluded in each of the four lines. It follows that

# im τ = 95 − 9(1 ·
8

9
+ 32 ·

2

3
) = 95 − 200 = 58 849 > 0.9966 · 95.

In the first line of Table 7.1, we have G = 〈1〉 = F3 and w = x4+x+1 for v0 = −1.
The entry means that ρw,0 = ρw,1 = ρw,−1. We can compose on the right with any
a ∈ F9, and thus have ρw,α = ρw,α+1 = ρw,α−1 and ρw,−α = ρw,−α+1 = ρw,−α−1.
Thus the nine values (w, a) with a ∈ F9 yield three polynomials xw(x2) ◦ (x +
a) = ρw,a, corresponding to the reduction factor q/#G = 3 in Lemma 5.5. The
projection π2 in (5.4) is injective, and we conclude that, the total number of distinct
ρw,a = xkw(x`) ◦ (x+ a), as in (2.7), is 58 849.

The condition kv+ `xv′ 6= 0 in (6.1) is satisfied for v = 1, and for v = x+ v0 it
reads 0 6= x+v0+2x = v0, which for each a as above holds for 7 out of 8 admissible
values of v0. Thus of the 200 values of ρw,a counted above, 9(8/9+32·7/8·2/3) = 176
satisfy (6.1). In terms of the normal form (2.5), the first line in Table 7.1 with v0 = 1
provides the example

f = x18 + x10 + x2

= (x9 + x5 + a2(−x4 + x3 + x2 − x) + x) ◦ (x2 − ax)

= x2 ◦ (x9 − x)

for all a ∈ F3. No example of such a “collision of collisions” seems to be in the
literature. ♦

Example 7.5. We now take q = 9, m = 15, ` = 2 so that k = 1, s = 7, c = 1,
r = 3, µ = 1. We have c | e = 2 and µ/c = 1, so that only d = 1 is considered in
the algorithm.

In Step 3, we have t = 2 and consider the four G ∈ GF3
(1,F9), v = x2+v1x+v0,

with v0, v1 ∈ F9, and w = u · (v ◦xu2). Table 7.2 is arranged as Table 7.1 and shows
the current value of w.

This gives #X = 4 · 92 = 324 different values of w, while #X0 = 94 and
95 = 59 049. For each of the four nonzero G in Table 7.2, we have #G = 3 and
#F9[x]

G
1,2 = 81. Thus #X = 4 · 81 = 324, and

# im τ = 95 − 9 · 4 · 81 ·
3− 1

3
= 95 − 1 944 = 57 105 =

235

243
· 95 > 0.9670 · 95.
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a u w
1 x− 1 x7 + x6 + x5 − x4 − x3 − x2 + v1(x

4 − x) + v0(x− 1)
α x+ 1 x7 − x6 + x5 + x4 − x3 + x2 + v1(x

4 + x) + v0(x+ 1)
α+ 1 x+ α x7 − αx6 − x5 − αx4 − x3 + αx2 + v1(x

4 − αx) + v0(x+ α)
α− 1 x− α x7 + αx6 − x5 + αx4 − x3 − αx2 + v1(x

4 + αx) + v0(x− α)

Table 7.2. The current value of w.

The regularity condition (7.3) becomes

0 6= kv + `xv′ = 5x2 + v0.

It is alway satisfied, as in Theorem 7.2. ♦

Section 8. Nonuniqueness of (w, a) if p | m

We now turn to the question (2.8) that motivated this work. We provide two an-
swers. In this section, we present a conjecture under which the approach presented
above would solve the problem. In the next section, we prove an unconditional but
weak estimate.

We use the following notation. For positive integers k and `, w ∈ F [x] monic,
and a ∈ F , we let

(8.1) ψw,a = (x− ak`w`(a`)) ◦ xk`w`(x`) ◦ (x+ a),

as in (2.5). Furthermore, for monic w, w̃ ∈ F [x] we set

eqw,w̃
k,` = {a ∈ F : ψw̃,0 = ψw,a}.

(The word equalizer is formed in analogy with stabilizer). We always have 0 ∈
eqw,w

k,` . The lower index will usually have the value k, ` and we drop it at times
without further notice.

A t-way ambiguity is a set of t pairs (w, a) so that ψw,a is the same for all pairs.
An equalizer of size t yields a t-way ambiguity in (2.5). The connection to Section 5
is that when akw(a`) = 0, we have

ψw,a = x` ◦ ρw,a,
ψw,0 = ψw,a ⇐⇒ ρw,0 = ρw,a

⇐⇒ a ∈ stabw
k,` ⇐⇒ w ∈ F [x]ak,`.

Thus eqw,w
k,` = stabw

k,` in this case. We first note that the choice of 0 as an argument
in the definition actually covers the general case.

Lemma 8.2. Let k and ` be positive integers, w, w̃ ∈ F [x] monic, and a, ã ∈ F .
Then the following hold.

(i) ψw,a = ψw̃,ã ⇐⇒ a− ã ∈ eqw,w̃.

(ii) If 0 ∈ eqw,w̃
k,` , then w = w̃.

Proof. (i) Let

ũ = x+ ãk`w̃`(ã`),

u = ũ− ak`w`(a`).
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Then

ũ ◦ ψw̃,ã ◦ (x− ã) = ũ ◦ (ũ−1 ◦ xk`w̃`(x`) ◦ (x+ ã)) ◦ (x− ã)

= xk`w̃`(x`) = ψw̃,0,

ũ ◦ ψw,a ◦ (x− ã) = ũ ◦ (x− ak`w`(a`)) ◦ xk`w`(x`) ◦ (x+ a) ◦ (x − ã)

= u ◦ xk`w`(x`) ◦ (x+ a− ã).

This polynomial is monic and original, so that it equals ψw,a−ã. Since the linear
components are invertible, we have

ψw,a = ψw̃,ã ⇐⇒ ψw̃,0 = ψw,a−ã ⇐⇒ a− ã ∈ eqw,w̃ .

(ii) We have

0 ∈ eqw,w̃
k,` =⇒ xk`w̃`(x`) = xk`w`(x`) =⇒ w = w̃. �

Conjecture 8.3. Let F be a field of characteristic p ≥ 2, let ` < p be a prime,

1 ≤ k < `, let w, w̃ ∈ F [x] be monic, and assume that a ∈ eqw,w̃
k,` . Then w = w̃ and

akw(a`) = 0.

The validity of this conjecture, and also of Conjecture 5.3, has been verified
experimentally for q1+degw ≤ 104. Its truth would imply that π2 in (5.4) is injective,
# imπ = # im ρ, and the counting results of Section 7 would apply to ρ.

As noted after Conjecture 5.3, we might allow, more generally, any k ≥ 1 and
` ≥ 2 with p - `.

Lemma 8.4. Assume that p > ` > k ≥ 1, p | m = `s + k, and s = 1. Then
Conjecture 8.3 holds. Furthermore, if eqw,w

k,` 6= ∅, then k = 1, p = ` + 1, and

w = x− bp−1 for some b ∈ F .

Proof. We write w = x+w0 and w̃ = x+ w̃0 with w0, w̃0 ∈ F , and take some
a ∈ eqw̃,w (having interchanged w and w̃). We note that p ≤ m = `s+ k = `+ k <
2` < 2p, so that m = p = k + `. Then

ψw̃,0 = xk`w̃`(x`) = (xk(x` + w̃0))
`,

ψw,a = (x− ak`(a` + w0)
`) ◦ xk`(x` + w0)

` ◦ (x + a)

= (x+ a)k`((x+ a)` + w0)
` − (ak(a` + w0))

`

= ((x+ a)k+` + w0(x + a)k)` − (ak+` + w0a
k)`

= (xp + ap + w0(x+ a)k)` − (ap + w0a
k)`.

We first assume that akw(a`) 6= 0. Let E be an extension field of F containing
a primitive `th root of unity. Then

ψw,a =
∏

ζ`=1

(xp + ap + w0(x+ a)k − ζ(ap + w0a
k)).

We consider some ζ ∈ E with ζ` = 1 and evaluate the factor given above at x = 0:

ap + w0a
k − ζ(ap + w0a

k) = (1− ζ)ak(a` + w0).
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This vanishes only if ζ = 1, and therefore only this factor is divisible by x. From
ψw̃,0 = ψw,a, we find that

xk` | xp + ap + w0(x + a)k − (ap + w0a
k) = xp + w0((x+ a)k − ak).

The coefficient of x on the right hand side equals w0ka
k−1. Since k` ≥ ` ≥ 2, this

coefficient vanishes, and hence w0 = 0. It follows that

(xp + w̃0x
k)` = (xp + ap)` − ap`.

The coefficient of xp on the right hand side is `ap(`−1) 6= 0, while on the left hand
side it vanishes. Thus the assumption akw(a`) 6= 0 leads to a contradiction.

We have shown that akw(a`) = 0. If a = 0, then xkw(x`) = xkw̃(x`), which
implies w = w̃. Thus we may assume that a 6= 0. Then a` + w0 = 0 and w0 6= 0,
and

xp + w̃0x
k = xp + ap + w0(x+ a)k.

The coefficient of x on the right hand side is w0ka
k−1 6= 0, so that k = 1, ` =

p− 1, w̃0 = w0, and w̃ = w = x− ap−1. �

Section 9. An unconditional estimate

The assumption of Conjectures 5.3 and 8.3 leads to a satisfactory answer to
the question (2.8). We now present a result without assumptions. The resulting
bound in Theorem 9.8 is weaker than what we expect to be true.

We start with a result which shows that in a special situation a factor of degree
k automatically implies one of degree k`.

Lemma 9.1. Let F be a field of characteristic p, w ∈ F [x], a ∈ F nonzero, and
k, ` ≥ 1 with p - `. The following are equivalent.

(i) (x− a`)k | w,

(ii) (x− a)k | w(x`),

(iii) (x` − a`)k | w(x`).

Proof. (i) =⇒ (iii) follows by substituting x` for x, and (iii) =⇒ (ii) from the
fact that x − a | x` − a`. It remains to show (ii) =⇒ (i). This is clear for k = 1.
For an induction on k, we let

w = u0 + u1(x − a
`) + u2(x− a

`)2 + · · ·+ uk−1(x− a
`)k−1 + uk(x− a

`)k

be the Taylor expansion of w around a`, with u0, . . . , uk−1 ∈ F and uk ∈ F [x].
Then u0 = w(a`) = 0 by the conclusion for k = 1, and w1 = w/(x − a`) ∈ F [x].
We observe that

x` − 1

x− 1
(1) = (x`−1 + · · ·+ 1)(1) = ` 6= 0,

since p - `. It follows that gcd(x− 1, x
`−1
x−1 ) = 1. Substituting x by x/a, we find
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gcd(x − a,
x` − a`

x− a
) = 1,

gcd((x− a)k, x` − a`) = x− a,

(x− a)k−1 |
w(x`)

x` − a`
= w1(x

`).

Applying the induction hypothesis to w1, we find that

u1 = · · · = uk−1 = 0,

(x− a`)k | w. �

The case p | `, say ` = `∗pd with p - `∗ and an integer d ≥ 1, is not covered by
the lemma. But we can conclude from (ii) that

(x− a)p
d·dk/pde | w(x`

∗

)p
d

,

(x− a`
∗

)dk/p
de | w,

where we take w ∈ Fp[x] for simplicity.

Lemma 9.2. Let a ∈ eqw,w̃ be nonzero and λ = gcd(`, p− 1). Then the following
hold.

(i) If w(a`) 6= 0, then

(x− a`)k`−1 | kw + `xw′,

(x− (−a)`)k`−1 | kw̃ + `xw̃′.

(ii) If w(a`) = 0, then

(x− a`)k | w,

(x − (−a)`)k | w̃.

(iii) If w = w̃ and w(a`) 6= 0, then

(x(p−1)/λ − a`(p−1)/λ)k`−1 | kw + `xw′.

(iv) If w = w̃ and w(a`) = 0, then

(x(p−1)/λ − a`(p−1)/λ)k | w.

Proof. We set b = ak`w`(a`) and

(9.3) f = (x− b) ◦ xkw` ◦ x` ◦ (x+ a) = ψw,a = ψw̃,0 = xkw̃` ◦ x`.

(i) (9.3) implies that

f ′ =
(

(xk−1w`−1(kw + `xw′)) ◦ ((x + a)`)
)

· `(x+ a)`−1

=
(

(xk−1w̃`−1(kw̃ + `xw̃′)) ◦ x`
)

· `x`−1.

Now x - w((x + a)`), so that

(9.4) xk`−1 = x(k−1)` · x`−1 | (kw + `xw′) ◦ (x + a)`.

Composing on the right with x− a, it follows from Lemma 9.1 that

(x − a`)k`−1 | kw + `xw′.
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The second claim in (i) follows similarly.
(ii) We have u = x and

f = (x+ a)k`w`((x + a)`) = xk`w̃`(x`),

(x + a)kw((x + a)`) = xkw̃(x`);

the latter follows since both sides are monic polynomials whose `th powers are
equal. Thus xk | w((x + a)`) and (x− a)k | w(x`). Lemma 9.1 implies that

(x− a`)k | w.

Similarly, we find that

(x − (−a)`)k | w̃.

(iii) and (iv). We claim that for i ≥ 0 we have

(9.5) f = (x − ib) ◦ xkw` ◦ x` ◦ (x+ ia).

(We identify an integer i with imod p inFp ⊆ F .) When i is 0 or 1, this follows
from (9.3). For i ≥ 1, we have inductively

(x − (i+ 1)b) ◦ xkw` ◦ x` ◦ (x+ (i + 1)a)

= (x− b) ◦ (x− ib) ◦ xkw` ◦ x` ◦ (x+ ia) ◦ (x+ a)

= (x− b) ◦ xkw` ◦ x` ◦ (x+ a) = f.

We let S = (F×
p )

λ be the set of λth powers in F×
p ⊆ F

×. Then #S = (p− 1)/λ,
and

lcm
1≤i<p

(x− i`) =
∏

j∈S

(x− j) = x(p−1)/λ − 1,

lcm
1≤i<p

(x− (ia)`) =
∏

j∈S

(x− ja`) = x(p−1)/λ − a`(p−1)/λ.

From (9.5) we find for 1 ≤ i < p that

0 = f(0) = (x − iak`w`(a`)) ◦ (ia)k`w`((ia)`)

= (ia)k`w`((ia)`)− iak`w`(a`).

Thus if w(a`) 6= 0, then also w((ia)`) 6= 0. As in (9.4), it follows that

xk`−1 | (kw + `xw′) ◦ (x+ ia)`,

(x − (ia)`)k`−1 | kw + `xw′

for all i with 1 ≤ i < p, so that

(x(p−1)/λ − a`(p−1)/λ)k`−1 | kw + `xw′.

If w(a`) = 0, then b = 0 and xk` divides w`((x + ia)`) for 1 ≤ i < p, so that

(x− ia)k | w(x`) for 1 ≤ i < p,

(x(p−1)/λ − a`(p−1)/λ)k | w. �

We can also deal with (iv) in the language of Section 5. We set G = a ·Fp ⊆ Fq.
Then λG = xp − ap−1x and w ∈ Fq[x]

G
k,`, and Conjecture 5.3, if true, implies that

` | p − 1, so that λ = `, and in Theorem 5.1 we have u = x(p−1)/` − ap−1 and
w = uk · v(xu`) for some v ∈ Fq[x]. In particular uk | w, which is the claim of (iv).
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For a bound on the number of ambiguities, we have to quantify the effect of
the divisibilities in (i) and (iii). To this end, we write P ∗

d = {f ∈ F [x] : deg f ≤ d},
so that Pd, as defined after (5.4), consists of the monic f ∈ P ∗

d of degree d. Now
let d ≥ 1, g ∈ Pd, and consider the vector space

Wg = {w ∈ P ∗
s : g | kw + `xw′}.

Lemma 9.6. Let F be a field of characteristic p ≥ 2, let m > ` ≥ 2, s = bm/`c
and d ≥ 1, with p | m and p - ` be as above, and g ∈ Pd. If d = 1, we assume that
p - s. The following hold.

(i) dimWg ≤ s.
(ii) Wg ∩ Ps ⊆ Ps is an affine linear subset of dimension (dimWg)− 1.
(iii) #(Wg ∩ Ps) ≤ q

s−1.

Proof. (i) We write g =
∑

0≤i≤d gix
i with all gi ∈ F and gd = 1. Further-

more, we take gi = 0 if i > d or i < 0. We consider the following (bs/pc+1)× (s−
d+ 1) matrix Rg. Its rows are indexed by b, with 0 ≤ b ≤ s/p, and its columns by
j, with 0 ≤ j ≤ s− d, and the entries are

(Rg)b,j = gd−bp+j .

Thus the product
∑

0≤j≤s−d

(Rg)b,jvs−d−j =
∑

0≤j≤s−d

gd−bp+jvs−d−j

of the bth row with the transposed coefficient vector (vs−d, . . . , v0)
T of v =

∑

0≤j≤s−d vjx
j ∈

P ∗
s−d equals the coefficient of xs−bp in g · v. In other words, Rg is the matrix of

multiplication by g in the standard basis, where only every pth row is taken.
As an example, we take p = 2,m = 20, ` = 3, d = 2, so that s = 6, s/p = 3,

s− d = 4, and

Rg =









g2 0 0 0 0
g0 g1 g2 0 0
0 0 g0 g1 g2
0 0 0 0 g0









.

We note that g2 = 1. The rank of Rg is at least 3, and it equals 4 if and only if
g0g1 6= 0. Furthermore, Rg · (v4, v3, v2, v1, v0)

T consists of the coefficients of g · v at
x6, x4, x2, x0.

We consider the two F -linear maps

P ∗
s P ∗

s−d

P ∗
s

δ µ

with δ(w) = kw + `xw′ and µ(v) = gv. Then Wg = δ−1(imµ). Let w =
∑

0≤i≤s wix
i ∈ P ∗

s , with all wi ∈ F . Then

(9.7) kw + `xw′ =
∑

0≤i≤s

(k + i`)wix
i.
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We have p | m = k + `s, so that deg δ(w) < s. Since p - `, we have for 0 ≤ i ≤ s
that

k + i` ≡ 0mod p⇐⇒ i ≡ smod p.

Thus the coefficient of xi in δ(w) is zero if p | s − i. There are bs/pc + 1
such i ≤ s. This imposes bs/pc + 1 linear conditions on im δ which are linearly
independent, so that dim im δ ≤ s − bs/pc and dim ker δ = dimP ∗

s − dim im δ ≥
s+1− (s−bs/pc) = bs/pc+1. On the other hand, if w∗ ∈ P ∗

s satisfies these linear
conditions, then (9.7) can be solved for w ∈ P ∗

s with w∗ = δ(w). It follows that
equality holds in the dimension estimates above.

Furthermore, the multiplication map µ is injective. For v ∈ P ∗
s−d, Rv ·v consists

of the coefficients of gv at the xi with p | s− i. It follows that

µ(v) = gv ∈ im δ ⇐⇒ Rg · v = 0,

dim(im δ ∩ imµ) = s− d+ 1− rankRg,

dimWg = dim(δ−1(imµ)) = dim(im δ ∩ imµ) + dim ker δ

= s− d− rankRg + bs/pc+ 2.

We let r = b(s− d)/pc+1 and consider the r× r-submatrix U of Rg consisting
of the top r rows with 0 ≤ b < r and columns j = bp for 0 ≤ b < r. Now
(Rg)b,bp = gd and (Rg)b,j = gd−bp+j = 0 for j > bp. Thus U is a lower triangular
matrix with gd 6= 0 on the diagonal. U is indeed a submatrix of Rg, since for
row b we have b ≤ b(s − d)/pc ≤ bs/pc, and for the maximal value of j we have
(r− 1)p ≤ b(s− d)/pc · p ≤ s− d. Setting t = b(s− d)/pc− bs/pc+ d− 1, it follows
that

rankRg ≥ rankU = r,

dimWg ≤ s− d−

⌊

s− d

p

⌋

+

⌊

s

p

⌋

+ 1 = s− t.

If d ≥ 3, then

t ≥
s− d

p
−
p− 1

p
−
s

p
+ d− 1 =

1

p
((d − 2)(p− 1)− 1) ≥ 0.

If d = 2, then

t ≥

⌊

s

p

⌋

− 1−

⌊

s

p

⌋

+ 2− 1 = 0,

and if d = 1, then p - s by assumption, and

t =

⌊

s

p

⌋

−

⌊

s

p

⌋

+ 1− 1 = 0.

In all cases, we have shown dimWg ≤ s.
(ii) Ps ⊆ P

∗
s is an affine hyperplane, and 0 ∈Wg \ Ps. Therefore Wg ∩Ps is an

affine hyperplane in Wg, of dimension dimWg − 1 ≤ s− 1. (iii) follows from this.�

We let P
(0)
n ⊆ P ∗

n be the set of original polynomials of degree n, and now
determine a lower bound, admittedly weak, on the number of non-ambiguities.
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Theorem 9.8. Let Fq be a finite field, m > ` ≥ 2 integers with gcd(`,m) = 1 and
p | m, m = s`+ k the division with remainder, with 1 ≤ k < `, n = `m, and

ψ : Ps × F −→ P (0)
n

(w, a) 7−→ (x − ak`w`(a`)) ◦ xk`w`(x`) ◦ (x+ a),

as in (2.5) and (8.1). Then

qs+1(1− 4q−1) ≤ # imψ ≤ qs+1.

Proof. Clearly, # imψ ≤ #(Ps × F ) = qs+1. We denote as

M = {f ∈ P (0)
n : #ψ−1(f) ≥ 2}

the set of “ambiguous” polynomials, and consider the action ϕ of F on P
(0)
n , given

for a ∈ F by
ϕa : f 7−→ (x− f(a)) ◦ f ◦ (x+ a).

We take some f = ψw̃,ã and (w, a) ∈ Ps × F . Using Lemma 8.2 we find

ψw̃,ã = ψw,a ⇐⇒ a− ã ∈ eqw,w̃ .

Similarly for b ∈ F , we have

ψw̃,ã+b = ϕa(f) = ψw,a ⇐⇒ a− (ã+ b) ∈ eqw,w̃ .

It follows that

#ψ−1(f) = #{(w, a) : f = ψw,a} =
∑

w∈Ps

# eqw,w̃

= #ψ−1(ϕa(f)),

so that #ψ−1 is constant on the orbits of ϕ. Thus M is a union of ϕ-orbits.
Furthermore, each such orbit contains ψw̃,0 for some w̃ ∈ Ps, and also ψw,a for
some (w, a) ∈ Ps × F with a 6= 0.

We now take some nonzero a ∈ F and bound Va = {w ∈ Ps : ψw,a ∈ M}.
Following the parts of Lemma 9.2, we distinguish four cases.

V i
a = {w ∈ Va : a ∈ eqw,w̃ for some w̃ 6= w, and w(a`) 6= 0},

V ii
a = {w ∈ Va : a ∈ eqw,w̃ for some w̃ 6= w, and w(a`) = 0},

V iii
a = {w ∈ Va : a ∈ eqw,w and w(a`) 6= 0},

V iv
a = {w ∈ Va : a ∈ eqw,w and w(a`) = 0}.

For V i
a , we set g = (x − a`)k`−1, so that V i

a ⊆ Wg ∩ Ps by Lemma 9.2(i), and
by Lemma 9.6(iii), #V i

a ≤ qs−1, where d = k` − 1 ≥ 1. If d = 1, then k = 1
and p - s, since otherwise p | m − `s = k. For w ∈ V ii

a , we have (x − a`)k | w,
and #V ii

a ≤ qs−k ≤ qs−1. For w ∈ V iii
a , we have, with λ from Lemma 9.2 and

g = (x(p−1)/λ − a`(p−1)/λ)k, V iii
a ⊆ Wg ∩ Ps and hence #V iii

a ≤ qs−1, where again
p - s if d = 1. For w ∈ V iv

a , we have (x − a`)k | w and #V iv
a ≤ qs−k ≤ qs−1.

Overall, we find

#Va ≤ #V i
a +#V ii

a +#V iii
a +#V iv

a ≤ 4qs−1,

#M ≤
∑

a∈F

#ψ(Va × {a}) ≤ 4qs,

# imψ ≥ qs+1 −#M ≥ qs+1(1− 4q−1). �
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From Conjectures 5.3 and 8.3, if true, would follow a bound on # imψ much closer
to qs+1 than the lower bound proven here, which we have made no attempt to
optimize.
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