ial pur- mission of the copyright holder. (Last update 2017/11/29-18 :18.)

, University of Paderborn, Germany, 1996,

c@din@ of the 1996 International Symposium on

° b
|&a@eunmamns invoked by poses. These works may not be posted elsewhere without the explicit written per-

o0
stract
K
e describé algorithms for polynomial multiplication and
lynémi _gf ctorization over the binary field F» and their
1@ée§1en§a&10n. They allow polynomials of degree up to
TQ . 080 t§ be factored in about one day of CPU time.
<ge 11
A& =i .
z - 2 iz 1 Introduction
%) = 2
£ E‘)Tﬁ;e pr: .g)g)lem of polynom1al factorization over the binary
fgal‘ﬂl B i< fgiven a monic polynomlal f € Falz], to com-
%1@ the fgorization f = fi* --- fr~ with monic irreducible
pai @e dg&imct polynomials f1, ..., fr € F2[x] and positive

Je, £, N. The efficiency of the currently known algo-
gfor %fus problem relies on fast polynomial arithmetic,
%}Ewuﬁ& on fast polynomial multiplication.

mul%tlphcatlon method of Karatsuba & Ofman (1962)
salj)as yhgptotic running time of O(n L 59) operations in [Fo
3 ogyn(%ﬁlals of degree less than n, which is better than

)%ba)und for the naive multlphcatlon algorithm, but
%ﬂi’"a sléw in practice for large n. Schénhage (1977) gives

EsE) lognloglog n) algorithm based on a ternary FFT
1t‘§ ot of unity of 3-power order. Reischert (1995) im-
ented: Several algorithms for polynomial multiplication
1nﬁudlng those by Karatsuba & Ofman, Schonhage
(see below). Shoup (1995) has successfully im-
; fast FFT-based algorlthm for multiplying poly-
F, for a prime p, using a modular approach,
. to be practical only when p is not too small.
1989) presented an algorithm for multiplying
of degree less than n over F, for a prime p
mp™) multiplications and O(m?*p™) scalar op-

additions or multiplications by elements of
1d Fpm , where m is the least power of p with
It behaves particularly well in the case p = 2.
o the FFT-based algorithms cited above, which

torlz”atign%
’*? "“"@0

o

Sﬂ

Ardthgh

%e

ARTE(RB)
%Z_a@&
cj?e%c% /

o/
(?7.6

m

')

e wm;e@on&a

EREEEGE
=N
£da

& &
ok i

o
2L
o
opn
i
1oty
@ <

i
B
&

ia as;g.,Copyngmn&mn

grgeg@
E@mﬂ :
@«%}

i

e aieiami interpolate at suitably subgroups of the mul-
Qpﬁc@ @g up of a (finite) field, Cantor’s approach uses

.Q w
%d@tw eguybgroups, i.e., F,-linear subspaces of Fpm . Mont-
goIHe -El—?gl) 1mplemented a polynomial factorlzation al-
@)f&h&lu—fﬂé@t uses Cantor’s algorithm as a subroutine, and
RENEE
T3S a9l
255 ChE
S & a Qi

To appear in Proc. ISSAC 96, Ziirich, 1996

Arithmetic and factorization of polynomials over [y

JOACHIM VON ZUR GATHEN and JURGEN GERHARD
Fachbereich 17 Mathematik-Informatik
Universitat-GH Paderborn
D-33095 Paderborn, Germany
e-mail: {gathen, jngerhar}@uni-paderborn.de

Extended Abstract

was able to factor a sparse polynomial of degree more than
200, 000 over F» in about 45 hours.

In section 2, we generalize Cantor’s method to work for
prime powers p and arbitrary m. We state explicit “O”-free
upper bounds on the time and space cost of our algorithms.

In section 7, we report on experiments in which our im-
plementation of Cantor’s original method turned out to be
superior to these new variants.

In the last 5 years, dramatic progress in the area of poly-
nomial factorization has been made, both in theory and in
practice. The classical algorithms for polynomials over finite
fields are due to Berlekamp (1967, 1970), Cantor & Zassen-
haus (1981), and Ben-Or (1981). Recently, many variants
and asymptotically faster algorithms have been proposed by
von zur Gathen & Shoup (1992), Kaltofen (1992), Niederre-
iter (1994), Gao & von zur Gathen (1994), Kaltofen & Lobo
(1994), and Kaltofen & Shoup (1995). Implementations are
described in Kaltofen & Lobo (1994), Shoup (1995), and
Fleischmann & Roelse (1995).

Section 3 gives an outline of the structure of some mod-
ern polynomial factorization algorithms. In sections 4 and 5,
we discuss and analyze a new variant of the distinct degree
factorization stage in those algorithms, using interval parti-
tions with polynomially growing interval sizes. In section 6,
we indicate how the distinct degree factorization stage over
F> can be further speeded up by the use of an irreducibility
test. Finally, an implementation of the polynomial factor-
ization algorithm over F» is described in section 7, including
examples of running times.

We have mainly concentrated on optimizing our imple-
mentation for the distinct degree factorization stage. Of
course, more work is required to also optimize for cases
where the input is known to be special, say when we fac-
tor trinomials or cyclotomic polynomials. In particular, we
have not optimized the equal degree factorization stage of
our software.

Due to a page limit in these proceedings, we had to omit
many details and proofs. They can be found in von zur
Gathen & Gerhard (1996).

2 Fast polynomial multiplication over F,

Let F, be a finite field with ¢ elements and m a posi-
tive integer. The extension field F;= is an m-dimensional
vector space over F,. Suppose that W C F;» is a fixed k-
dimensional subspace, where 1 < k < m, and that we want
to solve the following problems.

Problem 2.1 (Multipoint evaluation) Given f € Fym [z] of
degree less than q", compute f(a) for alla € W.

Problem 2.2 (Interpolation) Given a map v: W — Fym |
compute the unique polynomial f € Fym [z] of degree less
than ¢" satisfying f(o) = ~v(a) for alla € W.

The algorithms presented below for these two problems
admit a natural parallelization, but here we only discuss the
sequential versions.

We fix a basis (B1,...,0t) of W over Fy, and for 0 <
i < k let W; be the subspace W; = span{fi,...,8;} CW
of dimension 7. The sets W; form a strictly ascending chain

{0} =WoCWi G- C Wit SWi =W, (1)

and for 1 < ¢ < k we have the recursive decomposition

W; = U (cBi + Wi—1)

ceFy

of W; into ¢ pairwise disjoint cosets, which generalizes to

B+Wi= [(B+chi+Wio) (2)

ceFy

for arbitrary 8 € Fym .
Next, we define the sequence of polynomials s; € Fym [z]

for 0 <i<k by
s; = H (x —).
aeW;

Obviously, s; is a monic squarefree polynomial of degree ¢°,
and corresponding to (1), we have

z=s0|s1]|]| Sk—1] Sk
Lemma 2.3 The following hold for 0 <i < k.

(i) The recursion formulae

Si = H (si—1 —csi—1(Bi)) = s{_; — si=1(Bi)" - si—1

c€Fy
hold if i > 1.

(ii) si is an Fy-linearized polynomial, i.e., si(f +g) =
si(f) + si(g) and si(cf) = csi(f) for all f,g € Fym [z]

and c € Fy.
(1i3) si—si(B) = H (si—1—si—1(B+cfi)) = H (z—a)

c€Fy a€EB+W;
for all B € Fym .

Note that statement (iii) of the lemma reduces to state-
ment (i) and the definition of the s;, respectively, if 3 = 0.

The decomposition (2) and statement (iii) of the lemma
suggest the following algorithm for Problem 2.1.

Algorithm 2.4 (Multipoint evaluation)

We assume that the polynomials s; € Fgm [z] for 0 < i < k
as defined above and the values s;(3;) for 0 <i < j <k are
precomputed and stored.

Input: i € N with 0 <i <k, f € Fym [z] of degree less than
¢, and ciz1,...,cx € F, .

Output: The values f(a) for all « € B+ W;, where 8 =

Zi<jgk ciBi e W.

1. If i =0 then return f.

2. Compute s;—1(8) = ZK].Sk ¢jsi—1(B;), and for each
c € Fy divide f by si—1 — si—1(B) — csi—1(Bi) with
remainder, i.e., compute polynomials ge,rc € Fym [z]
with

f=ge(si1—si1(B) —csi1(B)), degre <q' .

3. For each ¢ € F,, recursively call the algorithm with
input i — 1, re and ¢, cit+1,...,cr to get y(a) = re(a)
foralla € (B+ cB;) + Wi_1.

4. Return v(a) for a € B+ W;.

Note that s;—1(8) + csi—1(8:) = si—1(8 + ¢B;), by the
linearity of s;—1.

Notation. We call an addition in F;= or a multiplication
of an element of F;= by an element of F, a scalar operation,
while a multiplication is a multiplication of two arbitrary
elements of F;= . When analyzing the space requirements of
an algorithm, we only count the work space, i.e., the number
of elements of F;m= for which space is used in addition to the
space for input, output, and precomputed objects.

Theorem 2.5 Algorithm 2.4 works correctly and for i =
k wuses at most %quk + %qu scalar operations and
=120k 4+ =L kR multiplications in Fym . Furthermore, the
2 2 q
- k
algorithm uses work space for at most q%q + 3k elements
QfEbm.

For the interpolation, we have the following algorithm.

Algorithm 2.6 (Interpolation)

We assume that the polynomials s; € Fym [z] for 0 < i < k

as defined above and the values s;(3;) and —s;(Bi+1)' ¢ for

0 <i<j <k are precomputed and stored.

Input: i € N with 0 < ¢ <k, ¢it1,...,cr € Fy, and an array

of values y(a) € Fgm , one for each point o € B+ W;, where
= Zi<j§k ciB; € W.

Output: The interpolating polynomial f € Fym [z] of degree

less than ¢' with f(a) = v(c) for all o € B+ Wi, and the

value s;(0).

1. If i = 0 then return y(8) and (.

2. For each ¢ € F,, recursively call the algorithm with
inputi—1, ¢, Cit1,---,ck, and Y(a) for a € (B+cB:)+
Wi_1 to get 7c € Fym [z] of degree less than ¢~ with
rc(?) =v(a) for alla € (B+cBi)+Wi_1, and s;i—1(B+
Cﬂi.

8. Compute si(B) =3, <, cisi(B5), and set

. Nl—q i — si(B)

4. Return f and s;(3).

Theorem 2.7 Algorithm 2.6 works correctly and for i =k
uses no more than q%lﬁq’c + ququ multiplications and

q%lﬁq’c + 3q—;5qu scalar operations in Fym . Furthermore,
it uses work space for at most g_i}qk + 3k elements of Fym .

Theorem 2.8 The cost of the precomputation stage for Al-
gorithm 2.4 and 2.6 is at most £k + (2[log, ¢] — 2)k* — 2k
multiplications, k inversions, and tk® + 1k> + 1k scalar
operations in Fym . The space occupied by the precomputed
objects is k* + 2k memory locations for elements of Fym .

Cantor (1989) considers the special case where ¢ = p
is prime, k = m = p? is a power of the characteristic, and
W; = ker ¢* for the F,-endomorphism ¢: a — of —a of]Fppd .
He gives a basis (61,...,0,4) of W =W}, = F pa over Fp
such that the polynomials s; are in F, [z] for 0 < i < p?. This
reduces the number of multiplications in Fym to O(kg®).

Theorem 2.9 Two polynomials a,b € Fym [x] whose prod-
uct has degree less than n, where ¢ < n < q™, can be multi-
plied using less than
15¢° + 7

q + qn

nlogg n+

3¢ —q
— log, n

multiplications and

19¢° + 35
g n+ %n log, n
scalar operations in Fym | and work space for less than bgn+
6log, n elements of Fym .

3¢ —q

nlog

Using classical arithmetic in F;= over F,, two polyno-
mials over the field F, whose product has degree less than

n < mgm can be multiplied with at most

(6g—2)m*q™ +0(m*¢™) < (12¢° —4q)nlog2 n—f-O(nlogZ n)

operations in F;, provided that ¢ < n. The bound can
be improved to O(nlogﬁ n(log,log, n)?) with a recursive ap-
proach.

Several simplifications are possible for ¢ = 2, some of
which are in Cantor (1989). They lead to the following re-
sult.

Theorem 2.10 Two polynomials a,b € Fam [2] whose prod-
uct has degree less than n < 2™ can be multiplied using less
than

1
gnlogg n+ 75nlog2 n+8n

multiplications and
gnlogg n+ ?nlog2 n+4n+9

scalar operations in Fam . In doing so, work space for less
than 2log, n + 2 elements of Fom is used.

3 Polynomial factorization

Many of the modern polynomial factorization algorithms
over finite fields (Cantor & Zassenhaus (1981), Ben-Or
(1981), von zur Gathen & Shoup (1992), Kaltofen & Shoup
(1995), but not those of Berlekamp (1967, 1970), Gao &
von zur Gathen (1994), Kaltofen & Lobo (1994), Nieder-
reiter (1994), and Kaltofen & Shoup (1995), Algorithm B)
proceed in three stages:

1. Squarefree factorization (SFF). Given a monic
polynomial f € F, [z] of degree n, compute the unique
monic squarefree and pairwise coprime polynomials
g1,---,9n € Fy[z] such that

f=11 @)

1<i<n

2. Distinct degree factorization (DDF). Given a mo-
nic squarefree polynomial f € F,[z] of degree n, com-
pute its unique decomposition

f=1I ha (4)

1<d<n

into monic polynomials hi,...,h, € Fg[z] such that
each hg has only irreducible factors of degree d. Such
an hg is called an equal-degree polynomial of order d.

3. Equal degree factorization (EDF). Given integers
d,r € N with r > 2 and a squarefree equal-degree
polynomial f € Fy[z] of order d and degree n = rd,
compute its r irreducible factors.

In this and the following sections, M(n) denotes the mul-
tiplication time for polynomials over I, i.e., two polynomi-
als of degree less than n can be multiplied with O(M(n))
operations in F,. Using the approach in section 2, we may
e.g. take M(n) = n(logn)*(loglogn)®. We also use here
that a division with remainder and a gcd for polynomials
of degree at most n can be computed using O(M(n)) and
O(M(n)logn) operations in F,, respectively (see, e.g., Aho
et al. 1974, Chapter 8).

Using the deterministic algorithm of Yun (1976), stage
1 can be performed at essentially the cost of one gcd, i.e.,
O(M(n)logn) operations in F,. The asymptotically fastest
of the currently known algorithms for stage 2 when the field
size q is fixed is due to Kaltofen & Shoup (1995) and uses
O(nl'815 log q) operations in F,. Finally, stage 3 can be per-
formed with O(n'-"+M(n) log r log ¢) operations in F, , using
a probabilistic algorithm of von zur Gathen & Shoup (1992).

If one factors random polynomials, the dominating cost
of the overall algorithm is the cost of the DDF. The rea-
son is that probably an EDF has to be performed only on
equal-degree polynomials of small degree (see Flajolet et al.
(1996) for a detailed analysis). This is confirmed by tests of
our factorization routine on random inputs, as reported in
section 7.

4 Distinct degree factorization

In the following, we briefly discuss the basic idea of all
DDF algorithms over the finite field F,. We use the following
cost measures for our algorithms:

e P(n), the cost for computing one modular product of
two polynomials of degree less than n modulo a poly-
nomial of degree at most n. Thus P(n) € O(M(n)).

e Q(n), the cost for one modular qth power of a poly-
nomial of degree less than » modulo a polynomial of
degree at most n. For large ¢, we may assume that
Q(n) < 2[log, q|P(n), while for ¢ = 2, modular squar-
ing is cheaper than a general modular multiplication.

e R(n), the cost for one remainder computation of a poly-
nomial of degree at most n modulo a polynomial of
degree less than n.

e D(n), the cost for one ezact division, i.e., a division
where the remainder is known to be zero, of two poly-
nomials of degree at most n.

e G(n), the cost for one ged computation of two polyno-
mials of degree at most n.

All of the above functions count operations in F,. This high-
level cost analysis is convenient to achieve simultaneously
two goals: explicit “O”-free estimates, at least for the domi-
nant term, for various algorithms, and also good asymptotic
bounds.

Let f € F, [z] be a monic squarefree polynomial of degree
n. The following well-known algorithm computes the DDF
(4) of f. For polynomials a,b € F,[z] with b # 0, we denote
the remainder of a modulo b of degree less than degb by
a rem b.

Algorithm 4.1
Input: A monic squarefree polynomial f € T, [z] of degree n.
Output: The polynomials hy, ..., hy, € Fy[z] as in (4).

1. Setap =x,bo = f, and m = [%].

2. Repeat steps 3 to 5 fori=1,...,m.
3. a; =al_; rem b;_;.
4 hi = gcd(ai -, bifl).
bi—1
5. b; = .
h;
6. Seth;i =1 form <i<n. Ifbn #1, set haegbn, = bm.

7. Return hi,..., hy.
The cost of the algorithm is
m(Q(n) + D(n) + G(n)) € O(n - M(n)(log ¢ + logn))

operations in F,. One drawback of the algorithm is that
most of the gcds computed will equal 1.

To overcome this problem, some polynomial factoriza-
tion algorithms (von zur Gathen & Shoup 1992, Kaltofen &
Shoup 1995) use a “blocking strategy”: the range for the
degrees of possible nontrivial factors of f excepting the one
of largest degree is partitioned into intervals Iy,... I}, and
there is one gcd computation per interval I; which extracts
the product of all irreducible factors of f with degree in I;
(coarse DDF). If that gcd turns out to be 1, we know that
h; =1 for all ¢ € I, having computed only one gcd instead
of #I; many. If the degree of the gcd is less than 2minI;,
then we have found an irreducible factor. Otherwise, how-
ever, a further step has to be performed to compute the h;
for i € I;, e.g., by a linear or binary search of the interval
(fine DDF).

Il 12
|] |]
| 1 | 1

1 c1 c1+1 c2

Ck—1+1 5]

Figure 4.1: An interval partition

We now introduce some notation. Let m = |n/2|. An
interval partition of {1,...,m} is a sequence of integers 0 =
cp<c1 <y << g1 <ckp=m, where 0 < k € Nis
the length of the partition. The sets I; = {cj—1 +1,...,¢;}
for 1 < j < k are the intervals of the partition (see Figure
4.1). For ¢,d € N with ¢ < d, we define (¢, d] to be the set
of polynomials

{f € F[z] : ¢ < degp < d for any irreducible factor p of f}.

By an interval polynomial for I; we mean a polynomial in
(0,¢;] which is divisible by each irreducible polynomial in
(¢j—1,¢;]. For example,

[@ - (5)

cj—1<i<cj

is an interval polynomial for I;, used in von zur Gathen &
Shoup (1992). Another example is the polynomial

I e

0<i<cj—cj_1

from Kaltofen & Shoup (1995). Note that interval polyno-
mials need not be squarefree. Kaltofen & Shoup (1995) also
use this notion, but their interval polynomials differ from
ours in that they are already reduced modulo the polyno-
mial to be factored.

With the above notation, a coarse DDF algorithm can
be stated as follows.

Algorithm 4.2 Coarse DDF.
Input: A monic squarefree polynomial f € Fy[z] of degree n.
Output: The polynomials H; = Hielj h; € Fy[z] for1 <j <

k, where hi,... hn are as in (4), plus an irreducible factor
of f of degree more than %, if such a factor exists.

1. Bo=f.
2. Repeat steps 3 to 5 forj=1,...,k.

3. Compute the remainder I; of an interval
polynomial for I; modulo B;_1.
4- Hj = ged(I, Bj-1).
Bj_1
. B, = =1 —.
5 i T,
6. Return Hi,...,Hy. If B # 1, then also return By,.

For constant interval sizes, the above scheme already ap-
pears in von zur Gathen & Shoup (1992), Kaltofen & Shoup
(1995), and Shoup (1995). Their algorithms only differ in
the computation of the interval polynomials. Note that this
is exactly the ordinary DDF algorithm when ¢; = j for
1 < j < m. Intuitively, the interval partition should be cho-
sen in such a way that the intervals increase in size, since
a random polynomial has many small but only few large
irreducible factors on average.

Using the remainder modulo B;_; of the polynomial (5)
for I;, the cost for the computation of I; is (¢; —c¢j—1) mod-
ular gth powers and the same number of modular multipli-
cations, and hence the cost of the above algorithm is

m(P(n)+Q(n))+k(D(n)+G(n)) € O(M(n)(nlog g+klogn))

operations in F,;. Thus we have reduced the number of gcd
computations from m to k in comparison to Algorithm 4.1.
The price we pay for this is m additional modular mul-
tiplications—which are cheaper than gcd computations—
and the fact that we do not yet have the complete DDF
of g. If H; # 1 and the degree of H; is less then 2(c;j—1 +1),
we know that Hj; is irreducible and equal to hdeg 1;, and
also h; =1 for ¢;j_1 < ¢ < ¢; with ¢ # deg H;. Otherwise,
a fine DDF on H; will be performed, but the hope is that
this will not happen very often.

In practice, the algorithm will be stopped as soon as
deg B; < 2(cj—1 + 1), since then B; must be irreducible and
equal to haegp, (this is sometimes called early abort), but
we do not take this into account in the following analysis in
order to keep things simple.

Von zur Gathen & Shoup (1992) and Kaltofen & Shoup
(1995) use the interval partition ¢; = [j with constant in-
terval sizes and | = [n”] for some real constant 8 with
0 < B < 1. Their algorithms rely on fast multipoint evalu-
ation over the ring F,[z]/(f) and on fast matrix multiplica-
tion for the computation of the interval polynomials. The
cost for the gcd computations in Kaltofen & Shoup (1995)
is O((n® +n'"P)M(n)logn).

5 Worst case analysis of the coarse / fine DDF
algorithm with polynomially growing interval sizes

In this section, we assume that the interval partition is
defined by ¢; = min{[;%], m} for some d € R with d > 1,
where m = |n/2]. For simplicity, we assume that d € N in
the sequel. The number of intervals is k = [m'/?]. We will
analyze the total cost to compute the complete DDF in the
worst case when using a linear search fine DDF algorithm,
as follows.

Algorithm 5.1 Linear search fine DDF.
Input: j € {1,...,k}, the polynomial H; = Hiaj hi €

Fq [z], where the h; are as in (4), and A; = 2777 rem H; €
I, [x].
Output: The polynomials h; € F,[z] for i € I;.

1. Setbe;_, = H;j and ac;_, = A;.

2. Repeat steps 3 to 5 fori=cj—1+1,...,¢;.

3. a; = al_; rem b;.
4. hi :gcd(ai—x,bi_l).
bi—1
. b = ——.
7] I

6. Return hcj71+1, ceey hcj .

This is just the part of the ordinary DDF algorithm for
the interval I;, with the only exception that the polynomial
bc;_, at the beginning of the iteration is in (c;—1,c¢;] and
not only in (¢j—1,n]. It was also used by von zur Gathen &
Shoup (1992) and Kaltofen & Shoup (1995).

The cost for this algorithm is at most dn'®~Y/4(Q(n) +
G(n) + D(n)) or O(n“=1/2M(n)(logq + logn)) operations
in IF;. Since the coarse DDF algorithm already computes
the remainder of ¢~ ' modulo some multiple of Hj, the
cost for the computation of A; is R(n) operations in F, for
one division with remainder by H; for 1 < j < k. Thus the
overall cost for both the coarse and the fine DDF algorithm
is at most

FPM) + (5 +dn'/)Q(n) +n'/*R(n)
+(dn' =% L MY (D(n) + G(n))

operations in [, for n large enough. Minimizing the two
exponents (d — 1)/d and 1/d leads to the following result.

Theorem 5.2 The distinct degree factorization of a square-
free polynomial f € Fy[x] of degree n can be computed using
O(n'/?M(n)logn) operations in F, for ged computations,
and O(n - M(n)log q) operations in Fy in total. This can be
achieved by means of a coarse DDF algorithm with interval
partition defined by c; = 5 and a fine DDF algorithm with
linear interval search.

Note that this saves a factor of log n in comparison to the
asymptotic running time of Algorithm 4.1, which in partic-
ular for ¢ = 2 is a significant gain.

It follows from the results in von zur Gathen et al. (1995)
that for polynomially growing interval sizes, the expected
total number of factors in the “bad” intervals is constant
for random inputs, so that a fine DDF algorithm with bi-
nary interval search promises to save some more costly gcd
computations.

6 Employing irreducibility tests

In this section, we indicate how to speed up the coarse
DDF algorithm by using an irreducibility test. Suppose that
we have already found all irreducible factors of f € Fa[z] of
degree at most ¢ € N, and that a “large” factor b € F»[z]
collecting all irreducible factors of f of degree more than ¢
remains. If b is irreducible, then the coarse DDF algorithm
will only find this out after reaching the degree degb/2, and
this may take most of the total time spent for factoring f,
as our experiments in section 7 indicate.

In our implementation, we run an irreducibility test on
b in parallel to the coarse DDF algorithm on a second ma-
chine. If the coarse DDF algorithm finds a factor, the ir-
reducibility test is aborted and restartet for the remaining
polynomial. If, however, the irreducibility test says that
the polynomial is irreducible, then the coarse DDF algo-
rithm is aborted. The irreducibility test we use is based
on Fact 7.3 and Theorem 7.5 in von zur Gathen & Shoup
(1992), has an asymptotic running time of O((n* + n'/? -
M(n)) log? n/ loglog n) operations in Fy for a squarefree poly-
nomial in F» [z] of degree n, and uses space for O(n*/?) ele-
ments of F», where n = degb. It involves the computation of
matrix products of size n/2 x n/2, which we compute with
O(n3/2) operations in 2, using classical matrix arithmetic.
The same technique was also used in Shoup (1995) for the
computation of modular compositions. Asymptotically, the
total time for the irreducibility test is almost the same or-
der of magnitude as the O(n - M(n)) bound for the coarse
DDF algorithm, but in our implementation it significantly
reduces the total running time. We have further speeded up
the irreducibility test by making use of intermediate data
computed by the coarse DDF algorithm. As a consequence,
the irreducibility test is the faster, the higher the degree is
that the coarse DDF algorithm has reached when the ir-
reducibility test is launched. The details can be found in
von zur Gathen & Gerhard (1996).

7 Implementation and running times

In this section, we describe our implementation of the
polynomial factorization algorithm over F» on two Sparc
Ultra 1 computers, rated at 143 MHz each. The software
is written in C++. Polynomials over F> are represented as
arrays of 32-bit unsigned integers, and 32 consecutive coeffi-
cients of a polynomial are packed into one machine word. We

built a C++ class for polynomials over F» offering standard
operations like copying, reversing, shifting, and determining
the degree of polynomials, the arithmetic operations addi-
tion, multiplication, squaring, division with remainder, and
the Extended Euclidean Algorithm.

Polynomial multiplication. We have implemented several
algorithms for polynomial multiplication over F»: the school
method, Karatsuba & Ofman, Cantor’s method over Fyis
and over Fy32, and our extension of Cantor’s method over
Fy20. We did not implement Schénhage’s algorithm. The
timings of Reischert (1995) indicate that in his implemen-
tation, it beats Cantor’s method for degrees above 500, 000,
and for degrees around 40,000, 000, Schonhage’s algorithm
is faster than Cantor’s by a factor of = %

As basis for the classical multiplication and the method
of Karatsuba & Ofman, we have tried several algorithms for
the multiplication of polynomials of degree less than 32. The
fastest turned out to be by 9 multiplications of 8-bit blocks a
la Karatsuba & Ofman, where the 8-bit blocks are multiplied
via table-lookup (the corresponding table uses 128k bytes of
main memory).

Multiplication in Fyis is implemented by means of an
exponentiation and a discrete logarithm table with respect
to a primitive element of the multiplicative group. This
was also done by Montgomery (1991) and Reischert (1995).
The cost for one multiplication in Fyis is then essentially
the cost for three table lookups and one addition of 16-bit
integers. The size of each of the two tables is 256k bytes of
main memory. Multiplication in Fy20 is done in the same
way, using an exponentiation and a logarithm table of size
4M bytes each. One multiplication in Fy32 is reduced to
essentially three multiplications in Fy6 in a Karatsuba &
Ofman like way, using that Fy32 is a quadratic extension of
Fyi6.

If we want to multiply two polynomials a,b € F»[z] using
multipoint evaluation and interpolation at linear subspaces
of one of the three fields Fom with m € {16, 20, 32} as above,
we write a and b as

a = Z aiyi, b= Z biyi,

0<i<r 0<i<r

with a;, b; € 2 [z] of degree less than 2 and y = 2™/. Then
we regard y as a new indeterminate, substitute a generator
v of Fom = Fs[y] over F, for z in the a; and b;, and mul-
tiply the resulting polynomials over Fom [y], as in section 2.
Finally, we replace v by z in the coefficients of the product
polynomial, and compute ab € F[z] by substituting z™/?
for y. In this way, we can multiply polynomials in F>[z] of
degree less than m2™ 2.

n || classical | K & O | Cantor | Cantor | this paper
m=16 | m=32 m=20

16384 0.25 0.04 0.08 0.08 0.32
32768 0.97 0.13 0.16 0.17 0.72
65536 3.87 0.39 0.33 0.36 1.60
131072 15.48 1.22 0.72 0.76 3.53
262144 61.97 3.55 1.59 1.66 7.48
524288 247.65 10.61 3.65 16.12
1048576 1002.73 31.96 8.00 35.46

Table 7.1: Average times in CPU seconds for one multipli-
cation of two polynomials of degree n — 1.

Table 7.1 shows the average time in CPU seconds to
multiply polynomials over F» with the various algorithms

for 10 pseudorandomly chosen inputs. There are no entries
for Cantor’s algorithm with m = 16 for degrees larger than
262144 because this is the maximal degree for which the
method works (see above). As the theory predicts, our al-
gorithm is slower than both variants of Cantor’s algorithm.
The main reason is that the polynomials s; have coefficients
in F> in Cantor’s algorithm, while their coefficients are in
Fy20 in our algorithm. It is interesting that our implemen-
tation of Cantor’s algorithm with m = 32 is nearly as fast as
the variant with m = 16 (on a different but slower machine,
it is even slightly faster). We use m = 32 throughout.

Our implementation is about 3.3 times faster than the
implementation of Montgomery (1991), which is presumably
the consequence of higher processor speed, and about as fast
as the implementation of Reischert (1995), whose program
ran on a slower Sun Sparc 10/41 machine. The crossover
point in our implementation between the classical algorithm
and Karatsuba & Ofman is near degree 576, between Karat-
suba & Ofman and Cantor with m = 32 near degree 35840.

Polynomial division. For division with remainder, we use
the classical method for small degrees and Newton inver-
sion (see Aho et al. 1974, Chapter 8) for large degrees. In
the context of polynomial factorization, we are often in the
situation that the divisor polynomial f is fixed throughout
many divisions, namely the polynomial to be factored. Then
Newton inversion admits the precomputation of

(xdegf . f(az‘_l))_1 mod mdegf, (6)

which does not depend on the particular dividend, using
O(M(deg f)) operations in F», and the cost for computing
one remainder modulo f is essentially the cost for two poly-
nomial multiplications of degree less than deg f. If we use
an evaluation / interpolation scheme like Cantor’s algorithm
for polynomial multiplication, further savings are possible
by precomputing the multipoint evaluation of f and of the
polynomial (6). This reduces the cost for one remainder
computation modulo f to about % the cost for one polyno-
mial multiplication of degree less than deg f. A similar trick
was used by Shoup (1995).

n || classical Newton inversion
precomp. | remainder comp.
16384 0.24 0.07 0.09
32768 0.95 0.20 0.27
65536 3.80 0.80 0.51
131072 15.24 2.11 1.09
262144 61.06 4.95 2.38
524288 245.00 11.18 5.23
1048576 978.33 25.02 11.31

Table 7.2: Average times in CPU seconds for one division
with remainder of a polynomial of degree 2n — 3 by a poly-
nomial of degree n — 1.

Table 7.2 shows the average time to compute one division
with remainder using the classical method and Newton it-
eration, respectively, for 10 pseudorandomly chosen inputs.
The crossover point between the two algorithms when the
precomputation time is not counted is near degree 3584.

Polynomial gcds. For the computation of geds, we use
both the classical method and and a faster O(M(n)logn)
algorithm, also known as “half-gcd” (see Aho et al. 1974,

| n || classical | “half-gcd”

16384 1.33 1.38
32768 5.79 3.66
65536 24.46 9.94
131072 100.56 26.85
262144 402.57 70.36
524288 || 1617.76 178.56
1048576 || 7017.88 439.81

Table 7.3: Average times in CPU seconds for one ged of two
polynomials of degree n — 1.

Strassen 1983). Table 7.3 shows the average time in CPU
seconds for the computation of one gcd using both methods
for 10 pseudorandomly chosen inputs. The crossover point
between the two algorithms is near degree 28672.

Polynomial factorization. Our polynomial factorization al-

gorithm consists of the three stages described in section 3.
For the squarefree factorization, we use the standard algo-
rithm (see, e.g., Geddes et al. (1992), Chapter 8), with a spe-
cial trick for the finite field F>, using the fact that ged(f, f')
is a square for any f € Fy[z].

To compute the distinct degree factorization, we have
implemented the coarse DDF algorithm as described in sec-
tion 4, with early abort, and the interval partition defined
by ¢; = 242, with intervals I = {1,2}, I. = {3,...,8},
I, ={9,...,18}, ..., I; = {2(j — 1)*+1,...,2;°}. Further-
more, we use a binary search fine DDF algorithm.

Using a similar trick as Montgomery (1991), we reduce
the number of modular multiplications in the computation
of an interval polynomial for the interval {c + 1,...,d} in

the coarse DDF algorithm from d—c+1 to about ’1;’:. This

saves a factor of = of the running time.

We use the irreducibility test as described in section 6.
The process is spawned as soon as the coarse DDF algo-
rithm reaches degree 1000, and respawned every time the
coarse DDF algorithm finds a new factor to check whether
the remaining polynomial is irreducible.

The equal degree factorization is done as in Ben-Or
(1981), at an expected cost of O(d - M(rd)logr) operations
in F» for a squarefree equal-degree polynomial of order d
with r irreducible factors.

Factorization experiments. Table 7.4 shows examples of
running times on the main machine for the factorization al-
gorithm. The elapsed wall clock time differs from the CPU
time on the main machine only by at most three per cent in
all experiments, and we have omitted it. The third column
contains the amount of disk space in megabytes that the
algorithm used for storing intermediate results. For the ex-
amples with degree 262143, the amount of disk space used
was limited by the size of the hard disk. The fourth col-
umn shows the degree at which the coarse DDF algorithm
ended or was aborted when the irreducibility test certified
the remaining factor to be irreducible (in the latter case,
the degree is written in italic), and the last column contains
the factorization pattern, i.e., the degree sequence of the
irreducible factors of the input polynomial. For example,
12,2,3,3 means that the polynomial has one linear factor
occurring twice, an irreducible quadratic and two different
irreducible cubic factors, each of the latter occuring only
once. In our experiments, we never had to perform a fine
DDF or an EDF for total degrees above 8000. Since the

algorithm is distributed over two machines, both the CPU
time on the main machine and the elapsed wall clock time
depend on the work load of both machines.

We denote by N;(f) the degree of the ith largest irre-
ducible factor of f € Fz[z]. The actual running time of the
algorithm for an individual polynomial f depends on several
factors:

e Ni(f), the degree of the largest irreducible factor.
With “early abort”, the coarse DDF algorithm stops
near the degree max{Na2(f),|N1(f)/2]} (because of
blocking, the actual abort degree maybe somewhat
higher), so that the algorithm runs faster if the degrees
of all irreducible factors are relatively small. However,
for random polynomials this will rarely occur, since it
is widely believed that there is some constant v € R
with 0.5 < v < 1 such that Ni(f) is (v + o(1))n on
average for a random polynomial f of degree n, since
a similar statement is true for integers (see Knuth &
Pardo 1976).

e N>(f), the degree of the second largest irreducible fac-
tor of f. This is because the irreducibility test for the
largest prime factor is launched when the coarse DDF
algorithm reaches the degree Na(f).

Let f € F»[z] the polynomial to be factored, n = deg f,
and t the average time for the multiplication of two polyno-
mials of degree about n in CPU seconds. Then the time used
for one division with remainder of a polynomial of degree
less than 2n by a factor of f is approximately 2¢ when us-
ing Karatsuba & Ofman’s multiplication algorithm, or even
about %t when we use Cantor’s method for multiplication.
If d < n/2 is the degree where the coarse DDF algorithm
stops and we neglect the cost for precomputations in the
division algorithm, gcd computations, fine DDF, and EDF,
the algorithm essentially performs d modular squarings and
d/4 modular multiplications for the computation of the in-
terval polynomials. This leads to an estimate for the total
running time of = 1Tldiﬁ CPU seconds with Karatsuba &
Ofman multiplication and ~ %dt with Cantor’s multiplica-
tion, which is in good accordance with the times in Tables
7.1 and 7.4. The worst case for our DDF algorithm is when
f has two irreducible factors of distinct degrees, both about
n/2. The irreducibility test is of no help in this case, and
we get an estimated running time of ‘nt and 23nt CPU
seconds, respectively.

Factoring trinomials can be done still faster, since di-
vision with remainder by a trinomial costs essentially the
same as a polynomial addition. This leads to an estimated
running time of %dt, where d and ¢ are as above. We have
implemented a variant of our factorization algorithm for tri-
nomials of the form z™ 4z + 1 which exploits the sparseness,
and factored the trinomial 2%'%°°* 4+ ¢ + 1 from Montgomery
(1991) in less than 7 hours of CPU time.

References

A. V. AHo, J. E. HOPCROFT, AND J. D. ULLMAN, The Design
and Analysis of Computer Algorithms. Addison-Wesley, Reading
MA, 1974.

M. BEN-OR, Probabilistic algorithms in finite fields. In Proc.
22nd IEEE Symp. Foundations Computer Science, 1981, 394—-398.

E. R. BERLEKAMP, Factoring polynomials over finite fields. Bell
System Tech. J. 46 (1967), 1853-1859.

n time | disk | abort | factorization pattern
space | degree

16383 6 5] 2806 17,3, 47,9, 361, 1667, 1827, 12503

16383 8 71 3698 |17, 3, 6, 7, 16, 26, 39, 80, 94, 110, 556, 2825, 12616

16383 10 10 | 492217, 224, 266, 587, 1201, 4099, 10002

16383 15’ 13| 6728 | 1°, 6, 24, 249, 283, 930, 6563, 8325

32767 26’ 15 | 388812, 22, 8, 46, 306, 330, 32071

32767 427 29 | 7442 | 1%, 1%, 2, 13, 23, 73, 140, 153, 393, 2145, 2177, 3308, 3695, 7245, 13395
32767 56/ | 42 | 10658 | 12, 30, 31, 34, 96, 1232, 1876, 3590, 3616, 10414, 11836

32767 59| 39| 9839 |17, 16, 22, 90, 102, 359, 791, 798, 1824, 9085, 19678

65535 || 1718 | 44| 561817, 1%, 2, 33, 143, 319, 551, 2772, 61709

65535 || 1741 50 | 7498 | 1%, 1, 10, 31, 590, 824, 1037, 1898, 3831, 57310

65535 || 2703’ 73| 9320 1, 1, 32, 42, 71, 205, 607, 852, 2107, 3066, 3165, 7891, 47431

65535 || 214 79 | 10082 1%, 5, 18, 29, 56, 80, 94, 259, 643, 1476, 3294, 8328, 51251

131071 || 4"26" | 138 | 9094] 12, 12, 2, 14, 20, 23, 331, 1187, 3696, 125794

131071 || 10"10" | 331 | 21184 | 1, 13, 3, 449, 483, 1274, 18136, 110722
131071 || 12*18" | 428 | 27378 | 1, 17, 14, 67, 203, 631, 3546, 3580, 3877, 3924, 10400, 23894, 26057, 27069, 27804
131071 || 13"45" | 467 | 29892 | 12, 13, 2, 5, 8, 68, 111, 359, 1048, 1607, 12758, 15699, 28780, 70621

| 262143 [| 48"25" | 1024 | 48166 | 2, 56, 110, 174, 1096, 1876, 13616, 29823, 44413, 170977 |

Table 7.4: CPU times for factoring some pseudorandomly chosen polynomials of degree n using two Sparc Ultra 1 computers

rated at 143 MHz.

E. R. BERLEKAMP, Factoring polynomials over large finite fields.
Math. Comp. 24 (1970), 713-735.

D. G. CANTOR, On arithmetical algorithms over finite fields.
Journal of Combinatorial Theory, Series A 50 (1989), 285-300.

D. G. CANTOR AND H. ZASSENHAUS, A new algorithm for fac-
toring polynomials over finite fields. Math. Comp. 36 (1981),
587-592.

P. FLAJOLET, X. GOURDON, AND D. PANARIO, Random polyno-
mials and polynomial factorization. Proc. ICALP ’96, to appear,
1996.

P. FLEISCHMANN AND P. ROELSE, Comparative implementations
of Berlekamp’s and Niederreiter’s polynomial factorization algo-
rithms. Preprint, 1995.

S. GAO AND J. VON ZUR GATHEN, Berlekamp’s and Niederreiter’s
polynomial factorization algorithms. In Finite Fields: Theory,
Applications and Algorithms, ed. G. L. MULLEN AND P. J.-S.
SHIUE, vol. 168 of Contemporary Mathematics. Amer. Math. Soc.,
1994, 101-115.

J. VON zZUR GATHEN AND J. GERHARD, Arithmetic and factor-
ization of polynomials over Fa. Technical report, University of
Paderborn, to appear, 1996.

J. VON ZUR GATHEN AND V. SHOUP, Computing Frobenius maps
and factoring polynomials. Comput complexity 2 (1992), 187—
224.

J. vON zZUR GATHEN, X. GOURDON, AND D. PANARIO, Average-
case analysis of some polynomial factorization algorithms. Un-
published, 1995.

K. O. GEDDES, S. R. CzAPOR, AND G. LABAHN, Algorithms for
Computer Algebra. Kluwer Academic Publishers, 1992.

E. KALTOFEN, Polynomial factorization 1987-1991. In Proc.
Latin’92, Lecture Notes in Computer Science 583, Sdo Paulo,
Brazil, 1992, 294-313.

E. KALTOFEN AND A. LoBO, Factoring high-degree polynomials
by the black box Berlekamp algorithm. In Proc. ISSAC 94, ed.
J. VON zUR GATHEN AND M. GIESBRECHT. ACM Press, 1994, 90—
98.

E. KALTOFEN AND V. SHOUP, Subquadratic-time factoring of
polynomials over finite fields. In Proc. 27th Annual ACM Symp.
Theory of Computing. ACM Press, 1995, 398-406.

A. KARATSUBA AND Y. OFMAN, Y MHOKEHUE MHOTO3HAU-
HLIX YUCeJI Ha aBToOMaTaX. Dokl. Akad. Nauk USSR 145
(1962), 293-294. Multiplication of multidigit numbers on au-
tomata, Soviet Physics—Doklady 7 (1963), 595-596.

D. E. KNnuTH AND L. TRABB PARDO, Analysis of a simple fac-
torization algorithm. Theoretical Computer Science 3 (1976),
321-348.

P. L. MONTGOMERY, Factorization of X216091 4 X 1 1 mod 2 —
a problem of Herb Doughty. Preprint, 1991.

H. NIEDERREITER, New deterministic factorization algorithms for
polynomials over finite fields. Contemporary Mathematics 168
(1994), 251-268.

D. REISCHERT, Schnelle Multiplikation von Polynomen iiber
GF(2) und Anwendungen. Diplomarbeit, University of Bonn,
Germany, 1995.

A. SCHONHAGE, Schnelle Multiplikation von Polynomen iiber
Korpern der Charakteristik 2. Acta Inf. 7 (1977), 395-398.

V. SHOUP, A new polynomial factorization algorithm and its im-
plementation. To appear in J. Symb. Comp., 1995.

V. STRASSEN, The computational complexity of continued frac-
tions. SIAM J. Comput. 12 (1983), 1-27.

D.Y.Y. YuN, On square-free decomposition algorithms. In Proc.
ACM Symp. Symbolic and Algebraic Computation, ed. R. D.
JENKS, 1976, 26-35.

