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The Prime Number Theorem and a well-known result of Gau8 count (ap-
proximately or exactly) the number of prime (or irreducible) elements in Z
or Fy[z]. Leonard Carlitz, Stephen Cohen, and others considered multivariate
polynomials. We now have an exact formula for their number, and similarly for
squareful und relatively irreducible (irreducible and not absolutely irreducible)
polynomials, and approximations for the decomposable ones.

This talks’ report results on univariate decomposable polynomials f = goh =
g(h) € Fy[z]. The tame case, where the characteristic p of Fy does not divide
n = deg f, is fairly well-understood, and we obtain closely matching upper and
lower on the number of decomposable polynomials. In the opposite wild case,
the bounds are less satisfactory.

The care of this talk deals with the easiest instance of the tame case, where
n = p?. We may assume g and h to have degree p and to be monic and original,
that is, with constant coefficient 0.

Besides the trivial case of pth power, the additive polynomials f = P +
axP + bx are of interest. Mark Giesbrecht’s talk reports on these. We now
assume f to be not of this form.

Any (g,h) yields a decomposable f = g o h, and the crux of the matter
is to count the number of collisions, where different (g,h) yield the same f.
Abhyankar introduced the projective polynomial 1 = yPtt — uy + u. There is
an intimate connection between collisions and the roots of . As an example,
suppose that [ [p—1, m = (p—1)/l and t € F is a root of ¢. Then

f=a@® —ual + ) = (22 —ut™Y)) o (z(z! —t)™)
=goh.

While g and h depend on t, f does not. Thus two distinct roots of ¥ yield a
collision.

There is another, similar, type of collision from different roots of ¥. The
main result is that these are all possibilities.



Work in progress is to simplify the current proof of this result which relies on
the ramification theory of function fields, and to determine exactly the number
of such collisions.
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