
SUBRESULTANTS REVISITEDJoahim von zur Gathen and Thomas L�ukingFahbereih Mathematik-Informatik, Universit�at Paderborn,33095 Paderborn, Germany, fgathen|lukg�upb.deAbstratSubresultants and polynomial remainder sequenes are an important tool in poly-nomial omputer algebra. In this survey, we sketh the history, disuss the variousnotions, and report on implementations.1 Introdution1.1 Historial ontextThe Eulidean Algorithm was �rst doumented by Eulid (. 320{275 BC).Aording to Knuth (1981), p. 318, \we might all it the granddaddy of allalgorithms, beause it is the oldest nontrivial algorithm that has survivedto the present day." It exeutes division with remainder repeatedly until theremainder beomes zero. With inputs 13 and 9 it performs the following:13= 1 � 9 + 4;9= 2 � 4 + 1 ;4= 4 � 1 + 0:This allows us to ompute the greatest ommon divisor (gd) of two integersas the last non-vanishing remainder. In the example, the gd of 13 and 9 isomputed as 1.When the onept of polynomials started to evolve, researhers were interestedin �nding the ommon roots of two polynomials f and g. Simon Stevin wasPreprint submitted to Elsevier Preprint 27 June 2000JO
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the �rst to apply the Eulidean Algorithm to polynomials, in 1585. In 1707,Newton onsidered this problem and showed that the method always worksin Q [x℄.x3 + 2x2 � x� 2= (12x + 32)(2x2 � 2x� 4) + 4x+ 42x2 � 2x� 4= (12x� 1)(4x+ 4) + 0:In this example f = x3 + 2x2 � x � 2 and g = 2x2 � 2x � 4 have a greatestommon divisor 4x+4, and therefore the only ommon root is �1. In a ertainsense the Eulidean Algorithm omputes all ommon roots (in an algebraiallylosed extension suh as C ). If we only want to know whether f and g haveat least one ommon root, then still the whole Eulidean Algorithm has tobe exeuted. Thus a goal was to �nd an indiator for ommon roots withoutusing any division with remainder.The key to suess was found in 1748 by Euler, and later by B�ezout. Theywere looking for a resultant of f and g as a polynomial in the oeÆients off and g that vanishes if and only if f and g have a ommon root. In his 1764paper, B�ezout oined the word �equation r�esultante and was the �rst to �nd amatrix whose determinant is the resultant. The entries of this B�ezout matrixare bilinear funtions of the oeÆients of f and g. Today one often usesthe matrix disovered by Sylvester in 1840, known as the Sylvester matrix. Itsentries are simply oeÆients of the polynomials f and g. Sylvester generalizedhis de�nition and introdued what we now all subresultants as determinantsof ertain submatries of the Sylvester matrix. They are nonzero if and only ifthe orresponding degree appears as a degree of a remainder of the EulideanAlgorithm.These indiators, in partiular the resultant, also work for polynomials in Z[x℄.But it is in general not possible to apply the Eulidean Algorithm to f and gin Z[x℄ without leaving Z[x℄, as illustrated in the example above, sine divisionwith remainder is not always de�ned in Z[x℄, although the gd exists. In theexample it is x+ 1.However, in 1836 Jaobi found a way out. He introdued pseudo-division:he multiplied f with a ertain power of the leading oeÆient of g beforeperforming the division with remainder. This is always possible in Z[x℄. Sousing pseudo-division instead of division with remainder in every step in theEulidean Algorithm yields an algorithm with all intermediate results in Z[x℄.About 40 years later Kroneker did researh on the Laurent series in x�1 ofg=f for two polynomials f and g. He onsidered the determinants of a matrixwhose entries are the oeÆients of the Laurent series of g=f . He obtained2
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Figure 1: Historial evolution

thesameresultsasSylvester,namelythatthesedeterminantsarenonzeroif
andonlyiftheorrespondingdegreeappearsinthedegreesequeneofthe
EulideanAlgorithm.FurthermoreKronekergaveadiretwaytoompute
lowdegreepolynomialss,tandrwithsf+tg=rviadeterminantsof
matriesderivedagainfromtheLaurantseriesofg=f,andshowedthatthese
polynomialsareessentiallytheonlyones.Healsoprovedthatthepolynomial
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r, if nonzero, agrees with a remainder in the Eulidean Algorithm, up to aonstant multiple. This was the �rst ourrene of polynomial subresultants.Starting in the 1960s, people built early omputer algebra systems like PMand ALPAK that made it possible to perform more and more ompliatedalgorithms faster and faster. However, using pseudo-division in every stepof the Eulidean Algorithm auses exponential oeÆient growth. This wassuspeted in the late 1960's. Collins (1967), p. 139, explains that the ith in-termediate oeÆients are approximately longer by a fator of (1 +p2)i thanthe input oeÆients, and writes: \Thus, for the Eulidean algorithm, thelengths of the oeÆients inreases exponentially." In Brown & Traub (1971)we �nd: \Although the Eulidean PRS algorithm is easy to state, it is thor-oughly impratial sine the oeÆients grow exponentially." An exponentialupper bound is in Knuth (1993)???, equation (27) in 4.6.1: \Thus the upperbound [: : : ℄ would be approximately N0:5(2:414)n , and experiments show thatthe simple algorithm does in fat have this behavior; the number of digitsin the oeÆients grows exponentially at eah step!". An exponential lowerbound is in ?, 3.3.3, and we provide in Theorem 7.3 a more preise lowerbound that essentially mathes Collin's and Knuth's upper bound.One way out of this exponential trap is to make every intermediate resultprimitive, that is, to divide the remainders by the greatest ommon divisorsof their oeÆients, the so-alled ontent. However, omputing the ontentseemed to be very expensive, espeially for multivariate polynomials. So thesientists tried to �nd divisors of the ontent without using any gd ompu-tation. Around 1970, �rst Collins and then Brown & Traub reinvented thepolynomial subresultants as determinants of a ertain variant of the Sylvestermatrix. Habiht had also de�ned them independently in 1948. Collins andBrown & Traub showed that they agree with the remainders of the EulideanAlgorithm up to onstant fators. They gave simple formulas to ompute thesefators and introdued the onept of polynomial remainder sequenes (PRS),generalizing the onept of Jaobi. The �nal result is the subresultant PRSthat features linear oeÆient growth with intermediate results in Z[x℄.Sine then two further onepts have ome up. On the one hand the fast EEAallows to ompute an arbitrary intermediate line in the Eulidean Sheme di-retly. Using the fastO(n logn log logn) multipliation algorithm of Sh�onhageand Strassen, we an redue the time to ompute the gd from O(n2) toO(n log 2n log logn) �eld operations (see Strassen (1983)). On the other hand,the modular EEA, also introdued by Collins, is very eÆient. These twotopis are not onsidered in this survey; for further information we refer tovon zur Gathen & Gerhard (1999), Chapters 6 and 11. Figure 1 illustrates thehistorial evolution. 4



1.2 OutlineAfter introduing the notation and some well-known fats in Setion 2, westart with an overview and omparison of various de�nitions of subresultantsin Setion 3. Mulders (1997) desribes an error in software implementationsof an integration algorithm whih was due to the onfusion aused by thethese various de�nitions. It turns out that there are essentially two di�erentnotions: the salar and the polynomial subresultants. We determine how theyare related to eah other. In the remainder of this work we will mainly onsiderthe salar subresultants.In Setion 4 we give a formal de�nition of polynomial remainder sequenes andderive the most famous ones as speial ases of our general notion. The relationbetween polynomial remainder sequenes and subresultants is exhibited inthe Fundamental Theorem 5.3 in Setion 5. It uni�es many results in theliterature on various types of PRS. In Setion 6 we apply it to the varioustypes of polynomial remainder sequenes. This yields a olletion of resultsfrom Collins (1966, 1967, 1971, 1973), Brown (1971, 1978), Brown & Traub(1971), Likteig & Roy (1997) and von zur Gathen & Gerhard (1999), oftenwith simpli�ation in the statements and proofs.Finally we report on implementations of the various polynomial remaindersequenes. We analyze the oeÆient growth and the running time of thevarious PRS in Setion 7, and ompare their running times in Setion 8. Itturns out that omputing the ontent is quite fast for random inputs, and thatthe primitive PRS behaves muh better than expeted.However, this is not meant to suggest these algorithms as a pratial alter-native. In most situations, the modular algorithms will outperform the PRSdisussed in this survey.All examples in this paper are from Z[x℄, but the methods apply equally wellto multivariate polyomials, and are even more useful there. We hoose thoseexamples beause they are more onise to speify.1.3 AknowledgementsWe thank Johannes Bl�omer and Erih Kaltofen for pointers to the literature.This work is part of the seond author's Diplomarbeit (L�uking (2000)), andan Extended Abstrat appeared at Latin '00 (von zur Gathen & L�uking(2000)). 5



2 FoundationsWe refer to Hungerford (1990) and von zur Gathen & Gerhard (1999), Se-tions 2.2 and 25.5, for the notation and fundamental fats about greatestommon divisors and determinants.2.1 PolynomialsLet R be a ring. In what follows, this always means a ommutative ring with 1.A basi tool in omputer algebra is division with remainder. For given poly-nomials f and g in R[x℄ the task is to �nd polynomials q and r in R[x℄ withf = qg + r and deg r < deg g: (2.1)Unfortunately suh q and r do not always exist.Example 2.2. It is not possible to divide x2 by 2x+3 with remainder in Z[x℄beause x2 = (ux + v)(2x + 3) + r with u; v; r 2 Q has the unique solutionu = 1=2, v = 0 and r = �3=2, whih is not over Z. �If de�ned and unique we all q = f quo g the quotient and r = f rem g theremainder. A ring with a length funtion (like the degree of polynomials) andwhere division with remainder is always de�ned is a Eulidean domain. R[x℄is a Eulidean domain if and only if R is a �eld. A solution of (2.1) is notneessarily unique if the leading oeÆient l(g) of g is a zero divisor.Example 2.3. Let R = Z8 and onsider f = 4x2 + 2x and g = 2x+ 1. Withq1 = 2x, r1 = 0;q2 = 2x+ 4, r2 = 4;we have two distint solutions (q1; r1) and (q2; r2) of (2.1). �A way to get solutions for all ommutative rings is the general pseudo-divisionwhih allows multipliation of f by a ring element �:�f = qg + r, deg r < deg g: (2.4)If n = deg f , m = deg g, and � = l(g)n�m+1, then this is the (lassial)pseudo-division as proposed in Jaobi (1836). If l(g) is not a zero divisor,then (2.4) with � = l(g)n�m+1 always has a unique solution in R[x℄. We allq = f pquo g the pseudo-quotient and r = f prem g the pseudo-remainder.6



Example 2.2 ontinued. For x2 and 2x+ 3 we get the pseudo-division22 � x2 = (2x� 3)(2x+ 3) + 9A simple omputation shows that we annot hoose � = 2. �Lemma 2.5. Let f; g 2 R[x℄ have degrees n;m, respetively, and g 6= 0.(i) Pseudo-division always yields a solution of (2.4) in R[x℄.(ii) If l(g) is not a zero divisor, then any solution of (2.4) has deg q = n�m.(iii) The solution (q; r) of (2.4) is uniquely determined if and only if l(g) isnot a zero-divisor.Proof. (i) We prove the laim by indution on n = deg f . For n < m =deg g we have the solution q = 0 and r = f . Now assume that n � m,and let f � = gmf � fnxn�mg where fn and gm are the leading oeÆientsof f and g, respetively. Thengn�m+1m f = (fngn�mm xn�m)g + gn�mm f �:Now deg f � < deg f , and by the indution hypothesis there exist q� andr� in R[x℄ withg(n�1)�m+1m f � = q�g + r� and deg r� < deg g:Therefore q = fngn�mm xn�m + q� and r = r� give a solution of (2.4).(ii) Let (q; r) be a solution of (2.4). Sine deg r < deg g and l(g) is not azero-divisor, we haven = deg f = deg qg = deg q + deg g = deg q +m:(iii) \)": Suppose l(g) = gm is not a zero divisor, and that q1; r1; q2; r2 2 R[x℄are suh that �f = q1g + r1 = q2g + r2:We laim that (q1; r1) = (q2; r2). Now(q1 � q2)g = r2 � r1: (2.6)Sine q1 = q2 implies r1 = r2, we may assume that q1 6= q2. Now we writeg = gmxm + g� and q1 � q2 = x` + q� where deg g� < m, ` � 0 and  =l(q1� q2) 6= 0, and note that gm 6= 0. Therefore deg((q1� q2)g) = m+ `and deg((q1 � q2)g) � m > deg(r2 � r1):This ontradition to (2.6) proves our laim.7



\(": We assume l(g) = gm to be a zero divisor, and  2 R to be nonzerowith gm = 0, and let (q1; r1) be a solution of (2.4). Then q = q1+  andr = r1 � g yieldqg + r = (q1 + )g � g + r1 = q1g + r1 = �fwith deg r < deg g. Thus (q; r) is another solution of (2.4). �2.2 Extended Eulidean Algorithm (EEA)We use the notation for the Extended Eulidean Algorithm (EEA) from von zurGathen & Gerhard (1999), Chapter 3, with remainders ri, quotients qi andB�ezout oeÆients si and ti, for 0 � i � `.Example 2.7. The Extended Eulidean Sheme of the two polynomials f =x3 + 6x2 + 11x+ 6 and g = x2 � 3x+ 2 2 Q [x℄ is:i ri qi si ti0 x3 + 6x2 + 11x+ 6 1 01 x2 � 3x+ 2 x+ 9 0 12 36x� 12 136x� 227 1 �x� 93 109 1625 x� 545 � 136x+ 227 136x2 + 19108x+ 134 0 910x2 � 2710x+ 95 � 910x3 � 275 x2 � 9910x� 275So the Eulidean length of (f; g) is ` = 3. Sine r3 = 109 2 Q is a unit, the gdof f and g is 1. �In general, (deg r0; : : : ; deg r`) is the degree sequene; in the example it is(6,4,2,1,0).We have degri +degti < deg f , and ri = sif + tig is a \small" linear ombina-tion of f and g with \small" oeÆients. The following theorem, essentiallydue to ?, says that the entries of the EEA are essentially the only way toget suh a small linear ombination; see Lemma 5.15 from von zur Gathen &Gerhard (1999).Unique Representation Theorem 2.8. Let F be a �eld, f; g; r; s; t 2F [x℄ with r = sf + tg and t 6= 0, and suppose thatdeg r + deg t < n = deg f:8



Moreover, let ri; si; ti for 0 � i � `+1 be the rows of the Extended EulideanAlgorithm for the pair (f; g). If we de�ne 1 � j � ` + 1 bydeg rj � deg r < deg rj�1;then there exists a nonzero � 2 F [x℄ suh thatr = �rj, s = �sj, t = �tj:3 Various notions of subresultantsThroughout the following we have a ommutative ring R and two polynomialsf = X0�j�n fjxj; g = X0�j�m gjxj 2 R[x℄of degrees n, m, respetively.3.1 The Sylvester matrixThe various de�nitions of the subresultant are based on the Sylvester ma-trix. We �rst take a look at the historial motivation for this speial matrix.Our goal is to deide whether two polynomials f and g have a nontrivialommon fator. To �nd an answer to this question, Euler (1748) and B�ezout(1764) introdued the (lassial) resultant that vanishes if (and only if) this istrue. B�ezout also sueeded in �nding a matrix whose determinant is equal tothe resultant, today alled the B�ezout matrix, but we will follow the elegantderivation in Sylvester (1840). The two linear equationsfnxn + fn�1xn�1 + � � � + f1x1 + f0x0 = 0;gmxm + gm�1xm�1 + � � � + g1x1 + g0x0 = 0in the indeterminates x0; : : : ; xn are satis�ed if xj = �j for all j, where �is a ommon root of f and g. For n > 1 there are many more solutions ofthese two linear equations in many variables, but Sylvester eliminates themby adding the (m�1)+(n�1) linear equations that orrespond to the followingadditional onditions: xf(x) = 0 ; : : : ; xm�1f(x) = 0;xg(x) = 0 ; : : : ; xn�1g(x) = 0:9



These equations give a total of n + m linear relations among the variablesxm+n�1; � � � ; x0:fnxm+n�1 + � � � + f0xm�1 = 0;...fnxn + fn�1xn�1 + � � � + f0x0 = 0;gmxm+n�1 + � � � + g0xn�1 = 0;...gmxm + gm�1xm�1 + � � � + g0x0 = 0:Clearly xj = �j gives a solution for any ommon root � of f and g, butthe point is that (essentially) the onverse also holds: a solution of the linearequations gives a ommon root (or fator). The (n + m) � (n + m) matrix,onsisting of oeÆients of f and g, that belongs to this system of linearequations is often alled Sylvester matrix. We follow von zur Gathen & Gerhard(1999), Setion 6.3, p. 144, and take its transpose.Definition 3.1. The (n+m)� (n +m) matrix
Syl(f; g) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

fnfn�1 fn... ... . . .... ... fn... ... fn�1... ... ...f0 ... ...f0 .... . . ...f0

gmgm�1 gm... ... . . .g1 ... . . .g0 ... . . .g0 gm. . . .... . . .... . . ...g0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA| {z }m | {z }nis the Sylvester matrix of f and g.Remark 3.2. Multiplying the (n+m� j)th row by xj and adding it to the10



last row for 1 � j < n+m, we get the (n+m)� (n+m) matrix
Syl�(f; g) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

fnfn�1 fn... ... . . .... ... fn... ... fn�1... ... ...f0 ... ...f0 .... . . f1xm�1f(x) � � � � � � f(x)

gmgm�1 gm... ... . . .g1 ... . . .g0 ... . . .g0 gm. . . .... . . .... . . g1xn�1g(x) � � � � � � � � � � � � g(x)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA| {z }m | {z }n
:

Thus det(Syl(f; g)) = det(Syl�(f; g)).More details on resultants an be found in Biermann (1891), Gordan (1885)and Haskell (1892). Computations for both the univariate and multivariatease are disussed in Collins (1971).There is also onsiderable reent literature on the subjet: ?Landau and Zippel on algebrai deomposition, ? on multivariate and algebraigeneralizations.
3.2 The salar subresultantWe are interested in determining whih degrees appear in the degree sequeneof the Extended Eulidean Algorithm. Salar subresultants provide a solution.Definition 3.3. The determinant �k(f; g) 2 R of the (m + n� 2k)� (m +11



n� 2k) matrix
Sk(f; g) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBB�

fnfn�1 fn... . . .fn�m+k+1 � � � � � � fn... ...fk+1 � � � � � � fm... ...... ...f2k�m+1 � � � � � � fk

gmgm�1 gm... . . .gk+1 � � � � � � gm... . . .gm�n+k+1 � � � � � � � � � � � � gm... ...... ...g2k�n+1 � � � � � � � � � � � � gk

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA| {z }m�k | {z }n�kis alled the kth (salar) subresultant of f and g. By onvention an fj orgj with j < 0 is zero. If f and g are lear from the ontext, then we write Skand �k instead of Sk(f; g) and �k(f; g).Sylvester (1840) already ontains an expliit desription of the (salar) subre-sultants. In Habiht (1948), p. 104, �k is alled Nebenresultante (minor resul-tant) for polynomials f and g of degrees n and n � 1. The de�nition is alsoin von zur Gathen (1984) and is used in von zur Gathen & Gerhard (1999),Setion 6.10.Remark 3.4.(i) S0 = Syl(f; g) and therefore �0 = det(S0) is the resultant.(ii) �m = gn�mm .(iii) Sk is the matrix obtained from the Sylvester matrix by deleting the last2k rows and the last k olumns with oeÆients of f , and the last kolumns with oeÆients of g.(iv) Sk is a submatrix of Si if k � i.3.3 The polynomial subresultantTwo slightly di�erent desriptions of polynomial subresultants are in the lit-erature. The �rst one is from Collins (1967), p. 129, and the seond one isfrom Brown & Traub (1971), p. 507 and also in Zippel (1993), Chapter 9.3,p. 150. They yield polynomials that are related to the intermediate results in12



the Extended Eulidean Algorithm. We ompare the two de�nitions and showtheir relation to salar subresultants. In the remainder of this text we thenfous on salar subresultants.Definition 3.5. Let Mik = Mik(f; g) be the (n +m � 2k) � (n +m � 2k)submatrix of Syl(f; g) obtained by deleting the last k of the m olumns ofoeÆients of f , the last k of the n olumns of oeÆients of g and the last2k + 1 rows exept row (n+m� i� k), for 0 � k � m and 0 � i � n:
Mik =

0BBBBBBBBBBBBBBBBBBBBBBB�
fn gmfn�1 fn gm�1 gm... . . . ... . . .... fn ... . . .... ... ... gm... ... ... ...f2k�m+2 fk+1 g2k�n+2 gk+1fi+k�m+1 � � � � � � fi gi+k�n+1 � � � � � � � � � gi

1CCCCCCCCCCCCCCCCCCCCCCCA
:

The polynomial Rk(f; g) = P0�i�n det(Mik)xi 2 R[x℄ is alled the kth poly-nomial subresultant of f and g.In fat, Collins (1967) onsidered the transposed matries. If f and g are learfrom the ontext, then we write Rk instead of Rk(f; g). Note that det(Mik) = 0if i > k, sine then the last row of Mik is idential to the (n +m � i � k)throw. Thus Rk = P0�i�k det(Mik)xi.Remark 3.6.(i) M00 = Syl(f; g) and therefore R0 = det(M00) is the resultant.(ii) Remark 3.4(i) implies that �0 = R0.
Definition 3.7. We onsider the determinant Zk(f; g) = det(M�k ) 2 R[x℄ of13



the (n+m� 2k)� (n+m� 2k) matrix
M�k =

0BBBBBBBBBBBBBBBBBBBBBBB�
fn gmfn�1 fn gm�1 gm... . . . ... . . .... fn ... . . .... ... ... gm... ... ... ...f2k�m+2 fk+1 g2k�n+2 gk+1xm�k�1f(x) � � � � � � f(x) xn�k�1g(x) � � � � � � � � � g(x)

1CCCCCCCCCCCCCCCCCCCCCCCA
:

If f and g are lear from the ontext, then we write Zk for short instead ofZk(f; g). We note that M�k is a submatrix of Syl�(f; g).Table 1 gives an overview of the literature onerning these notions. Of ourse,there is a muh larger body of work about the speial ase of the resultant,whih we do not quote here.3.4 Comparison of the various de�nitionsAs in Brown & Traub (1971), p. 508, and Geddes et al. (1992), Setion 7.3,p. 290, we �rst prove the following theorem whih shows that the de�nitionsin Collins (1967) and Brown & Traub (1971) desribe the same polynomial.Theorem 3.8.(i) If �k 6= 0, then �k is the leading oeÆient of Rk. Otherwise, degRk < k.(ii) Rk = Zk.Proof. (i) Sine the oeÆient of xk in Rk is det(Mkk) = det(Sk) = �k,the �rst laim follows.(ii) By linearity of the determinant, the laim follows fromX0�i�n xi(fi+k�m+1; : : : ; fi; gi+k�n+1; : : : ; gi)T= (xm�k�1f(x); : : : ; f(x); xn�k�1g(x); : : : ; g(x))T : �14



De�nition Authors�k(f; g) = det(Sk) 2 R Sylvester (1840)Habiht (1948)von zur Gathen (1984)Uteshev & Cherkasov (1998)von zur Gathen & Gerhard (1999)Rk(f; g) = X0�i�ndet(Mik)xi Collins (1967)Loos (1982)Geddes et al. (1992)Winkler (1996)Zk(f; g) = det(M�k ) 2 R[x℄ Brown & Traub (1971)Zippel (1993)Likteig & Roy (1997)Reishert (1997)
=

Table 1The various subresultantsRemark 3.9. Laplae expansion of Zk along the last olumn of M�k yieldstwo polynomials s,t 2 R[x℄ with deg s < m� k, deg t < n� k and sf + tg =Zk = Rk. This observation is due to Brown & Traub (1971), p. 507/508, seealso Zippel (1993), Chapter 9.3, p. 150.The essential property of the subresultants is that they haraterize the degreesequene; for a proof, see e.g. von zur Gathen & Gerhard (1999), Setion 6.10.Theorem 3.10. Let f and g be polynomials over a �eld F of degrees n0 �n1 > 0, respetively, let ni = deg ri for 0 � i � ` be the degrees in theEulidean Sheme, and let 0 � k < n1. Then�k 6= 0() 9i � ` k = ni:Proposition 3.11. Let F be a �eld, f and g in F [x℄ be polynomials of degreen � m > 0, respetively, and let ri, si and ti be the entries in the ith row ofthe Extended Eulidean Sheme, for 0 � i � `. Moreover, let �i = l(ri) andni = deg ri for all i. Then�ni�i � ri = Rni for 2 � i � `:15



Proof. Let 2 � i � `. Remark 3.9 shows that there exist polynomials sand t of degrees less than m� ni and n� ni, respetively, withsf + tg = Rni :Thus degRni + deg t � ni + n� ni � 1 < n:By Theorem 3.10 we know that the leading oeÆient �ni of Rni is nonzero.Sine F is a �eld and degRni = ni < n = deg f we have t 6= 0. Hene, by theUnique Representation Theorem 2.8, there exists an � 2 F [x℄ withs = �si, t = �ti, Rni = �ri, (�si)f + (�ti)g = �ri = Rni:Furthermore, ni = deg ri = degRni. Comparing leading oeÆients we �nd� = �ni�i : �Remark 3.12. Let f and g be polynomials over an integral domain R, let Fbe the �eld of frations of R, and onsider the Extended Eulidean Sheme off and g in F [x℄. Then the salar and the polynomial subresultants are in Rand R[x℄, respetively, and Proposition 3.11 also holds:�ni�i � ri = Rni 2 R[x℄:Note that ri is not neessarily in R[x℄, and �i not neessarily in R.A areful reading of the proof of Proposition 3.11 also shows the relation be-tween s; t from Remark 3.9 and the entries of the Extended Eulidean Sheme.Remark 3.13. Let 2 � i � `. Thens = �ni�i � si 2 R[x℄ and t = �ni�i � ti 2 R[x℄;in the notation of the proof of Proposition 3.11.The oneptional advantage of the salar subresultants is that they live in Rrather than R[x℄ and still provide enough information to build up the requiredtheory.4 Division rules and Polynomial Remainder Sequenes (PRS)We annot diretly apply the Eulidean Algorithm to polynomials f and gover an integral domain R sine polynomial division with remainder in R[x℄,16



whih is used in every step of the Eulidean Algorithm, is not always de�ned.Hene our goal now are de�nitions modi�ed in suh a way that they yield avariant of the Eulidean Algorithm that works over an integral domain. Weintrodue a generalization of the usual pseudo-division, the onept of divisionrules, whih leads to intermediate results in R[x℄.Definition 4.1. Let R be an integral domain. A one-step division rule is apartial mapping R : R[x℄2 !� R2suh that for all (f; g) 2 def(R) there exist q; r 2 R[x℄ satisfying(i) R(f; g) = (�; �),(ii) �f = qg + �r and deg r < deg g.Reall that def(R) � R[x℄2 is the domain of de�nition of R, that is, the setof (f; g) 2 R[x℄2 at whih R is de�ned. In partiular, R : def(R) �! R2 isa total map. In the examples below, we will usually de�ne one-step divisionrules by starting with a (total or partial) map R0 : R[x℄2 !� R2 and thentaking R to be the maximal one-step division rule onsistent with R0. Thusdef(R) = 8><>:(f; g) 2 R[x℄2 : 9�; � 2 R, 9q; r 2 R[x℄(�; �) = R0(f; g) and (ii) holds9>=>; ;and R is R0 restrited to def(R).Lemma 2.5(iii) says that for all (f; g) 2 def(R), q and r are unique. Further-more (f; 0) is never in def(R) (\you an't divide by zero"), so thatdef(R) � Dmax = R[x℄� (R[x℄ n f0g):We are partiularly interested in one-step division rules R with def(R) =Dmax. In our examples, (0; g) will always be in def(R) if g 6= 0.We may onsider the usual remainder as a partial funtion rem: R[x℄2 !� R[x℄with rem(f; g) = r if there exist q; r 2 R[x℄ with f = qg+r and deg r < deg g,and def(rem) maximal. Reall from Setion 2 the de�nitions of rem, prem andont.Example 4.2. Let f and g be polynomials over an integral domain R ofdegrees n and m, respetively, and let fn = l(f), gm = l(g) 6= 0 be theirleading oeÆients. Then the three most famous types of division rules are asfollows:Æ lassial division rule: R(f; g) = (1; 1).Æ moni division rule: R(f; g) = (1; l(rem(f; g))).17



Æ Sturmian division rule: R(f; g) = (1;�1).Examples are given below. When R is a �eld, these three division rules havethe largest possible domain of de�nition def(R) = Dmax, but otherwise, it maybe smaller; we will illustrate this in Example 4.7. Hene they do not help usin ahieving our goal of �nding rules with maximal domain Dmax. But thereexist two division rules whih, in ontrast to the �rst examples, always yieldsolutions in R[x℄:Æ pseudo-division rule: R(f; g) = (gn�m+1m ; 1).In ase R is a unique fatorization domain, we have theÆ primitive division rule: R(f; g) = (gn�m+1m ; ont(prem(f; g))).For algorithmi purposes, it is then useful for R to be a Eulidean domain.�The disadvantage of the pseudo-division rule, however, is that in the EulideanAlgorithm it leads to exponential oeÆient growth; the oeÆients of theintermediate results are usually enormous, their bit length may be exponentialin the bit length of the input polynomials f and g. If R is a UFD, we get thesmallest intermediate results if we use the primitive division rule, but theomputation of the ontent in every step of the Eulidean Algorithm seemsto be expensive. Collins (1967) already observed this in his experiments. Thushe tries to avoid the omputation of the ontent and to keep the intermediateresults \small" at the same time by using information from all intermediateresults in the EEA, not only the two previous remainders. Our onept of one-step division rules does not over his method. So we now extend our previousde�nition, and will atually apture all the \reursive" division rules fromCollins (1967, 1971, 1973), Brown & Traub (1971) and Brown (1971) underone umbrella.Definition 4.3. Let R be an integral domain. A division rule is a partialmapping R : R[x℄2 !� (R2)�assoiating to (f; g) 2 def(R) a sequene ((�2; �2); : : : ; (�`+1; �`+1)) of arbi-trary length ` � 0 suh that for all (f; g) 2 def(R) there exist ` 2 N�0 ,q1; : : : ; q` 2 R[x℄ and r0; : : : ; r`+1 2 R[x℄ satisfying for 2 � i � `+ 1(i) r0 = f; r1 = g,(ii) Ri(f; g) = R(f; g)i = (�i; �i),(iii) �iri�2 = qi�1ri�1 + �iri and deg ri < deg ri�1.A division rule where ` = 1 for all values is the same as a one-step divisionrule, and from an arbitrary division rule we an obtain a one-step division rule18



by projeting to the �rst oordinate (�2; �2) if ` � 2. Using Lemma 2.5(iii),we �nd that for all (f; g) 2 def(R), qi�1 and ri are unique for 2 � i � ` + 1.If we have a one-step division rule R� whih is de�ned at all (ri�2; ri�1) for2 � i � `+ 1 (de�ned reursively), then we obtain a division rule R by usingR� in every step: Ri(f; g) = R�(ri�2; ri�1) = (�; �):If we trunate R at the �rst oordinate, we get R� bak. But the notion ofdivision rules is stritly riher than that of one-step division rules; for examplethe �rst step in the redued division rule below is just the pseudo-divisionrule, but using the pseudo-division rule repeatedly does not yield the redueddivision rule.Example 4.2 ontinued. Let f = r0; g = r1 2 R[x℄ be polynomials ofdegrees n0 � n1, respetively, and let �0 = l(r0) and �1 = l(r1) be theirleading oeÆients. We now present three di�erent types of reursive divisionrules. They are based on polynomial subresultants. It is not obvious that theyhave domain of de�nition Dmax, sine divisions our in their de�nitions. Wewill show that this is indeed the ase in Remarks 6.10 and 6.14.Æ redued division rule: Ri(f; g) = (�i; �i) for 2 � i � `+ 1,where we set �1 = 1 and for 2 � i � `+ 1 reursively de�ne(�i; �i)= (�di�2+1i�1 ; �i�1);then ri by De�nition 4.3 (iii), �i = l(ri), ni = deg ri, and di�1 = ni�1 � ni.Æ subresultant division rule: Ri(f; g) = (�i; �i) for 2 � i � `+ 1,where we set �0 = 1 and for 2 � i � `+ 1 reursively de�ne(�i; �i)= (�di�2+1i�1 ;��i�2 di�2i ); i=8><>:�1 for i = 2(��i�2)di�3 1�di�3i�1 otherwise ;then ri by De�nition 4.3 (iii), �i = l(ri), ni = deg ri, and di�1 = ni�1 � ni.The subresultant PRS an be improved if we an somehow determine divisorsi of the ontent of the intermediate results.Æ improved division rule: Ri(f; g) = (�i; �i) for 2 � i � ` + 1,where we set �0 = 1, 1 = 1 and for 2 � i � `+ 1 reursively de�ne(�i; �i)= (�di�2+1i�1 ;��i�2 di�2i �(di�2+1)i�1 ) � i; i=8><>:�1 for i = 2(�i�2�i�2)di�3 1�di�3i�1 otherwise ;19



where i is hosen suh that ri given by De�nition 4.3 (iii) is in R[x℄, �i =l(ri), ni = deg ri, and di�1 = ni�1 � ni. �The subresultant division rule was invented by Collins (1967), p. 130. He triedto �nd a rule suh that the ri's agree with the polynomial subresultants upto a small onstant fator. Brown (1971), p. 486, then provided a reursivede�nition of the �i and �i as given above.We note that the exponents in the reursive de�nition of the  i's in the subre-sultant division rule and in the improved division rule may be negative. Heneit is not lear that the �i's are in R. However, we will show this in Theo-rem 6.17 by proving that the  i are essentially the subresultants, as also donein Brown (1971) ????.Question 4.4. \At the present time it is not known whether or not theseequations imply  i; �i 2 R."By de�nition, a division rule R de�nes a sequene (r0; : : : ; r`) of remainders;reall that they are uniquely de�ned. Sine it is more onvenient to work withthese \polynomial remainder sequenes", we �x this notion in the followingde�nition, following Collins (1967), p. 128/129.Definition 4.5. Let R be a division rule. A sequene (r0; : : : ; r`) of nonzeropolynomials r0; : : : ; r` 2 R[x℄nf0g is alled the polynomial remainder sequene(PRS) for (f; g) aording to R if(i) r0 = f; r1 = g,(ii) Ri(f; g) = (�i; �i),(iii) �iri�2 = qi�1ri�1 + �iri,for 2 � i � ` + 1, where ` is the length of R(f; g). The PRS is ompleteif (iii) is satis�ed for i = ` + 1 with r`+1 = 0. It is alled normal if di =deg ri � deg ri+1 = 1 for 1 � i � `� 1.In fat the remainders for PRS aording to arbitrary division rules over anintegral domain only di�er by a nonzero onstant fator.Proposition 4.6. Let R be an integral domain, f; g 2 R[x℄ and let r =(r0; : : : ; r`) and r� = (r�0; : : : ; r�̀�) be PRS for (f; g) aording to two divisionrules R and R�, respetively, none of whose results �i; �i; ��i ; ��i is zero. Thenr�i = iri with i = Y0�k�i=2�1 ��i�2k�i�2k�i�2k��i�2k 2 F n f0gfor 0 � i � minf`; `�g, where F is the �eld of frations of R.20



Proof. We show the proposition by indution on i. It is lear for i � 1, andwe assume that i � 2. Then with Ri(f; g) = (�i; �i) and R�i (f; g) = (��i ; ��i )we have �iri�2 = qi�1ri�1 + �iri;��i r�i�2 = q�i�1r�i�1 + ��i r�i :The indution hypothesis plugged into the seond equation and multipliationby �i yields (�i��i i�2) � ri�2 = (�ii�1q�i�1) � ri�1 + (�i��i ) � r�i :Multiplying the �rst equation above by ��i i�2 we obtain(�i��i i�2) � ri�2 = (��i i�2qi�1) � ri�1 + (��i i�2�i) � riFrom Lemma 2.5(iii) we obtain (�i��i ) � r�i = (��i i�2�i) � ri and r�i = iri withi = ��i�i�i��i � i�2 2 F n f0g:By indution this ompletes the proof of the proposition. �The proposition yields a diret way to ompute the PRS for (f; g) aording toR� from the PRS for (f; g) aording to R and the �i; �i; ��i ; ��i . In partiular,the degrees of the remainders in any two PRS are idential.In Example 4.2 we have seen eight di�erent division rules. Now we onsiderthe di�erent polynomial remainder sequenes aording to these rules. EahPRS will be illustrated by the following example.Example 4.7. We perform the omputations on the polynomialsf = r0 = 9x6 � 27x4 � 27x3 + 72x2 + 18x� 45 andg = r1 = 3x4 � 4x2 � 9x + 21over R = Q and, wherever possible, also over R = Z. In order to illustrate theoeÆient growth of the various PRS, we �rst present the subresultants of fand g. They are given in reverse order to make it easier to ompare them withthe intermediate results of the di�erent PRS.We hoose the integers as our ground domain beause we then have a reason-ably onise presentation of our polynomials.21



i �i(f; g) fatorization of �i(f; g)4 = deg r1 9 323 0 02 = deg r2 9801 34 � 1121 = deg r3 13 355 280 24 � 36 � 5 � 2290 = deg r4 9 657 273 681 38 � 11 � 133811Furthermore we give the fatorizations of the �i, �i and the leading oeÆientsof the ri below the orresponding entries. �
4.1 Classial PRSThe most familiar PRS for (f; g) is obtained aording to the lassial divisionrule. Collins (1973), p. 736, alls this the natural Eulidean PRS (algorithm).The intermediate results of the lassial PRS and of the Eulidean Algorithmoinide.Example 4.7 ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 1 1 � 11�11 x2 � 27x+ 603 1 1 � 164 8801331�24�32�5�229=113 x+ 248 93113314 1 1 � 1 959 126 851335 622 400�114�133811=28 �52�2292 �The �rst division works over Z, but not the subsequent ones. In our formalism,this means the following. If we takeR0 : R[x℄2 �! Z2 withR0(h; k) = (1; 1) forall (h; k) 2 Z[x℄2, then we obtain the division rule R on Z[x℄2 with R(f; g) =((1; 1)) of length ` = 1. 22



4.2 Moni PRSIn Collins (1973), p. 736, the PRS for (f; g) aording to the moni divisionrule is alled moni PRS (algorithm). The ri are moni for 2 � i � `, andwe get the same intermediate results as in the moni Eulidean Algorithm invon zur Gathen & Gerhard (1999), Setion 3.2.Example 4.7 ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 1 � 11�11 x21 +2711x� 60113 1 � 164 8801331�24�32�5�229=113 x1 �27 65918 3204 1 178 102 441335 622 400113 �133811=28 �52�2292 11 �4.3 Sturmian PRSWe hoose the PRS for (f; g) aording to the Sturmian division rule as intro-dued in Sturm (1835). Kroneker (1873), p. 117, Habiht (1948), p. 102,and Loos (1982), p. 119, deal with this generalized Sturmian PRS (algo-rithm). Kroneker (1873) alls it Sturmshe Reihe (Sturmian sequene), and inHabiht (1948) it is the verallgemeinerte Sturmshe Kette (generalized Stur-mian hain). If g = �f=�x as in Habiht (1948), p. 99, then this is the lassialSturmian PRS (algorithm). Note that the Sturmian PRS agrees with the las-sial PRS up to sign.Example 4.7 ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 1 �1 1111 x2 � 27x+ 603 1 �1 164 880133124�32�5�229=113 x+ 248 93113314 1 �1 � 1 959 126 851335 622 400�114�133811=28 �52�229223



�If we assume that R is an integral domain but not a �eld, the example showsthat the �rst three types of PRS do not have Dmax as their domain of de�nition.In the example they are only of length 1. But fortunately there are divisionrules that have this property.
4.4 Pseudo PRSIf we hoose the PRS aording to the pseudo-division rule, then we get thepseudo PRS. Collins (1967), p. 138, alls this the Eulidean PRS (algorithm)beause it is the most obvious generalization of the Eulidean Algorithm topolynomials over an integral domain R that is not a �eld. In Collins (1973),p. 737, it is alled the pseudo-remainder PRS.Example 4.7 ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 2733 1 � 297�33�11 x2 � 729x+ 16203 � 26 198 073(�33�11)3 1 3 245 333 04024�311 �5�229 x� 4 899 708 8734 10 532 186 540 515 641 600(24�311 �5�229)2 1 � 1 659 945 865 306 233 453 993�325 �114�133811 �
4.5 Primitive PRSTo obtain a PRS over R with minimal oeÆient growth, we hoose the PRSaording to the primitive division rule whih yields primitive intermediateresults. Brown (1971), p. 484, alls this the primitive PRS (algorithm).Example 4.7 ontinued. 24



i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 2733 33 � 11�11 x2 � 27x+ 603 � 1331(�11)3 932 18 32024�5�229 x� 27 6594 335 622 400(24�5�229)2 1 959 126 851114�133811 � 1�1 �
4.6 Redued PRSA pereived drawbak of the primitive PRS is the (seemingly) ostly ompu-tation of the ontent. With probabilisti methods, this an in fat be donewith an expeted number of about one pairwise gd alulation for multi-variate polynomials (see von zur Gathen & Gerhard (1999), ?) and less thantwo pairwise gd's for integers Cooperman et al. (1999). In fat, in our experi-ments in Setion 8, the primitive PRS sometimes turns out to be most eÆientamong those disussed here. But Collins (1967) introdued his redued PRS(algorithm) in order to avoid the omputation of the ontent ompletely. Hisalgorithm uses the redued division rule and keeps the intermediate oeÆientsreasonably small but not neessarily as small as with the primitive PRS.Example 4.7 ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 2733 11 � 297�33�11 x2 � 729x+ 16203 � 26 198 073(�33�11)3 2733 120 197 52024�38�5�229 x� 181 470 6994 14 447 443 814 150 400(24�38�5�229)2 � 26 198 073�39�113 86 915 463 129310 �11�133811 �25



4.7 Subresultant PRSThe redued PRS is not the only way to keep the oeÆients small withoutomputing ontents. We an also use the subresultant division rule. Aordingto Collins (1967), p. 130, this is the subresultant PRS (algorithm).Example 4.7 ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 2733 � 1�1 29733�11 x2 + 729x � 16203 26 198 073(33�11)3 � 243�35 13 355 28024�36�5�229 x� 20 163 4114 178 363 503 878 400(24�36�5�229)2 2 910 89737�113 9 657 273 68138�11�133811 �4.8 Improved PRSIt is possible to improve the subresultant PRS (algorithm) if we an determinedivisors i of the ontent of the intermediate results. Then we are allowed touse the PRS aording to the improved division rule. In Brown (1971), p. 487,and Brown (1978), p. 243{245, this is alled improved PRS (algorithm). Soobviously ri 2 R[x℄ for 2 � i � `. It is not lear to us how to �nd suh i in amanner that essentially avoids the ontent omputation.5 Fundamental Theorem on subresultantsThe Fundamental Theorem on subresultants was disovered independently in1968 by Brown and by (Collins, footnote on page 519). It expresses an ar-bitrary subresultant as a power produt of ertain data in the PRS, namelythe multipliers � and � and the leading oeÆients of the remainders in theEulidean Algorithm. In this setion our �rst goal is to prove the FundamentalTheorem on subresultants for polynomial remainder sequenes aording toan arbitrary division rule R. From this theorem we then derive results for thevarious PRS aording to the division rules in Example 4.2. We start with26



two tehnial lemmas. The �rst one gives a relation between the subresul-tants of (f; g) and (g; r) when r = f rem g. Proofs an be found in Geddeset al. (1992), Chapter 7.3, p. 292/293, Lemma 7.1; von zur Gathen & Ger-hard (1999), Lemma 11.12; and Brown & Traub (1971), p. 509, Lemma 1, forpolynomial subresultants.Lemma 5.1. Let f and g 2 R[x℄ be polynomials of degrees n � m > 0,respetively, over an integral domain R, and let q,r 2 R[x℄ with f = qg + rand deg r = k < m. Then�j(f; g) = 8><>: (�1)(n�j)(m�j)l(g)n�k�j(g; r) for 0 � j � k;0 for k < j < m:We apply Lemma 5.1 to polynomial remainder sequenes. For polynomialsubresultants this result is in Brown & Traub (1971), p. 510, Lemma 2, andfor redued PRS in Collins (1967), p. 131, Lemma 1.Lemma 5.2. Let f and g 2 R[x℄ be polynomials of degrees n � m > 0,respetively, over an integral domain R, let R be a division rule, (f; g) 2def(R) and (r0; : : : ; r`) be the PRS for (f; g) aording toR, (�i; �i) = Ri(f; g)the onstant multipliers, ni = deg ri and �i = l(ri) for 0 � i � `. Then�j(ri�2; ri�1) = (�1)(ni�2�j)(ni�1�j) �i�i!ni�1�j�ni�2�nii�1 �j(ri�1; ri)if 0 � j � ni, and �j(ri�2; ri�1) = 0 if ni < j < ni�1.In partiular, this implies that �ni�1�ji divides in R the numerator of the righthand side.Now we are ready to give a proof of the following result whih is shown forPRS in Brown & Traub (1971), p. 511, Fundamental theorem, and for reduedPRS in Collins (1967), p. 132, Lemma 2, and p. 133, Theorem 1.Fundamental Theorem 5.3. Let f and g 2 R[x℄ be polynomials of degreesn � m > 0, respetively, over an integral domain R, let R be a division ruleand (r0; : : : ; r`) be the PRS for (f; g) aording to R, (�i; �i) = Ri(f; g)the onstant multipliers, ni = deg ri and �i = l(ri) for 0 � i � `, anddi = ni � ni+1 for 0 � i � `� 1.(i) For 0 � j � n1, the jth subresultant of (f; g) is�j(f; g) = (�1)bi�ni�1�nii Y2�k�i �k�k!nk�1�ni�nk�2�nkk�127



if j = ni for some 1 � i � `, otherwise 0, where bi = P2�k�i(nk�2 �ni)(nk�1 � ni).(ii) The subresultants satisfy for 1 � i < ` the reursive formulas�n1(f; g) = �d01 and�ni+1(f; g) = �ni(f; g) � (�1)di(n0�ni+1+i+1)(�i+1�i)di Y2�k�i+1 �k�k!di .Proof. (i) We de�ne i by the onditions that 1 � i � ` and ni+1 < j � ni.By indution on i, we �nd from Lemma 5.2�j(f; g) = �j(ri�1; ri) Y2�k�i(�1)(nk�2�j)(nk�1�j) �k�k!nk�1�j�nk�2�nkk�1if j = ni, and �j(f; g) = 0 if ni+1 < j < ni. Furthermore, if j = ni, then�ni(ri�1; ri) = det0BBBBB� �i... . . .... �i
1CCCCCA = �ni�1�nii :(ii) Firstly, (i) implies that �n1(f; g) = �d01 . Now assume i � 1. Then from (i)we obtain�ni+1(f; g)= �dii+1 Y2�k�i+1 (�1)(nk�2�ni+1)(nk�1�ni+1)  �k�k!nk�1�ni+1 �nk�2�nkk�1= �dii+1 Y2�k�i (�1)(nk�2�ni)(nk�1�ni)  �k�k!nk�1�ni �nk�2�nkk�1 �Y2�k�i (�1)di(nk�2+nk�1+1)  �k�k!ni�ni+1 �(�1)(ni�1�ni)(ni�ni+1)  �i+1�i+1!ni�ni+1 �ni�1�ni+1i= �dii+1��di�1+ni�1�nii � �ni(f; g) � (�1)di(n0�ni+1+i+1) Y2�k�i+1 �k�k!di :This ompletes the proof of the fundamental theorem. �We now have the following generalization of Theorem 3.10.28



Corollary 5.4. Let R be a division rule and (r0; : : : ; r`) be the PRS for(f; g) aording to R, let ni = deg ri for 0 � i � ` be the degrees in the PRS,and let 0 � k � n1. Then�k 6= 0() 9i � ` k = ni:6 Appliations of the Fundamental TheoremWe now derive results for the various PRS for polynomials f; g 2 R[x℄ of de-grees n � m � 0, respetively, over an integral domain R, aording to thedivision rules in Example 4.2. The �rst type of result expresses the subresul-tants �k = �k(f; g) in terms of the quantities �i = l(ri), ni = deg ri, anddi = ni � ni+1, and others in the PRS. The seond type gives a reursiveequation expressing �ni+1 as a multiple of �ni . Both types of formula simplifyonsiderably in the normal ase. Finally, we an also reverse these equationsin the normal ase and express the �i in terms of the other quantities. Westart with a tehnial lemma.Lemma 6.1. Let bi = P2�k�i(nk�2 � ni)(nk�1 � ni) be as in FundamentalTheorem 5.3. If the PRS is normal, thenbi � (d0 + 1)(i+ 1) mod 2 for 2 � i � `:Proof. Sine the PRS is normal, we have dj = 1 for 1 � j � `, and getbi = X2�k�i(nk�2 � ni)(nk�1 � ni)= (d0 + i� 1)(i� 1) + X3�k�i(i� k + 2)(i� k + 1)� (d0 + 1)(i+ 1) mod 2: �6.1 Classial PRSThe following laims for the lassial PRS are proved by substituting (�i; �i) =(1; 1) for 2 � i � ` in the Fundamental Theorem 5.3.Corollary 6.2. Let (r0; : : : ; r`) be a lassial PRS and 1 � i � `. Then(i) �ni = (�1)bi�di�1i Y2�k�i �nk�2�nkk�1 .29



(ii) The subresultants satisfy the reursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)di(n0�ni+1+i+1)(�i+1�i)di .If the PRS is normal, then this simpli�es to:(iii) �ni = (�1)(d0+1)(i+1)�i�d0+11 Y3�k�i �2k�1 for i � 2.(iv) The subresultants satisfy the reursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)d0+1�i+1�i:6.2 Moni PRSFor the moni PRS, the Fundamental Theorem 5.3 yields the following orol-lary whih is the Fundamental Theorem 11.13 in von zur Gathen & Gerhard(1999).Corollary 6.3. Let (r0; : : : ; r`) be a moni PRS, and 2 � i � `. Then(i) �n1 = �d01 , and�ni = (�1)bi�n0�n21 Y2�k�i�nk�1�nik :(ii) The subresultants satisfy the reursive formulas�n1 = �d01 ;�n2 = �n1 � (�1)d1(n0�n2+2)(�1�2)d1 , and�ni+1 = �ni � (�1)di(n0�ni+1+i+1) Y2�k�i+1�dik :If the PRS is normal, then this simpli�es to:(iii) �n1 = �d01 , and�ni = (�1)(d0+1)(i+1)�d0+11 Y2�k�i�i�(k�1)k :30



(iv) The subresultants satisfy the reursive formulas�n1 = �d01�n2 = �n1 � (�1)(d0+1)2�1�2, and�ni+1 = �ni � (�1)(d0+1)(i+1) Y2�k�i+1�k:6.3 Sturmian PRSFor the Sturmian PRS, the results read as follows.Corollary 6.4. Let (r0; : : : ; r`) be a Sturmian PRS, and 1 � i � `. Then(i) �ni = (�1)bi+P2�k�i(nk�1�ni)�di�1i Y2�k�i �nk�2�nkk�1 .(ii) The subresultants satisfy the reursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)di(n0�ni+1+1)(�i+1�i)di:If the PRS is normal, then this simpli�es to:(iii) �ni = (�1)(d0+1)(i+1)�d0+11 �i Y3�k�i �2k�1 for i � 2.(iv) The subresultants satisfy the reursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)d0+i+1�i+1�i:6.4 Pseudo PRSAgain the Fundamental Theorem 5.3, after substituting (�i; �i) = (�di�2+1i�1 ; 1)for 2 � i � `, provides the following orollary for the pseudo PRS. It an alsobe found in Collins (1966), p. 710, Theorem 1, for polynomial subresultants.Corollary 6.5. Let (r0; : : : ; r`) be a pseudo PRS, and 1 � i � `. Then(i) �ni = (�1)bi�di�1i Y2�k�i �nk�2�nk�(nk�1�ni)(dk�2+1)k�1 .31



(ii) The subresultants satisfy the reursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)di(n0�ni+1+i+1)(�i+1�i)di Y2�k�i+1 ��(dk�2+1)dik�1 :If the PRS is normal, then this simpli�es to:(iii) �ni = (�1)(d0+1)(i+1)�(d0+1)(2�i)1 �i Y3�k�i�1 �2(k�i)k�1 for i � 2.(iv) The subresultants satisfy the reursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)d0+1��(d0+1)1 �i+1�i Y3�k�i+1 ��2k�1.Remark 6.6. If the PRS is normal, then Corollary 6.5(iii) implies that�i = �ni(�1)(d0+1)(i+1)�(d0+1)(i�2)1 Y3�k�i�1 �2(i�k)k�1 :Thus �ni divides �i. This result is also shown for polynomial subresultants inCollins (1966), p. 711, Corollary 1.6.5 Primitive PRSSine the ontent of two polynomials annot be expressed in terms of ourparameters �i and ni, we do not onsider the Fundamental Theorem for thistype of PRS. We only make the following remark.Remark 6.7. Let (r0; : : : ; r`) be a primitive PRS. Then �i divides �ni for2 � i � ` sine �ni � ri�i 2 R[x℄ aording to Proposition 3.11 and ri isprimitive.If R = Z, then the required gd alulations an beome quite expensive, butsee Cooperman et al. (1999) for an eÆient proposal.6.6 Redued PRSFor redued PRS the Fundamental Theorem 5.3 yields the following orol-lary. The non-normal parts are shown for polynomial subresultants in Collins(1967), p. 135, Corollary 1.2, and Collins (1967), p. 135, Corollary 1.4, respe-tively. 32



Corollary 6.8. Let (r0; : : : ; r`) be a redued PRS, and 1 � i � `. Then(i) �ni = (�1)bi�di�1i Y2�k�i �dk�2(1�dk�1)k�1 .(ii) The subresultants satisfy for the reursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)di(n0�ni+1+i+1)�dii+1��di�1dii :If the PRS is normal, then this simpli�es to:(iii) �ni = (�1)(d0+1)(i+1)�i for i � 2.(iv) The subresultants satisfy the reursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)d0+1�i+1��1i :Proof. Sine (�2; �2) = (�d0+11 ; 1) and (�i; �i) = (�di�2+1i�1 ; �i�1) we getY2�k�i �k�k!nk�1�ni = Y3�k�i�nk�1�nik�1 Y2�k�i��(nk�1�ni)k=��(ni�1�ni)i Y2�k�i�1�nk�1�nkk= Y2�k�i��dk�1k = Y2�k�i ��(dk�2+1)dk�1k�1 :Together with Fundamental Theorem 5.3 this yields the laims. �Remark 6.9. We obtain from Corollary 6.8(i)�di�1i = �ni Y2�k�i(�1)(nk�2�ni)(nk�1�ni)�dk�2(dk�1�1)k�1 :Thus �ni divides �di�1i . This result an also be found in Collins (1967), p.135,Corollary 1.2.Remark 6.10. For every redued PRS, ri is in R[x℄ for 2 � i � `. Notethat Corollary 6.8(iii) implies ri = (�1)(d0+1)(i+1)Ri(f; g). So the normal aseis lear. A proof for the general ase based on polynomial subresultants is inCollins (1967), p. 134, Corollary 1.1, and Brown (1971), p. 485/486.33



6.7 Subresultant PRSWe now derive some results for subresultant PRS with the help of the Funda-mental Theorem 5.3. To simplify our formulas we useei;j = dj�1 Yj�k�i(1� dk):Our �rst goal is to solve the reurrene for the �i and eliminate the  i. Thisis done in the following two tehnial lemmas.Lemma 6.11. Let  i be de�ned reursively as in Example 4.2 by  2 = �1and  i = (��i�2)di�3 1�di�3i�1 for 3 � i � `. Then i = � Y1�j�i�2 �ei�3;jj for 2 � i � `:Proof. For a proof by indution, we �rst verify the laim for i = 2: 2 = � Y1�j�0 �e�1;jj :Now we assume that i � 2. Then i+1=(�1)di�2�di�2i�1  1�di�2i = (�1)di�2�di�2i�1 0�� Y1�j�i�2 �ei�3;jj 1A1�di�2=��di�2i�1 Y1�j�i�2 �(1�di�2)ei�3;jj = � Y1�j�(i+1)�2 �e(i+1)�3;jj :By indution, this ompletes the proof of the lemma. �Lemma 6.12. Let �i = �di�2+1i�1 for 2 � i � `, and let �2 = (�1)d0+1 and�i = ��i�2 di�2i for 3 � i � `. ThenY2�k�i �k�k = (�1)n0�ni�1+i�1��(di�2+1)i�1 Y1�k�i�2 ��ei�2;kk for 2 � i � `:Proof. Sine�2�2 =(�1)d0+1��d0+11 �(�1) = (�1)n0�n1+1��(d0+1)1 Y1�k�0 ��e0;kk ;the laim is true for i = 2. Now assume that the laim holds for i� 1 � 2 andonsider 34



Y2�k�i �k�k = �i�i Y2�k�i�1 �k�k = ��i�2 di�2i ��(di�2+1)i�1 Y2�k�i�1 �k�k :From Lemma 6.11 we getY2�k�i �k�k =��i�20�� Y1�k�i�2 �ei�3;kk 1Adi�2��(di�2+1)i�1 Y2�k�i�1 �k�k=(�1)di�2+1�i�20� Y1�k�i�2 �ei�3;kk �1Adi�2��(di�2+1)i�1(�1)n0�ni�2+i�2��(di�3+1)i�2 Y1�k�i�3 ��ei�3;kk=(�1)n0�ni�1+i�1��(di�2+1)i�1 �di�3(di�2�1)i�2 0� Y1�k�i�3 �ei�3;kk 1Adi�2�1=(�1)n0�ni�1+i�1��(di�2+1)i�1 0� Y1�k�i�2 �ei�2;kk 1Adi�2�1:By indution, this ompletes the proof of the lemma. �Corollary 6.13. Let (r0; : : : ; r`) be a subresultant PRS, and 1 � i � `.Then(i) �ni = Y1�k�i �ei�1;kk .(ii) The subresultants satisfy the reursive formulas�n1 = �d01 , and�ni+1 = �ni � �dii+1 Y1�k�i ��diei�1;kk :If the PRS is normal, then this simpli�es to:(iii) �ni = �i for i � 2.(iv) The subresultants satisfy the reursive formulas�n1 = �d01 , and�ni+1 = �ni � �i+1��1i :Proof. We �rst prove (ii) and use it to show (i).35



(ii) From the Fundamental Theorem 5.3(ii) and Lemma 6.12 we �nd�ni+1 = �ni � (�1)di(n0�ni+1+i+1)(�i+1�i)di Y2�k�i+1 �k�k!di= �ni � (�1)di(n0�ni+1+i+1)(�i+1�i)di(�1)di(i+n0�ni)��(di�1+1)dii Y1�k�i�1 ��diei�1;kk= �ni � (�1)di(di+1)�dii+1 Y1�k�i ��diei�1;kk :The laim now follows sine di(di + 1) is even.(i) The laim for i = 1 is lear from Fundamental Theorem 5.3(i). Nowassume that the laim holds for some i 2 N . Then (ii) yields�ni+1 = �dii+1 Y1�j�i ��diei�1;jj �ni ;and by indution we have�ni+1 = �dii+1 Y1�k�i ��diei�1;kk �di�1i Y1�k�i�1 �ei�1;kk = Y1�k�i+1 �ei;kk : �Remark 6.14. For every subresultant PRS the polynomials ri are in R[x℄ for2 � i � `. Note that Corollary 6.13(iii) implies ri = Ri(f; g). So the normalase is lear. Proofs for the general ase based on polynomial subresultantsare in Collins (1967), p. 130, and Brown (1971), p. 486.Corollary 6.13 does not provide the only reursive formula for subresultants.Another one is based on an idea in Likteig & Roy (1997), p. 12, and Reishert(1997), p. 238, where the following formula has been proven for polynomialsubresultants. It follows from Corollary 6.13.Corollary 6.15. Let (r0; : : : ; r`) be a subresultant PRS. Then the subre-sultants satisfy for 1 � i < ` the reursive formulas�n1 = �d01 and�ni+1 = �1�dini � �dii+1.These results also show that the subresultant PRS does take plae in R[x℄, asproven by Brown (1978). 36



Corollary 6.16. Let  2 = �1 and  i = (��i�2)di�3 1�di�3i�1 for 3 � i � `.(i)  i = ��ni�2 for 3 � i � `:(ii) The oeÆients  i and �i of the subresultant PRS are always in R.Proof. By Lemma 6.11 and Corollary 6.15, we have 3 = ��d01 = ��n1 :This proves the orollary for i = 3. Now assume i > 3. Then again Lemma 6.11,Corollary 6.15, and the indution hypothesis yield i = (��i�2)di�3 1�di�3i�1 = ��ni�2 � �di�3ni�3 � �1�di�3ni�3 = ��ni�2 : �Theorem 6.17.6.8 Comparison of redued PRS and subresultant PRSWe onlude this setion with a omparison of the redued PRS and the subre-sultant PRS. To this end we �rst prove a formula for �di�1i in the redued PRSonly depending on subresultants, thus solving the reursion in Remark 6.9.Theorem 6.18. Let (r0; : : : ; r`) be a redued PRS. Then�di�1i = �ni � (�1)ai Y1�k�i�1�(dk�1)Qk�j�i�1 djnk ;where ai = P2�k�i(n0 � nk + k) �Qk�1�j�i�1 dj.Proof. Corollary 6.8(ii) implies that�d12 = �n2 � ��1n1 � (�1)d1(n0�n2+2)�d0d11 = �n2 � (�1)d1(n0�n2+2)�d1�1n1 ;and this proves the laim for i = 2. Now assume i � 2. Then Corollary 6.8(ii)and the indution hypothesis yield�dii+1 = �ni+1 � ��1ni � (�1)d1(n0�ni+1+i+1)�di�1dii= �ni+1 � ��1ni � (�1)di(n0�ni+1+i+1)� 0��ni � (�1)ai Y1�k�i�1�(dk�1)�Qk�j�i�1 djnk 1Adi= �ni+1 � (�1)ai+1 Y1�k�i�(dk�1)�Qk�j�i djnk : �37



We an now prove the relation between redued and subresultant PRS. Thenormal ase an be found in Collins (1967), p. 135, Corollary 1.3, and Collins(1973), p. 738. Sine we how deal with two di�erent PRS, we use l(ri); l(r�i )instead of the unspei� notation �i here.Corollary 6.19. Let (r0; : : : ; r`) be a redued PRS and (r�0; : : : ; r�̀) a sub-resultant PRS for the polynomials r0 = r�0 = f and r1 = r�1 = g. Then thefollowing holds for 2 � i � `:l(ri)di =(�1)ai Y1�k�i�2 �(dk�1)�Qk�j�i�1 djnk � l(r�i )di ;where ai = P2�k�i(n0 � nk + k) �Qk�1�j�i�1 dj. If the PRS are normal, thissimpli�es tol(ri)= (�1)(n0�ni)(n1�ni) � l(r�i ):Proof. Follows immediately from Theorem 6.18 and Corollary 6.15. �Sine the exponent of �nk is nonnegative, this means that the entries in theredued PRS are at least as large in absolute value as those in the subresultantPRS.7 Analysis of oeÆient growth and running timeThis setion presents two types of results. We �rst show an exponential lowerbound on the size of the entries of the pseudo PRS that mathes the upperbound from Knuth (1981), 4.6.1. A slightly di�erent lower bound is in ?, 3.3.3.On the other hand, we show polynomial upper bounds for all other PRSs.Lemma 7.1. Let e2 = 0, e3 = 1, and ei+1 = 2ei + ei�1 for i � 3. Then(i) P2�k�i�1 2ek = ei + ei�1 � 1.(ii) ei = � � �Proof. Sine 2e2 = 0 = e3+ e2� e3, the laim holds for i = 3. Now assumei � 3. By indution hypothesis we getX2�k�(i+1)�1 2ek = 2ei + X2�k�i�1 2ek= 2ei + ei + ei�1 � e3 = ei+1 + ei � e3: �38



Lemma 7.2. Suppose that (f; g) 2 Z[x℄2 have a normal pseudo PRS. Then�i = �ni � (�1)(d0+1)(i+1)(�1�n1)ei Y2�j�i�2 �2ei�j+1njwith e2 = 0, e3 = 1 and ei+1 = 2ei + ei�1 for 3 � i � `� 1.Proof. Sine Remark 6.6 shows the laim for i � 3, we assume i � 3. FromCorollary 6.5(iv) and the indution hypothesis we get�i+1=�ni+1��1ni � (�1)d0+1(�1�n1)�i Y2�k�i�1 �2k=�ni+1��1ni � (�1)d0+1(�1�n1)�ni � (�1)(d0+1)(i+1)(�1�n1)ei� Y2�j�i�2�2ei�j+1nj � Y2�k�i�10��nk(�1�n1)ek Y2�j�k�2�2ek�j+1nj 1A2=�ni+1 � (�1)(d0+1)(i+2)(�1�n1)1+ei+P2�k�i�1 2ek Y2�j�i�2 �2ei�j+1nj �Y2�k�i�1 �2nk � Yj+2�k�i�12�j�i�3 �4ek�j+1nj=�ni+1 � (�1)(d0+1)(i+2)(�1�n1)1+ei+P2�k�i�1 2ek Y2�j�i�2 �2ei�j+1nj� Y2�j�i�1�2+2Pj+2�k�i�1 2ek�j+1nj :With Lemma 7.1 we get�i+1= �ni+1 � (�1)(d0+1)(i+2)(�1�n1)ei+1 Y2�j�i�2 �2ei�j+1nj Y2�j�i�1�2ei�j+1+2ei�jnj= �ni+1 � (�1)(d0+1)(i+2)(�1�n1)ei+1 Y2�j�i�1 �2ei�j+2nj :By indution, this proves the lemma. �Theorem 7.3. The �nal remainder �` in the pseudo PRS is at least 22n insome ases with input polynomials of degrees at most n and oeÆients ofonstant size. 39



Proof. Let ei be as in Lemma 7.2 for 2 � i � `. Then we have0B� eiei�11CA = 0B� 2 11 01CA0B� ei�1ei�21CA = : : : = 0B� 2 11 01CAk 0B� ei�kei�(k+1) 1CA :Sine the eigenvalues of the matrix are 1�p2, we get0B� 2 11 01CAk = 0B� 1 �1 +p21 �1�p21CA � 0B� (1 +p2)k 00 (1�p2)k 1CA � 0B� 1 �1 +p21 �1�p21CA�1 ;and this shows e` = � � � 2 
 �(1 +p2)`�3� :Now let f; g 2 Z[x℄ have degrees n and n� 1, respetively, and have a normaldegree sequene and jl(g)j � 65536 = 216. Then d0 = 1, ` = n � 1 and byLemma 7.2 j�`j � j�1je` � 224�2`�3 = 22nfor large n. �The algorithm writes down the �nal result �`, and takes at least as muh timeas the bit length of j�`j, whih is at least 2n.After this \negative" result, saying that the pseudo PRS is deided by im-pratial, we turn to \positive" upper bounds for the other PRS. We assumef = P0�j�n fjxj and g = P0�j�m gjxj 2 Z[x℄ to be polynomials of degreesn � m � 0, respetively. For the estimates we will use the max-norm of fwhih is de�ned as kfk1 = maxfjfjj : 0 � j � ng;and the following famous result:Hadamard's inequality 7.4. Let A 2 Zn�n, with row vetors f1; : : : ; fn 2Zn, and B 2 Z suh that all entries of A are at most B in absolute value. Thenj detAj � nn=2Bn(see von zur Gathen & Gerhard (1999), Theorem 16.6).We now seek an upper bound for the running time of both the redued PRSand the subresultant PRS in the normal ase. Therefore we �rst show estima-tions for the oeÆients of q and r in the pseudo-division.40



Lemma 7.5. Let kfk1 � A, kgk1 � B and jgmj = C. Furthermore letq = P0�j�n�m qjxj, r = P0�j�k rjxj be suh that gn�m+1m f = qg + r anddeg r = k < m = deg g. Then(i) jqn�m�ij � A(B + C)iCn�m�i for 0 � i � n�m,(ii) krk1 � A(B + C)n�m+1.Proof. (i) Sine deg r < m we �ndgn�m+1m fn�i = qn�m�igm + Xa+b=n�ia6=n�m�i qagb + 0: (7.6)Hene jqn�mj = jgn�mm fnj � Cn�mA;and this proves the laim for i = 0. Now assume 0 < i � n � m. Then 7.6,B � C and the indution hypothesis implyjqn�m�igmj � jgn�m+1m j � kfk1 + A(B + C)i�1Cn�m�(i�1)B�A � Cn�m+1 + A(B + C)i�1Cn�m�(i�1)B�A(B + C)i�1Cn�m�(i�1)+1 + A(B + C)i�1Cn�m�(i�1)B=A(B + C)iCn�m�(i�1):By indution this proves the �rst laim.(ii) With Lemma 7.5(i) we getkrk1 � jgn�m+1m j � kfk+ kqk1 � kgk1� A � Cn�m+1 + A(B + C)n�mB� A(B + C)n�mC + A(B + C)n�mB= A(B + C)n�m+1: �With Lemma 7.5 we now prove the following running time of the normalredued PRS algorithm.Theorem 7.7. Let kfk1, kgk1 � A, B = (n+1)nAn+m, and let (r0; : : : ; r`)be the normal redued PRS for f; g. Then the max-norm of the ri is at most4B3, and the algorithm uses O(n3m log 2(nA)) word operations.Proof. Consider one step in the omputation of the redued PRS:�iri�2 = qi�1ri�1 + �i�1ri:41



For 2 � i � ` we get with Corollary 6.8 Corollary 6.8(iii) that �ni(f; g) isthe leading oeÆient of ri. Thus Remark 3.12 and Hadamard's inequality 7.4yield krik1 = kRni(f; g)k1 � B:Sine the PRS is normal, it follows that �i = �2i�1 for 3 � i � `. Henek�irik1 = j�ni�1(f; g)2j � kRni(f; g)k � B3:Furthermore Lemma 7.5 impliesk�i�1rik1�B(2B)2 = 4B3kqn�m�ik1�B(2B)iBk�i � 2kBk+1 = 2B2:So the max-norm of all intermediate results is at most 4B3. The number of op-erations in R is O(nm), and the estimate follows from logB 2 O(n log 2(nA)).�Sine Corollary 6.19 shows that normal redued PRS and normal subresultantPRS agree up to sign, the estimates in Theorem 7.7 are also true for normalsubresultant PRS. PRS timelassial/Sturmian/moni O�(n8)O�(n6)pseudo �((1 = p2)n) Theorem 7.3primitive O�(n6)redued/subresultant O�(n6) Theorem 7.7Table 2Comparison of various normal PRS. The time (= word operations) is for polynomialsof degree at most n in x and with oeÆients of length at most n and ignoreslogarithmi fators.We onlude the theoretial part of our omparison with an overview of allworst-ase running times for the various normal PRS in Table 2. The lengthof the oeÆients of f and g are assumed to be at most n. The estimates thatare not proven here an be found in von zur Gathen & Gerhard (1999).8 ExperimentsWe have implemented six of the PRS for polynomials with integral oeÆientsin C++, using Vitor Shoup's \Number Theory Library" NTL 3.5a for integer42
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Fig. 2. Computation of polynomial remainder sequenes for polynomials of degreen� 2 with oeÆients of bit length less than n for 2 � n � 64.and polynomial arithmeti. Sine the Sturmian PRS agrees with the lassialPRS up to sign, it is not mentioned here. The ontents of the intermediateresults in the primitive PRS are simply omputed by suessive gd ompu-tations. Cooperman et al. (1999) propose a new algorithm that uses only anexpeted number of two gd omputations, but on random inputs it is slowerthan the na��ve approah. All timings are the average over 10 pseudorandominputs. The software ran on a Sun Spar Ultra 1 loked at 167MHz.In the �rst experiment we pseudorandomly and independently hose threepolynomials f; g; h 2 Z[x℄ of degree (n� 2)=2 with nonnegative oeÆients oflength less than n=2, for various values of n. Then we used the various PRSalgorithms to ompute the gd of fh and gh. Thus the degree of the gd wasat least (n� 2)=2; in fat, it was equal to (n � 2)=2 in all ases when n � 6.The running times are shown in Figures 2 and 3.As seen in Table 2 the pseudo PRS turns out to be the slowest algorithm.The reason is that for random inputs with oeÆients of length at most nthe seond polynomial is almost never moni. Theorem 7.3 shows that thenthe running time for pseudo PRS is exponential. A surprising result is thatthe primitive PRS, even implemented in a straightforward manner, turns outto be the fastest PRS. Collins and Brown & Traub invented the subresultantPRS in order to avoid the primitive PRS sine it seemed too expensive. Our43
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Fig. 3. Computation of polynomial remainder sequenes for polynomials of degreen � 2 with oeÆients of bit length less than n for 64 � n � 192. Time is nowmeasured in minutes.tests show that this was unneessary in ase of large gd's.Polynomial remainder sequenes of random polynomials tend to be normal.Sine Corollary 6.19 shows that redued and subresultant PRS agree up tosigns in the normal ase, their running times also di�er by little.We are also interested in omparing the redued and subresultant PRS, so weonstrut PRS whih are not normal. To this end, we pseudorandomly andindependently hoose six polynomials f; f1; g; g1; h; h1 for various n as follows:F = ( f � h � xn=6 + f1 ) h1G = ( g � h � xn=6 + g1 ) h1degree bound: n n12 n4 n6 n2oeÆient length: n n8 3n8 n2 n2So F and G have degrees less than n � 2 with oeÆient length less than n,and every polynomial remainder sequene of F and G has a degree jump of n6at degree n � n12 . Then we used the various PRS algorithms to ompute thegd of F and G. The running times are illustrated in Figures 4 and 5.44
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Fig. 4. Computation of non-normal polynomial remainder sequenes for polynomialsof degree n� 2 with oeÆient length less than n and a degree jump of n6 at degreen� n12 , for 2 � n � 64.As in the �rst test series the pseudo PRS turns out to be the slowest, and theprimitive PRS is the fastest. Here the moni PRS is faster than the reduedPRS. Sine the PRS is non-normal, the oeÆients beome quite large, as seenin Theorem 6.18.We already �nd running times for redued and primitive PRS in Collins (1967),p. 140. He used a IBM 7094 omputer to alulate the gd of two polynomialsof degrees 5k with random integer oeÆients of two deimal digits for variousk. His results are in Table 3. He found the redued PRS to be faster than theprimitive PRS. This di�erene is presumably due to the fat that two pseu-dorandom polynomials are usually oprime. Thus the PRS is longer and theoeÆient growth inuenes the running times more than in our tests, wherea half degree gd was built in. Collins writes: \For a nonnormal p.r.s. [� � � ℄we have no theory to indiate that the redued p.r.s. algorithm would stillbe more eÆient than the primitive p.r.s. algorithm". He also reports thatfor larger gd's, the primitive PRS \may even be sligthtly faster in extremeases" than the redued one, but that this does not seem to ompensate forits relative ineÆieny in the other ases.In order to illustrate the dependeny of the running times and the degree of thegd's, we implemented one more test. We pseudorandomly and independentlyhose two polynomials f and g of degrees 63 � k with bit length less than45
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Fig. 5. Computation of non-normal polynomial remainder sequenes for polynomialsof degree n� 2 with oeÆient length less than n and a degree jump of n6 at degreen� n12 , for 64 � n � 192. Time is now measured in minutes.Degree primitive redued5 0:009 0:004310 0:064 0:02315 0:22 0:07720 0:51 0:2125 1:06 0:4330 1:79 0:7835 3:25 1:48Table 3Running times from Collins (1967), p. 140, in minutes.64� k, and a polynomial h of degree k and with bit length less than k. Thenwe used the various PRS to ompute the gd of fh and gh. So the runningtimes of the PRS only depended on the size of the gd. The result is in Figure 6.For small gd's the redued PRS is faster than the primitive PRS, but thishanges for growing gd's. Thus the hoie of the optimal PRS is output-driven: it depends on the degree of the gd. In pratie, one has to make thisdeision beforehand, however. For \random" inputs, the expeted deg gd issmall, and one will favor the redued PRS. If one has reason to expet deg gdto be large, one will hoose the primitive PRS; this may be the ase, e.g., inreursive (primitive) PRS omputations for multivariate polynomials.
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Fig. 6. Computation of polynomial remainder sequenes for polynomials of degree63 with oeÆients of bit length less than 64 and gd of degree k with oeÆientsof bit length less than k for 0 � k � 63.
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