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Extended Abstract

Abstract

We describe algorithms for polynomial multiplication and
polynomial factorization over the binary �eld F� and their
implementation� They allow polynomials of degree up to
�		� 			 to be factored in about one day of CPU time�

� Introduction

The problem of polynomial factorization over the binary
�eld F� is� given a monic polynomial f � F� 
x�� to com�
pute the factorization f 
 fe�� � � � ferr with monic irreducible
pairwise distinct polynomials f�� � � � � fr � F� 
x� and positive
e�� � � � � er � N� The e�ciency of the currently known algo�
rithms for this problem relies on fast polynomial arithmetic�
in particular� on fast polynomial multiplication�

The multiplication method of Karatsuba � Ofman ������
has an asymptotic running time of O�n����� operations in F�
for polynomials of degree less than n� which is better than
the O�n�� bound for the na��ve multiplication algorithm� but
still too slow in practice for large n� Sch�onhage ������ gives
an O�n log n loglog n� algorithm based on a ternary FFT
with roots of unity of ��power order� Reischert ������ im�
plemented several algorithms for polynomial multiplication
over F� � including those by Karatsuba � Ofman� Sch�onhage�
and Cantor �see below�� Shoup ������ has successfully im�
plemented a fast FFT�based algorithm for multiplying poly�
nomials over Fp for a prime p� using a modular approach�
but it seems to be practical only when p is not too small�

Cantor ������ presented an algorithm for multiplying
polynomials of degree less than n over Fp for a prime p
that uses O�mpm� multiplications and O�m�pm� scalar op�
erations �i�e�� additions or multiplications by elements of
Fp � in the �eld Fpm � where m is the least power of p with
�n � mpm� It behaves particularly well in the case p 
 ��
In contrast to the FFT�based algorithms cited above� which
evaluate and interpolate at suitably subgroups of the mul�
tiplicative group of a ��nite� �eld� Cantor�s approach uses
additive subgroups� i�e�� Fp �linear subspaces of Fpm � Mont�
gomery ������ implemented a polynomial factorization al�
gorithm that uses Cantor�s algorithm as a subroutine� and

was able to factor a sparse polynomial of degree more than
�		� 			 over F� in about �� hours�

In section �� we generalize Cantor�s method to work for
prime powers p and arbitrary m� We state explicit �O��free
upper bounds on the time and space cost of our algorithms�

In section �� we report on experiments in which our im�
plementation of Cantor�s original method turned out to be
superior to these new variants�

In the last � years� dramatic progress in the area of poly�
nomial factorization has been made� both in theory and in
practice� The classical algorithms for polynomials over �nite
�elds are due to Berlekamp ������ ���	�� Cantor � Zassen�
haus ������� and Ben�Or ������� Recently� many variants
and asymptotically faster algorithms have been proposed by
von zur Gathen � Shoup ������� Kaltofen ������� Niederre�
iter ������� Gao � von zur Gathen ������� Kaltofen � Lobo
������� and Kaltofen � Shoup ������� Implementations are
described in Kaltofen � Lobo ������� Shoup ������� and
Fleischmann � Roelse �������

Section � gives an outline of the structure of some mod�
ern polynomial factorization algorithms� In sections � and ��
we discuss and analyze a new variant of the distinct degree
factorization stage in those algorithms� using interval parti�
tions with polynomially growing interval sizes� In section ��
we indicate how the distinct degree factorization stage over
F� can be further speeded up by the use of an irreducibility
test� Finally� an implementation of the polynomial factor�
ization algorithm over F� is described in section �� including
examples of running times�

We have mainly concentrated on optimizing our imple�
mentation for the distinct degree factorization stage� Of
course� more work is required to also optimize for cases
where the input is known to be special� say when we fac�
tor trinomials or cyclotomic polynomials� In particular� we
have not optimized the equal degree factorization stage of
our software�

Due to a page limit in these proceedings� we had to omit
many details and proofs� They can be found in von zur
Gathen � Gerhard �������

� Fast polynomial multiplication over Fq

Let Fq be a �nite �eld with q elements and m a posi�
tive integer� The extension �eld Fqm is an m�dimensional
vector space over Fq � Suppose that W � Fqm is a �xed k�
dimensional subspace� where � � k � m� and that we want
to solve the following problems�
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Problem ��� �Multipoint evaluation� Given f � Fqm 
x� of

degree less than qk� compute f��� for all � �W �

Problem ��� �Interpolation� Given a map � � W �� Fqm �
compute the unique polynomial f � Fqm 
x� of degree less

than qk satisfying f��� 
 ���� for all � � W �

The algorithms presented below for these two problems
admit a natural parallelization� but here we only discuss the
sequential versions�

We �x a basis ���� � � � � �k� of W over Fq � and for 	 �
i � k let Wi be the subspace Wi 
 spanf��� � � � � �ig � W
of dimension i� The sets Wi form a strictly ascending chain

f	g 
W� �W� � � � � �Wk�� �Wk 
W� ���

and for � � i � k we have the recursive decomposition

Wi 

�

c�Fq

�c�i �Wi���

of Wi into q pairwise disjoint cosets� which generalizes to

� �Wi 

�

c�Fq

�� � c�i �Wi��� ���

for arbitrary � � Fqm �
Next� we de�ne the sequence of polynomials si � Fqm 
x�

for 	 � i � k by

si 

Y

��Wi

�x� ���

Obviously� si is a monic squarefree polynomial of degree q
i�

and corresponding to ���� we have

x 
 s� j s� j � � � j sk�� j sk�

Lemma ��� The following hold for 	 � i � k�

�i� The recursion formulae

si 

Y

c�Fq

�si�� � csi����i�� 
 sqi�� � si����i�
q � si��

hold if i � ��

�ii� si is an Fq �linearized polynomial� i�e�� si�f � g� 

si�f� � si�g� and si�cf� 
 csi�f� for all f� g � Fqm 
x�
and c � Fq �

�iii� si�si��� 

Y

c�Fq

�si���si�����c�i�� 

Y

����Wi

�x���

for all � � Fqm �

Note that statement �iii� of the lemma reduces to state�
ment �i� and the de�nition of the si� respectively� if � 
 	�

The decomposition ��� and statement �iii� of the lemma
suggest the following algorithm for Problem ����

Algorithm ��� �Multipoint evaluation�
We assume that the polynomials si � Fqm 
x� for 	 � i � k
as de�ned above and the values si��j� for 	 � i � j � k are
precomputed and stored�
Input� i � N with 	 � i � k� f � Fqm 
x� of degree less than
qi� and ci��� � � � � ck � Fq �
Output� The values f��� for all � � � � Wi� where � 
P

i�j�k cj�j �W �

	� If i 
 	 then return f �


� Compute si����� 

P

i�j�k cjsi����j�� and for each

c � Fq divide f by si�� � si����� � csi����i� with
remainder� i�e�� compute polynomials gc� rc � Fqm 
x�
with

f 
 gc�si�� � si������ csi����i��� deg rc � qi���

�� For each c � Fq � recursively call the algorithm with
input i � �� rc and c� ci��� � � � � ck to get ���� 
 rc���
for all � � �� � c�i� �Wi���

�� Return ���� for � � � �Wi�

Note that si����� � csi����i� 
 si���� � c�i�� by the
linearity of si���

Notation� We call an addition in Fqm or a multiplication
of an element of Fqm by an element of Fq a scalar operation�
while a multiplication is a multiplication of two arbitrary
elements of Fqm � When analyzing the space requirements of
an algorithm� we only count the work space� i�e�� the number
of elements of Fqm for which space is used in addition to the
space for input� output� and precomputed objects�

Theorem ��� Algorithm 
�� works correctly and for i 

k uses at most q��

�
k�qk � q��

�
kqk scalar operations and

q��
�
k�qk� q��

�
kqk multiplications in Fqm � Furthermore� the

algorithm uses work space for at most q
q��

qk � �k elements

of Fqm �

For the interpolation� we have the following algorithm�

Algorithm ��� �Interpolation�
We assume that the polynomials si � Fqm 
x� for 	 � i � k
as de�ned above and the values si��j� and �si��i���

��q for
	 � i � j � k are precomputed and stored�
Input� i � N with 	 � i � k� ci��� � � � � ck � Fq � and an array
of values ���� � Fqm � one for each point � � ��Wi� where
� 

P

i�j�k cj�j � W �

Output� The interpolating polynomial f � Fqm 
x� of degree
less than qi with f��� 
 ���� for all � � � �Wi� and the
value si����

	� If i 
 	 then return ���� and ��


� For each c � Fq � recursively call the algorithm with
input i��� c� ci��� � � � � ck� and ���� for � � ���c�i��
Wi�� to get rc � Fqm 
x� of degree less than qi�� with
rc��� 
 ���� for all � � ���c�i��Wi��� and si�����
c�i��

�� Compute si��� 

P

i�j�k cjsi��j�� and set

f 
 �si����i�
��q
X

c�Fq

rc
si � si���

si�� � si���� � c�i�
� ���

�� Return f and si����

Theorem ��	 Algorithm 
�
 works correctly and for i 
 k
uses no more than q��

�
k�qk � q��

�
kqk multiplications and

q��
�
k�qk � �q��

�
kqk scalar operations in Fqm � Furthermore�

it uses work space for at most q��
q��

qk � �k elements of Fqm �



Theorem ��
 The cost of the precomputation stage for Al�
gorithm 
�� and 
�
 is at most �

	
k����dlog� qe�

�
�
�k�� �

�
k

multiplications� k inversions� and �
	
k� � �

�
k� � �

�
k scalar

operations in Fqm � The space occupied by the precomputed
objects is k� � �k memory locations for elements of Fqm �

Cantor ������ considers the special case where q 
 p
is prime� k 
 m 
 pd is a power of the characteristic� and
Wi 
 ker�i for the Fp �endomorphism ��� �� �p�� of F

pp
d �

He gives a basis ���� � � � � �pd� of W 
 Wk 
 F
pp

d over Fp

such that the polynomials si are in Fp 
x� for 	 � i � pd� This

reduces the number of multiplications in Fpm to O�kqk��

Theorem ��� Two polynomials a� b � Fqm 
x� whose prod�
uct has degree less than n� where q � n � qm� can be multi�
plied using less than

�q� � q

�
n log�q n�

��q� � �q

�
n logq n

multiplications and

�q� � q

�
n log�q n�

��q� � ��q

�
n logq n

scalar operations in Fqm � and work space for less than �qn�
� logq n elements of Fqm �

Using classical arithmetic in Fqm over Fq � two polyno�
mials over the �eld Fq whose product has degree less than

n � mqm

�
can be multiplied with at most

��q���m
qm�O�m�qm� � ���q���q�n log�q n�O�n log�q n�

operations in Fq � provided that q � n� The bound can
be improved to O�n log�q n�logq logq n�

�� with a recursive ap�
proach�

Several simpli�cations are possible for q 
 �� some of
which are in Cantor ������� They lead to the following re�
sult�

Theorem ���� Two polynomials a� b � F�m 
x� whose prod�
uct has degree less than n � �m can be multiplied using less
than

�

�
n log�� n�

��

�
n log� n� �n

multiplications and

�

�
n log�� n�

��

�
n log� n� �n� �

scalar operations in F�m � In doing so� work space for less
than � log� n� � elements of F�m is used�

� Polynomial factorization

Many of the modern polynomial factorization algorithms
over �nite �elds �Cantor � Zassenhaus ������� Ben�Or
������� von zur Gathen � Shoup ������� Kaltofen � Shoup
������� but not those of Berlekamp ������ ���	�� Gao �
von zur Gathen ������� Kaltofen � Lobo ������� Nieder�
reiter ������� and Kaltofen � Shoup ������� Algorithm B�
proceed in three stages�

�� Squarefree factorization 
SFF�� Given a monic
polynomial f � Fq 
x� of degree n� compute the unique
monic squarefree and pairwise coprime polynomials
g�� � � � � gn � Fq 
x� such that

f 

Y

��i�n

�gi�
i�

�� Distinct degree factorization 
DDF�� Given a mo�
nic squarefree polynomial f � Fq 
x� of degree n� com�
pute its unique decomposition

f 

Y

��d�n

hd ���

into monic polynomials h�� � � � � hn � Fq 
x� such that
each hd has only irreducible factors of degree d� Such
an hd is called an equal�degree polynomial of order d�

�� Equal degree factorization 
EDF�� Given integers
d� r � N with r � � and a squarefree equal�degree
polynomial f � Fq 
x� of order d and degree n 
 rd�
compute its r irreducible factors�

In this and the following sections� M�n� denotes the mul�
tiplication time for polynomials over Fq � i�e�� two polynomi�
als of degree less than n can be multiplied with O�M�n��
operations in Fq � Using the approach in section �� we may
e�g� take M�n� 
 n�log n���loglog n��� We also use here
that a division with remainder and a gcd for polynomials
of degree at most n can be computed using O�M�n�� and
O�M�n� log n� operations in Fq � respectively �see� e�g�� Aho
et al� ����� Chapter ���

Using the deterministic algorithm of Yun ������� stage
� can be performed at essentially the cost of one gcd� i�e��
O�M�n� log n� operations in Fq � The asymptotically fastest
of the currently known algorithms for stage � when the �eld
size q is �xed is due to Kaltofen � Shoup ������ and uses
O�n����� log q� operations in Fq � Finally� stage � can be per�
formed with O�n����M�n� log r log q� operations in Fq � using
a probabilistic algorithm of von zur Gathen � Shoup �������

If one factors random polynomials� the dominating cost
of the overall algorithm is the cost of the DDF� The rea�
son is that probably an EDF has to be performed only on
equal�degree polynomials of small degree �see Flajolet et al�
������ for a detailed analysis�� This is con�rmed by tests of
our factorization routine on random inputs� as reported in
section ��

� Distinct degree factorization

In the following� we brie�y discuss the basic idea of all
DDF algorithms over the �nite �eld Fq � We use the following
cost measures for our algorithms�

	 P�n�� the cost for computing one modular product of
two polynomials of degree less than n modulo a poly�
nomial of degree at most n� Thus P�n� � O�M�n���

	 Q�n�� the cost for one modular qth power of a poly�
nomial of degree less than n modulo a polynomial of
degree at most n� For large q� we may assume that
Q�n� � �blog� qcP�n�� while for q 
 �� modular squar�
ing is cheaper than a general modular multiplication�

	 R�n�� the cost for one remainder computation of a poly�
nomial of degree at most n modulo a polynomial of
degree less than n�

	 D�n�� the cost for one exact division� i�e�� a division
where the remainder is known to be zero� of two poly�
nomials of degree at most n�

	 G�n�� the cost for one gcd computation of two polyno�
mials of degree at most n�



All of the above functions count operations in Fq � This high�
level cost analysis is convenient to achieve simultaneously
two goals� explicit �O��free estimates� at least for the domi�
nant term� for various algorithms� and also good asymptotic
bounds�

Let f � Fq 
x� be a monic squarefree polynomial of degree
n� The following well�known algorithm computes the DDF
��� of f � For polynomials a� b � Fq 
x� with b 

 	� we denote
the remainder of a modulo b of degree less than deg b by
a rem b�

Algorithm ���
Input� A monic squarefree polynomial f � Fq 
x� of degree n�
Output� The polynomials h�� � � � � hn � Fq 
x� as in ����

	� Set a� 
 x� b� 
 f � and m 
 bn
�
c�


� Repeat steps � to � for i 
 �� � � � �m�

�� ai 
 aqi�� rem bi���

�� hi 
 gcd�ai � x� bi����

�� bi 

bi��

hi
�


� Set hi 
 � for m � i � n� If bm 

 �� set hdeg bm 
 bm�

�� Return h�� � � � � hn�

The cost of the algorithm is

m�Q�n� �D�n� � G�n�� � O�n �M�n��log q � log n��

operations in Fq � One drawback of the algorithm is that
most of the gcds computed will equal ��

To overcome this problem� some polynomial factoriza�
tion algorithms �von zur Gathen � Shoup ����� Kaltofen �
Shoup ����� use a �blocking strategy�� the range for the
degrees of possible nontrivial factors of f excepting the one
of largest degree is partitioned into intervals I�� � � � � Ik� and
there is one gcd computation per interval Ij which extracts
the product of all irreducible factors of f with degree in Ij
�coarse DDF�� If that gcd turns out to be �� we know that
hi 
 � for all i � Ij � having computed only one gcd instead
of �Ij many� If the degree of the gcd is less than �min Ij �
then we have found an irreducible factor� Otherwise� how�
ever� a further step has to be performed to compute the hi
for i � Ij � e�g�� by a linear or binary search of the interval
��ne DDF��

� � �

� c� c� � � c� ck�� � � bn
�
c

I� I� Ik

Figure ���� An interval partition

We now introduce some notation� Let m 
 bn��c� An
interval partition of f�� � � � �mg is a sequence of integers 	 

c� � c� � c� � � � � � ck�� � ck 
 m� where 	 � k � N is
the length of the partition� The sets Ij 
 fcj�� � �� � � � � cjg
for � � j � k are the intervals of the partition �see Figure
����� For c� d � N with c � d� we de�ne �c� d� to be the set
of polynomials

ff � Fq 
x� � c � deg p � d for any irreducible factor p of fg�

By an interval polynomial for Ij we mean a polynomial in
�	� cj � which is divisible by each irreducible polynomial in
�cj��� cj �� For example�

Y

cj���i�cj

�xq
i

� x� ���

is an interval polynomial for Ij � used in von zur Gathen �
Shoup ������� Another example is the polynomial

Y

��i�cj�cj��

�xq
cj

� xq
i

�

from Kaltofen � Shoup ������� Note that interval polyno�
mials need not be squarefree� Kaltofen � Shoup ������ also
use this notion� but their interval polynomials di er from
ours in that they are already reduced modulo the polyno�
mial to be factored�

With the above notation� a coarse DDF algorithm can
be stated as follows�

Algorithm ��� Coarse DDF�
Input� A monic squarefree polynomial f � Fq 
x� of degree n�
Output� The polynomials Hj 


Q
i�Ij

hi � Fq 
x� for � � j �

k� where h�� � � � � hn are as in ���� plus an irreducible factor
of f of degree more than n

�
� if such a factor exists�

	� B� 
 f �


� Repeat steps � to � for j 
 �� � � � � k�

�� Compute the remainder Ij of an interval
polynomial for Ij modulo Bj���

�� Hj 
 gcd�Ij � Bj����

�� Bj 

Bj��

Hj
�


� Return H�� � � � � Hk� If Bk 

 �� then also return Bk�

For constant interval sizes� the above scheme already ap�
pears in von zur Gathen � Shoup ������� Kaltofen � Shoup
������� and Shoup ������� Their algorithms only di er in
the computation of the interval polynomials� Note that this
is exactly the ordinary DDF algorithm when cj 
 j for
� � j � m� Intuitively� the interval partition should be cho�
sen in such a way that the intervals increase in size� since
a random polynomial has many small but only few large
irreducible factors on average�

Using the remainder modulo Bj�� of the polynomial ���
for Ij � the cost for the computation of Ij is �cj� cj��� mod�
ular qth powers and the same number of modular multipli�
cations� and hence the cost of the above algorithm is

m�P�n��Q�n���k�D�n��G�n�� � O�M�n��n log q�k log n��

operations in Fq � Thus we have reduced the number of gcd
computations from m to k in comparison to Algorithm ����
The price we pay for this is m additional modular mul�
tiplications!which are cheaper than gcd computations!
and the fact that we do not yet have the complete DDF
of g� If Hj 

 � and the degree of Hj is less then ��cj������
we know that Hj is irreducible and equal to hdegHj

� and
also hi 
 � for cj�� � i � cj with i 

 degHj � Otherwise�
a �ne DDF on Hj will be performed� but the hope is that
this will not happen very often�



In practice� the algorithm will be stopped as soon as
degBj � ��cj�� ���� since then Bj must be irreducible and
equal to hdeg bj �this is sometimes called early abort�� but
we do not take this into account in the following analysis in
order to keep things simple�

Von zur Gathen � Shoup ������ and Kaltofen � Shoup
������ use the interval partition cj 
 lj with constant in�
terval sizes and l 
 dn�e for some real constant � with
	 � � � �� Their algorithms rely on fast multipoint evalu�
ation over the ring Fq 
x���f� and on fast matrix multiplica�
tion for the computation of the interval polynomials� The
cost for the gcd computations in Kaltofen � Shoup ������
is O��n� � n����M�n� log n��

� Worst case analysis of the coarse � �ne DDF
algorithm with polynomially growing interval sizes

In this section� we assume that the interval partition is
de�ned by cj 
 minfdjde� mg for some d � R with d � ��
where m 
 bn��c� For simplicity� we assume that d � N in

the sequel� The number of intervals is k 
 dm��de� We will
analyze the total cost to compute the complete DDF in the
worst case when using a linear search �ne DDF algorithm�
as follows�

Algorithm ��� Linear search �ne DDF�
Input� j � f�� � � � � kg� the polynomial Hj 


Q
i�Ij

hi �

Fq 
x�� where the hi are as in ���� and Aj 
 xq
cj��

rem Hj �
Fq 
x��
Output� The polynomials hi � Fq 
x� for i � Ij�

	� Set bcj�� 
 Hj and acj�� 
 Aj�


� Repeat steps � to � for i 
 cj�� � �� � � � � cj �

�� ai 
 aqi�� rem bi�

�� hi 
 gcd�ai � x� bi����

�� bi 

bi��

hi
�


� Return hcj����� � � � � hcj �

This is just the part of the ordinary DDF algorithm for
the interval Ij � with the only exception that the polynomial
bcj�� at the beginning of the iteration is in �cj��� cj � and
not only in �cj��� n�� It was also used by von zur Gathen �
Shoup ������ and Kaltofen � Shoup �������

The cost for this algorithm is at most dn�d��
�d�Q�n� �

G�n� � D�n�� or O�n�d��
�dM�n��log q � log n�� operations
in Fq � Since the coarse DDF algorithm already computes

the remainder of xq
cj��

modulo some multiple of Hj � the
cost for the computation of Aj is R�n� operations in Fq for
one division with remainder by Hj for � � j � k� Thus the
overall cost for both the coarse and the �ne DDF algorithm
is at most

n

�
P�n� � �

n

�
� dn�d��
�d�Q�n� � n��dR�n�

��dn�d��
�d � n��d��D�n� � G�n��

operations in Fq for n large enough� Minimizing the two
exponents �d� ���d and ��d leads to the following result�

Theorem ��� The distinct degree factorization of a square�
free polynomial f � Fq 
x� of degree n can be computed using

O�n���M�n� log n� operations in Fq for gcd computations�
and O�n �M�n� log q� operations in Fq in total� This can be
achieved by means of a coarse DDF algorithm with interval
partition de�ned by cj 
 j� and a �ne DDF algorithm with
linear interval search�

Note that this saves a factor of log n in comparison to the
asymptotic running time of Algorithm ���� which in partic�
ular for q 
 � is a signi�cant gain�

It follows from the results in von zur Gathen et al� ������
that for polynomially growing interval sizes� the expected
total number of factors in the �bad� intervals is constant
for random inputs� so that a �ne DDF algorithm with bi�
nary interval search promises to save some more costly gcd
computations�

	 Employing irreducibility tests

In this section� we indicate how to speed up the coarse
DDF algorithm by using an irreducibility test� Suppose that
we have already found all irreducible factors of f � F� 
x� of
degree at most c � N� and that a �large� factor b � F� 
x�
collecting all irreducible factors of f of degree more than c
remains� If b is irreducible� then the coarse DDF algorithm
will only �nd this out after reaching the degree deg b��� and
this may take most of the total time spent for factoring f �
as our experiments in section � indicate�

In our implementation� we run an irreducibility test on
b in parallel to the coarse DDF algorithm on a second ma�
chine� If the coarse DDF algorithm �nds a factor� the ir�
reducibility test is aborted and restartet for the remaining
polynomial� If� however� the irreducibility test says that
the polynomial is irreducible� then the coarse DDF algo�
rithm is aborted� The irreducibility test we use is based
on Fact ��� and Theorem ��� in von zur Gathen � Shoup
������� has an asymptotic running time of O��n� � n��� �
M�n�� log� n� loglog n� operations in F� for a squarefree poly�

nomial in F� 
x� of degree n� and uses space for O�n���� ele�
ments of F� � where n 
 deg b� It involves the computation of
matrix products of size n�� � n��� which we compute with

O�n���� operations in F� � using classical matrix arithmetic�
The same technique was also used in Shoup ������ for the
computation of modular compositions� Asymptotically� the
total time for the irreducibility test is almost the same or�
der of magnitude as the O�n � M�n�� bound for the coarse
DDF algorithm� but in our implementation it signi�cantly
reduces the total running time� We have further speeded up
the irreducibility test by making use of intermediate data
computed by the coarse DDF algorithm� As a consequence�
the irreducibility test is the faster� the higher the degree is
that the coarse DDF algorithm has reached when the ir�
reducibility test is launched� The details can be found in
von zur Gathen � Gerhard �������


 Implementation and running times

In this section� we describe our implementation of the
polynomial factorization algorithm over F� on two Sparc
Ultra � computers� rated at ��� MHz each� The software
is written in C��� Polynomials over F� are represented as
arrays of ���bit unsigned integers� and �� consecutive coe��
cients of a polynomial are packed into one machine word� We



built a C�� class for polynomials over F� o ering standard
operations like copying� reversing� shifting� and determining
the degree of polynomials� the arithmetic operations addi�
tion� multiplication� squaring� division with remainder� and
the Extended Euclidean Algorithm�

Polynomial multiplication� We have implemented several
algorithms for polynomial multiplication over F� � the school
method� Karatsuba � Ofman� Cantor�s method over F���
and over F��� � and our extension of Cantor�s method over
F��� � We did not implement Sch�onhage�s algorithm� The
timings of Reischert ������ indicate that in his implemen�
tation� it beats Cantor�s method for degrees above �		� 			�
and for degrees around �	� 			� 			� Sch�onhage�s algorithm
is faster than Cantor�s by a factor of � �

�
�

As basis for the classical multiplication and the method
of Karatsuba � Ofman� we have tried several algorithms for
the multiplication of polynomials of degree less than ��� The
fastest turned out to be by � multiplications of ��bit blocks "a
la Karatsuba � Ofman� where the ��bit blocks are multiplied
via table�lookup �the corresponding table uses ���k bytes of
main memory��

Multiplication in F��� is implemented by means of an
exponentiation and a discrete logarithm table with respect
to a primitive element of the multiplicative group� This
was also done by Montgomery ������ and Reischert �������
The cost for one multiplication in F��� is then essentially
the cost for three table lookups and one addition of ���bit
integers� The size of each of the two tables is ���k bytes of
main memory� Multiplication in F��� is done in the same
way� using an exponentiation and a logarithm table of size
�M bytes each� One multiplication in F��� is reduced to
essentially three multiplications in F��� in a Karatsuba �
Ofman like way� using that F��� is a quadratic extension of
F��� �

If we want to multiply two polynomials a� b � F� 
x� using
multipoint evaluation and interpolation at linear subspaces
of one of the three �elds F�m with m � f��� �	� ��g as above�
we write a and b as

a 

X

��i�r

aiy
i� b 


X

��i�r

biy
i�

with ai� bi � F� 
x� of degree less than
m
�
and y 
 xm��� Then

we regard y as a new indeterminate� substitute a generator
� of F�m 
 F� 
�� over F� for x in the ai and bi� and mul�
tiply the resulting polynomials over F�m 
y�� as in section ��
Finally� we replace � by x in the coe�cients of the product
polynomial� and compute ab � F� 
x� by substituting xm��

for y� In this way� we can multiply polynomials in F� 
x� of
degree less than m�m���

n classical K � O Cantor Cantor this paper
m��� m��� m���

���	
 ���� ���
 ���	 ���	 ����
��
�	 ���
 ���� ���� ���
 ��
�
����� ��	
 ���� ���� ���� ����
����
� ���
	 ���� ��
� ��
� ����
����

 ����
 ���� ���� ���� 
�
	
��
�		 �

��� ����� ���� �����
��
	�
� �����
� ����� 	��� ���
�

Table ���� Average times in CPU seconds for one multipli�
cation of two polynomials of degree n� ��

Table ��� shows the average time in CPU seconds to
multiply polynomials over F� with the various algorithms

for �	 pseudorandomly chosen inputs� There are no entries
for Cantor�s algorithm with m 
 �� for degrees larger than
������ because this is the maximal degree for which the
method works �see above�� As the theory predicts� our al�
gorithm is slower than both variants of Cantor�s algorithm�
The main reason is that the polynomials si have coe�cients
in F� in Cantor�s algorithm� while their coe�cients are in
F��� in our algorithm� It is interesting that our implemen�
tation of Cantor�s algorithm with m 
 �� is nearly as fast as
the variant with m 
 �� �on a di erent but slower machine�
it is even slightly faster�� We use m 
 �� throughout�

Our implementation is about ��� times faster than the
implementation of Montgomery ������� which is presumably
the consequence of higher processor speed� and about as fast
as the implementation of Reischert ������� whose program
ran on a slower Sun Sparc �	#�� machine� The crossover
point in our implementation between the classical algorithm
and Karatsuba � Ofman is near degree ���� between Karat�
suba � Ofman and Cantor with m 
 �� near degree ����	�

Polynomial division� For division with remainder� we use
the classical method for small degrees and Newton inver�
sion �see Aho et al� ����� Chapter �� for large degrees� In
the context of polynomial factorization� we are often in the
situation that the divisor polynomial f is �xed throughout
many divisions� namely the polynomial to be factored� Then
Newton inversion admits the precomputation of

�xdeg f � f�x������ mod xdeg f � ���

which does not depend on the particular dividend� using
O�M�deg f�� operations in F� � and the cost for computing
one remainder modulo f is essentially the cost for two poly�
nomial multiplications of degree less than deg f � If we use
an evaluation # interpolation scheme like Cantor�s algorithm
for polynomial multiplication� further savings are possible
by precomputing the multipoint evaluation of f and of the
polynomial ���� This reduces the cost for one remainder
computation modulo f to about 


�
the cost for one polyno�

mial multiplication of degree less than deg f � A similar trick
was used by Shoup �������

n classical Newton inversion
precomp� remainder comp�

����� 	��� 	�	� 	�	�
����� 	��� 	��	 	���
����� ���	 	��	 	���
���	�� ����� ���� ��	�
������ ���	� ���� ����
������ ����		 ����� ����
�	����� ������ ���	� �����

Table ���� Average times in CPU seconds for one division
with remainder of a polynomial of degree �n� � by a poly�
nomial of degree n� ��

Table ��� shows the average time to compute one division
with remainder using the classical method and Newton it�
eration� respectively� for �	 pseudorandomly chosen inputs�
The crossover point between the two algorithms when the
precomputation time is not counted is near degree �����

Polynomial gcds� For the computation of gcds� we use
both the classical method and and a faster O�M�n� log n�
algorithm� also known as �half�gcd� �see Aho et al� �����



n classical �half�gcd�

����� ���� ����
����� ���� ����
����� ����� ����
���	�� �		��� �����
������ �	���� �	���
������ ������� ������
�	����� �	����� ������

Table ���� Average times in CPU seconds for one gcd of two
polynomials of degree n� ��

Strassen ������ Table ��� shows the average time in CPU
seconds for the computation of one gcd using both methods
for �	 pseudorandomly chosen inputs� The crossover point
between the two algorithms is near degree ������

Polynomial factorization� Our polynomial factorization al�
gorithm consists of the three stages described in section ��
For the squarefree factorization� we use the standard algo�
rithm �see� e�g�� Geddes et al� ������� Chapter ��� with a spe�
cial trick for the �nite �eld F� � using the fact that gcd�f� f

��
is a square for any f � F� 
x��

To compute the distinct degree factorization� we have
implemented the coarse DDF algorithm as described in sec�
tion �� with early abort� and the interval partition de�ned
by cj 
 �j�� with intervals I� 
 f�� �g� I� 
 f�� � � � � �g�
I� 
 f�� � � � � ��g� � � �� Ij 
 f��j � ������ � � � � �j�g� Further�
more� we use a binary search �ne DDF algorithm�

Using a similar trick as Montgomery ������� we reduce
the number of modular multiplications in the computation
of an interval polynomial for the interval fc � �� � � � � dg in
the coarse DDF algorithm from d�c�� to about d�c



� This

saves a factor of �
��

of the running time�
We use the irreducibility test as described in section ��

The process is spawned as soon as the coarse DDF algo�
rithm reaches degree �			� and respawned every time the
coarse DDF algorithm �nds a new factor to check whether
the remaining polynomial is irreducible�

The equal degree factorization is done as in Ben�Or
������� at an expected cost of O�d �M�rd� log r� operations
in F� for a squarefree equal�degree polynomial of order d
with r irreducible factors�

Factorization experiments� Table ��� shows examples of
running times on the main machine for the factorization al�
gorithm� The elapsed wall clock time di ers from the CPU
time on the main machine only by at most three per cent in
all experiments� and we have omitted it� The third column
contains the amount of disk space in megabytes that the
algorithm used for storing intermediate results� For the ex�
amples with degree ������� the amount of disk space used
was limited by the size of the hard disk� The fourth col�
umn shows the degree at which the coarse DDF algorithm
ended or was aborted when the irreducibility test certi�ed
the remaining factor to be irreducible �in the latter case�
the degree is written in italic�� and the last column contains
the factorization pattern� i�e�� the degree sequence of the
irreducible factors of the input polynomial� For example�
��� �� �� � means that the polynomial has one linear factor
occurring twice� an irreducible quadratic and two di erent
irreducible cubic factors� each of the latter occuring only
once� In our experiments� we never had to perform a �ne
DDF or an EDF for total degrees above �			� Since the

algorithm is distributed over two machines� both the CPU
time on the main machine and the elapsed wall clock time
depend on the work load of both machines�

We denote by Ni�f� the degree of the ith largest irre�
ducible factor of f � F� 
x�� The actual running time of the
algorithm for an individual polynomial f depends on several
factors�

	 N��f�� the degree of the largest irreducible factor�
With �early abort�� the coarse DDF algorithm stops
near the degree maxfN��f�� bN��f���cg �because of
blocking� the actual abort degree maybe somewhat
higher�� so that the algorithm runs faster if the degrees
of all irreducible factors are relatively small� However�
for random polynomials this will rarely occur� since it
is widely believed that there is some constant � � R
with 	�� � � � � such that N��f� is �� � o����n on
average for a random polynomial f of degree n� since
a similar statement is true for integers �see Knuth �
Pardo ������

	 N��f�� the degree of the second largest irreducible fac�
tor of f � This is because the irreducibility test for the
largest prime factor is launched when the coarse DDF
algorithm reaches the degree N��f��

Let f � F� 
x� the polynomial to be factored� n 
 deg f �
and t the average time for the multiplication of two polyno�
mials of degree about n in CPU seconds� Then the time used
for one division with remainder of a polynomial of degree
less than �n by a factor of f is approximately �t when us�
ing Karatsuba � Ofman�s multiplication algorithm� or even
about 


�
t when we use Cantor�s method for multiplication�

If d � n�� is the degree where the coarse DDF algorithm
stops and we neglect the cost for precomputations in the
division algorithm� gcd computations� �ne DDF� and EDF�
the algorithm essentially performs d modular squarings and
d�� modular multiplications for the computation of the in�
terval polynomials� This leads to an estimate for the total
running time of � ��



dt CPU seconds with Karatsuba �

Ofman multiplication and � ��
��
dt with Cantor�s multiplica�

tion� which is in good accordance with the times in Tables
��� and ���� The worst case for our DDF algorithm is when
f has two irreducible factors of distinct degrees� both about
n��� The irreducibility test is of no help in this case� and
we get an estimated running time of ��

�
nt and ��

�

nt CPU

seconds� respectively�
Factoring trinomials can be done still faster� since di�

vision with remainder by a trinomial costs essentially the
same as a polynomial addition� This leads to an estimated
running time of �



dt� where d and t are as above� We have

implemented a variant of our factorization algorithm for tri�
nomials of the form xn�x�� which exploits the sparseness�
and factored the trinomial x��	����x�� from Montgomery
������ in less than � hours of CPU time�
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