5
o
S
H
2
£
=

7/11/29-18 =

gs of the 1997 International

voked by poses. These works may not be posted els:
rcial pur- mission of the copyright holder. (Last up

=

bS]

Ny

v

g

=

oF

e
.9@)st§éct
E %;

7

and agglyze a new algorithm for solving the “key equation”
1ch_accurs in many rational and hypergeometrlc summa-
Qtlgn aigorlthms In a special case, our algorithm is asymp-
Elg faster than previously known methods. We give
erﬁgental results for our algorithms.

ot
&
("':'
S

Ne

e
Introduction

Bl
g
3

e
UCHLIN

hifts and Certain

iug

= Kt

vﬂ%le 1&@10 tasks in symbolic summation, namely the sum-
‘Bmatiofizof rational and hypergeometric functions, have been
>\sive& ﬁor quite a while. An elegant framework for several
sst‘fch sio!utlons is presented by Paule (1995), and we refer to
“that [ﬁag)er for the extensive literature on the subject.

g = InZgnother area of Computer Algebra, namely the fac-
htirlzaﬁli)n of polynomials over finite fields, the theoretical
clpgogress of recent years has given rise to software that
c@l hgxgldle problems of gigantic size, completely beyond
F_g‘che réagh of methods a few years ago (Montgomery 1991,
I@mltoﬁ@ & Lobo 1994, Reischert 1995, Shoup 1995, Flelsch-
oxn%mu& Roelse 1996). At the heart of these achievements
JI@S dch@@ystematlc use of fast arithmetic, pioneered by Shoup
(@Q%E £This Extended Abstract presents a first step towards
agp m;g fast methods in symbolic summation, namely to
lil(;;gﬁprﬁblems that occur in several summation algorithms

9

~—~ ct+

hay also be of interest in other areas of Computer Al-
zcomputing integral Taylor shifts and solving linear
der difference equations.
£ paper is organized as follows. In Section 2, we an-
gx algorithms for computing integral Taylor shifts
£¢) for a polynomial f € Z[z] and an integer a. In
3, we present and analyze a new algorithm for solv-
“key equation” a-u(x+1)—b-u(x) = c for u € Flz],
is a field of characteristic 0 and a,b,c € F[z] are
hich occurs in many rational and hypergeometric

rgc@
%’5 5

peb
18.83

sel

S\ tinlely

%
?

g

@,

//dk &

JOACHIM VON ZUR GATHEN & JURGEN GERHARD
as
rk on nog

Symposium op S’"@@%C

Proc. ISSAC ’97, Maui, 1997, pp. 40-47
(some errors are corrected in this version)

Fast algorithms for Taylor shifts and certain difference equations

JOACHIM VON ZUR GATHEN and JURGEN GERHARD

Fachbereich 17 Mathematik-Informatik
Universitat-GH Paderborn
D-33095 Paderborn, Germany
e-mail: {gathen, jngerhar}@uni-paderborn.de
www: http://www.uni-paderborn.de/cs/gathen.html

Extended Abstract

summation algorithms. Both sections include some experi-
mental results.

2 Computing integral Taylor shifts

For a polynomial f = Y ., fiz® € Z[z] and an integer

a € Z, we want to compute the coefficients go, ..., gn € Z of
the Taylor expansion
Yo =Ef=fet+a)=) filz+a), (1)
0<k<n 0<i<n

where F is the shift operator Ef = f(x +1). This is one in-
gredient of algorithms for symbolic summation (Abramov
1971, Gosper 1978, Paule 1995), and is a basic opera-
tion in many computer algebra systems (e.g., translate in
MAPLE).

Writing out (1) explicitly, for 0 < k < n we have

ge= (;) fia ™", (2)

k<i<n

An important special case is a = +1.
The following lemma says how the coefficient size of a
polynomial increases at most by a Taylor shift.

Lemma 2.1 Let f € Z[x] be nonzero of degree n € N and
a € Z. If the coefficients of f are bounded in absolute value
by B € N, then the coefficients of g = f(x + a) € Z[z] are
absolutely bounded by B(|a| +1)™.

For f, g:N — R>0, we have the usual notation f € O(g)
if there are constants IV, ¢ € N such that f(n) < cg(n) for all
n > N. Similarly, f € Q(g) and f € O(g), and f € O~ (g) if
feg-(log(2+g))°M.

Let M: N — N be a multiplication time for Z and Z[z],
i.e., two l-bit integers can be multiplied using O(M(l)) bit
operations, and two polynomials in Z[z] of degree at most
n with [-bit coefficients can be multiplied using O(M(nl))
bit operations. By Schonhage & Strassen (1971) (see also
Schonhage et al. 1994), we may assume that M(n) =
nlognloglogn € O~ (n). For practically fast algorithms,
see Shoup (1995). Using standard reductions (see Aho et
al. 1974), we may further assume that division with remain-
der of I-bit integers may be done in time O(M(?)).

In the next two subsections, we discuss several compu-
tational methods and analyze their costs.

2.1 Using classical polynomial arithmetic

A. Horner’s method: We compute

g(w)=fo+(x+a)(f1+---+(x+a)fn---)
in n steps

g(U) = fn,
and obtain g = g™,

B. Shaw & Traub’s (197}) method: Compute f* = f(az),
9" = f*(x + 1), using A, and then g = g*(z/a).

g = (z +a)g(i71) + fa—ifor 1 <i<n,

C. Multiplication-free method Suppose that a > 0. We
write a = 3, ;40,2 in binary, with a; € {0,1} for

all j. Then E® = E%4-12""" ... 0 F*12 o F%_ For
j =0,1,...,d — 1, successively apply method A with
a;2’. The case a < 0 is handled similarly.

We note that both methods B and C boil down to
Horner’s method if a = +1.)
For a nonzero polynomial f = >, , fiz" € Z[z], we
let T
A(f) = log, max{|f;|: 0 < i < n}.

Then |A(f)]| + 2 is the binary length (including the sign) of
the largest coefficient of f. In particular, A(a) = log, |a| for
a nonzero integer a.

Theorem 2.2 Let f € Z[z] of degree n € N>1 and a €
zZ\ {0} with A(f) <1 and Ma) < d for some l,d € N. Then
the cost in bit operations to compute E*f = f(xz +a) € Z[z]
for the three methods above is

A: O(n*d(nd+1)) with classical and O(n* M(nd +1)) with
fast integer arithmetic,

B: O(n*d(nd + 1)) with classical and O(n*(nd + 1) +
nM(nd +1)) with fast integer arithmetic,

C: O(nd(nd +1)).

Proof. A. In step i, we have at most ¢ — 1 additions and
i multiplications by a in Z, in total O(n?) arithmetic op-
erations in Z. Since the bit size of the integers involved
is O(nd + 1), by Lemma 2.1, the cost for one addition
is O(nd + 1), and the cost for one multiplication by a is
O(d(nd + 1)) with classical multiplication and O(M(nd +1))
with fast multiplication. Thus we get a total cost of
O(n*d(nd + 1)) and O(n® M(nd + 1)) bit operations, respec-
tively.

B. We have n — 1 multiplications of size O(d) x O(nd) for
the computation of a?,...,a", plus n multiplications of size
O(l) x O(nd) for the computation of fia,..., foa™ which
yield f*, plus O(n?) additions of integers of size O(nd + 1),
by A. and Lemma 2.1, plus n exact divisions of numbers
of size O(nd + 1) by numbers of size O(nd). With classical
integer arithmetic, the cost for dividing an integer b by an
integer c is Og)\ c))\ |b/c])) bit operations, and we obtain
a total of O(nd(nd + 1)) bit operatlons With fast integer
arithmetic, the overall cost is O(n”(nd +1) + n M(nd +1)).

Corollary 2.3 With the assumptions of Theorem 2.2, the
cost for the three algorithms in bit operations is

(i) O(n*(n+1)) ifa= %1,
(i) O(n®1?) with classical integer arithmetic if d € O(1),

(iii) O~ (n®l) for A and O(n3l) for B, respectively, with fast
integer arithmetic if d € O(1).

n | small large
128 | 0.004 0.006
256 | 0.019 0.036
512 0.102 0.244

1024 | 0.637 1.788
2048 | 4.700 13.897
4096 | 39.243 111.503

Table 1: Running times with method A for a = 1, degree
n — 1, “small” coefficients between —n and n, and “large”
coefficients between —2" and 2".

n A B C
128 0.04 0.02 0.04
256 0.33 0.18 0.31
512 2.74 1.59 2.56

1024 2291 14.10 19.08
2048 | 220.32 148.17 253.57

Table 2: Running times with methods A,B,C for degree n—1
and “small” coefficients and values of a between —n and n.

n A B C
128 2.18 2.02 5.89
256 60.63 60.70 180.57
512 | 1875.04 1890.94 5735.17

Table 3: Running times with methods A,B,C for degree n—1
and “large” coefficients and values of a between —2" and 2".

Tables 1, 2, and 3 show the performances of methods
A B, and C in our experiments. Running times are given in
average CPU seconds for 10 pseudorandomly chosen inputs
on a Sparc Ultra with 167 MHz. Our software is written
in C++. For arithmetic in Z, we have used Victor Shoup’s
highly optimized C++ library NTL for integer and polynomial
arithmetic, which is in parts described in Shoup (1995). It
uses Karatsuba & Ofman’s (1962) method for multiplying
large integers.

2.2 Asymptotically fast methods

D. Paterson & Stockmeyers (1978) method: We assume
that (n+1) = m? is a square (padding f with zeroes if
necessary), and write f =Y, FDz™ with poly-

nomials f) € Z[x] of degree less than m for 0 < i < m.

1. Compute (z + a)® for 1 < i < m.

2. For 0 < i < m, compute f(z + a) as a linear
combination of 1, (z+a), (x+a)?,..., (x+a)™ "

3. Compute

g@)= 3 [Owta) @ra)™

0<i<m
in a Horner-like fashion.

E. Divide & conquer method (von zur Gathen 1990, see
also Bini & Pan 1994): We assume that n+1 =2mis a
power of two. In a precomputation stage, we compute
(z +a)? for 0 < i < m. In the main stage, we write
f=fO 4200250 with polynomials £, 1) ¢
Z[x] of degree less than (n+ 1)/2. Then

9(@) = fP@+a)+ (@ +a) "2 fD(e +a),
where we compute f©(z + a) and f*)(z + a) recur-
sively.

F. The convolution method (Aho et al. 1975, see also
Schonhage et al. 1994, §9.3): After multiplying both
sides of (2) by k!n!, we obtain

. nlat=*
k<i<n '
in Z. If we let u = Y o, i!fiz™ " and v =

N oci<n a? 7 /4! in Z[z], then nlk!gy, is the coefficient
of 2" * in the product polynomial uv.

Theorem 2.4 Let f € Z[z] of degree n € N>1, a € Z\ {0},
Af) <1, and A(a) < d for some l,d € N. The cost in bit
operations to compute E*f = f(x + a) € Z[z] for the three
methods above is

D: O(n'/? M(n*d + nl)) or O~ (n*°1),

E: O(M(n%d + nl)logn) or O~ (n?l),

F: OM(n®logn + nd + nl)) or O~ (n?l),
where the O~ -estimates are valid if d € O™~ (1).

We note that the input size is ©(nl + d), and by Lemma
2.1, the size of the output f(z+a) is O(n(nd+1)), or O(n?l) if
d € O(l). Thus Algorithms E and F are—up to logarithmic
factors—asymptotically optimal. For a = #+1, the output
size is O(n(n +1)).

Proof. D. In step 1, we have O(m?) multiplications and
additions of integers of size O(md), by Lemma 2.1, or
O(nM(n'/2d)) bit operations. The computation of each
fO(x+a)for 0 < i < m in step 2 uses O(m?) integer multi-
plications and additions of size O(md+1), and the total cost
of step 2 is O(n®/2 M(n'/%d + 1)) bit operations. Finally, we
have at most m polynomial multiplications and additions of
degree at most n with coefficients of size O(nd + [), all to-
gether O(n'/2 M(n2d + nl)) bit operations. This dominates
the cost of the other two steps.

F. The size of the coefficients of u, v, and uv is O(nlog n+
1), O(n(logn + d)), and O(n(logn + d) + 1), respectively
(the last estimate follows from Lemma 2.1 and the fact
that nl!klgy is the kth coefficient of uv), and the compu-
tation of uv amounts to O(M(n(n(logn+d) +1))) bit oper-
ations. The coefficients of v and v can be computed using
O(n M(n(log n+d)+1)) bit operations, and the same number
suffices to recover the g; from the coefficients of wv. Thus
the total cost is O(M(n®logn + n*d + nl)) bit operations.
O

Corollary 2.5 Let f € Z[z] of degree n € Ny1 with A(f) <
1l € N. Then the cost in bit operations for computing Ef =
flx+1) or E7'f = f(x — 1) using the above algorithms is

D: O(n**M(n? + nl)),
E: O(M(n? + nl) logn),
F: OM(n?logn + nl)).

If1 € O~ (n), then the cost is O~ (n*®) for D and O~ (n?)
for E and F.

If we want to compute integral shifts of the same poly-
nomial for several values ai,...,ar € Z of absolute value
less than 2%, then the output size is O(kn(nd + I)), and
hence the simple idea of applying method E or F k times in-
dependently is—up to logarithmic factors—asymptotically
optimal.

n D E F
128 0.06 0.08 0.26
256 0.64 0.44 1.64
512 7.43 2.48 11.45

1024 87.57 15.53 86.09
2048 | 1387.39 102.64 713.20

Table 4: Running times with methods D,E,F for degree n—1
and “small” coefficients and values of a between —n and n.

n D E F
128 7.88 4.81 6.34
256 | 241.54 76.21 107.0
512 | 7453.69 1289.73

Table 5: Running times with methods D,E,F for degree n—1
and “large” coefficients and values of a between —2" and 2".
For method F' with n = 512, our program was aborted due
to lack of memory; the output is about 8 MB.

Tables 4 and 5 give running times of methods D,E, and
F in our experiments in average CPU seconds for 10 pseu-
dorandomly chosen inputs on a Sparc Ultra with 167 MHz.
Integer arithmetic is again taken from NTL, but the polyno-
mial multiplication of NTL, which is based on a modular ap-
proach and Chinese remaindering, turned out to be too slow
for polynomials with “large” coefficients as they occurred
in our experiments. For those polynomials, we have used a
straightforward implementation of FFT-multiplication mod-

ulo Fermat numbers 22° + 1, as used by Schénhage &
Strassen (1971), and NTL for the coefficient arithmetic. For
polynomials with moderately sized coefficients, we used the
polynomial multiplication of NTL. The conclusion is that in
our computing environment method B is the best choice for
small problems, and method E for large ones.

3 Solving linear first order difference equations

Let F be a field of characteristic 0 (say F' = Q). In many
algorithms for symbolic summation (Abramov 1971, Gosper
1978, Paule 1995), a linear first order difference equation of
the form

a-BEu—b-u=c, (3)

often called key equation, with given polynomials a,b,c €
F[z], has to be solved for a polynomial v € F[z]. For ex-
ample, the algorithms of Gosper (1978) and Paule (1995)
reduce the quest for a hypergeometric solution f of the com-
parably simple difference equation Ef — f = g with con-
stant coefficients and hypergeometric right hand side g to
a somewhat more complicated equation like (3), of which a
polynomial solution u is sought.

Often (3) is solved by first determining an upper bound
on the degree of a possible solution u and then solving the
linear system in the unknown coefficients of u equivalent to
(3). It can be shown that the coefficient matrix of the linear
system is triangular with at most one nonzero diagonal en-
try, and thus the linear algebra approach takes O(n?) arith-
metic operations in F' if the matrix has at most n rows and
colums, while our algorithm uses only O™ (n) operations.

Other algorithms for this problem are due to Abramov
(1989) and Abramov et al. (1995), who study linear differ-
ence, g-difference, and differential equations of arbitrary or-
der. In our situation of first order difference equations, the
algorithm of Abramov et al. (1995) transforms the linear
system corresponding to (3) into an equivalent one whose
coefficient matrix is also triangular, has the same number of
rows, and bandwidth at most max{dega,degb} + 2. This
system can be particularly efficiently solved if the bandwidth
is small in comparison to the number of rows, and in that
case their algorithm seems to be superior to ours. In our
algorithm, no change of basis is necessary.

The following example shows where equations of the form
(3) occur in symbolic summation algorithms.

Example 3.1 Let t € N>1, and suppose that we want to
compute a closed form for the sum El<k<n(k2+tk)7l. Such
a closed form can be obtained by determining—if possible—a
rational function ufv, with u,v € F[z] and v nonzero and
monic, satisfying the difference equation

Eu U _ 1 (4)

2 +tx

Ev w
in F(x), and then

Z 1 u(n) u(l)

k2 +tk v(n) o(l)

1<k<n

(see, e.g., Graham et al. 1994). Using Abramov’s (1971) or
Gosper’s (1978) algorithm, this leads to solving an equa-
tion of the form (8) with a = z, b = z +t, and ¢ =
(z+1)(x+2)--- (x+t—1). Its unique solution is u = —v' /¢,
where v = z(x+1)(x+2)--- (x+t—1) and' denotes the for-
mal derivative with respect to x, and u/v satisfies (4). The
rational function w/v is in reduced form since v is square-
free, and the degree degu =t — 1 is exponential in the bit
size of the input (x® + tx)™', which is about logt.

We first restate the following well-known lemma about
the degree bound. A proof can, e.g., be found in Graham
et al. (1994), §5.7. Here and in the sequel, lc(f) denotes the
leading coefficient of a nonzero polynomial f € F[z], and we
will assume that the degree of the zero polynomial is —oco.

Lemma 3.2 Let a,b,c,u € F[zx] be nonzero polynomials
satisfying (3), with degrees n,m,k,d, respectively. Further-
more, let § € F be the coefficient of z™" in lc(a) ™' (b — a),
with § = 0 4f n = 0. Then deg(a — b) < max{n,m} or
6 #k—n+1. Moreover,

(i) d =k — deg(a —b) if deg(a — b) > max{n,m},

(ii)) d=k—n+1 if deg(a — b) < max{n,m} and § ¢ N or
d<k—m+1,

(i) d € {k —n+ 1,0} if deg(a — b) < max{n,m}, § € N,
and § >k —n+1.

3.1 The generic case

The main observation for our algorithm is that the highest
coefficients of a possible solution u € F[z] of (3) only de-
pend on the highest coefficients of a,b, and ¢. The idea is,
similarly to the asymptotically fast Euclidean algorithm (see
Aho et al. 1974, Strassen 1983), to compute first the “upper
half” of w, only using the “upper halfs” of a,b, and ¢, plug-
ging the obtained partial solution into (3), and recursively
solving it for the “lower half”. We first illustrate this in an
example. For a polynomial f € F[z] and an integer k, we
denote by f | k the polynomial part of z=*f. Thus f | k is
equal to the quotient of f on division by z* if k > 0, and to
z=*f if k <0, and lc(f | k) = lc(f) if both polynomials are
nonzero. We have deg(f | k) =degf —kif f | kK #0, and

deg(z"(f 1 k) = f) <k.

Example 3.3 We study the generic ezample withm =n =
3and k =6. Soleta = Y j,cq0it’, b = ic3bix’,
=Y pcice CiT' and u =3, Ui’ in Fz] such that (3)

holds. Comparing coefficients on both sides yields the linear
system

cs = baus,
cs = baus + (3as + b;)us,
ca = bzui + (2a3 + b3)u2 + (3as + 3a2 + b7)us,
c3 = bzuo + (az + b3)u1 + (a3 + 2a2 + b7)uz
+(as + 3a2 + 3a1 + b5)us,
c2 = biuo+ (a2 +b7)us + (a2 + 2a1 + bg)uz
+(a2 + 3a1 + 3ao)us,
c1 = biuo + (a1 + by)ur + (a1 + 2a0)u2 + (a1 + 3ao)us,
co = byuo + aou1 + aouz + aous,

where b} is shorthand for a; — b; for 0 < i < 3. If 3 =
deg(a — b) = max{dega,degb}, then b3z # 0, and the first
four equations uniquely determine wo,...,us, and us and
ug can already be computed from the first two equations. Let
U=ul2=usx+us, A= (z+1)%a [4= asz + 2a3 + a2,
B=z’|4=bsx+bs, and C =c¢ [4 = cex® +’z + ca.
Then

A-EU-B-U

biuzz? + (b};uz + (3a3 + b;)us)m + .-
= cam2+csx+---,

i.e., U is the unique polynomial satifying deg(A-EU—B-U—
C) < deg C—2, or equivalently, deg(a-E(Uz?)—b-Uz>—c) <
degc— 2.

If we have determined U, we write u = Uz?® + V., with
V = w1z + wo, and plug this into (3):

a-EV—b-V = a(EU-(z+1)>4+EV)—-bUz’>+V)
—((z+1)%a- EU —2%-U)
= ¢—((x+1)%-EU—2°-U).

This is again a linear first order difference equation for V
which can then be solved. In gemeral, the degrees of U and
V' are about half the degree of u, and they can be determined
recursively.

In the sequel, it is convenient to denote by ¢, »: Fx] —
F[z] the F-linear operator ¢q,5(u) = a- Eu—b-u. Then (3)
can be rewritten in the equivalent form

Pap(u) = c. (5)

Let M(n) be a multiplication time for F[z], such that
polynomials in F[z] of degree at most n can be multiplied
using O(M(n)) operations in F. By Schonhage & Strassen
(1971), we may take M(n) = nlognloglogn € O~ (n).

The following algorithm works in case (i) of Lemma 3.2.
In this case, the coefficient matrix of the linear system equiv-
alent to (5) is triangular, with all diagonal entries equal to
the leading coefficient of a — b, as in Example 3.3.

Algorithm 3.4

Input: a,b,c € F|x] with deg(a — b) = max{dega, degb} =
n €N, and d = degc —n.

Output: A polynomial w € Flz] with w = 0 or degu = d if
d > 0 such that deg(pq,p(u) —c) < n.

1. If d < 0 then return u = 0.
2. If d =0 then return u = Ic(c)/lc(a — b).

3. Setm =1[d/2],t =n—(d—m), A1 = (z+1)"a | t+m,
By =z"blt+m, and Ci =c [t + m.

4. Recursively call the algorithm with input A1, B1,C1 to
obtain U € F[x] such that deg(pa,,B,(U) —C1) < d—
m.

5. Set A, =a | n—m, B =b [n—m, and Cy =
(c— @ap(Uz™)) [n —m.

6. Recursively call the algorithm with input As, Ba,Cs,
yielding V € Flz] with deg(pa,,B,(V) — C2) < m.

7. Returnu=Uz" +V.

Theorem 3.5 Algorithm 8.4 works correctly and uses
O(M(d) log d) arithmetic operations in F'.

Proof. We prove correctness by induction on d = degc —
deg(a—0b). It is clear that the output is correct if d < 0, and
we assume that d > 0. In step 3, the leading coefficients of
A, and B; agree with those of a and b, respectively. More-
over, deg A1 = dega—t and deg B1 = degb—t, if these poly-
nomials are nonzero, degC1 = degc — (t + m) = 2(d — m),
and

deg(A1 — By) max{deg A, deg B1}
max{dega,degb} —t
n—(mn-—(d—m))=d—m,
d—m <d.

deg C1 — deg(A1 — Bx)
(6)
At least one of A; and B is nonzero, however, and (6) holds
in any case. Thus by induction, the output of the recursive
call in step 4 is correct, i.e., degU = deg EU = d — m and
deg(pa,,B,(U)—C1) < deg(A1 — B1) = d—m (we note that
U # 0 since otherwise d—m = deg C1 = deg(pa,,B, —C1) <
d—m).

In step 5, the leading coefficients of A; and B, if these
polynomials are nonzero, agree with those of a and b, re-
spectively,

deg A» = dega— (n—m), degBs =degb— (n—m), (7)
and
deg(Az — B2) = max{deg A,,deg B2} 8)
= max{dega,degb} — (n —m) =m.

If A; or Bs is zero, the corresponding degree equation in (7)

does not hold, but at least one of them is nonzero, and (8)

is always true. Let ¢* = ¢ — @q,5(Uz™). By the definition of

I, the degrees of (z +1)™a — 2'T™A;, 2™b — '™ B;, and

¢ —z!*™C; are less than t +m, and we conclude that
deg(pa,p(Uz™) — c)

= deg(@(m+1)ma,wmb(U) - c)

~ deg (w“wAl,Bl(U) — o)

+((x+1)"a — 2" A)EU

degc”

—(@"b— 2" B1)U — (¢ — xt+mC1))
< t+m+d—m=n+m.
Hence
deg Cy — deg(As — B) =dege” — (n—m) —m <m < d,
and by induction, the output of the recursive call in step 6
is correct as well, i.e., degV < degC> — deg(A2 — B2) <m
and deg(pa,,B,(V) — C2) < deg(A2 — Bz) = m. Thus

degu = deg(Uz™ + V) =degU + m =d.

Finally,

Pap(u) —c = @ap(Ur™) + @ap(V) — (¢ + pap(Uz™))
= pap(V) -,

and

deg(pas(V) — C*)
= deg (:c"*m(gaAQ,m(V) - C2)

+(a— Axz""™)EV

deg(pa,s(u) = ©)

—(b— Bx")V —(c" — sz"_m)>
< n—m+m=mn,

where we have used that the degrees of a — Ax™ ™, b —
Box™™ ™, and ¢ — Cax™ ™ are less than n — m.

We denote by T'(d) the cost of the algorithm for inputs
with degc — deg(a — b) = d. The cost of steps 1 and 2 is
O(1). In step 3, we first compute (x + 1)™ with repeated
squaring, and then compute the leading d — m + 1 coeffi-
cients of (z + 1)™a, at a cost of O(M(d)) operations. This
is the total cost for step 3, since the computation of By and
C1 requires no arithmetic operations. In step 4, we have
deg C; — deg(A1 — B1) = d — m < |d/2], and hence the
cost for the recursive call is at most T'(|d/2]). In step 5, we
compute the coefficients of z"~™,...,z"*¢ in ¢*, similarly

to step 3, at a cost of O(M(d 4+ m)) operations. The com-
putation of Az and B> is for free. Finally, in step 6 we have
deg C> — deg(A2 — Bz) < m —1 < |d/2], and the cost for
the recursive call is at most T'(|d/2]). Step 7 is essentially
free.

Summarizing, we have 7'(0),7(1) € O(1) and

T(d) < 27(|d/2]) + O(M(d)) if d > 2.

The running time bound now follows from unravelling the
recursion. O

If d = n, then both the linear algebra approach and the
algorithm of Abramov et al. (1995) take Q(n?) operations,
while our algorithm uses only O™ (n) operations.

In practice, dividing a,b, ¢ by their common divisor be-
fore applying Algorithm 3.4 reduces its running time. As
Paule (1995) remarks, we may even achieve that a,b,c are
pairwise coprime. E.g., if g = ged(a,c) is nonconstant and
coprime to b and u satisfies (3), then necessarily g divides u,
and u* = u/g is a solution of the linear difference equation

a c
—-EBu" —b-u" ==

whose coefficients a/g and c¢/g have smaller degrees than
the corresponding coefficients of (3). This also applies to
Algorithms 3.7 and 3.9 below.

Corollary 3.6 Let a,b,c € F[z] of degrees at most n € N
with deg(a — b) = max{dega,degb}. Then we have an al-
gorithm that either computes the unique solution u € Flx]
of (5), which has degree d = degc — deg(a — b), or correctly
asserts that no solution exists. It uses O(M(n)logn) arith-
metic operations in F'.

3.2 The general case

Cases (ii) and (iii) of Lemma 3.2 are somewhat more in-
volved, due to the possibility of multiple solutions of (3).
Since the operator ¢, p is F-linear, its kernel (i.e., the set of
solutions u € F[z] of the homogeneous difference equation
vap(u) =a-Eu—>b-u=0)is an F-subspace of F[z]. Li-
sonék et al. (1993) have shown that ker ¢, has dimension
at most one (this is analogous to the situation for linear
first-order differential equations), and hence the set of all
solutions of the inhomogeneous equation (3) either is empty,
or comnsists of exactly one element, or is a one-dimensional
coset of ker g . They also show that if ker ¢, is one-
dimensional, then deg(a — b) < max{dega,degb} and the
degree of all nonzero polynomials in ker ¢, equals the &
from Lemma 3.2. (The reverse direction does not hold; ex-
amples are provided, e.g., by Lisonék et al. 1993, where our
“9” is called “Ky”.)

Let a = Y gcicn@i’, b = Y e, bic’, u =
Y ocicq Wi’y and ¢ = Y c,cpcix’, with n = dega =
degb > 0, d = degwu, k in N, and assume that deg(a —
b) < max{dega,degb} (i.e,, an = b,). In the sequel,
8 =64 =ay;"(bn—1 — an—1) denotes the coefficient of 2" ~*
in a, (b — a), with §,,, = 0 if n = 0. The coefficient matrix
of the linear system in the coefficients of u equivalent to (3)
is triangular, with the coefficient of u; in the equation corre-
sponding to "'+ equal to ani 4+ an—1 — bp—1 = an(i — 9).
E.g., if as = b3 in Example 3.3, then the linear system reads

Cg = 0,
cs = (3as+b3)us,
ca = (2as+b3)us + (3as + 3az + by)us,
cs = (as+b3)ui + (as + 2a2 + b))us
+(as + 3a2 + 3a1 + bg)us,
ca = byuo+ (a2 + b)u1 + (a2 + 2a1 + by)us
+(a2 + 3a1 + 3(10)U3,
e = biuo+ (a1 +bg)us + (a1 + 2a0)u2 + (a1 + 3ao)us,
co = bouo + aour + aouz + aous,

where again b = a; — b; for 0 < ¢ < 3. In general, at most
one of the subdiagonal entries a,, (i—d) vanishes, and this can
only happen if § is a nonnegative integer. Then there may be
a degree of freedom in the choice of us (corresponding to a
nonzero solution of the homogeneous equation a- Eu—b-u =
0), in which case we might simply choose us = 0. However, it
may happen that § € N and ker ¢, , = {0}, and in that case
us has to be chosen consistently with the other equations.

The following algorithm can be used in case (ii) of
Lemma 3.2 if § ¢ N (then (5) has at most one solution).
It computes v € F[z] such that deg(pq,5(u) —¢) < dega—1
and works rather similarly to Algorithm 3.4.

Algorithm 3.7] ,

Input: a = D gcicn, @', b =D o i, bi", ¢ in Flx] such
thatn €N, ap =0, 20, d=1—-n+degc, and § = 84p &
{0,1,...,d}.

Output: A polynomial w € F[z] with w =0 or degu = d if
d >0 such that

deg(@ap(u) —c) <n—1. (9)
1. Ifd < 0 then return u = 0.
2. If d =0 then return u = lc(c)/(an—1 — bn—1).

3. Setm=1[d/2],t=n—1—(d—m), Ay =(z+1)"a |
t+m,Bi=z"b[t+m, and Ci =c [t+m.

4. Recursively call the algorithm with input A1, B1,Ci to
obtain U € F[z] such that deg(pa,,B,(U) — C1) <d —
m.

5. Set A s, =a|n—1—m,Bo=b|n—-1-—m, and
Co=(c— @ap(Uz™) [mn—1—m.

6. Recursively call the algorithm with input As, Ba, Cs,
yielding V' € F[x] with deg(pa,,B,(V) — C2) < m.

7. Returnu=Uz™ + V.

Theorem 3.8 Algorithm 8.7 works correctly and wuses
O(M(d) log d) arithmetic operations in F'.

We now use Algorithm 3.7 to solve (5) in the case where
deg(a—b) < max{dega,degb}. Thisis clear if § =4, &€ N;
otherwise we first compute the coefficients of ¢ in u for ¢ > §
and then take care of a possible freedom in choosing the coef-
ficient of 2°. The idea is to compute polynomials U, V, W €
F[z] such that degU < d — 4§, deg V,deg W < 4, and the set
of all solutions of (9) is {Uz’™ + V + s(z° + W):s € F},
using Algorithm 3.7, and then to check whether some (or
every) s € F gives a solution of (5) (this corresponds to the
checking in Corollary 3.6).

Algorithm 3.9

Input: a = Y cic, @i, b =3 cic, biz’, ¢ in Flz] such
thatn €N, ap = b, #0, andd = 1—n+degc if § =6,p ¢ N
and d = max{1l —n + degc, §} otherwise.

Output: A solution w € Fx] of (5) of degree at most d, or
“unsolvable” if (5) is unsolvable.

1. If § € N then call Algorithm 3.7 to compute u € Flx]
such that deg(pa,p(u) —c) <n—1. If pap(u) = ¢ then
return u, otherwise return “unsolvable”.

2. Setm=40+1,t=n—-1—(d—m), A= (z+1)"a | t+m,
B=z"b|t+m,and C=c|t+m.

8. If d = &, then set U = 0; otherwise call Algorithm
3.7 with input A,B,C to obtain U € F[z] such that
deg(pa,B(U) —C) <d—m.

4. Set ¢ = c— @ap(Uz™). If1—n+ degc* = d then
return “unsolvable”.

5. Call Algorithm 3.7 with input a,b,c” to obtain V' € Fx]
such that deg(pap(V) —c*) <mn—1.

6. Set h* = wa (V) —c*. If h* = 0 then return v =
Uz™ +V.

7. Set ¢** = —p,p(x°), and call Algorithm 8.7 with input
a,b,c** to obtain W € F|[z] such that deg(pq,s(W) —
) <n—1.

8. Set h** = @a (W) — c**. If there exists some s € F
such that h* +sh™* = 0 in Fz], then return u = Uz™ +
V + s(x® + W) for the unique such s, otherwise return
“unsolvable”.

Theorem 3.10 Algorithm 8.9 works correctly and uses
O(M(n) + M(d)logd) arithmetic operations in F'.

In the nonunique case, where ker ¢, # {0}, Algorithm
3.9 stops in step 6 if (5) is solvable, but may need to proceed
until step 8 to find out that (5) is unsolvable (see Exam-
ple 3.11 (ii) below). If we know somehow in advance that
ker ¢q,5 # {0}, then we may already return “unsolvable” in
step 6 if h* # 0, since then ker p, 5 = {s(z® + W):s € F}
and A™* = 0 in step 8. This may be useful in Gosper’s
(1978) algorithm, since Lisonék et al. (1993) have shown
that the condition ker ¢,,, = {0} corresponds to the case
where Gosper’s algorithm is used to compute the sum of a
rational function.

We note that the value of d in Algorithm 3.9 may be
exponentially large in the bit size of a, b, and c¢. For example,
ifa =x,b=x+tfor somet € N>1, and c has “small” degree
and “small” coefficients as well, then d = max{1 — dega +
degc,d} = & =t, and this is exponential in the bit size of a
and b, which is about logt.

We believe that a modification of our algorithms also
works in the case of first order linear g-difference and differ-
ential equations.

Example 3.11 (i) Let a = z° and b= x> —z/2 + 1. Then

d=-1/2 ¢ N. If we let c =z — 2, then we obtain u = 2 in
step 1 of Algorithm 3.9. We check that

1
@a,b(u):x2-2—(w2—§w+1)-2:x—2,

and u solves (5). On the other hand, for ¢ = x, we also get
w =2 in step 1, but now wap(u) = c—2 # ¢, and (5) is
unsolvable.

(ii) Let a = 2* and b = 2® + 2z + 1, so that § = 2. For
¢ =z"+z, we have d = max{l — dega + degc,0} = = 2.
Thus U =0 in step 3, c* =c and 1 +dega—degc" =1< 4
in step 4, and in step & we obtain V = —zx. Then

(pa,b(V) = $2(_$ —]_) _ (.’I:2 + 2z + 1)(_]}) — 2 tz,

whence h* = 0 in step 6, and uw = —x solves (5).

On the other hand, for ¢ = &®> + x + 1 we have d, U, ¢*,
and V as before, but now h* = —1 in step 6. Then
= —ap(®) = =22+ 1)° + (® + 2z + 1)z> =0
and W = 0 in step 7, and h** = 0 in step 8. Thus h* +
sh™ = —1#0 for all s € F, and (5) is unsolvable.

In fact,

ker o5 = {s(z’ + W):s € F} = {sz’:s € F},
and the set of all solutions of (5) for ¢ = x> + x is
Uzt +V 4 ker pg p = {sz® —x:s € F}.

(iii) Leta = & and b = 2”+x+1/4. Thend = 1, and for
¢ = 42° + 32% + x, we have d = max{1 —de2ga+degc, 0} =
2>4. Thusm=2,t=1, A= (z+1%*a 3 =z+2,
B=2|3=2z+1,and C =c |3 =4 1in step 2, and in
step 8 we obtain U = 4. Next, we have

*

¢ = c—pap(Uz™)

2

1
= 4w3+3w2+x—w2-4(x+1)2+(x2+x+Z)-4x

Z,

and 1 — dega + degc® = 0 < 6. Now we compute V = —1
in step 5, and

1 1
h*:gpa,b(V)—c*:—m2+(z‘2+m+z)—m:17&0

in step 6. In step 7, we get

* %

1
= —pap(@) = 2@+ 1)+ (@ +r+1/4)z = %
and W = —1/4. Finally,

1
T =

o S T P 1,1
B = paps(W)—c™ = x+4(ac +x+1/4) 1 T;

4
n step 8, and h* + sh™ = 1/4+ /16 = 0 if and only if
s=—4. Thenu=4x> —1—4- (z — 1/4) = 4ax(x — 1), and
we check that

Yap(u) = 2°-4x+ 1)z — (2" +x+1/4) - da(x —1)
4z° + 32 + z,

and u solves (5).

If we take ¢ = 4x> +42% + x, then d and U are as before,
but now ¢* = x? +x, 1 — dega + degc* =1 = §, and the
algorithm returns “unsolvable” in step 4.

In fact, the homogeneous equation @qp(u) = 0 only has
the trivial solution u = 0.

t time

64 0.19
128 0.79
256 4.09
512 24.51
1024 168.62
2048 | 1250.90

Table 6: Running times of Algorithm 3.9 for the solution of
the difference equation z - Eu — (z +t) - u = (z + 1)(z +
2)---(zx +t —1) and various values of t. The solution has
degree t — 1; see Example 3.1.

Table 6 shows the running times of our implementation
of Algorithm 3.9 in some experiments in CPU seconds on a
Sparc Ultra with 167 MHz. Integer and polynomial arith-
metic was taken from NTL, which we have extended so that
it can also cope with polynomials over Q, reducing polyno-
mial multiplication in Q[z] to polynomial multiplication in
Z[z] by multiplying with a common denominator. For mul-
tiplying polynomials with “large” coefficients, we have used
the same algorithm as described at the end of Section 2.

We believe that in the Example of Table 6, a careful
implementation of the algorithm of Abramov et al. (1995),
which reduces the problem to solving a linear system with
a 2-band coefficient matrix, using NTL would clearly outper-
form our algorithm. However, in case (i) of Lemma 3.2,
Algorithm 3.4 is, at least when only counting arithmetic op-
erations in F', asymptotically faster than the algorithm of
Abramov et al. (1995), but we have not yet implemented it.

Acknowledgements

We would like to thank the anonymous referees for many
helpful comments and suggestions.

References

S. A. ABRAMOV, On the summation of rational functions. Zh.
vychisl. Mat. mat. Fiz. 11 (1971), 1071-1075. English translation
in USSR Computational Mathematics and Mathematical Physics.

S. A. ABRAMOV, Problems in computer algebra involved in the
search for polynomial solutions of linear differential and differ-
ence equations. Moscow Univ. Comput. Math. and Cybernet. 3
(1989), 63-68.

S. A. ABRAMOV, M. BRONSTEIN, AND M. PETKOVSEK, On poly-
nomial solutions of linear operator equations. In Proc. ISSAC
’95. ACM Press, 1995, 290-296.

A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design
and Analysis of Computer Algorithms. Addison-Wesley, Reading
MA, 1974.

A. V. AHo, K. STEIGLITZ, AND J. D. ULLMAN, Evaluating polyno-
mials at fixed set of points. SIAM J. Comput. 4 (1975), 533-539.

D. BINI AND V. Y. PAN, Polynomial and matrix computations,
vol. 1. Birkh&user, 1994.

P. FLEISCHMANN AND P. ROELSE, Comparitive implementations
of Berlekamp’s and Niederreiter’s polynomial factorization algo-
rithms. In Finite Fields and their Applications, ed. S. COHEN
AND H. NIEDERREITER, 1996, 73-84.

J. VON zZUR GATHEN, Functional decomposition of polynomials:
the tame case. J. Symb. Comp. 9 (1990), 281-299.

R. W. GOSPER, Decision procedure for indefinite hypergeometric
summation. Proc. Natl. Acad. Sci. U.S.A. 25 (1978), 40-42.

R. L. GraHAM, D. E. KNUTH, AND O. PATASHNIK, Concrete
Mathematics. Addison-Wesley, Reading, MA, 2nd edition, 1994.

E. KALTOFEN AND A. LOBO, Factoring high-degree polynomials
by the black box Berlekamp algorithm. In Proc. ISSAC ’94, ed.
J. VON ZUR GATHEN AND M. GIESBRECHT. ACM Press, 1994, 90—
98.

A. KARATSUBA AND Y. OFMAN, ¥ MHOKEHUE MHOT'O3HAU-
HBIX 4YMCEJ Ha aBTOMaTaX. Dokl. Akad. Nauk USSR 145
(1962), 293—294. Multiplication of multidigit numbers on au-
tomata, Soviet Physics—-Doklady 7 (1963), 595-596.

P. LisONEK, P. PAULE, AND V. STREHL, Improvement of the de-
gree setting in Gosper’s algorithm. J. Symb. Comp. 16 (1993),
243-258.

P. L. MONTGOMERY, Factorization of X216091 1 X 4 1 mod 2 —
a problem of Herb Doughty. Manuscript, 1991.

M. S. PATERSON AND L. STOCKMEYER, On the number of non-
scalar multiplications necessary to evaluate polynomials. SIAM
J. Comput. 2 (1973), 60-66.

P. PAULE, Greatest factorial factorization and symbolic summa-
tion. J. Symbolic Computation 20 (1995), 235-268.

D. REISCHERT, Schnelle Multiplikation von Polynomen iiber
GF(2) und Anwendungen. Diplomarbeit, Universitdt Bonn, Ger-
many, 1995.

A. SCHONHAGE AND V. STRASSEN, Schnelle Multiplikation grofier
Zahlen. Computing 7 (1971), 281-292.

A. SCHONHAGE, A. F. W. GROTEFELD, AND E. VETTER, Fast
Algorithms — A Multitape Turing Machine Implementation. BI
Wissenschaftsverlag, 1994.

V. SHoOUP, Factoring polynomials over finite fields: asymptotic
complexity vs. reality. In Proc. Int. IMACS Symp. on Symbolic
Computation, New Trends and Developments, Lille, France, 1993,
124-129.

V. SHOUP, A new polynomial factorization algorithm and its im-
plementation. J. Symb. Comp. 20 (1995), 363-397.

V. STRASSEN, The computational complexity of continued frac-
tions. SIAM J. Comput. 12 (1983), 1-27.

