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Abstract

A univariate polynomial f over a field is decomposable if it is the composition
f = g◦h of two polynomials g and h whose degree is at least 2. The tame case,
where the field characteristic p does not divide the degree n of f , is reasonably
well understood. The wild case, where p divides n, is more challenging. We
present an efficient algorithm for this case that computes a decomposition,
if one exists. It works for most but not all inputs, and provides a reasonable
lower bound on the number of decomposable polynomials over a finite field.
This is a central ingredient in finding a good approximation to this number.

Key words: computer algebra, wild polynomial decomposition, finite fields,
combinatorics on polynomials

1. Introduction

It is intuitively clear that the decomposable polynomials form a small
minority among all polynomials (univariate over a field F ). The present
paper is part of a project that aims at a quantitative version of this intuition,
namely an approximation to the number of decomposables over a finite field,
together with a good relative error bound.

One readily obtains an upper bound. The challenge then is to find an es-
sentially matching lower bound. The tame case, where the field characteristic
p does not divide the degree of the left component, is well understood, both
theoretically and algorithmically, since the breakthrough result of Kozen &
Landau (1986); see also von zur Gathen, Kozen & Landau (1987); Kozen &
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Landau (1989); von zur Gathen (1990a); Kozen, Landau & Zippel (1996);
Gutierrez & Sevilla (2006), and the survey articles of von zur Gathen (2002)
and Gutierrez & Kozen (2003) with further references. The present paper
deals with the complementary wild case, which is also addressed in Barton
& Zippel (1985) and Zippel (1991).

Let k,m ≥ 2 be integers, and S a set of pairs (g, h) of polynomials from
F [x] of degrees k,m, respectively, and h monic with h(0) = 0. Then we want
to bound the number s of all g ◦ h with (g, h) ∈ S. Clearly s ≤ #S. It is
well-known that in the tame case the composition map is injective, so that
s = #S. In the wild case, this is not true in general. The goal, then, in
this paper is to prove a lower bound #S · (1 − ε) ≤ s, with a small ε. This
is achieved for a particular S described in Theorem 4.15(ii) by an algorithm
that takes some f ∈ F [x] and a factorization n = deg f = k ·m as input, and
outputs all decompositions (g, h) ∈ S with f = g◦h. Using a result of Bluher
(2004), one can show that “usually” there are only few decompositions. The
desired lower bound then follows.

The algorithm presented here is similar in spirit to the one in von zur
Gathen (1990b), and also works for most, but not all, inputs. It is somewhat
simpler and faster, but its raison d’être is the lower bound just mentioned.
The older method yields an estimate which is weaker by a factor of about
1/2n (see Fact 3.1(ii)) and insufficient for our goal. The new lower bound in
Theorem 6.1 is of the form #S · (1− O(q−1)) over Fq, where S is the set of
all (g, h) of the degrees under consideration.

Throughout this paper, we provide explicit estimates without unspecified
constants. In particular, the O(q−1) above represents an explicit expression
which depends on various parameters and divisibility conditions among them.
It remains an open problem to replace q−1 by some smaller quantity, maybe
q−p+1 (for p ≥ 3).

In order to approximate the number of decomposable polynomials, one
has to address the uniqueness (or lack thereof) of compositions

g ◦ h = g∗ ◦ h∗ (1.1)

with h 6= h∗ and both monic with constant coefficient 0, in two situations. We
have an equal-degree collision {(g, h), (g∗, h∗)} if deg g = deg g∗ (and hence
deg h = deg h∗), and a distinct-degree collision if deg g = deg h∗ 6= deg h
(and hence deg h = deg g∗). The present paper only deals with equal-degree
collisions and we drop the qualifier “equal-degree” throughout. Concerning
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distinct-degree collisions, Ritt’s Second Theorem is the central tool, describ-
ing all possibilities for such collisions. A normal form for the quantities in
this Theorem and an estimate for the number of such collisions are in von zur
Gathen (2010a), and von zur Gathen (2010b) describes the final approxima-
tion result. Some of these results are reported in von zur Gathen (2009).
Certain wild cases, in particular decompositions at degree p2, are studied
in von zur Gathen, Giesbrecht & Ziegler (2010). Multivariate decomposable
polynomials are counted in von zur Gathen (2010c).

2. Decompositions

A nonzero polynomial f ∈ F [x] over a field F is monic if its leading
coefficient lc(f) equals 1. We call f original if its graph contains the origin,
that is, f(0) = 0.

Definition 2.1. For g, h ∈ F [x],

f = g ◦ h = g(h) ∈ F [x]

is their composition. If deg g, deg h ≥ 2, then (g, h) is a decomposition of f .
A polynomial f ∈ F [x] is decomposable if there exist such g and h, otherwise
f is indecomposable.

Multiplication by a unit or addition of a constant does not change de-
composability, since

f = g ◦ h ⇐⇒ af + b = (ag + b) ◦ h

for all f , g, h as above and a, b ∈ F with a 6= 0. In other words, the set of
decomposable polynomials is invariant under this action of F× × F on F [x].
In particular, if we have a set M of monic original decomposable polynomials
and let M∗ be the set of all their compositions with a linear polynomial on
the left, then

#M∗ = q2(1− q−1) ·#M. (2.2)

Furthermore, any decomposition (g, h) can be normalized by this action,
by taking a = lc(h)−1 ∈ F×, b = −a · h(0) ∈ F , g∗ = g((x − b)a−1) ∈ F [x],
and h∗ = ah+ b. Then g ◦ h = g∗ ◦ h∗ and h∗ is monic original.

It is therefore sufficient to consider compositions f = g ◦h where all three
polynomials are monic and original. If Dn is the set of such f of degree n,
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then the number of all decomposable polynomials of degree n, not restricted
to monic original, is

q2(1− q−1) ·#Dn. (2.3)

We fix some notation for the remainder of this paper. For n ≥ 1, we write

Pn = {f ∈ F [x] : deg f = n, f monic and original},

and use n = deg f ≥ 1 throughout. For any divisor e of n, we have the
composition map

γn,e :
Pe × Pn/e −→ Pn,

(g, h) 7−→ g ◦ h,

corresponding to Definition 2.1, and set

Dn,e = im γn,e. (2.4)

The set Dn of all decomposable polynomials in Pn satisfies

Dn =
⋃

e|n
1<e<n

Dn,e. (2.5)

In particular, Dn = ∅ if n is prime. Over a finite field Fq with q elements,
we have

#Pn = qn−1,

#Dn,e ≤ qe+n/e−2.

Example 2.6. We look at monic original decompositions (g, h) of univariate
monic original quartic polynomials f , so that n = 4. The general case is

(x2 + ax) ◦ (x2 + bx) = x4 + ux3 + vx2 + wx ∈ F [x],

with a, b, u, v, w ∈ F . We find that with a = 2w/u and b = u/2 (assuming
2u 6= 0), the cubic and linear coefficients match, and the whole decomposition
does if and only if

u3 − 4uv + 8w = 0.

If F is infinite of characteristic 6= 2, then this is a defining equation for the
hypersurface of decomposable polynomials in P4. This example is also in
Barton & Zippel (1976, 1985). In characteristic 2, we find the conditions
u = 0, a = b2+ v, and b3+ bv+w = 0. The latter is related to the projective
polynomials of Section 5. ♦

4



3. Equal-degree collisions

A decomposition (g, h) of f = g ◦ h over a field F of characteristic p ≥ 0
is called tame if p ∤ deg g, and wild otherwise, in analogy with ramification
indices. The polynomial f itself is tame if p ∤ deg f = n, and wild otherwise.
The tame case is well understood, both theoretically and algorithmically.
The wild case is more difficult and less well understood; there are polynomi-
als with superpolynomially many “inequivalent” decompositions (Giesbrecht,
1988).

For u, v ∈ F [x] and j ∈ N, we write

u = v +O(xj)

if deg(u − v) ≤ j. We start with two facts from the literature concerning
the injectivity of the composition map. When p | n, a polynomial f =
xn + fix

i +O(xi−1) with i < n and fi 6= 0 is called simple if i 6= n− p.

Fact 3.1. Let F be a field of characteristic p, and e a divisor of n ≥ 2.

(i) If p does not divide e, then γn,e is injective, and for F = Fq we have

#Dn,e = qe+n/e−2.

(ii) If p divides n exactly d times and f ∈ F [x] is simple, then f has at most
s < 2pd ≤ 2n monic normal decompositions, where s = (pd+1 − 1)/(p−
1) = 1 + p+ · · ·+ pd.

Proof. The uniqueness in (i) is well-known, see e.g., von zur Gathen
(1990a) and the references therein. (ii) follows from von zur Gathen (1990b),
where the above notion of a simple polynomial is defined, and (the proof of)
Corollary 3.6 of that paper shows that there are at most s such decomposi-
tions of f . �

Von zur Gathen (1990b) also gives an algorithm to decide decomposability
and, in that case, to compute all such decompositions. This only applies to
“simple” polynomials, and no nontrivial general upper bound on the number
of decompositions seems to be known.

Algorithm 4.10 below uses a similar approach. On the one hand, it applies
to more restricted inputs. On the other hand, it is faster (roughly, n2 vs.
n4), more transparent and hence easier to analyze, and yields a lower bound
on the number of decomposables at fixed component degrees.
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Von zur Gathen (2009) provides an approximate upper bound αn on
#Dn, with a small relative error. Furthermore, Fact 3.1 immediately yields
a lower bound of αn/2 if p is not the smallest prime divisor ℓ of n, and of
about αn/4n in general, since “most” polynomials are simple. The task now
is to improve these estimates.

By Fact 3.1(i), there are no equal-degree collisions when p ∤ deg g. In
the more interesting case p | deg g, collisions are well-known to exist; Exam-
ple 6.16 exhibits all four collisions over F3 at degree 9. Our goal, then, is
to show that there are few of them, so that the decomposable polynomials
are still numerous. Algorithm 4.10 provides a constructive proof of this. For
many, but not all, (g, h) it reconstructs (g, h) from g ◦ h. To quantify the
benefit provided by the algorithm, we rely on a result by Antonia Bluher
(2004).

It is useful to single out a special case of wild compositions. If f ∈
F [xp] ∩ Pn, then f = h ◦ xp for some h ∈ Pn/p, and f is decomposable if
n > p.

Definition 3.2. An f ∈ F [xp] of degree larger than p is called a Frobenius
composition, and any decomposition (g, h) of f = g◦h is a Frobenius decom-
position. For a positive integer j, we denote by ϕj : F −→ F the jth power

of the Frobenius map over F , with ϕj(a) = ap
j

for all a ∈ F , and extend it
coefficientwise to an Fp-linear map ϕj : F [x] −→ F [x].

For any monic original h ∈ F [x] of degree at least 2 and distinct from
xpj , we have the collision

xpj ◦ h = ϕj(h) ◦ x
pj . (3.3)

Over F = Fq, there are qp
j−1 − 1 many h ∈ Ppj with h 6= xpj and for

m 6= pj, this produces qm−1 collisions with h ∈ Pm. This example is noted in
Schinzel (1982), Section I.5, page 39.

The Frobenius compositions from Definition 3.2 are easily described and
counted. It is useful to separate them from the others. If p | n and ℓ is a
proper divisor of n > p, we set

Dϕ
n = Dn ∩ F [xp],

D+
n = Dn rDϕ

n ,

D+
n,ℓ = Dn,ℓ ∩D+

n ,

(3.4)

so that Dϕ
n comprises exactly the Frobenius compositions of degree n.
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4. A decomposition algorithm

We now describe an algorithm for certain “wild” decompositions f = g◦h
with

deg f = n = k ·m = deg g · deg h

and p | k. It first makes coefficient comparisons to compute h, and then a
Taylor expansion to find g. It does not work for all inputs, but for sufficiently
many for our counting purpose. In general, decomposing a polynomial can
be attempted by solving the corresponding system of equations in the coeffi-
cients of the unknown components, say, using Gröbner bases. However, over
sufficiently bizarre fields (certain infinite but “computable” fields of positive
characteristic), decomposability is undecidable (von zur Gathen (1990b)).

To fix some notation, we have positive integers

d, r = pd, a, k = ar, m ≥ 2, n = km, κ < k with p ∤ aκ, (4.1)

and polynomials

g = xk +
∑

1≤i≤κ

gix
i,

h =
∑

1≤i≤m

hix
i,

f =
∑

1≤i≤n

fix
i = g ◦ h = hk +

∑

1≤i≤κ

gih
i,

(4.2)

with hm = 1, hm−1 6= 0, and gκ 6= 0. The idea is to compute hi for i = m−1,
m−2, . . ., 1 by comparing the known coefficients of f to the unknown ones of
hk and gκh

κ. Special situations arise when the latter two polynomials both
contribute to a coefficient. We denote by

h(i) =
∑

i<j<m

hjx
j

the top part of h− xm, so that h(m−1) = 0. Furthermore, we write coeff(v, j)
for the coefficient of xj in a polynomial v ∈ F [x], and

ci,j(v) = coeff(v ◦ (h− h(i)), j).

Thus cm−1,j(x
k) = coeff(hk, j), and in particular, we have cm−1,j(g) = fj for

all j. To illustrate the usage of these cij, we consider E1 below. At some
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point in the algorithm, we have determined gκ, hm, . . . , hi+1. The appropriate
cij in (4.6) exhibits hi in a simple fashion, meaning that we can compute it
from the known data fj and h(i).

Lastly we define the rational number

i0 = m(
κ− a

r − 1
− a+ 1) =

κm− n

r − 1
+m. (4.3)

Thus i0 < m, and i0 is an integer if and only if

r − 1 | (κ− a)m. (4.4)

The following lemma describes, in the language introduced above, the
coefficients that we will use.

Lemma 4.5. For 1 ≤ i ≤ m and 0 ≤ j ≤ n, we have the following

E1: If i < m, then
ci,(κ−1)m+i(gκx

κ) = κgκhi, (4.6)

and cm−1,κm(gκx
κ) = gκ.

E2: If i < m, then
ci,n−r(m−i)(x

k) = ahr
i . (4.7)

If r ∤ j, then coeff(hk, j) = 0.

E3: If i0 ∈ N, then

ci0,(κ−1)m+i0(x
k + gκx

κ) = ahr
i0
+ κgκhi0 . (4.8)

E4: If m = r and κ = k − 1, then

cm−1,κm(x
k + gκx

κ) = ahr
m−1 + gκ,

cm−1,κm−1(x
k + gκx

κ) = −gκhm−1.
(4.9)

Proof. For E1, we have to consider

gκ(x
m + hix

i +O(xi−1))κ = gκx
κm + gκ · κhix

(κ−1)m+i +O(x(κ−1)m+i−1).

We observe that

ci,(κ−1)m+i(gκx
κ) = gκ · κhi,

cm−1,κm(gκx
κ) = coeff(gκh

κ, κm) = gκ,
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and E1 follows. For E2, we start with

ha = xam + ahm−1x
am−1 +O(xam−2).

When i < m, then in the coefficient of x(a−1)m+i in ha, we have the contri-
bution ahi, which comes from taking in the expansion of ha the factor xm

exactly a−1 times and the factor hix
i exactly once; there are a ways to make

these choices. The largest degree to which a summand hjx
j contributes in

ha is (a− 1)m+ j, so that those with j < i do not appear in the coefficient
under consideration, and ci,(a−1)m+i(x

a) = ahi. Raising ha to the rth power
yields

ci,((a−1)m+i)r(x
k) = ci,((a−1)m+i)r((x

a)r) = arhr
i = ahr

i

and proves E2, since ((a− 1)m+ i)r = n− r(m− i).
For E3, we use E2 and E1 to find

(κ− 1)m+ i0 = n− r(m− i0),

ci0,(κ−1)m+i0(x
k + gκx

κ) = ci0,n−r(m−i0)(x
k) + ci0,(κ−1)m+i0(gκx

κ)

= ahr
i0
+ κgκhi0 .

For E4, we have κm = n− r and from E2 and E1

cm−1,κm(x
k + gκx

κ) = cm−1,n−r(x
k) + cm−1,κm(gκx

κ) = ahr
m−1 + gκ,

cm−1,κm−1(x
k + gκx

κ) = coeff(hk, κm− 1) + cm−1,κm−1(gκx
κ)

= 0 + κgκhm−1 = −gκhm−1. �

In the following algorithm, the instruction “determine hi (or gκ) by Eµ

(at xj)”, for 1 ≤ µ ≤ 4, means that the property Eµ involves some quantity
cij(·) which is a summand in coeff(g ◦ h, j) = fj, the other summands are
already known, and we can solve for hi (or gκ). When we use E2, we first
compute y = hr

i and then hi by extracting the rth root of y. Over a finite
field, this always yields a unique answer, since r is a power of p. But in
general, y might not have an rth root. We say “compute hr

i by E2, then hi

if possible” to mean that first y is determined, then hi as its rth root; if y
does not have an rth root, then the empty set is returned. In step 1, f 1/p is
to be interpreted in the same sense.

The main effort in the correctness proof is to show that all data required
are available at any point in the algorithm, and that the equation can in-
deed be solved. The algorithm’s basic structure is driven by the relationship
between the degrees κm of gκh

κ and n− r of hk − xn.
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Algorithm 4.10. Wild decomposition.

Input: f ∈ F [x] monic and original of degree n = km, where F is a field of
characteristic p ≥ 2, d ≥ 1, r = pd, k = ar with p ∤ a, and m ≥ 2.

Output: Either a set of at most r+1 pairs (g, h) with g, h ∈ F [x] monic and
original of degrees k and m, respectively, and f = g◦h, or “failure”.

1. Let j be the largest integer for which fj 6= 0 and p ∤ j. If no such
j exists then if d ≥ 2 call Algorithm 4.10 recursively and else call a
tame decomposition algorithm, in either case with input f ∗ = f 1/p and
k∗ = k/p. If a set of (g∗, h∗) is output by the call, then return the set of
all Frobenius compositions (xp ◦ g∗, h∗).

2. If p ∤ m then if m ∤ j then return “failure” else set κ = j/m. If p | m
then if m ∤ j + 1 then return “failure” else set κ = (j + 1)/m. If p | κ,
then return “failure”. Calculate i0 = (κm− n)/(r − 1) +m.

3. If κm ≥ n− r + 2 then do the following.

a. Set gκ = fκm.

b. Determine hi for i = m− 1, . . . , 1 by E1.

4. If κm = n− r + 1 then do the following.

a. Set gκ = fκm.

b. Determine hm−1 by E3. [We have i0 = m − 1 ∈ N.] If (4.8) does
not have a unique solution, then return “failure”.

c. Determine hi for i = m− 2, . . . , 1 by E1.

5. If κm = n− r then do the following.

a. Determine hm−1 by E4, in the following way. Compute the set A of
all nonzero s ∈ Fq with

asr+1 − fκms− fκm−1 = 0. (4.11)

[We will see that the conditions in E4 are satisfied.] If A = ∅ then
return the empty set, else do steps 5.b and 5.c for all s ∈ A, setting
hm−1 = s.

b. Determine gκ by E4 at xκm, from fκm = ahr
m−1 + gκ.

c. For i = m− 2, . . . , 1 determine hi by E1.

6. If κm < n− r then do the following.

a. Determine hr
m−1 by E2, then hm−1 if possible.

10



b. If r ∤ m then determine gκ by E1 at xκm (as gκ = fκm), else by E1

at xκm−1 (via κgκhm−1 = fκm−1).

c. Determine hr
i by E2, then hi if possible, for decreasing i withm−2 ≥

i > i0.

d. If i0 is a positive integer, then determine hi0 by E3. If E3 does not
yield a unique solution, then return “failure”.

e. Determine hi for decreasing i with i0 > i ≥ 1 by E1.

7. [We now know h.] Compute the remaining coefficients g1, . . . , gκ−1 as the
Taylor coefficients of f in base h.

8. Return the set of all (g, h) for which g ◦ h = f . If there are none, then
return the empty set.

The Taylor expansion in step 7 method determines, for given f and h,
the unique g (if one exists) so that f = g ◦ h =

∑
1≤i≤k gih

i. Such Taylor
coefficients of f in base h always exist uniquely with deg gi < deg h for all i;
see von zur Gathen & Gerhard (2003), Section 5.11. We have a decomposition
of f if and only if all gi are constant. This view was presented in von zur
Gathen (1990a).

We first illustrate the algorithm in three examples.

Example 4.12. We let p = 5, n = 50, and k = r = 5, so that a = d = 1
and m = 10, and start with κ = 4 = r− 1. We assume f39 = g4h9 6= 0. Then

h5 + g4h
4 = x50 + h5

9x
45 + (h5

8 + g4)x
40 + 4g4h9x

39 + g4(4h8 + h2
9)x

38

+x36 ·O(x) + (h5
7 + g4(4h5 + h9h6 + h8h7 + h2

9h7 + h9h
2
8 + h3

9h8))x
35 +O(x34).

Step 1 determines j = 39, and step 2 finds κ = (39 + 1)/10 = 4 and
i0 = 15/2 6∈ N. Since κm = 40 < 45 = n − r, we go to step 6. Step 6.a

computes h9 = f
1/5
45 at x45, step 6.b yields g4 = f39/4h9 at x39, step 6.c

determines h8 = (f40− g4)
1/5 at x40 by E2, step 6.d is skipped, and then step

6.e yields h7, ..., h1 at x
37, ..., x31, respectively, all using E1. Step 7 determines

g1, g2, g3, and step 8 checks whether indeed f = g◦h, and if so, returns (g, h).
♦

11



Example 4.13. With the same values as above, except that κ = 3, we have

h5 + g3h
3 = x50 + h5

9x
45 + h5

8x
40 + h5

7x
35

+ (h5
6 + g3)x

30 + 3g3h9x
29 + g3(3h

2
9 + 3h8)x

28 + x26 ·O(x)

+ (h5
5 + g3(3h5 + 3h9h6 + 3h8h7 + 3h2

9h7 + 3h9h
2
8))x

25 +O(x24).

Assuming that f29 = 3g3h9 6= 0, the algorithm computes j = 29, κ =
(29 + 1)/10, i0 = 5 ∈ N, goes to step 6, determines h9 at x45, g3 at x29, h8,
h7, h6 according to E2, then h5 at x25 via the known value for h5

5 + 3g3h5

in step 6.d with E3. Condition (4.16) below requires that (−3g3)
(q−1)/4 6= 1

and guarantees that h5 is uniquely determined, as shown in the proof of
Theorem 4.15 below. Finally h4, ..., h1 and g1, g2 are computed. ♦

Example 4.14. Finally, we take p = 5, n = 25, k = r = m = 5 and κ = 4,
so that a = 1 and

h5 + g4h
4 = x25 + (h5

4 + g4)x
20 + 4g4h4x

19 +O(x18).

Again we assume f19 = 4g4h4 6= 0. Then steps 1 and 2 determine j = 19,
κ = 4, and i0 = 15/4 6∈ N. We have κm = 20 = n− r, so that we go to step
5. In step 5.a, we have to solve (4.11). The number of solutions is discussed
starting with Fact 5.5 below. We consider two special cases, namely q = 5
and q = 125. For q = 5, we have 20 pairs (v, w) = (f20, f19) ∈ F2

5 to consider,
with w 6= 0. When v 6= 0, then the number of solutions of (4.11) is





2 if wv−2 ∈ {2, 0},

1 if wv−2 = 1,

0 otherwise,

and when v = 0: {
2 for the squares w = 1, 4,

0 otherwise.

Over F125, we have the following numbers of nonzero solutions s when
v 6= 0:





6 for 1 · 124 values (v, w),

2 for 47 · 124 values (v, w),

1 for 25 · 124 values (v, w),

0 for 52 · 124 values (v, w),

12



and when v = 0:

{
2 for 62 values of w, namely the squares,

0 for 62 values of w.

These numbers are explained below. We run the remaining steps in par-
allel for each value h4 = s with s ∈ A. This yields g4 in step 5.b, h3, h2, h1

in step 5.c, and g1, g2, g3 in step 7. ♦

The algorithm works over any perfect field of characteristic p where each
element has a pth root; in Fq, this is just the (q/p)th power. It even works
over an arbitrary field of characteristic p provided we have a subroutine that
tests whether a field element is a pth power, and if so, returns a pth root.
Then where a pth root is requested in the algorithm (steps 1, 3a, 6a, 6c,
and 6d), we either return “no decomposition” or the root, depending on the
outcome of the test.

The older algorithm from von zur Gathen (1990b) keeps track of a certain
polynomial v, factors it, and works with the roots of its irreducible factors.
Here, this is replaced by the conceptually simpler case distinctions of the mu-
tually exclusive steps 3, 4, 5, and 6. More importantly, the present approach
leads to lower bounds of the form qk+m−2(1 +O(q−1)) in Theorem 6.1, while
the older approach only yields something like qk+m−2/2n, as in Fact 3.1(ii).

We denote by M(n) a multiplication time, so that polynomials of degree
at most n can be multiplied with M(n) operations in F . Then M(n) is in
O(n logn loglogn); see von zur Gathen & Gerhard (2003), Chapter 8, and
Fürer (2007) for an improvement.

For an input f , we set σ(f) = #A if the precondition of step 5 is satisfied
and A computed there, and otherwise σ(f) = 1.

Theorem 4.15. Let f be an input polynomial with parameters n, p, q = pe,
d, r, a, k, m as specified by the input conditions, and assume F to be perfect.

(i) Algorithm 4.10 returns either “failure” or a set of monic original decom-
positions (g∗, h∗) of f . Except if returned in step 1, none of them is a
Frobenius decomposition. If F = Fq is finite, then the algorithm uses

O
(
M(n) log k (m+ log(kq))

)

or O∼(n(m+ log q)) operations in Fq.

13



(ii) Suppose furthermore that g, h, κ, i0 are as in (4.2) and (4.3), so that
f = g ◦ h, F = Fq = Fpe , set c = gcd(d, e) and assume that

if i0 ∈ N and 1 ≤ i0 < m, then (−κgκ/a)
(q−1)/(pc−1) 6= 1. (4.16)

Then “failure” does not happen, at most σ(f) decompositions are re-
turned, and (g, h) is one of them.

Proof. Since r = pd | k, we have coeff(hk, j) = 0 unless r | j. Furthermore
gκh

κ = gκx
κm + κgκhm−1x

κm−1 +O(xκm−2) and κgκhm−1 6= 0, so that j from
step 1 equals κm (if p ∤ m) or κm−1 (if p | m). Thus κ is correctly determined
in step 2. In particular, f is not a Frobenius composition.

For the cost of the algorithm over F = Fq, two contributions are from
calculating (h(j))κ for some j < m and the various rth roots. The first comes
to O(m · logκ ·M(n)) and the second one to O(m · logp q) operations in Fq. E3

and E4 are applied at most once. We then have to find all roots of a univariate
polynomial of degree at most r+1. This can be done with O(M(r) log r log rq)
operations (see von zur Gathen & Gerhard (2003), Corollary 14.16). The
Taylor coefficients in step 7 can be calculated with O(M(n) log k) operations
(see von zur Gathen & Gerhard (2003), Theorem 9.15). All other costs are
dominated by these contributions, and we find the total cost as

O
(
M(n) log k · (m+ log(kq))

)
.

This proves (i). For (ii), we claim that the equations used in the algorithm
involve only coefficients of f and previously computed values. If we denote
by G the set of (g, h) allowed in Theorem 4.15(ii), then for f ∈ γn,k(G),
these equations usually have a unique solution. It follows that most such f
are correctly and uniquely decomposed by the algorithm. The only exception
to the uniqueness occurs in (4.11).

In steps 3 through 6, we use various coefficients fj for j = (κ − 1)m + i
with 1 ≤ i ≤ m or j = n− r(m− i) with i0 ≤ i < m. The value i0 is defined
so that n− r(m− i0) = (κ− 1)m+ i0, and thus

n− r(m− i) ≥ (κ− 1)m+ i if and only if i ≥ i0, (4.17)

since the first linear function of i has the slope r > 1, greater than for the
second one. Since i ≥ 1, it follows that j > (κ− 1)m for all j as above. For
the low-degree part of g we have

deg((g − (xk + gκx
κ)) ◦ h) ≤ (κ− 1)m < j,

14



so that

fj = coeff(g ◦ h, j) = coeff((xk + gκx
κ) ◦ h, j) = coeff(hk + gκh

κ, j)

for all j in the algorithm. Thus the coefficients of g, except gκ, are not needed
up to step 6.

We have to see that the application of E3 in steps 4.b (where i0 = m− 1)
and 6.d (where m − 2 ≥ i0 ≥ 1) always has a unique solution. The right
hand side of (4.8), say asr+κgκs, is an Fp-linear function of s. The equation
has a unique solution if and only if its kernel is {0}. (Segre, 1964, Teil 1, §3,
and Wan, 1990, provide an explicit solution in this case.) But when s ∈ Fq

is nonzero with asr +κgκs = 0, then −κgκ/a = sr−1. Writing z = pc, so that
z − 1 = gcd(q − 1, r − 1), we have

(−κgκ/a)
(q−1)/(z−1) = (sr−1)(q−1)/(z−1) = (s(r−1)/(z−1))q−1 = 1,

violating the condition (4.16).
For the correctness it is sufficient to show that all required quantities

are known, in particular ci,j(gκx
κ) in E1 and ci,j(x

k) in E2, and that the
equations determine the coefficient to be computed. We have

deg(hk − xn) = deg((ha − xam)r) ≤ (am− 1)r = n− r, (4.18)

so that gκ = fκm in steps 3.a and 4.a.
The precondition of step 3 implies that for all i < m we have

(κ− 1)m ≥ n− r −m+ 2 > n− rm+ (r − 1)(m− 1) ≥ n− rm+ (r − 1)i,

(κ− 1)m+ i > n− r(m− i).

Thus from E1 we have with j = (κ− 1)m+ i

f(κ−1)m+i = coeff(hk, j) + coeff(gκh
κ, j)

= coeff((h(i))k, j) + κgκhi

with κgκ 6= 0, so that hi can be computed in step 3.b.
The precondition in step 4 implies that i0 = m − 1, and hence (r − 1) |

(a−κ)m. E3 says that fκm−1 = cm−1,κm−1(x
k+gκx

κ) = ahr
m−1+κgκhm−1. We

have seen above that under our assumptions the equation fκm−1 = asr+κgκs
has exactly one solution s. Step 4.c works correctly, by an argument as for
step 3.b.

15



The only usage of E4 occurs in step 5.a, where κ = (n− r)/m = k− r/m.
Thus m | r. Since p | k, r is a power of p, and p ∤ κ, we find that r = m and
κ = k − 1. We have from E4

fκm = ahr
m−1 + gκ,

fκm−1 = −gκhm−1 = −(fκm − ahr
m−1)hm−1 = ahr+1

m−1 − fκmhm−1.

Thus hm−1 ∈ A as computed in step 5.a, and gκ is correctly determined in
step 5.b. The precondition of step 5 implies that i0 = m − 1 − 1/(r − 1),
which is an integer only for r = 2. In that case, i0 = m − 2 = 0 and no
further hi is needed. Otherwise, m − 2 < i0 < m − 1 and step 5.c works
correctly since i < i0.

The precondition of step 6 implies that i0 < m − 1. If r ∤ m, then
coeff(hk, κm) = 0 by E2, and otherwise coeff(hk, κm − 1) = 0. Thus gκ is
correctly computed in step 6.b. Correctness of the remaining steps follows
as above. �

A more direct way to compute h (say, in step 3) is to consider its reversal
as the κth root of the reversal of (f − hk)/gκ, feeding the contribution of hk

into the Newton iteration as in von zur Gathen (1990a). This procedure has
not been analyzed.

5. Bluher’s count

Our next task is to determine the number N of decomposable f obtained
as g ◦ h in Theorem 4.15. Since (4.11) is an equation of degree r + 1, it has
at most r+ 1 solutions, and σ(f) ≤ r+ 1. N is at least the number of (g, h)
permitted by Theorem 4.15(ii), divided by r+1. The following considerations
lead to a much better lower bound on N .

In the following we write, as usually, p = charFq, and also

q = pe, r = pd, c = gcd(d, e), z = pc, (5.1)

so that Fq ∩ Fr = Fz (assuming an embedding of Fq and Fr in a common
superfield) and gcd(q − 1, r − 1) = z − 1 (see Lemma 5.9). We have to
understand the number of solutions s of (4.11), in other words, the size of

S(v, w) = {s ∈ F×
q : s

r+1 − vs− w = 0}
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for v = fκm/a, w = fκm−1/a ∈ Fq. Equation (4.11) is only used in step 5,
where m = r, as noted above. We have κ = (j + 1)/m in step 2 and hence
fκm−1 6= 0 and w 6= 0. Furthermore, we define for u ∈ Fq

T (u) = {t ∈ F×
q : t

r+1 − ut+ u = 0}. (5.2)

In (4.11), we have w 6= 0, but v might be zero. In order to apply a result
from the literature, we first assume that also v is nonzero, make the invertible
substitution s = −v−1wt, and set u = vr+1(−w)−r = −vr+1w−r ∈ Fq. Then
u 6= 0 and

sr+1 − vs− w = (−v−1w)r+1(tr+1 − ut+ u), (5.3)

#S(v, w) = #T (u).

This reduces the study of S(v, w), with two parameters, to the one-
parameter problem T (u). The polynomial tr+1 − ut + u is a special type
of the projective polynomials introduced by Abhyankar (1997) and has ap-
peared in other contexts such as the inverse Galois problem, difference sets,
and Müller-Cohen-Matthews polynomials. Bluher (2004) has determined the
combinatorial properties that we need here; see her paper also for further ref-
erences. Bluher allows an infinite ground field F , but we only use her results
for F = Fq. A simplified proof is presented in von zur Gathen et al. (2010).

For i ≥ 0, let
Ci = {u ∈ F×

q : #T (u) = i},

ci = #Ci.
(5.4)

Then Ci = ∅ for i > r+1. Bluher (2004) completely determines these ci, as
follows.

Fact 5.5. With the notations (5.1) and (5.4), let I = {0, 1, 2, z + 1}. Then

c1 =
q

z
− γ,

ci = 0 unless i ∈ I,

cz+1 =

⌊
q

z3 − z

⌋
,

(5.6)

where

γ =

{
1 if q is even and e/c is odd ,

0 otherwise,
(5.7)
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and furthermore
q = 1 +

∑

i∈I

ci = 2 +
∑

i∈I

ici. (5.8)

Proof. The claims are shown in Bluher (2004), Theorem 5.6. Her state-
ment assumes tu 6= 0, which is equivalent to our assumption t 6= 0. For cz+1,
she finds (qz−1 − z)/(z2 − 1) if e/z is even, and otherwise (qz−1 − 1)(z2 − 1).
The rounding in (5.6) avoids this case distinction. Equation (5.8) corresponds
to the fact that the numbers ci form the preimage statistics of the map from
Fq r {0, 1} to Fq r {0} given by the rational function xr+1/(x− 1). �

Equations (5.6) and (5.8) also determine the remaining two values c0 and
c2, namely c2 =

1
2
(q− 2− c1 − (z+1)cz+1) and c0 = 1+ c2 + zcz+1. For large

z, we have

c2 ≈
q

2
(1−

1

z
−

z + 1

z3 − z
) =

q

2
(1−

1

z − 1
) ≈

q

2
.

Thus xr+1/(x − 1) behaves for odd q a bit like squaring: about half the
elements have two preimages, and about half have none.

For the case v = 0, we have the following facts, which are presumably
well-known. For an integer m, we let the integer ν(m) be the multiplicity of
2 in m, so that m = 2ν(m)m∗ with an odd integer m∗.

Lemma 5.9. Let Fq have characteristic p with q = pe, r = pd with d ≥ 1,
b = gcd(q − 1, r + 1) and w ∈ F×

q . Then the following hold.

(i)

#S(0, w) =

{
b if w(q−1)/b = 1,

0 otherwise.

(ii) We let c = gcd(d, e), z = pc, δ = ν(d), ε = ν(e), α = ν(r2 − 1),
β = ν(q − 1),

λ =

{
2 if δ < ε,

1 if δ ≥ ε,

µ =

{
1 if α > β,

0 if α ≤ β.
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Then gcd(r − 1, q − 1) = z − 1 and

b =
(zλ − 1) · 2µ

z − 1
=





2(z + 1) if δ < ε and α > β,

z + 1 if δ < ε and α ≤ β,

2 if δ ≥ ε and α > β,

1 if δ ≥ ε and α ≤ β.

(iii) If p is odd, then α > β if and only if e/c is odd.

Proof. (i) The power function y 7→ yr+1 from F×
q to F×

q maps b elements

to one, and its image consists of the w ∈ Fq with w(q−1)/b = 1.
(ii) For the first claim that

gcd(q − 1, r − 1) = z − 1, (5.10)

we may assume, by symmetry, that d > e and let d = ie + j be the division
with remainder of d by e, with 0 ≤ j < e. Then for

a =
xj(xd−j − 1)

xe − 1
= xj ·

xie − 1

xe − 1
∈ Z[x],

we have

xd − 1 = a · (xe − 1) + (xj − 1).

By induction along the Extended Euclidean Algorithm for (d, e) it follows
that all quotients in the Euclidean Algorithm for (xd− 1, xe− 1) in Q[x] are,
in fact, in Z[x], hence also the Bézout coefficients, and that all remainders are
of the form xy − 1, where y is some remainder for d and e. For c = gcd(d, e),
there exist u, v, s, t ∈ Z[x] so that

u · (xc − 1) = xd − 1,

v · (xc − 1) = xe − 1,

s · (xd − 1) + t · (xe − 1) = xc − 1.

Substituting any integer q for x into these equations shows the claim (5.10).
We note that gcd(2d, e) = λc and

gcd(pd − 1, pd + 1) =

{
2 if p is odd,

1 if p is even.
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When p is even, then α = β = 0. Applying (5.10) to q = pe and r2 = p2d,
we find

pλc − 1 = gcd((pd − 1)(pd + 1), pe − 1)

= gcd(pd − 1, pe − 1) · gcd(pd + 1, pe − 1)

= (pc − 1) · b,

b =
pλc − 1

pc − 1
=

{
z + 1 if δ < ε,

1 if δ ≥ ε.

For odd p, the second equation above is still almost correct, except possibly
for factors which are powers of 2. We note that exactly one of ν(pd − 1) and
ν(pd + 1) equals 1, and

pλc − 1 = gcd((pd − 1)(pd + 1), pe − 1)

= gcd(pd − 1, pe − 1) · gcd(pd + 1, pe − 1) · 2−µ

= (pc − 1) · b · 2−µ,

b =
(pλc − 1) · 2µ

pc − 1
.

(iii) We define the integers kq and kr by

q − 1

z − 1
=

ze/c − 1

z − 1
= ze/c−1 + · · ·+ 1 = kq,

r2 − 1

z − 1
=

(r + 1)(zd/c − 1)

z − 1
= (r + 1)(zd/c−1 + · · ·+ 1) = (r + 1)kr.

Now r+1 is even and z is odd. If e/c is odd, then kq is odd and hence α > β.
Now assume that e/c is even. Then d/c is odd, and so is kr, and kq is even.
Hence ν(r − 1) = ν(z − 1) ≥ 1, and we denote this integer by γ. If γ ≥ 2,
then ν(r + 1) = 1 ≤ ν(kq) and α = ν(r + 1) + γ ≤ ν(kq) + γ = β.

Now suppose that γ = 1, and let τ = ν(z + 1) and m = (z + 1) · 2−τ .
Then τ ≥ 2, m is an odd integer, and

z2 = (m2τ − 1)2 ≡ −2 · 2τ + 1 ≡ 2τ+1 + 1 mod 2τ+2,

r2 = (z2)d/c = (2τ+1 + 1)d/c ≡ 2τ+1 + 1 mod 2τ+2,

q = (z2)e/2c ≡ (2τ+1 + 1)e/2c mod 2τ+2.

The last value equals 2τ+1+1 or 1 modulo 2τ+2 if e/2c is odd or even, respec-
tively. In either case, it follows that α = ν(r2− 1) = τ +1 ≤ ν(q− 1) = β.�
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6. The number of decomposable polynomials

We now bound from below the number #D+
n,k of non-Frobenius compo-

sitions in the wild case, where p | k. The number of all monic original g
and h of degrees k and m, respectively, is qk+m−2, and the lower bound is
qk+m−2(1 − O(q−1)), with explicit (but somewhat complicated) expressions
for the O(q−1).

Theorem 6.1. Let Fq have characteristic p with q = pe, and take integers
d ≥ 1, r = pd, k = ar with p ∤ a, m ≥ 2, n = km, c = gcd(d, e), z = pc,
µ = gcd(r − 1,m), r∗ = (r − 1)/µ, and let G consist of the (g, h) as in
Theorem 4.15(ii). Then we have the following lower bounds on the cardinality
of γn,k(G).

(i) If r 6= m and µ = 1:

qk+m−2(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k),

(ii) If r 6= m:

qk+m−2
(
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k)

− q−r∗−c/e+1 (1− q−1)2(1− q−r∗(µ−1))

(1− q−c/e)(1− q−r∗)

· (1− q−r∗(p−1) (1− q−r∗)(1− q−pr∗µ∗

)

(1− q−r∗(µ−1))(1− q−pr∗)
)
)

≥ qk+m−2
(
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k)

− q−r∗+1 (1− q−1)2(1− q−r∗(µ−1))

1− q−r∗
)
)

≥ qk+m−2
(
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k)

− 2q−r∗+1(1− q−1)2
)
.

(iii) If r = m:

qk+m−2(1− q−1)(
1

2
+

1 + q−1

2z + 2
+

q−1

2
− q−k 1− q−p+1

1− q−p
− q−p+11− q−1

1− q−p
).
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Proof. We have seen at the beginning of the proof of Theorem 4.15 that
steps 1 and 2 determine j and κ. We also know that, given gκ and hm−1, the
remaining coefficients of g and h are uniquely determined by those of f .

We count the number of compositions g◦h according to the four mutually
exclusive conditions in steps 3 through 6, for a fixed κ. The admissible κ are
those with 1 ≤ κ < k and p ∤ κ. The expressions E3 or E4 are used if and
only if either i0 ∈ N or κm = n − r, respectively. If neither happens, then
the number of (g, h) is

qκ(1− q−1) · qm−1(1− q−1) = qκ+m−1(1− q−1)2. (6.2)

The expression E3 is used if and only if κ ∈ K, where

K = {κ ∈ N : 1 ≤ κ < k, p ∤ κ, i0 ∈ N, 1 ≤ i0 < m},

which corresponds to steps 4.b (where i0 = m − 1) and 6.d (where i0 ∈ N
and 1 ≤ i0 ≤ m − 2). For κ ∈ K, we have the condition (4.16) that
(−κgκ/a)

(q−1)/(z−1) 6= 1. The exponent is a divisor of q − 1, and there are
exactly (q − 1)/(z − 1) values of gκ that violate (4.16). Thus for κ ∈ K the
number of (g, h) equals

(q − 1−
q − 1

z − 1
)qκ−1 · qm−1(1− q−1) = qκ+m−1(1− q−1)2(1−

1

z − 1
). (6.3)

The only usage of E4 occurs in step 5.a, where κ = (n− r)/m = k− r/m.
We have seen in the proof of Theorem 4.15 that this implies r = m and
κ = k − 1. We split G according to whether κ = k − 1 or κ < k − 1, setting

G∗ = {(g, h) ∈ G : κ = k − 1 in (4.2)}.

We define three summands N12, N3, and N4 according to whether only
E1 and E2, or also E3, or E4 are used, respectively:

N12 =
∑

1≤κ<k
p∤κ

qκ+m−1(1− q−1)2,

N3 =
∑

κ∈K

(
qκ+m−1(1− q−1)2 − qκ+m−1(1− q−1)2(1−

1

z − 1
)

)
,

N4 = qk+m−2(1− q−1)2 −#γn,k(G
∗).
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We will see below that K = ∅ if r = m. If r 6= m and K = ∅, then we
have for each κ < k a number of polynomials as in (6.2) in γn,k(G), and in
total N12 many. If we only assume r 6= m, we have to replace (6.2) by (6.3)
for each κ ∈ K. This corresponds to subtracting N3 from N12 in the total.
Finally, if r = m, then K = ∅ and for κ = k − 1 we have to replace (6.2)
by #γn,k(G

∗). This means deducting N4 from N12 in the total. Together, we
have

#γn,k(G) ≥





N12 if r 6= m and K = ∅,

N12 −N3 if r 6= m,

N12 −N4 if r = m.

Since p | k, the first sum equals

N12 = qm−1(1− q−1)2(
∑

1≤κ<k

qκ −
∑

1≤κ<k
p|κ

qκ)

= qm−1(1− q−1)2(
qk − 1

q − 1
− 1−

(qp)k/p − 1

qp − 1
+ 1)

= qk+m−2(1− q−1)(1− q−k)
1− q−p+1

1− q−p

= qk+m−2(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k).

For N3, we describe K more transparently. First we note that

1 ≤ i0 =
κm− n

r − 1
+m ≤ m− 1

⇐⇒ k − (r − 1) +
r − 1

m
≤ κ ≤ k −

r − 1

m
.

(6.4)

We recall µ = gcd(r − 1,m) and r∗ = (r − 1)/µ, and set m∗ = m/µ, so that
gcd(r∗,m∗) = 1 and

(6.4) ⇐⇒ k − (r − 1) +
r∗

m∗
≤ κ ≤ k −

r∗

m∗
.

From (4.3) we find

i0 ∈ Z ⇐⇒ (r − 1) | (κ− a)m ⇐⇒ r∗ | (κ− a)m∗ ⇐⇒ r∗ | κ− a. (6.5)
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Since r∗ | k − a = a(r − 1), we have

(6.5) ⇐⇒ ∃j ∈ Z κ = k − (r − 1) + jr∗. (6.6)

If i0 ∈ Z, we fix this uniquely determined j. Then

(6.4) ⇐⇒
1

m∗
≤ j ≤

r − 1

r∗
−

1

m∗
⇐⇒ 1 ≤ j ≤ µ− 1. (6.7)

Since µ | (r − 1) and r = pd, we have p ∤ µ. Thus

p | κ ⇐⇒ 1−
j

µ
≡ 1 +

j(r − 1)

µ
≡ k − (r − 1) + jr∗ = κ ≡ 0 mod p (6.8)

⇐⇒ j ≡ µ mod p ⇐⇒ ∃i ∈ Z j = µ− ip,

(6.4) ⇐⇒ 1 ≤ j = µ− ip ≤ µ− 1 ⇐⇒ 1 ≤ i ≤ ⌊
µ− 1

p
⌋.

Abbreviating µ∗ = ⌊(µ− 1)/p⌋, it follows that

K = {k − (r − 1) + jr∗ : 1 ≤ j < µ}r {k − ipr∗ : 1 ≤ i ≤ µ∗}.

In particular, we have K = ∅ if µ = 1. Assuming µ ≥ 2 and using
z = pc = qc/e, we can evaluate N3 as follows.

N3 =
∑

κ∈K

qκ+m−1

z − 1
(1− q−1)2

=
qm−1(1− q−1)2

z − 1

∑

κ∈K

qκ

=
qm−1(1− q−1)2

z − 1
(qk−(r−1)+r∗ (q

r∗)µ−1 − 1

qr∗ − 1
− qk−pr∗ 1− (q−pr∗)µ

∗

1− q−pr∗
)

= qk+m−1−r∗−c/e (1− q−1)2(1− q−r∗(µ−1))

(1− q−c/e)(1− q−r∗)

· (1− q−r∗(p−1) (1− q−r∗)(1− q−pr∗µ∗

)

(1− q−r∗(µ−1))(1− q−pr∗)
).

In order to evaluate N4, we first recall from the above that we have
κm = n − r, κ = k − 1, m = r, and any (g, h) ∈ G∗ is uniquely determined
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by f = g ◦ h, gk−1, and hm−1. To any (g, h) ∈ G∗, we associate the field
elements

V (g, h) = hr
m−1 + gk−1/a,

W (g, h) = −gk−1hm−1/a,

U(g, h) = −V (g, h)r+1W (g, h)−r.

(6.9)

Then if f = g ◦ h, we have aV (g, h) = fn−r and aW (g, h) = fn−r−1 6= 0 by
(4.9). If V (g, h) 6= 0, then for nonzero s ∈ Fq and t = −V (g, h) ·W (g, h)−1s,
(5.3) says that

(4.11) holds ⇐⇒ s ∈ S(V (g, h),W (g, h)) ⇐⇒ t ∈ T (U(g, h)).

We recall the sets Ci from (5.4) and for i ∈ {1, 2, z + 1}, we set

Gi = {(g, h) ∈ G∗ : V (g, h) 6= 0, U(g, h) ∈ Ci},

G0 = {(g, h) ∈ G∗ : V (g, h) = 0}.
(6.10)

These four sets form a partition of G∗. Now let v ∈ F×
q , i ∈ {1, 2, z + 1},

u ∈ Ci, and gk−2, . . ., g1, hm−2, . . ., h1 ∈ Fq. From these data, we construct
(g, h) ∈ Gi with g =

∑
1≤i≤k gix

i and h =
∑

1≤i≤m hix
i and gk = hm = 1,

so that only gk−1 and hm−1 still need to be determined. Furthermore, if
f = g ◦ h, we claim that different data lead to different f . This will imply
that

γn,k(Gi) ≥ (q − 1)ci · q
k+m−4. (6.11)

By assumption, we have #T (u) = i ≥ 1 and hence u 6= 0. We choose some
t ∈ T (u) and define w, s ∈ F×

q by

wr = −vr+1u−1,

s = −v−1wt.

Then s ∈ S(v, w) by (5.3). We set hm−1 = s and gk−1 = av − asr. Now g
and h are determined, and (4.9) implies that

fn−r = ahr
m−1 + gκ = aV (g, h) = av,

fn−r−1 = −gκhm−1 = aW (g, h) = −a(v − sr)s = a(sr+1 − vs) = aw,

U(g, h) = −vr+1w−r = −vr+1(−vr+1u−1)−1 = u.

Suppose that (u, v) and (ũ, ṽ) lead to (fn−r, fn−r−1) = (av, aw) and (f̃n−r,

f̃n−r−1) = (aṽ, aw̃), and that the latter pairs are equal. Then v = ṽ and
u = −vr+1w−r = −ṽr+1w̃−r = ũ. This concludes the proof of (6.11).

25



A similar argument works for G0. We let b = gcd(q − 1, r + 1), take
w ∈ Fq with w(q−1)/b = 1, and some s ∈ Fq with sr+1 = w. There are
(q − 1)/b such w, and according to Lemma 5.9(i), b such values s for each
w. We set hm−1 = s and gk−1 = −ahr

m−1 and, as above, complete them with
arbitrary coefficients to (g, h) ∈ G0. When f = g ◦ h, then fn−r = 0 and
fn−r−1 = −gk−1hm−1 = ahr+1

m−1 = aw = aW (g, h), and different w lead to
different f . It follows that

γn,k(G0) ≥
q − 1

b
· qk+m−4. (6.12)

We claim that the images of G1, G2, Gz+1, and G0 under γn,k are pairwise
disjoint. The map V : G∗ −→ Fq distinguishes between G0 and Gi with
i ∈ {1, 2, z + 1}. For the latter three values, U determines i by (6.10).
Furthermore, the values of V and W , and hence of U , are determined by the
coefficients of f = g ◦ h = γn,k((g, h)). This proves the claim. It follows that

∑

i=0,1,2,z+1

#γn,k(Gi) ≥
∑

i=1,2,z+1

(q − 1)ci · q
k+m−4 +

q − 1

b
· qk+m−4 (6.13)

= (q − 1)qk+m−4(
∑

i=1,2,z+1

ci +
1

b
).

We write q = pe and set

z∗ =

{
z if e/c is odd,

z2 if e/c is even.

Fact 5.5 yields

cz+1 =

⌊
q

z3 − z

⌋
=

q − z∗

z3 − z
,

2
∑

i=1,2,z+1

ci = 2c1 + (q − 2− c1 − (z + 1)cz+1) + 2cz+1

= q − 2 +
q

z
− γ − (z − 1)

q − z∗

z3 − z

= q − 2 +
q

z
− γ −

q − z∗

z2 + z
,
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#γn,k(G
∗) ≥ qk+m−3(1− q−1)(

1

2
(q − 2 +

q

z
− γ −

q − z∗

z2 + z
) +

1

b
).

We call the last factor B. We first consider the case where e/c is odd. In
the notation of Lemma 5.9, we have δ = ν(d) ≥ ν(e) = ε, so that

b =

{
2 if p is odd,

1 if p = 2.

If p is odd, then γ = 0 and 2/b − γ = 1. If p = 2, then γ = 1 and again
2/b− γ = 2− 1 = 1. It follows that

2B = q − 2 +
q

z
−

q − z

z2 + z
+

2

b
− γ = q(1 +

1

z + 1
(1−

z

q
)).

In the second case, e/c is even, so that γ = 0, α ≤ β and δ < ε in
Lemma 5.9, so that b = z + 1 and

2B = q − 2 +
q

z
−

q − z2

z2 + z
+

2

z + 1
= q(1 +

1

z + 1
(1−

z

q
)).

It follows that in all cases

#γn,k(G
∗) ≥

1

2
qk+m−2(1− q−1)(1 +

1

z + 1
(1−

z

q
)),

N4 ≤ qk+m−2(1− q−1)(1− q−1 −
1

2
(1 +

1

z + 1
(1−

z

q
)))

= qk+m−2(1− q−1)(
1

2
−

1 + q−1

2z + 2
−

q−1

2
).

Together we have found the following lower bounds on #γn,k(G). If r 6= m
and µ = 1, then

#γn,k(G) ≥ N12 = qk+m−2(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k)

= qk+m−2(1− q−1)(1− q−k)
1− q−p+1

1− q−p
.
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If r 6= m, then

#γn,k(G) ≥ N12 −N3 ≥ qk+m−2(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k)

− qk+m−1−r∗−c/e (1− q−1)2(1− q−r∗(µ−1))

(1− q−c/e)(1− q−r∗)

· (1− q−r∗(p−1) (1− q−r∗)(1− q−pr∗µ∗

)

(1− q−r∗(µ−1))(1− q−pr∗)
)

= qk+m−2
(
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k)

− q−r∗−c/e+1 (1− q−1)2(1− q−r∗(µ−1))

(1− q−c/e)(1− q−r∗)

· (1− q−r∗(p−1) (1− q−r∗)(1− q−pr∗µ∗

)

(1− q−r∗(µ−1))(1− q−pr∗)
)
)
.

For the first inequality in the statement of (ii), we observe that c ≥ 1 and

q−c/e

1− q−c/e
=

p−c

1− p−c
≤ 1. (6.14)

For the last estimate, we have q−r∗ ≤ 1/2 and

−
1− q−r∗(µ−1)

1− q−r∗
≥ −

1

1− q−r∗
≥ −2.
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If r = m, then

#γn,k(G) ≥ N12 −N4 ≥ qk+m−2(1− q−1)(1− q−k)
1− q−p+1

1− q−p

− qk+m−2(1− q−1)(
1

2
−

q−1

2
−

1 + q−1

2z + 2
)

= qk+m−2(1− q−1)(
1

2
+

1 + q−1

2z + 2
+

q−1

2
)

− q−k 1− q−p+1

1− q−p
− q−p+11− q−1

1− q−p
)

= qk+m−2
(1
2
(1 +

1− q−2

z + 1
− q−2)

− (1− q−1)(−q−k 1− q−p+1

1− q−p
− q−p+11− q−1

1− q−p
)
)
. �

Example 6.15. When n = p2, then we have k = r = m = p in Theo-
rem 6.1(iii). We write αn = q2p−2, so that #Dn ≤ αn. Including the qp−1

Frobenius compositions, we obtain

#Dn ≥
1

2
q2p−2(1− q−1)(1 +

1 + q−1

p+ 1
+ q−1 − 2q−p+1) + qp−1

= αn ·
(1
2
(1 +

1

p+ 1
)(1− q−2) + q−p

)
.

In characteristic 2, the estimate is exact, since we have accounted for all
compositions and a monic original polynomial of degree 2 is determined by
its linear coefficient. Thus

#D4 = α4 · (
2

3
· (1− q−2) + q−2) = α4 ·

2 + q−2

3
,

#D4 =
3

4
α4 over F2,

#D4 =
11

16
α4 over F4.

Over an algebraically closed field of characteristic 2, a quartic polynomial
is decomposable if and only if its cubic coefficient vanishes; see Example 2.6.
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For p = 3, we find

#D9 ≥ α9 · (
5

8
(1− q−2) + q−3) = α9 · (

5

8
− q−2(

5

8
− q−1)),

#D9 ≥
16

27
· α9 > 0.59259α9 over F3,

#D9 ≥
451

36
· α9 > 0.61065α9 over F9.

The experiments reported in von zur Gathen (2010b) show that these are
serious underestimates of the actual ratios ≈ 0.8518 and ≈ 0.9542, respec-
tively. In the same vein we find, when n = ap2 > p2 with p ∤ a and k = n/p,
that

#Dn,n/p ≥ qn/p+p−2 · (
1

2
(1 +

1

p+ 1
)(1− q−2) + q−p). ♦

Example 6.16. In F3[x], we have, besides the eight Frobenius collisions
according to Definition 3.2, four collisions of degree 9:

(x3 + x) ◦ (x3 − x) = (x3 − x) ◦ (x3 + x) = x9 − x,

(x3 + x2) ◦ (x3 − x2 − x) = (x3 − x2 + x) ◦ (x3 + x2) = x9 + x5 − x4 + x3 + x2,

(x3 + x2 + x) ◦ (x3 − x2) = (x3 − x2) ◦ (x3 + x2 − x) = x9 + x5 + x4 + x3 − x2,

(x3 + x2 + x) ◦ (x3 − x2 + x) = (x3 − x2 + x) ◦ (x3 + x2 + x) = x9 + x5 + x.

The general bounds from Theorem 6.1 and Example 6.15 provide the first
two of the following inequalities:

39 = 3 · 13 < 48 = 3 · 16 < #D9 = 69 = 3 · 23 < 81 = 3 · 27 = α9. ♦

Open Question 6.17. Our approach is based on “low level” coefficient
comparisons. Can the present results be (im)proved by “higher level” meth-
ods, maybe with more elegant arguments? Ritt (1922) muses in a footnote
(on his page 59): “An idea which presents itself naturally is to consider this
problem as one in undetermined coefficients [. . . ] A study of the equations
for the coefficients convinces me that such a plan would not be easy to carry
out, and that the function-theoretic methods used here are not far-fetched.”
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Räumen, I. Mathematische Annalen 154, 195–256. URL
http://dx.doi.org/10.1007/BF01362097.

Daqing Wan (1990). Permutation Polynomials and Resolution
of Singularities over Finite Fields. Proceedings of the American

Mathematical Society 110(2), 303–309. ISSN 0002-9939. URL
http://www.jstor.org/journals/00029939.html.

Richard Zippel (1991). Rational Function Decomposition. In Proceedings

of the 1991 International Symposium on Symbolic and Algebraic Computa-

tion ISSAC ’91, Bonn, Germany, Stephen M. Watt, editor, 1–6. ACM
Press, Bonn, Germany. ISBN 0-89791-437-6.

34


