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Abstract. A polynomial f (multivariate over a field) is decomposable

if f = g ◦ h with g univariate of degree at least 2. We determine the
dimension (over an algebraically closed field) of the set of decomposables,
and an approximation to their number over a finite field. The relative
error in our approximations is exponentially decaying in the input size.
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1. Introduction

It is intuitively clear that the decomposable polynomials form a small minority
among all polynomials (multivariate over a field). The goal in this work is
to give a precise quantitative version of this intuition. Interestingly, we find
a special case for bivariate polynomials where the intuition about the “most
general decomposable polynomials” is incorrect.

We use the methods from von zur Gathen (2008d), where the corresponding
task was solved for reducible, squareful, relatively irreducible, and singular
bivariate polynomials; further references are given in that paper, starting with
early work of Carlitz ? and Cohan ?. Von zur Gathen, Viola & Ziegler (2010c)
extend those results to multivariate polynomials and give further information
such as exact formulas and generating functions.

Our question has two facets: in the geometric view, we want to determine
the dimension of the algebraic set of decomposable polynomials, say over an
algebraically closed field. The combinatorial task is to approximate the number
of decomposables over a finite field, together with a good relative error bound.
The goal is to have a bound that is exponentially decreasing in the input size.
The choices we make in our calculations are guided by the goal of such bounds
in a form which is as simple and universal as possible.
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As mentioned above, a special case occurs for bivariate polynomials. Usu-
ally, the largest number of decompositions results from maximizing the number
of choices for the right component. But for some special degrees—the squares of
primes and numbers of RSA type—most bivariate decompositions arise from
having a large number of choices for the left component. At three or more
variables, all is uniform.

Giesbrecht (1988) was the first to consider a variant of our counting prob-
lem. He showed that the decomposable univariate polynomials form an expo-
nentially small fraction of all univariate polynomials. My interest, dating back
to the supervision of this thesis, was rekindled by my study of similar counting
problems (von zur Gathen 2008d), and during a visit to Pierre Dèbes’ group at
Lille, where I received a preliminary version of Bodin, Dèbes & Najib (2009).
Their results are substantially weaker, as explained after Remark 4.21.

The companion paper von zur Gathen (2008b) deals with decomposable
univariate polynomials, and this line of inquiry is continued in von zur Gathen
et al. (2010b).

2. Decompositions

We have a field F , a positive integer r, and the polynomial ring R = F [x1, . . . , xr].
We assume a degree-respecting term order on R, so that in particular the lead-

ing term lt(f) of an f ∈ R is defined and deg lt(f) = deg f . Throughout
this paper, deg denotes the total degree. If f 6= 0, the constant coefficient
lc(f) ∈ F× = F r {0} of lt(f) is the leading coefficient of f . Then f is
monic if lc(f) = 1. We call f original if its graph contains the origin, that is,
f(0, . . . , 0) = 0.

The reader might think of the usual degree-lexicographic ordering, where
terms of higher degree come before those of lower degree, and terms of the same
degree are sorted lexicographically, with x1 > x2 > · · · > xr. For example,

f = −3x2
1x3 − 2x3

2 + 4x4x
2
5 + 5x2

1 + 8x1x2 + 5x2
6 − 7

is written in order, lc(f) = −3 (provided that −3 6= 0), and f is not original
(if −7 6= 0).

Definition 2.1. For g ∈ F [t] and h ∈ R,

f = g ◦ h = g(h) ∈ R

is their composition. If deg g ≥ 2 and deg h ≥ 1, then (g, h) is a decomposi-
tion of f . A polynomial f ∈ R is decomposable if there exist such g and h.
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Otherwise f is indecomposable. The decomposition (g, h). It is superlinear if
deg h ≥ 2.

There are other notions of decompositions. The present one is called uni-
multivariate in von zur Gathen et al. (2003). Another one is studied in Faugère
& Perret (2008) for cryptanalytic purposes. In the context of univariate poly-
nomials, only superlinear decompositions are traditionally considered.

Remark 2.2. Multiplication by a unit or addition of a constant does not
change decomposability, since

f = g ◦ h ⇐⇒ af + b = (ag + b) ◦ h

for all f , g, h as above and a, b ∈ F with a 6= 0. In other words, the set of
decomposable polynomials is invariant under this action of F××F on R. There
is a unique monic original f in each orbit of this action.

Furthermore, for any decomposition (g, h) we can take a = lc(h)−1 ∈ F×,
b = −a · h(0, . . . , 0) ∈ F , g∗ = g((t − b)a−1) ∈ F [t], and h∗ = ah + b. Then
g ◦ h = g∗ ◦ h∗ and h∗ is monic original.

Lastly, if f = g ◦ h and h is monic original, then lc(f) = lc(g) and
f(0, . . . , 0) = g(0), so that f is monic original, if and only if g is. If the
latter holds, then (g, h) is called monic original and remark.

The following result is shown for r ≥ 2 in Bodin et al. (2009). It is trivially
valid for r = 1, where

(2.3) f(x1) = f(t) ◦ x1

for any f ∈ F [x1]. This decomposition is not superlinear.

Fact 2.4. Any polynomial in R has at most one monic original decomposition
with indecomposable right component.

If we also allowed trivial decompositions f = g ◦ h with deg g = 1, then
every polynomial would have exactly one monic original decomposition with
indecomposable right component.

We fix some notation for the remainder of this paper. For r ≥ 1 and n ≥ 0,
we write

P all

r,n = {f ∈ F [x1, . . . , xr] : deg f ≤ n}
for the vector space of polynomials of degree at most n, of dimension

dim Pr,n = br,n =

(

r + n

r

)

.
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Furthermore, we consider the subset

Pr,n = {f ∈ P all

r,n : f monic and original of degree n}.

Over an infinite field, P all

r,n r P all

r,n−1 is a Zariski-open subset of P all

r,n and
irreducible, taking P all

r,−1 = {0}. Now Pr,n is obtained by further imposing one
equation on the coefficients and working modulo multiplication by units, so
that

dim Pr,n = br,n−2,

with Pr,0 = ∅. For any divisor e of n, we have the monic original compositions

(2.5) Dr,n,e = {g ◦ h : g ∈ P1,e, h ∈ Pr,n/e} ⊆ Pr,n.

Here P1,e consists of polynomials in F [t] rather than in F [x1].) The set Dr,n of
all decomposable polynomials in Pr,n satisfies

(2.6) Dr,n =
⋃

1<e|n

Dr,n,e.

In particular, Dr,1 = ∅ for all r ≥ 1. Over an algebraically closed field,
each Dr,n,e is the image of a polynomial map from an irreducible variety, hence
algebraic and irreducible, and also Dr,n is algebraic. The dimension of Dr,n

is taken to be the maximal dimension of its irreducible components. We also
denote as

Ir,n = Pr,n r Dr,n

the set of indecomposable polynomials. Thus Ir,1 = Pr,1 for r ≥ 1.
Let Dall

r,n consist of all decomposable polynomials in P all

r,n of degree n. Then
Dall

r,n is the union of the orbits of Dr,n under the action of F× × F described in
Remark 2.2. Over an infinite field F we have dim Dall

r,n = dim Dr,n + 2. This
allows us to concentrate exclusively on Dr,n in the remainder of this paper.

In order to have a nontrivial concept also in the univariate case, where (2.3)
holds, we introduced in Definition 2.1 the notion of superlinear decompositions
f = g ◦ h where deg h ≥ 2. The set of all these is

(2.7) Dsl

r,n =
⋃

e|n
1<e<n

Dr,n,e.

In particular, Dsl

r,n = ∅ if n is prime. We also let Isl

r,n = P=
r,n r Dsl

r,n. In the
present paper, we investigate this notion only for two or more variables. The
mote challenging univariate case is treated in von zur Gathen (2008c) and
von zur Gathen, Giesbrecht & Ziegler (2010b).
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3. Dimension of decomposables

In this section, we determine the dimension of the set of decomposable polyno-
mials over an algebraically closed field. This forms the basis for the counting
result in the next section.

Throughout the paper, ` denotes the smallest prime factor of n ≥ 2. In the
following, we have to single out the following special case:

(3.1) r = 2, n/` is prime and n/` ≤ 2` − 5.

The smallest examples are n = `2 with ` ≥ 5, n = 11 · 13, and n = 11 · 17.
In particular, ` and n/` are always at least 5.

Theorem 3.2. Let F be an algebraically closed field, r ≥ 1, n ≥ 2, let ` be
the smallest prime divisor of n, and

m =

{

n if (3.1) holds or r = 1,

` otherwise.
(3.3)

Then the following hold.

(i) Dr,n has dimension

dim Dr,n =

(

r + n/m

r

)

+ m − 3.

(ii) If r ≥ 2, then Ir,n contains a dense open subset of Pr,n, of dimension
(

r+n
r

)

− 2.

(iii) We assume that r ≥ 2. Then Dsl

r,n = ∅ if n is prime, and otherwise

dim Dsl

r,n =

(

r + n/`

r

)

+ ` − 3.

Proof. The decomposition (2.3) implies that D1,n = P1,n, and thus the
claim (i) for r = 1. We assume r ≥ 2 in the remainder of the proof.

(i) Each Dr,n,e is an algebraic set, and we have

(3.4) dim Dr,n,e ≤ dim P1,e + dim Pr,n/e = br,n/e + e − 3.

We let E = {e ∈ N : 1 < e | n} be the index set in (2.6). When n is prime, then
e = n = ` is the only element of E, and the upper bound dim Dr,n ≤ r + n− 2
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2 4 6 8 10`∗
s0

`0

e

8

10

12

14

16

18

u2,10(e) b (2, 20)

b

(5, 8)

b

(10, 10)b

(s0, 3 + 5
2

√
10)

b (`0, 10)

b
(`∗, 14.5)

Figure 3.1: An example of ur,n, for r = 2 and n = 10, with ` = 2, `∗ = 5
2
,

s0 =
√

10 ≈ 3.16, and `0 = 1 +
√

6 ≈ 3.45.

in (i) follows. We may now assume that n is composite. We consider the right
hand side in (3.4) as the function

(3.5) ur,n(e) = br,n/e + e − 3

of a real variable e on the interval [1, n]. See Figure 3.1 for an example. We
claim that

(3.6) ur,n(m) = max
e∈E

ur,n(e).

The upper bound in (i) follows from this. The second derivative

∂2ur,n

∂e2
(e) =

n

e3 · r!
∑

1≤i≤r

(

n

e

∑

1≤j≤r
j 6=i

∏

1≤k≤r
k 6=i,j

(k +
n

e
) + 2

∏

1≤j≤r
j 6=i

(j +
n

e
)

)

is positive on [1, n], so that ur,n is convex. In particular, ur,n takes its maximum
on the interval [`, n] at one of the two endpoints.

For (3.6), we start with the case r ≥ 3 and claim that ur,n(`) ≥ ur,n(n).
Setting s0 =

√
n, we have

ur,n(s0) − ur,n(n) =

(

r + s0

r

)

+ s0 − r − 1 − s2
0.
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Now we replace s0 by a real variable s, and set

vr(s) =

(

r + s

r

)

+ s − r − 1 − s2.

Then

(3.7) vr(2) =
r2 + r − 4

2
> 0,

since r ≥ 2. Furthermore, we have

∂vr

∂s
(s) =

1

r!

∑

1≤i≤r

∏

1≤j≤r
j 6=i

(j + s) + 1 − 2s.

Expanding the product, we find that the coefficient in the sum of the linear
term in s equals

∑

1≤i≤r

∑

1≤j≤r
j 6=i

∏

1≤k≤r
k 6=i,j

k = r!
∑

1≤i,j≤r
j 6=i

1

i · j ≥ r! · 2 · ( 1

1 · 2 +
1

1 · 3 +
1

2 · 3) = 2 · r!,

since r ≥ 3. Thus
∂vr

∂s
(s) ≥ 0,

and together with (3.7) this implies vr(s) > 0 for all s ≥ 2. Since n is composite,
we have 2 ≤ ` ≤ √

n = s0 < n, and from the above we have

ur,n(`) ≥ ur,n(s0) ≥ ur,n(n).

Since m = `, this shows the claim (3.6) and the upper bound in (i).
For the case r = 2, we observe that

(3.8) u2,n(`) − u2,n(n) =
(n − `)(n + 4` − 2`2)

2`2

is nonnegative if and only if ` ≤ `0, where `0 = 1 + 1
2

√
2n + 4 is the positive

root of the quadratic factor. Furthermore, we note that

(3.9) u2,n(n) > u2,n(`) ⇐⇒ ` > `0 ⇐⇒ n/` < 2` − 4 ⇐⇒ n/` ≤ 2` − 5,

`2
0 = n/2 +

√
2n + 4 + 2 > n/2.
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If the conditions in (3.9) hold, there is at most one other prime factor of n
besides `, so that n/` is prime and (3.1) holds. (3.6) follows in this case, and
also otherwise because of the equivalences in (3.9).

We have now shown one inequality in (i), namely that dim Dr,n ≤ ur,n(m).
For (ii), we claim that ur,n(m) < ur,n(1) = dim Pr,n. Since 1 < m ≤ n and ur,n

is convex, it is sufficient to show that

r + n − 2 = ur,n(n) < ur,n(1) =

(

r + n

r

)

− 2.

The inequality is equivalent to

r! < (r + n − 1)r−1,

where ar = a · (a − 1) · · · (a − r + 1) is the falling factorial (or Pochhammer
symbol). This is valid for n = 2 since 2 < r + 1, and the right hand side is
monotonically increasing in n, so that the claim is proven.

It follows that Dr,n is contained in a proper closed subset of Pr,n, and there
is a dense open subset consisting of indecomposable polynomials, which is (ii).
This fact also holds in each Pr,n/e. From the uniqueness of monic original
decompositions with indecomposable right component (Fact 2.4) ,we conclude
that if we restrict h in (2.5) to be in Ir,n/e, then the map (g, h) 7→ g ◦ h is
injective. Thus equality holds in (3.4), and (i) is also proven.

(iii) For superlinear compositions, we have Dsl

r,n = ∅ if n is prime, and now
may assume n to be composite. The maximal value allowed for e in (2.7) is
n/`. Thus (iii) follows from (i) when m < n. Then r = 2, and

(3.10) u2,n(`) − u2,n(n/`) =
(n − `2)(n + `2 + `)

2`2

is always nonnegative, so that

dim Dsl

2,n = dim D2,n,` = u2,n(`).

Together with the uniqueness of Fact 2.4, this proves (iii) also for m = n. �

4. Counting decomposables over finite fields

The goal in this section is to approximate the number of multivariate decom-
posables over a finite field, with a good relative error bound.

Over a finite field F = Fq with q elements, we have

#Pr,n =
qbr,n − qbr,n−1

q · (q − 1)
= qbr,n−2 1 − q−br−1,n

1 − q−1
.
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For the set Dall

r,n of all decomposable polynomials of degree n, we have

#Dall

r,n = q2(1 − q−1) · #Dr,n.

The proof of the following estimate of #Dr,n involves several case distinc-
tions which are reflected in the somewhat complicated statement of the theo-
rem. A simplified version is presented in Corollary 4.23 below.

Theorem 4.1. Let F = Fq be a finite field with q elements, r ≥ 2, ` the
smallest prime divisor of n ≥ 2, and m as in (3.3). We set

αr,n = q(
r+n/m

r )+m−3 · 1 − q−(r−1+n/m
r−1 )

1 − q−1
,(4.2)

cr,n,1 = ` − 3,

cr,n,2 = ` − 2,

cr,n,3 =

(

r + 1

2

)

− 2,

cr,n,4 =

(

r − 1 + n/`

r − 1

)

− 1,

(4.3) βr,n =











































0 if n is prime,

2q−cr,n,1(1 − q−n/`−1)

1 − q−2
if (3.1) holds,

2q−cr,n,2 if r = 2 and n/` = 2` − 3 is prime,

q−cr,n,3 if n = 4,
2q−cr,n,4

1 − q−1
otherwise.

Then the following hold.

(i)

|#Dr,n − αr,n| ≤ αr,n · βr,n.

(ii)

#Ir,n ≥ #Pr,n − 2αr,n.
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(iii) We set

αsl

r,n =











0 if n is prime,

q(
2+n/`

2 )+`−3(1 − q−n/`−1) if (3.1) holds,

αr,n otherwise,

βsl

r,n =











q−(n+`2+`)(n−`2)/2`2 if (3.1) holds and n > `2,

q−(n+`−2)/2 if (3.1) holds and n = `2,

βr,n otherwise.

Then

(4.4)
∣

∣#Dsl

r,n − αsl

r,n

∣

∣ ≤ αsl

r,n · βsl

r,n.

(iv) #Isl

r,n ≥ #Pr,n − 2αsl

r,n.

Proof. The proof of (i) and (ii) proceeds in three stages: an upper bound
on decomposables, a lower bound on indecomposables, and a lower bound on
decomposables. Each stage depends on the previous one. The art here is to find
bounds that are reasonably aesy to use on the one hand, and strong enough on
the other hand so that the lower bound from the third stage essentially matches
the upper bound.

According to (4.3), we have to distinguish five cases:

i condition for case i m cr,n,i

0 n prime n
1 r = 2, n/` ≤ 2` − 5 prime n ` − 3
2 r = 2, n/` = 2` − 3 prime ` ` − 2

3 n = 4 `

(

r + 1

2

)

− 2

4 otherwise `

(

r − 1 + n/`

r − 1

)

− 1

In the first stage, for a divisor e of n, we have

#Dr,n,e ≤ #P1,e · #Pr,n/e = qbr,n/e+e−3 ·1 − q−br−1,n/e

1 − q−1
,

and thus with ur,n from (3.5)

(4.5) #Dr,n ≤
∑

1<e|n

# Dr,n,e ≤
∑

1<e|n

qur,n(e) · 1 − q−br−1,n/e

1 − q−1
.
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We write u for ur,n and ci for cr,n,i, and recall E = {e ∈ N : 1 < e | n}.
If n is prime, then E = {n}, m = ` = n (see (3.3)), and each right hand

component h in a decomposition is linear, hence indecomposable. It follows
from Fact 2.4 that the map (g, h) 7→ g ◦ h is injective, Dr,n = im γr,n,n, and
#Dr,n = αr,n. All claims follow in this case. We may now assume that n is
composite.

In the first stage, we use the following blanket assumptions and notations:

(4.6) r ≥ 2, a = n/` ≥
√

n ≥ ` ≥ 2, a2 ≥ n ≥ 2` ≥ ` + 2.

We first explain our general strategy for the upper bound

(4.7) #Dr,n ≤ αr,n(1 + βr,n)

in (i). From (3.6) we know that the maximal value of u occurs at e = m. By
the convexity of u, each value is assumed at most twice, and we can majorize
the sum in (4.5) by twice a geometric sum. However, this would provide an
unsatisfactory error estimate, and we want to show that the difference between
u(m) and the other values u(e) with e ∈ E is sufficently large. We abbreviate

w =
1 − q−br−1,n/`

1 − q−br−1,n/m
,

define δ, µ, and β in (4.8), and claim that for any c the following implication
holds:

(4.8)

c ≤ δ = mine∈Er{m}(u(m) − u(e))
µ = min{#E − 1, 2

1−q−1}
β = µwq−c







⇒ #Dr,n ≤ αr,n(1 + β).

In our four cases, c will be instantiated by c1, c2, c3, and c4. We note that
µ ≤ 4. In order to prove the claim, we note that

u(e) − u(m) ≤ −c

for all e ∈ Er{m}. Since br−1,k is monotonically increasing in k and n/e ≤ n/`,
we have

1 − q−br−1,n/e ≤ 1 − q−br−1,n/`

for all e ∈ E. Using this estimate for all e 6= m and the fact that the convex
function u takes any of its values at most twice, we find that

q−u(m)
∑

e∈E

qu(e)(1 − q−br−1,n/e) < (1 + 2w
∑

i≤−c

qi) · (1 − q−br−1,n/m)

= (1 +
2wq−c

1 − q−1
) · (1 − q−br−1,n/m).
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Also, since E r {m} has #E − 1 elements, we find

q−u(m)
∑

e∈E

qu(e)(1 − q−br−1,n/e) ≤ (1 + (#E − 1)wq−c) · (1 − q−br−1,n/m).

Using (4.5) we conclude that

#Dr,n ≤ qu(m) · 1 − q−br−1,n/m

1 − q−1
· (1 + µwq−c) = αr,n(1 + β),(4.9)

as claimed. It then remains to see that β ≤ βr,n.
We now turn to our four cases. In case 1, (3.1) holds, E = {`, n/`, n},

r = 2, ` ≥ 5, m = n, and

w =
1 − q−n/`−1

1 − q−2
.

Now (3.10) says that

u(`) − u(n/`) =
(n − `2)(n + `2 + `)

2`2
≥ 0,

so that u(e) ≤ u(`) for all e ∈ E r {m} = {`, n/`}, and by (3.8)

δ = u(n) − u(`) =
1

2
(
n

`
− 1)(2` − 4 − n

`
) > 0.

The two right hand factors are positive integers. If the second one equals 1,
then

δ =
1

2
(2` − 5 − 1) = ` − 3 = c1.

Otherwise, δ ≥ n/` − 1 ≥ ` − 1 > ` − 3 = c1. Thus the assumptions in (4.8)
hold with c = c1, and since #E ≤ 3, we have µ ≤ 2 and β ≤ 2wq−c = βr,n.
This shows (4.7) in case 1.

In case 2, we have E = {`, 2` − 3, n}, m = `, and

u(`) − u(n) = ` − 2,

u(`) − u(2` − 3) =
1

2
(` − 3)(3` − 2).

The minimum of these two values is ` − 2 when ` ≥ 5. Then δ = ` − 2 = c2,
and furthermore µ = 2 and w = 1. This implies (4.7) in case 2, when ` ≥ 5.
For ` = 3, we have n = 9, E = {3, 9}, u(3) = 10, u(9) = 9, δ = 1 = ` − 2 = c2,
µ = 1, and w = 1. Thus β = q−c2 < βr,n, and (4.7) again holds.
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In case 3, we have E = {2, 4}, ` = m = 2, w = µ = 1,

δ = u(2) − u(4) =

(

r + 1

2

)

− 2 = c3 ≥ 1,

and (4.7) holds.
In case 4, we have m = ` < n, and introduce `∗ = n`/(n − `) ∈ Q. Thus `∗

is an integer only when n is 4 or 6. We first claim that

u(n) ≤ u(`∗).(4.10)

We start with the subcase r ≥ 3 and have to show that

(4.11)

(

r + a − 1

r

)

+
n

a − 1
− 3 = u(`∗) ≥ u(n) = r + n − 2.

We first treat the subcase a ≥ 5. Then a3 ≥ 3a2 + 4a + 12, so that the first
inequality in

(4.12)

1

a − 1

(

r + a − 2

a − 2

)

=
1

r + a − 1

(

r + a − 1

r

)

≥ 1 +
a2

r + a − 1
≥ 1 +

n

r + a − 1

is valid for r = 3, and for all r ≥ 3 since the left hand side is monotonically
increasing and the right hand side decreasing in r. Using (4.6), this yields
(4.11).

In the remaining subcase r ≥ 3 and a ≤ 4, we have n ∈ {4, 6, 8, 9}. Case
3 covers n = 4. The inequality between the outer terms in (4.12) holds for
the following values of (r, n): (4, 6), (3, 8), and (4, 9), and by monotonicity for
these values of n and any larger r. One checks (4.11) for (3, 6) and (3, 9).

We next have the subcase r = 2 and a ≥ 3. Then

u(n) − u(`∗) =
a − 2

2a − 2
· (2n − a2 − 2a + 3),(4.13)

u(n) > u(`∗) ⇐⇒ 2a` = 2n > a2 + 2a − 3

⇐⇒ 2` > a + 2 − 3

a
⇐⇒ 2` ≥ a + 2 ⇐⇒ 2` − 2 ≥ a.

By assumption, (3.1) does not hold, and if (4.13) is positive, then 2`−4 ≤ a ≤
2`− 2 follows. If a is even, then ` = 2, and one finds that n = 4, which is case
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3. So the only remaining possibility is a = 2` − 3. Since each prime divisor of
a is at least `, a is prime. But this is case 2, and therefore (4.10) holds.

For the remaining possibility a = 2, we find ` = 2 and n = 4, which has
been dealt with. We conclude that (4.10) always holds in case 4.

We have

`2 + 2` < 2n

for all n 6= 4, since this follows from n ≥ `2 when ` ≥ 3, and also for ` = 2.
This implies that

`∗ − ` =
`

n/` − 1
< 2.

For any e ∈ E r {`}, we have ` < e ≤ n and n/e < n/`. These values are both
integers, so that

n

e
≤ n

`
− 1 =

n

`∗
.

Thus `∗ ≤ e ≤ n for all e ∈ E r {`}. By (4.10) and the convexity of u, the
maximal value of u(e) for these e is at most max{u(`∗), u(n)} = u(`∗). In (4.8)
we have

δ ≥ u(`) − u(`∗) =

(

r + n/`

r

)

−
(

r − 1 + n/`

r

)

+ ` − `∗

=

(

r − 1 + n/`

r − 1

)

+ ` − `∗ > c4 + 1 − 2 = c4 − 1.

Since δ and c4 are integers, we also have δ ≥ c4. Furthermore, we have w = 1
and µ ≤ 2(1 − q−1)−1, so that β ≤ βr,n. Then the assumptions in (4.8) hold
with c = c4, and (4.7) follows.

In the next stage, we derive the lower bound in (ii) on the number #Ir,n of
indecomposable polynomials. The previous results yield

#Pr,n − #Ir,n = #Dr,n ≤ αr,n(1 + βr,n).

The claim in (ii) is that the last expression is at most 2αr,n, that is, βr,n ≤ 1.
Again, we distinguish according to our four cases.

For case 1, we have ` ≥ 5 and (1 − q−2)−1 ≤ 4/3, and thus βr,n < 8
3
q−`+3 ≤

8
3
· 2−2 < 1.

In case 2, we have ` ≥ 3 and

βr,n = 2q−`+2 ≤ q−`+3 ≤ 1.
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In case 3, we have c3 =
(

r+1
2

)

− 2 ≥ 1 > 0 and βr,4 = q−c3 < 1.
In case 4, we have βr,n ≤ 4q−c4 ≤ q2−c4, so that it is sufficient to show that

c4 ≥ 2. We have r, a ≥ 2 and

c4 + 1 =

(

r − 1 + a

r − 1

)

≥
(

r + 1

r − 1

)

=
r · (r + 1)

2
≥ 3.

This concludes the proof of (ii).
In the last stage, we estimate the number of decomposable polynomials

from below. The idea is obvious: we take the largest type of decomposable
polynomials, as identified above, and then use only indecomposable polynomi-
als as right components, so that the uniqueness property of Fact 2.4 applies.
We have

#Dr,n ≥ #Dr,n,m ≥ #(P1,m × I0
r,n/m) ≥ qm−1(#Pr,n/m − 2αr,n/m)

= qbr,n/m+m−3(1 − 2αr,n/m

#Pr,n/m

)
1 − q−br−1,n/m

1 − q−1
= αr,n · (1 − 2αr,n/m

#Pr,n/m

).

In the cases 2 and 3, n/m is prime, βr,n/m = 0, and we could replace
the factor 2 in the last expression by 1; however, we do not need this in the
following. In order to prove the lower bound #Dr,n ≥ αr,n(1 − βr,n) in (i), we
proceed according to our four cases. In case 1, we have r = 2, (3.1) holds,
m = n, Ir,1 = Pr,1, and

(4.14) #Dr,n ≥ #Dr,n,n = #(P1,n × P2,1) = qn(1 + q−1) = αr,n.

For the remaining three cases, we have m = ` and claim that

(4.15)
2αr,n/`

#Pr,n/`

≤ βr,n,

from which the lower bound follows:

#Dr,n ≥ αr,n · (1 − 2αr,n/`

#Pr,n/`

) ≥ αr,n · (1 − βr,n).

We denote by m∗ the quantity defined in (3.3) for the argument a = n/`
instead of n (and hence using the smallest prime divisor of n/` instead of `),
and set d = a/m∗ = n/`m∗. Thus m∗ is either a or its smallest prime divisor,
a = m∗d ≥ 2d ≥ 2, and

(4.16)
2αr,a

#Pr,a
=

2q−c∗(1 − q−br−1,d)

1 − q−br−1,a
≤ 2q−c∗,
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with

c∗ =

(

r + a

r

)

−
(

r + d

r

)

− m∗ + 1.

It is therefore sufficient for (4.15) to show

(4.17) 2q−c∗ ≤ βr,n.

In case 2, m∗ = a = n/` = 2` − 3 is prime, and

c∗ = (2` − 1)(` − 2) > ` − 2,

2q−c∗ < 2q−(`−2) = β2,n,

and (4.17) is satisfied.
In case 3, we have n = 4, ` = 2, a = m∗ = 2, d = 1, c∗ =

(

r+1
2

)

− 1, and
thus

2q−c∗ ≤ q · q−(r+1
2 )+1 = βr,4.

In case 4, we have

βr,n =
2q−c4

1 − q−1
> 2q−c4,

and it is sufficient for (4.17) to show that

(4.18) c∗ ≥ c4,

which in turn amounts to showing that

(

r − 1 + a

r

)

=

(

r + a

r

)

−
(

r − 1 + a

r − 1

)

≥
(

r + d

r

)

+ m∗ − 2,(4.19)

using Pascal’s identity. We prove this by induction on r ≥ 2. For r = 2, we
use a = m∗d ≥ m∗ ≥ 2. Thus

a2 + a − (
a

m∗
)2 − 3

a

m∗
=

a

(m∗)2

(

a((m∗)2 − 1) + (m∗)2 − 3m∗
)

≥ 2m∗ − 2,

since the inequality holds for a = m∗ and the middle term is monotonically
increasing in a for m∗ ≥ 2. It follows that

a2 + a ≥ (
a

m∗
)2 + 3

a

m∗
+ 2m∗ − 2,

which implies (4.19) for r = 2.
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For the induction step, we have a − 1 ≥ a/2 ≥ a/m∗ = d, and
(

r + a − 1

r

)

−
(

r + d

r

)

≥
(

r − 1 + a − 1

r − 1

)

−
(

r − 1 + d

r − 1

)

≥ m∗ − 2,

again by Pascal.
This finishes the proof of (i), and it remains to prove (iii) and (iv). We

may assume n to be composite. Since Dsl

r,n ⊆ Dr,n = Dsl

r,n ∪ im γr,n,n, the upper
bound on #Dr,n in (i) also holds for #Dsl

r,n, and the lower bound does unless
m = n. Thus (iii) and (iv) follow unless (3.1) holds, which we now assume.

Since n/` ≥ `, we have 1 − q−n/`−1 ≥ 1 − q−`−1. Using (3.10), we find

#Dsl

2,n ≤ #(P1,` × P2,n/`) + #(P1,n/` × P2,`)

= αsl

2,n(1 + q−(n+`2+`)(n−`2)/2`2 1 − q−`−1

1 − q−n/`−1
) ≤ αsl

2,n(1 + βsl

2,n),

#Dsl

2,n ≥ #(P1,` × I0
2,n/`)

≥ #P1,` · (#P2,n/` − 2α2,n/`) ·
#P2,n/`

#P2,n/`

= αsl

2,n(1 − 2q−(n+2`)(n−`)/2`2 1 − q−2

1 − q−n/`−1
)

≥ αsl

2,n(1 − q−(n+2`)(n−`)/2`2+1)

> αsl

2,n(1 − βsl

2,n).

If n = `2, then Dsl

2,n = D2,n,` and

#Dsl

2,n ≤ #(P1,` × P2,`) = αsl

2,n,

#Dsl

2,n ≥ #(P1,` × I0
2,`) ≥ αsl

2,n(1 − βsl

2,n

1 − q−2

1 − q−`−1
) ≥ αsl

2,n(1 − βsl

2,n). �

When r ≥ 2 and n = ` is prime, then #Dr,n = αr,n and

#Ir,n = #Pr,n − αr,n

= q(
r+n

r )−21 − q−(r−1+n
r−1 )

1 − q−1
− qr+n−21 − q−r

1 − q−1
.

(4.20)

Remark 4.21. In the simple case where n has exactly two prime factors and
r ≥ 2, it is easy to determine #Dr,n exactly. For n = `2,

Dr,n = {g ◦ h : g ∈ P1,`, h ∈ Ir,`} ∪ Dr,n,n



18 Joachim von zur Gathen

is a disjoint union. We have

#Dr,n =

{

αr,n + q(n+`−4)/2 1−q−`−1

1−q−1 − αr,n · q−(`−1)2 if r = 2 and ` ≥ 5,

αr,n + qn+r−2(1 − q−r)(1 − q2`−n−1) otherwise.

The first case corresponds to (3.1). We set

β ′
r,n =















q−(`−1)(`−4)/2 1 − q−`−1

1 − q−2
− q−(`−1)2 if r = 2 and ` ≥ 5,

q−(r+n/`
r )+n+r+1−` (1 − q−r)(1 − q2`−n−1)

1 − q−(r−1+n/`
r−1 )

otherwise.

Then
#Dr,n = αr,n(1 + β ′

r,n).

This value is exact, in contrast to the estimates of Theorem 4.1, and β
′

r,n

is often much smaller than βr,n. The drawback is that the values are more
complicated, and an attempt to generalize this approach to more than two
prime factors of n does not seem to lead to manageable results.

If n > `2 and n/` is prime, then one finds similarly that

#Dr,n = qbr,n/`+`−1(1 − q−br−1,n/`) + qbr,`+n/`−1(1 − qbr−1,`)

+ qn+r(1 − q−r)(1 − 2q`+n/`−n−1).

Here it is not even transparent which of the summands is the dominating
one. However, using the case distinction of (3.1), one again obtains a quantity
β

′

r,n, so that #Dr,n = αr,n(1+β
′

r,n). The previous remarks apply to this solution
as well.

Table 4.1 compares the exact results with the approximations of Theo-
rem 4.1 for r = 2 variables and degree n ≤ 6 and n ∈ {25, 26}. We have ` = m
in all of these cases, except for n = 25.

For all r and n where β ′
r,n is defined, we have β ′

r,n ≤ βr,n. For n = 4 or 6 in
Table 4.1, we have

β2,4 = β ′
2,4 + q−2 1 + 2q−1

1 + q−1 + q−2
,

β2,6 = β ′
2,6 + q−42 + 5q−1 + 3q−2 − 2q−3

1 − q−4
,

β2,25 = β ′
2,25 − 2q−16.
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n #D2,n α2,n β ′
2,n β2,n

2 q2 + q q2 + q 0 0
3 q3 + q2 q3 + q2 0 0

4 q5 + 2q4 + q3 − q2 q5 + q4 + q3 q−1 1 − q2

1 + q−1 + q−2
q−1

5 q5 + q4 q5 + q4 0 0

6 q9 + q8 + q7 + 3q6 q9 + q8 + q7 + q6 q−32 + 2q−1 − q−2 − 2q−3

1 + q−1 + q−2 + q−3

2q−3

1 − q−1

+2q5 − q4 − 2q3

25 q25 + q24 + 2q23 + 2q22 q25 + q24 2q−2 + 2q−4 2q−2 + 2q−4

+2q21 + 2q20 + 2q19 +2q−6 − 2q−16 +2q−6

+2q18 − 2q9 − 2q−8

26 q104 1−q−14

1−q−1 + q26 + q25 q104 1 − q−14

1 − q−1
q−78(1 + q−1 + q−10 2q−13

1 − q−1

+q16 + q15 − q14 − 2q13 +q−11 − q−12 − 2q−13) · 1 − q−1

1 − q−14

Table 4.1: Exact values and bounds for r = 2 and seven values of n.

The differences are small, but β2,26 ≈ 2q−13 and β ′
2,26 ≈ q−78 differ by many

orders of magnitude.
Bodin et al. (2009) obtain results similar to those of Remark 4.21. They also

show that #Ir,n/#P=
r,n → 1 as n → ∞ (see Theorem 4.1(ii)). Their methods

do not lead to a unified formula as in Theorem 4.1(i), and the error bounds are
weaker than the present ones by factors of O(n) or O(q). They did not discover
the special case (3.1), where the result is different from the generic one.

If u2,n(e) = u2,n(e
′) never happened for distinct divisors e, e′ ≥ 2 of n, we

could save a factor of 2 in β2,n. However, if we take two arbitrary positive
integers k ≥ 2 and m, set e = 2km2 + 2m2 + 3m, e′ = ke, and n = 2mke, then
e < e′ and u2,n(e) = u2,n(e

′). The smallest such choice gives n = 36, e = 9,
e′ = 18.

We can unify cases 2 and 4 in (4.3), and the other cases fit in trivially. We
set

(4.22)

cr,n,5 =
1

2

(

r − 1 + n/`

r − 1

)

− 1,

β∗
r,n =

2q−cr,n,5

1 − q−1
.
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Corollary 4.23. Let Dr,n be the set of decomposable polynomials of degree
n ≥ 2 in r ≥ 2 variables over Fq, and αr,n and β∗

r,n as in (4.2) and (4.22),
respectively. Then

|#Dr,n − αr,n| ≤ αr,n · β∗
r,n.

Proof. It is sufficient to show that βr,n ≤ β∗
r,n in all cases. This is an easy

calculation. �

Introducing the second largest nontrivial divisor of n as an additional parameter
would sharpen some of the bounds in Theorem 4.1 and simplify the proof.
However, the resulting estimates woould be harder to use, and some effort was
spent on avoiding this sparameter.

How close is our relative error estimate βr,n to being exponentially decaying
in the input size? In the “general” Case 4 of (4.3), βr,n is about q−c4 with c4

approximately br−1,n/` =
(

r−1+n/`
r−1

)

. Definitions (4.22) and Corollary 4.23 relate
also the special cases to this.

The (usual) dense representation of a polynomial in r variables and of degree
at most n requires br,n =

(

r+n
r

)

monomials, each of them equipped with a
coefficient from Fq, using about log2 q bits. Thus the total input size is about
log2 q · br,n bits. Now log2 q · br,n/` differs from log2 βr,n by a factor of 1 + n

r`
.

Furthermore, n and n/` are polynomially related, since n > n/` ≥ √
n. Up to

these polynomial differences (in the exponent), βr,n is exponentially decaying
in the input size. Furthermore βr,n is exponentially decaying in any of the
parameters r, n and log2 q, when the other two are fixed.

We compare our results to those of von zur Gathen (2008d) on the num-
ber #Rn of reducible and #En of relatively irreducible (irreducible and not
absolutely irreducible) bivariate polynomials. Ignoring factors close to 1 and
special cases like (3.1), we have for composite n

#Rn ≈ q(
n+2

2 )−n+1

#En ≈ q(
n+2

2 )−n2(`−1)
2`

#D2,n ≈ q(
n/`+2

2 )+`−1.

The first exponent is always greater than the third one, and for the second
and third ones we have

(

n + 2

2

)

− n2(` − 1)

2`
−

(

n/` + 2

2

)

− ` + 1 =
(` − 1)(n2 + 3n` − 2`2)

2`2
> 0.

In other words, there are many more reducible or relatively irreducible bivariate
polynomials than decomposable ones, as one would expect.
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Open Question 4.24. Can one (im)prove Theorem 4.1 with higher-level meth-
ods, hopefully avoiding some of the case distinctions?
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6. Appendix: Some calculations

Section 3

ur,n =

(

r + n
e

r

)

+ e − 1 =
(r + n

e
)r

r!
+ e − 1 =

1

r!

∏

1≤i≤r

(i +
n

e
) + e − 1,

u′
r,n = 1 +

1

r!

∑

1≤i≤r

∏

1≤j≤r
j 6=i

(j +
n

e
) · −n

e2
,

u′′
r,n =

1

r!

∑

1≤i≤r

(
∑

1≤j≤r
j 6=i

∏

1≤k≤r
k 6=i,j

(k +
n

e
) · (−n

e2
)2 +

∏

1≤j<r
j 6=i

(j +
n

e
) · 2n

e3
)

vr(2) =

(

r + 2

r

)

+ 2 − 1 − (r + 4) =
1

2
(r2 + 3r + 2 − 2r − 6)

=
1

2
(r2 + r − 4).

u2,n(`) − u2,n(n) =

(

2 + n/`

2

)

+ ` − 3 − (3 + n − 3)

=
(n + 2`)(n + `)

2`2
+ ` − n − 3

=
n2 + 3n` + 2`2 + 2`3 − 2n`2 − 6`2

2`2

=
n2 + 3n` − 4`2 − 2n`2 + 2`3

2`2

=
(n − `)(n + 4` − 2`2)

2`2
,

n + 4`0 − 2`2
0 = n + 4 + 2

√
2n + 4 − 2(1 +

√
2n + 4 + (2n + 4)/4) = 0.

` > `0 ⇐⇒ n + 4` − 2`2 < 0 ⇐⇒ n/` < 2` − 4,

(r + 2)r

(r + 1)!
=

(r + 2) · · ·4 · 3
(r + 1)!

=
r + 2

2
> 1,
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u2,n(`) − u2,n(n/`) =

(

2 + n
`

2

)

+ ` − 3 − (

(

2 + `

2

)

+
n

`
− 3)

=
1

2`2
((n + 2`)(n + `) + 2`3 − 2n` − `2(` + 2)(` + 1))

=
1

2`2
(n2 + 3n` + 2`2 + 2`3 − 2n` − `4 − 3`3 − 2`2)

=
1

2`2
(n2 + n` − `3 − `4)

=
1

2`2
(n − `2)(n + ` + `2).

Section 4
Theorem 4.1, Case 1, (3.1) holds:

u(n) − u(`) =

(

2 + 1

2

)

+ n − 1 − (

(

2 + n/`

2

)

+ ` − 1)

=
1

2
(−(

n

`
+ 2)(

n

`
+ 1) + 2n − 2` + 6)

=
1

2
(−(

n

`
)2 − 3n

`
+ 2n − 2` + 4)

=
1

2
(
n

`
− 1)(2` − 4 − n

`
).

Case 2: substitute n/` = 2` − 3 into previous equation:

u(`) − u(n) = −1

2
(2` − 4)(−1)

= ` − 2,

u(n) − u(2` − 3) =

(

2 + 1

2

)

+ n − 1 − (

(

2 + `

2

)

+ 2` − 3 − 1)

=
1

2
(−(` + 2)(` + 1) + 2`(2` − 3) − 4` + 12)

=
1

2
(−`2 − 3` − 2 + 4`2 − 6` − 4` + 12)

=
1

2
(3`2 − 13` + 10)

=
1

2
(3` − 10)(` − 1).
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Theorem 4.1, Case 3, n = 4

u(2) − u(4) =

(

r + 2

r

)

+ 2 − 1 − (

(

r + 1

r

)

+ 4 − 1)

=

(

r + 1

r − 1

)

− 2,

#Dr,4 ≤ qu(2)(1 − q−br−1,2) + qu(4)(1 − q−br−1,1)

≤ αr,4(1 − q−u(2)+u(4)).

Theorem 4.1(i), Case 4:

`0 ∈ Z ⇒ n − ` | n` ⇒ n

`
− 1 | n

⇒ n

`
· (n

`
− 1) | n ⇒ n2

`2
− n

`
=

n

`
(
n

`
− 1) ≤ n

⇒ n ≤ `(` + 1) ⇒ n = `2 or n = `(` + 1).

If n = `2, then ` − 1 | `2, hence ` = 2. If n = `(` + 1) and ` 6= 2, then ` + 1
is not prime, hence has a prime factor less than `.

6(a + 2)(
1

3 + a − 1

(

3 + a − 1

3

)

− (1 +
a2

3 + a − 1
))

= (a + 2)(a + 1)a − 6(a + 2) − 6a2

= a3 + 3a2 + 2a − 6a − 12 − 6a2

= a3 − 3a2 − 4a − 12 ≥ 0,

(r + a − 1)

(

r + a − 2

a − 2

)

− (a − 1)

(

r + a − 1

r

)

= (r + a − 1)
(r + a − 2)!

(a − 2)!r!
− (a − 1)

(r + a − 1)!

r!(a − 1)!
= 0.

(r, n) = (4, 6); a = 3 :

1

2

(

5

1

)

=
5

2
> 2 = 1 +

6

6
,



26 Joachim von zur Gathen

(r, n) = (3, 8), a = 4 :

1

3

(

5

2

)

=
10

3
>

14

6
= 1 +

8

6
,

(r, n) = (4, 9), a = 3 :

1

2

(

5

1

)

=
5

2
= 1 +

9

6
.

(r, n) = (3, 6), a = 3 :

(

5

3

)

+
6

2
− 1 = 12 > 9 = 3 + 6,

(r, n) = (3, 9), a = 3 :

(

5

3

)

+
9

2
− 1 =

27

2
> 12 = 3 + 9.

r = 2 :

u(n) − u(`0) = n + 2 −
(

a + 1

2

)

− n

a − 1
+ 1

=
1

2a − 2
(2an − 2n + 4a − 4 − a3 + a − 2n + 2a − 2)

=
1

2a − 2
(2an − 4n + 7a − 6 − a3),

(a − 2)(2n − a2 − 2a + 3) = 2an − a3 − 2a2 + 3a − 4n + 2a2 + 4a − 6

= 2an − a3 + 7a − 4n − 6.

`0 − ` =
n − (n

`
− 1)`

n
`
− 1

=
`

n
`
− 1

,

Theorem 4.1, lower bound in (i), case 0, n prime:

#(P=
1,n × P 0

r,1) = qn+1(1 − q−1) · qr+1−2 1 − q−r

1 − q−1

= qr+n(1 − q−r) = αr,n.
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Cases 2,3 and 4:

2αr,a

#P=
r,a

=
2q(

r+a/m∗

r )+m∗−1(1 − q−(r−1+a/m∗

r−1 ))

q(
r+a

r )(1 − q−(r−1+a
r−1 ))

.

Case 2: m∗ = a = 2` − 3, d = 1,

c∗ =

(

2 + 2` − 3

2

)

−
(

2 + 1

2

)

− (2` − 3) + 1

=
1

2
(2` − 1)(2` − 2) − 2` + 1 = (2` − 1)(` − 2).

2α2,2`−3

#P=
2,2`−3

=
2q−(2`−1)(`−2)(1 − q−2)

1 − q−2`+4

≤ 2q−(2`−1)(`−2) < 2q−(`−2) = β2,n.

Case 3:

c∗ =

(

r + 2

r

)

−
(

r + 1

r

)

− 2 + 1

=
(r + 2)(r + 1)

2
− (r + 1) − 1 =

r(r + 1)

2
− 1.

Case 4:

6 · (
(

3 − 1 + a

3

)

− (2a2 − 4a)) = (a + 2)(a + 1)a − 12a2 + 24a

= a3 + 3a2 + 2a − 12a2 + 24a

= a3 − 9a2 + 26a ≥ 0

Theorem 4.1(i), lower bound, case 4 with r = 2:

2(

(

a + 2

2

)

− (

(

a + 1

1

)

+

(

d + 2

2

)

+ a − 2))

= (a + 2)(a + 1) − 2a − 2 − (d + 2)(d + 1) − 2a + 4

= a2 − a − d2 − 3d + 2 ≥ 0.

Cases covered: r = 2; a > r ≥ 3; d = 1; r ≥ a and d ≥ 2.
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Case r ≥ a, d ≥ 2:

3d < 4d − 1 ⇒ 1 <
4

3
− 1

3d
,

4 · 64 = 5184 < 7203 = 3 · 74,

4/3 = 1 + 3−1 ≤ (4/3 − 1/6)4 = (7/6)4.

r2 ≥ 3r,

(r + n/`)(r − 1 + n/`) = r2 + 2rn/` + n2/`2 − r − n/`

= 2r + n + (2r − 1)n/`.

Lower bound on D, Case 3, r = 3, a ≥ r + 1

a2 − 9a + 26 ≥ 0,

a2 + 3a + 2 ≥ 12a − 24,

a(a2 + 3a + 2)

6
= a

(

2 + a

3

)

≥ 2a2 − 4a = a(2a − 4).

1 ≥ 2a(a − 2)
(

r−1+a
r

) =
2a(a − 2) · r!
(r − 1 + a)r

=
2(a − 2) · r

(

r−1+a
r−1

) ,

a ≥ r + 1 ≥ r +
2r(a − 2)
(

r−1+a
r−1

) ,

(

r+a
r

)

2
(

r−1+a
r−1

) =
r + a

2r
=

1

2
+

a

2r
≥ 1

2
+

1

2
+

a − 2
(

r−1+a
r−1

) .

Factor in βr,n,1:

a = n/` ≥ 1,

4

3
≤ 1

1 − q−2
≤ w =

1 − q−a−1

1 − q−2
≤ 1 − q−8

1 − q−2
= 1 + q−2 + q−4 + q−6

≤ 1 + 2−2 + 2−4 + 2−6 = 1 +
21

64
.

Theorem 4.1(i):
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u(n) − u(`∗) =

(

2 + 1

2

)

+ n − 1 −
(

(

2 + n
`∗

2

)

+ `∗ − 1
)

= 3 + n −
(

2 + a − 1

2

)

− n`

n − `

= 3 + n − (a + 1) · a
2

− n

a − 1

=
1

2a − 2
· ((3 + n)(2a − 2) − (a2 − 1) · a − 2n)

=
1

2a − 2
(6a − 6 + 2an − 2n − a3 + a − 2n)

=
1

2a − 2
(2an − 4n + 7a − a3 − 6)

=
a − 2

2a − 2
(2n − a2 + 2a − 3)

Theorem 4.1(iii), r = 2, (3.1) holds, n > `2

1 − q−`−1 < 1 − q−n/`−1,

2`2·((` + 2)(` + 1)

2
+

n

`
− 1 − (

(n
`

+ 2)(n
`

+ 1)

2
+ ` − 1))

= `4 + 3`3 + 2`2 + 2n` − (n2 + 3n` + 2`2) − 2`3

= −n2 − n` + `4 + `3 = −(n − `2)(n + `2 + `)

#Ds`
2,n ≤ q(

`+1
1 )−2 · q(2+n/`

2 )−2 · 1 − q−(1+n/`
1 )

1 − q−1

+ q(
n/`+1

1 )−2 · q(
2+`
2 )−2 · 1 − q−(1+`

1 )

1 − q−1

= q(n/`+2)(n/`+1)/2+`−3 1 − q−1−n/`

1 − q−1

+ q(`+2)(`+1)/2+n/`−3 1 − q−1−`

1 − q−1

= αs`
2,n(1 + q−(n−`2)(n+`2+`)/2`2 · 1 − q−`−1

1 − q−n/`−1
),

m = n,
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α2,n/` = q(
2+1
2 )+ n

`
−1(1 − q−(1+1

1 ))

= qn/`+2(1 − q−2),

(

n/` + 2

2

)

− n

`
− 2 =

1

2
((

n

`
)2 +

3n

`
+ 2 − 2n

`
− 4)

=
1

2
((

n

`
)2 +

n

`
− 2) =

1

2
(
n

`
+ 2)(

n

`
− 1),

#Ds`
2,n ≥ #P1,` · (#P2,n/` − α2,n/`)

= q`−1 · (q(n/`+2
2 )−21 − q−n/`−1

1 − q−1
− qn/`1 − q−2

1 − q−1
)

= q(
n/`+2

2 )+`−31 − q−n/`−1

1 − q−1
(1 − qn/`+2−(n/`+2

2 ) 1 − q−2

1 − q−n/`−1
)

= αsl

2,n(1 − q−(n+2`)(n−`)/2`2 1 − q−2

1 − q−n/`−1
)

≥ αsl

2,n(1 − q−(n+2`)(n−`)/2`2)

> αsl

2,n(1 − q−(n+`2+`)(n−`2)/2`2+1)

= αsl

2,n(1 − βsl

2,n),

(n + 2`)(n − `) = n2 + n` − 2`2 > n2 + n` − `4 − `3 = (n + `2 + `)(n − `2).

n = `2:

#(P1,` × P2,`) = q`+1(1 − q−1) · q(2+`
2 )−21 − q−`−1

1 − q−1
= αsl

2,n,

#(P1,` × I2,`) ≥ #P1,` · (#P2,` − α2,`)

= αs`
2,n(1 − α2,`

#P2,`
)

= αs`
2,n(1 − q`−b2,`+2 1 − q−1

1 − q−`−1
) > αs`

2,n(1 − q−b`,2+`+2)

= α2,n(1 − q−(`+2)(`−1)/2)

= α2,n(1 − βs`
2,n).
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Remark 4.21, n = `2,

#Ir,` = #Pr,` − αr,` = qbr,`−21 − q−br−1,`

1 − q−1
− q(

r+1
r )+`−31 − q−(r−1+1

r−1 )

1 − q−1

= qbr,`−2 1 − q−br−1,`

1 − q−1
− qr+`−21 − q−r

1 − q−1
,

#Dr,n = #P1,` · #Ir,` + #P1,n · #Pr,1

= q`+1−2 1 − q−1

1 − q−1
·
(

qbr,`−21 − q−br−1,`

1 − q−1
− qr+`−2 1 − q−r

1 − q−1

)

+ qn+1−2 1 − q−1

1 − q−1
· qr+1−21 − q−r

1 − q−1

=qbr,`+`−3 1 − q−br−1,`

1 − q−1
+ qr+n−2 (1 − q−r)(1 − q2`−n−1)

1 − q−1
.

If m = `(= n/`):

αr,n = qbr,`+`−3 1 − q−br−1,`

1 − q−1

β ′
r,n = q−br,`+r+n−`+1 (1 − q−r)(1 − q2`−n−1)

1 − q−br−1,`
,

#Dr,n = αr,n(1 + β ′
r,n).

n = `2, m = n, r = 2, ` ≥ 5:

αr,n = q3+n−3 1 − q−2

1 − q−1
= qn + qn−1,

#Dr,n = q`−1+b2,`−2 1 − q−`−1

1 − q−1
+ αr,n(1 − q2`−n−1)

= αr,n(1 + β ′
r,n),

(

` + 2

2

)

+ ` − 3 =
1

2
(`2 + 3` + 2 + 2` − 6) =

1

2
(`2 + 5` − 4),

` +

(

` + 2

2

)

− 3 − n =
1

2
(`2 + 5` − 4 − 2`2)

=
1

2
(−`2 + 5` − 4) =

−1

2
(` − 1)(` − 4),

β ′
r,n = q−(`−1)(`−4)/2 1 − q−`−1

1 − q−2
− q−(`−1)2 .
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Remark 4.21, n = ` · n/`, n/` 6= ` prime.

#Dr,n = #P1,` · #Ir,n/` + #P1,n/` · #Ir,` + #P1,n · #Pr,1

= q`−1 ·
(

qbr,n/`−2 1 − q−br−1,n/`

1 − q−1
− qr+n/`−2 1 − q−r

1 − q−1

)

+ qn/`−1 ·
(

qbr,`−2 1 − q−br−1,`

1 − q−1
− qr+`−2 1 − q−r

1 − q−1

)

+ qn−1 · qr−1 1 − q−r

1 − q−1

=
1

1 − q−1
·
(

qbr,n/`+`−3(1 − q−br−1,n/`) + qbr,`+n/`−3(1 − q−br−1,`)

+ qn+r−2(1 − q−r)(1 − 2q−(`−1)(n/`−1))
)

.

If m = `:

αr,n = qbr,n/`+`−3 1 − q−br−1,n/`

1 − q−1

#Dr,n = αr,n + qbr,`+n/`−3 1 − q−br−1,`

1 − q−1

+ qn+r−2 (1 − q−r)(1 − 2q−(`−1)(n/`−1))

1 − q−1

= αr,n(1 + β ′
r,n)

β ′
r,n =

1

1 − q−br−1,n/`
(qbr,`−br,n/`+n/`−`(1 − q−br−1,`)

+ q−br,n/`+n+r−`+1(1 − q−r)(1 − 2q−(`−1)(n/`−1))).

If m = n: r = 2
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αr,n = qn + qn−1,

br,n/` + ` − 3 =
1

2
(
n

`
+ 2)(

n

`
+ 1) + ` − 3 =

1

2`2
(n2 + 3n` + 2`3 − 4`2)

#Dr,n = α2,n(1 − 2q−(`−1)(n/`−1))

+ q(n2+3n`+2`3−4`2)/2`2 1 − q−n/`−1

1 − q−1

+ q(2n+`3+3`2−4`)/2` 1 − q−`−1

1 − q−1

= αr,n(1 + β ′
r,n),

β ′
r,n = q(−2n`2+n2+3n`+2`3−4`2)/2`2 1 − q−n/`−1

1 − q−2

+ q(−2n`+2n+`3+3`2−4`)/2` 1 − q−`−1

1 − q−2

− 2q−(`−1)(`−4)

= q−(2`2−n−4`)(n−`)/2`2 1 − q−n/`−1

1 − q−2

+ q−(2n−`2−4`)(`−1)/2` 1 − q−`−1

1 − q−1

− 2−(`−1)(`−4).

Table 4.1 shows that the factor 1 − q−br−1,n/m in αr,n corresponds to terms
of lower order than those in the error term βr,n. Can we drop the factor ? The
statement and proof of Theorem 4.1 can be modified to work in most cases,
but not in Case 1, where r = 2 and m = n. The factor is 1 − q−2 in this case
and cannot be bounded by 1 − β, where β decreases with n or `. This affects
other cases as well, since in the “inductive step” of (4.16), (r, a) might be in
Case 1.

Corollary 4.23:
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Case 1: (3.1) holds,

q−1 + q−n/`−1 ≤ 1 + q−n/`,

(1 − q−1)(1 − q−n/`−1) = 1 − q−1 − q−n/`−1 + q−n/`−2 < 1 − q−2,

1

2
(n/` + 1) − 1 ≤ 1

2
(2` − 5 + 1) − 1 = ` − 2 − 1 = ` − 3,

β2,n =
2q−`+3(1 − q−n/`−1)

1 − q−2
≤ 2q−

1
2
(n/`+1)+1

1 − q−1
= β∗

2,n.

Case 2: r = 2 and n/` = 2` − 3 is prime,

1

2
(n/` + 1) − 1 = ` − 1 − 1 = ` − 2,

β2,n = 2q−`+2 ≤ 2q−
1
2
(n/`+1)+1

1 − q−1
= β∗

2,n.

Case 3: r ≥ 2 and n = 4

1

2

(

r + 1

2

)

− 1 =
1

4
(r2 + r − 4) <

1

2
(r2 + r − 4) =

(

r + 1

2

)

− 2,

βr,4 = q−(r+1
2 )+2 <

2q−
1
2(

r+1
2 )+1

1 − q−1
= β∗

r,4.

(

n + 2

2

)

− n + 1 −
((

n/` + 2

2

)

+ ` − 1

)

=
1

2
(n2 + n + 4 − 1

`2
(n2 + 3`n + 2`2(` − 1)))

=
1

2`2
(n2`2 + n`2 + 4`2 − n2 − 3`n − 2`2 − 2`3 + 2`2)

=
1

2`2
(n2(`2 − 1)) + n`(` − 3) + 4`2 − 2`3)

≥ 1

2`2
(`4(`2 − 1) + `3(` − 3) + 4`2 − 2`3)

=
1

2`2
(`6 − 5`3 + 4`2)

=
1

2
(`4 − 5` + 4) > 0.
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(

n + 2

2

)

− n2(` − 1)

2`
−

(

n/` + 2

2

)

− ` + 1

=
1

2`2
(n2`2 + 3n`2 + 2`2 − n2`2 + n2` − n2 − 3n` − 2`2 − 2`2(` − 1))

=
1

2`2
(n2(` − 1) + 3n`(` − 1) − 2`2(` − 1))

=
` − 1

2`2
(n2 + 3n` − 2`2).
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