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Fast arithmetic with general Gauf} periods
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Abstract

We show how to apply fast arithmetic in conjunction with general Gaufl periods in
finite fields. This is an essential ingredient for some efficient exponentiation algo-
rithms.

Key words: exponentiation, finite fields, normal basis, Gauf} period, efficient
arithmetic

1 Introduction

Exponentiation is an important task with several applications in computer
algebra and cryptography. If the ground domain is a finite field of “small”
characteristic, then normal bases are a well-known and useful tool for this
purpose. The goal of this paper is a computational framework in which one
can combine the use of these normal bases with fast polynomial arithmetic.

If ¢ is a prime power and F,» an extension of [F,, then an element o € Fyn
is normal over F, if and only if its conjugates «, a¥, a?’, ..., """ are linearly
independent over ;. A gth power of an element represented in this basis is just
a cyclic shift of coordinates, and a general exponentiation also requires fewer
operations than in the usual polynomial representation given by an irreducible
polynomial. This is one reason why normal elements are an attractive data
structure. An apparent drawback is that multiplication in this data structure
is generally based on linear algebra and hence seems quite expensive.
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A construction of special normal elements is via Gauf} periods. We have an
integer k, a prime number r with nk = r — 1, a primitive rth root of unity ¢
in some extension of F,, a subgroup K C Z, with k elements, and the Gauf}
period

a=>Y ("

acll

Then o € Fy», and it is normal over F, if and only if ¢ mod r and K generate
the group Z 7, that is, (¢, C) = Z) (see Ash et al. (1989); Wassermann (1993)).

Rather than cumbersome matrix multiplication, as used for general normal
bases, one can use polynomial multiplication to multiply elements in such a
special normal basis. One can plug in any multiplication routine, from classical
via Karatsuba to asymptotically fast ones (FFT-based or Cantor’s method).
This results in a speedup by an order of magnitude and the fastest exponenti-
ation algorithms in large finite fields of small characteristic known today, both
in theory and in software practice.

The time taken by the multiplication algorithm grows with the parameter £,
which is extraneous to the base problem of calculating in Fy. It is desirable
to choose k small, ideally k = 1 or k = 2. (Then « is called an optimal normal
basis; see Mullin et al. (1989)). But that is not always possible.

The applicability of this method was broadened by a recent generalization
of Gauf} periods from prime numbers r to arbitrary integers r. Gaufl-—who
had used his periods for the construction of the regular 17-gon—had already
presaged this, in Article 356 of his Disquisitiones Arithmeticae, but never
published the general method: “These theorems retain the same or even greater
elegance when they are extended to composite values of n. But these matters
are on a higher level of investigation, and we will reserve their consideration
for another occasion.” [Gauf’ n is the r used above.]

The goal of this paper is to show that the use of (fast) polynomial arithmetic
is also feasible with these general Gaufl periods. We achieve this in three
steps: first, when r is a prime power, then when r is arbitrary and the Gauf}
period is of a special form, called decomposable. Lastly, we show that for an
arbitrary Gaufl period, we can always find a decomposable one with the same
parameters.

Table 7.1 at the end of the paper shows that for roughly 35% of the field
extensions in our experiments, general Gaufl periods reduce the minimal value
of k as compared to prime Gaufl periods. The progress of the present work is
to extend the applicability of polynomial arithmetic from the prime case to
the general situation.



2 Gaul} periods

In an arbitrary normal basis, all known multiplication algorithms such as the
Massey-Omura multiplier make use of linear algebra. Our goal is to replace
matrix-based multiplication by faster algorithms for specific normal elements,
namely Gauf} periods. This has been achieved by Gao et al. (1995), Gao et al.
(1998), and Gao et al. (2000) for prime Gauf§ periods over F,, and also by
Blake et al. (1998) for the special case of optimal normal bases (corresponding
to k € {1,2}) in Fyn. Our results generalize all these.

In this section, we present Gaufl periods and some of their properties for
further use. We use the following notation throughout this paper.

NoTATION 2.1. k, n, q, and r are positive integers with ¢ a prime power,
r > 2, ged(q,r) = 1, and ¢(r) = nk, where ¢ denotes Euler’s totient
function, and ¢ is a primitive rth root of unity in an extension field of F,.
Furthermore, K is a subgroup of Z) of order k.

We let

r=ry--ory withr, =pii for 1 <i <t (2.2)
be the prime power factorization of r, where pq,...,p; are pairwise distinct
primes and ey,...,e; € Ns;. We call Ry = []1<;<4.,—1 pi the squarefree part

of r and Ry = r/R; the non-squarefree part. (This is not to be confused with
another common designation, namely that of p; - - - p; as the squarefree part.)
We say that r is squarefree when r = R;. Feisel et al. (1999) introduced the
following Gauf} periods.

DEFINITION 2.3. In the above notation, let

b(z) =2 I . 2"/ € F,[a]. (2.4)
1Sist 1<s<e
pilRy T

The Gauf} period of type (n, K) over F, given by ( is defined as

o= Z b(¢?).

aclk

It is easy to see that o € Fyn. When 7 is prime, a prime power, or squarefree,
we call a a prime, prime power, or squarefree Gaufl period, respectively. The
definition of o simplifies in these cases:

r prime or squarefree = a =>»_ (%,
acll
. S
r = p® a prime power — a = Z ¢,

ael
0<s<e



EXAMPLE 2.5. Let g = 2.

(i) Let r =5, ( € Fya a primitive 5th root of unity, and let K = {1} be the
uniquely determined subgroup of Z; of order £ = 1. Then a = ( is a
prime Gauf period of type (4,{1}) in Fys over Fs.

(ii) Let r = 32, ¢ a primitive 9th root of unity, and KX = {1,8}. Then o =
CH+ G4 84+ 3 =+ G+ B+ (8 is a prime power Gauf period
of type (3,{1,8}) in Fas over Fy.

(iii) Let r = 3% -5, and ¢ be a primitive 45th root of unity. There are three
subgroups of order k = 2 of Zj; which define three different Gaufl periods
in Fyi2. The subgroup K; = {1,26} determines a; = ¢* + ¢ 4 ¢* + ¢*
of type (12,{1,26}), Ky = {1,44} generates ag = (1 + (?* + ¢* + (3,
and K3 = {1,19} defines a3 = ¢ + (24 + (¢ + ¢4

We denote by (¢, K) = {¢"a: h € Z,a € K} the subgroup of ZX that is jointly
generated by (¢ mod r) and K. Normality of Gauf} periods can be characterized
by this subgroup.

NORMAL GAUSS PERIOD THEOREM 2.6 (Feisel et al. 1999). Let « be the

Gaufy period of type (n,K) over F,. Then « is normal in Fy. if and only
if (¢, K) = Z;'.

EXAMPLE 2.5 CONTINUED. (i) Since (2,{1}) = {2,4,3,1} = ZZ, the Gau8}
period of type (4, {1}) is normal in Fg over F,.

(ii) One can easily check that (2,{1,8}) = Zg. Hence, the Gauf} period of
type (3,{1,8}) is normal in Fg over F;.

(iii) Only the two subgroups K; = {1,26} and Ky = {1, 44} generate normal
Gauf} periods in Fgiz over Fy. For K3 = {1,19} we have (2,{1,19}) =
{1,2,4,8,16,17,19, 23,31, 32,34,38} # ZJ5. Thus, the GauB} period of
type (12,{1,19}) over Fy is not normal in Fypgg. O

Two Gauf} periods of the same type but given by different primitive rth roots
of unity are conjugate.

The following is the main result of this paper.

THEOREM 2.7. Let a be a normal Gauf§ period of type (n,K) over F,, and
r =1y -1y the prime power factorization (2.2) of r with IC C Z,)*. Then there
exists a normal Gaufi period with the same parameters so that two elements
in F» represented in this normal basis can be multiplied with

O(r- [] (logr; - loglogr;)) or O(nklog (nk)loglog (nk))

1<i<t



operations in I, .

The proof is given at the end of Section 6.

3 Towers of groups and fields

Let a be a normal Gaufl period of type (n, ) over F,, and o the Frobenius
automorphism of Fy» over F,. Wassermann (1993), Bemerkung 3.1.2, observed
that for a prime Gauf} period, ¢ — o induces an isomorphism from Z*/K to
Gal(F, : F,). This is also true for general Gauf} periods.

Let ' > 2 be a divisor of r,
s L — 75 with m.(a) = (a mod ') (3.1)

the canonical projection of Z) onto Z,;, and . (K) the image of K C Z)
under this epimorphism. Thus 7, (K) is a subgroup of Z). The order k' of
7 (KC) divides both £ = #K and ¢(r') = #Z.;. The following lemma states
that the canonical projection gives a normal Gauf} period in a subfield of Fn.

LEMMA 3.2. Let a be a normal Gauf} period of type (n, ) over F, given by
¢, " > 2 adivisor of r, mp as in (3.1), k' = #m,(K), and n' = ¢(r')/k'. Then
n' divides n, ("/" is a primitive r'th root of unity, and the Gauf} period o' of
type (n', 7, (K)) over F, with respect to ¢'/" is normal in F . over .

PROOF. The canonical projection 7, is surjective, and (g, ) = Z), hence
(mp(q), e (K)) = Z). The square of group homomorphisms in Figure 3.1
commutes. The top and right hand maps are surjective, and hence also the
bottom one. It follows that n' = #Z.; /7, (K) divides n = #Z) /K. The other
claims are clear. O

Tyt

(¢.K) =Ly -
_{ {_

2 /K —"" e 2% )7 (K)

Figure 3.1. Four projection homomorphisms.

The connection between the group Z, and the normal Gauf§ period in a sub-
field plays an important role in what follows. We illustrate this in the case of



prime power Gaufl periods. Let r» be a prime power p® with e > 2, and let

¢ be a primitive p°th root of unity. We suppose that the subgroup K of Z)

defines a normal Gauf} period a = Y ,cxc So<sce (P of type (n, K) over F,
o e—1{

with respect to . Then (g, ) = Z.. For 0 < £ < e, the element ¢, = ¢* " is
a primitive p‘th root of unity, and we set n, = ¢(p*)/#m,(K). Then

a= Y ¥

a€m ¢ (K) 0<s</

is the Gauf3 period of type (ng, 7,:(K)) over F, with respect to ¢, by Lemma 3.2.
Since (g, m,¢(K)) = Z, the Gauf§ period ay is normal in Fgn, over F.

EXAMPLE 2.5 CONTINUED. (ii) The canonical projection m3: Zg — Z3 maps
K = {1,8} onto the subgroup m3(K) = {1,2} of Z%, and (; = &' = P is

a primitive third root of unity. Lemma 3.2 says that oy = X ,cpi) (' =
¢+ (% = 1 is a normal Gauf period of type (1,{1,2}) over Fy. In fact, we
have (2,{1,2}) = Z3, and oy is indeed a normal prime Gauf} period. O

3.1  Cyclotomic polynomials

Primitive roots of unity are related to a special class of polynomials: the
cyclotomic polynomials; see Lidl & Niederreiter (1983), Section 2.4 for details.
When ¢ is a prime power, r a positive integer coprime to ¢, and ¢ a primitive
rth root of unity over F,, then

2= [ (r-¢)eR,

0<s<r
ged(s,r)=1

is the rth cyclotomic polynomial over F,. Since the roots of @, are all ¢(r)
distinct primitive 7th roots of unity, the degree of ®, is ¢(r), and ¢ € Fyo0 .

Over the field Q of rational numbers, the cyclotomic polynomial ®, is always
irreducible. This is no longer true in the case of a finite field IF, with nonzero
characteristic. But in this case the factorization pattern is well-known.

Fact 3.3 (Lidl & Niederreiter 1983, Theorem 2.47). Let g be a prime power
coprime to a positive integer r, and let N = ord,(q) be the order of q in Z.
Then the rth cyclotomic polynomial ®, € F,[x] factors into ¢(r)/N distinct
monic irreducible polynomials of the same degree N.

We denote the d = ¢(r)/N irreducible factors by g, ..., ua € Fy[z]. By the
Chinese Remainder Theorem we have the isomorphism of [F,-algebras



X' iR =Fo[z]/(®,) —= Fylal/(pa) > - - x Fyla]/ (pa)
A (Amod puy, ..., Amod py).

(3.4)

Since ®,(¢) = 0 for any primitive rth root of unity ¢ € Fs, we know that
the minimal polynomial y¢ of ¢ in F,[z] is one of the p, ..., 1g. Then

oc: By (C) = Eylal () with w( 5 Ac) — Y A mod )

0<i<N 0<i<N

is the canonical isomorphism between the two images of F,~. The field F, ()
is a subfield of F, (¢). Thus, we know the image of o in F,[x]/(p). The key for
fast multiplication of Gauf} periods lies in the choice of a suitable preimage of
ain R.

For any 7 < d, let ¢; € K be such that (; = (“ is a root of y;. Then we have

=3 b(C) =3 b(C) = > b(G),

aclk a€l a€l

since a — ca is a bijection of IC. Applying the inverse isomorphism y of x/, we
have the preimage

(be mod ju1), ..., »_ b(z* modud>:Zb(:c“modCI>,n)

acll a€e a€e

of ain R. Finally, let ¢, ..., ¢¢, be the canonical isomorphisms with ¢; = (%
and 1;(¢;) =0 for 1 < i < d. We define the homomorphism of F,-algebras

p: Fo(a) = R =TFylz]/(2r)
A X(QOQ (A)’ .- '790Cd(A))'

(3.5)

IfA=>ochen Apaf" is given as a linear combination of the conjugates of «,
then

(Y A= 3 A4S (a2 mod @),

0<h<n 0<i<n a€EK

This map allows us to transfer multiplication in the normal basis representa-
tion of Fn = F,(a) to multiplication in R, which is just polynomial multipli-
cation modulo ®,. Wonderful. The only drawback is that the original problem
size is n = dimp, Fy», while the new problem size nk = ¢(r) = dimg, R is
larger by a factor of k. We want to keep this extraneous factor k£ as small as
possible.



3.2 Field towers, traces, and normal elements

We conclude this section by collecting some well-known properties on normal
elements that are useful subsequently. The properties listed below are true
not only for normal Gauf} periods but for all normal bases. We will discuss
the algorithmic aspects for normal bases generated by Gaufl periods in the
subsequent sections.

3.2.1 The product of normal elements.

It is a well-known fact (see e.g. Menezes et al. (1993)) that normality is inher-
ited along a tower of fields

E‘q C E‘qnl C qunQ C..-C Iﬁ‘qnl...nt,
whenever the degrees ny,...,n; > 1 are pairwise coprime.

Fact 3.6. Let ny and ny be two coprime positive integers, n = ny - ny, and
«; be a normal element in Fyn; over F, for i =1,2. Then o = o - ap is normal
in Fpn over IF,.

Fact 3.6 shows a way to compute the multiplication matrix T of the normal
basis N = (a, ..., a7 ) if ged(ny, ny) = 1 and the matrices Ty are already
given for ¢ =1, 2.

Fact 3.7. Let ny, ny and oy, oy as in Fact 3.6 and set n = ny - ny. Let Ty, =
(Wjy by )o<jihi<ns and Ty, = (Vjy.hy )0<ja,ha<n, be the multiplication matrices of
/\/}:{agh: 0<h<mn}fori=1,2.

(i) The multiplication matrix Ty = (tj,n)o<jh<n 0f @ = 1 - v is given by
tih = Wiy by * Vja,ho

where j = 7, mod n; and h = h; mod n; fori =1, 2.

(ii) The density dy of Ty is the product of the densities dy, and dy;, of Ty,
and T)y;,, respectively.

(iii) The multiplication matrix Ty, can be calculated with dy = dy, - dy;,
multiplications in I, from Ty, and T),.

3.2.2 The trace of a normal element.

The trace also inherits normality. The next fact is true for all Galois exten-
sions over a finite field, see Hachenberger (1997), Lemma 5.3. Thus the trace



map inherits normality downwards a field tower, while multiplication induces
normality upwards.

Fact 3.8. Let ny and ny be two coprime positive integers and n = ny - ng. If
o is normal in Fy» over Fy, then Trgn g (v) is normal in Fyny over Fy.

In the special case where n = n; - ny is the product of two coprime factors
we get some further useful properties. A proof of Lemma 3.9(i) is given in
Jungnickel (1993), Lemma 5.1.8, and a special version of Lemma 3.9(ii) is
cited in Agnew et al. (1993) for optimal normal bases. The proof technique
will be used extensively in our algorithms, in particular analogs of the index
maps ¥, and U,,.

LEMMA 3.9. Let ny and ny be coprime positive integers, n = ny - ng, and let
oy and ag be normal in Fyny and Fyn, over F,, respectively. Then

(i) Tronjgna (1 - ap) = Trgni jq(r) - o and
(i) a9 is normal in Fyn over Fyn, .

PrRoOOF. (i) We have
Trgnjgre(0n-a2) = > (ag - Oég)qm2
0<i<n/n2
= Y of"af =0 ¥ oaf”
0<i<n/n2 0<i<n/n2

since ag € Fyno, that is, a%ln? = ay for all 1 <@ < -*. Moreover, the

map ¢n,: {0,...,ny — 1} = {0,...,ny — 1} with 1, (7) = Nodremn; is a
bijection and hence

Z 04(11“12 = Z O‘(fi:Trq"l/q(O‘l)-

0<i<n/na 0<i<ny

(i) Since Ny = (aa, ..., a%n2_l) is a basis for Fyn, over I, the set N5 is a basis
of Fgn over Fyn, . By assumption, n; and ny are coprime, and hence the
map Uy, : {0,...,ny — 1} = {0,...,ny — 1} with 9, (i) = nyiremny is
a bijection. Therefore, the set {a%nlh: 0<h<ng}= {a%h: 0<h<ny}
is the set of all ny conjugates of ay over Fyn,, and N, is a normal basis
over Fyn; as claimed. U

4 The prime power case

We are now ready to develop an algorithm that integrates polynomial multipli-
cation in a normal basis representation whenever the normal element is a Gauf}



]Fqnl no

Q9 \
Q102 TFon,

Figure 3.2. A tower of fields given by normal elements if ged(ny,n9) = 1.

period. In this section, we restrict to the case where o = ¥ o Sgcsce C%P 8
a prime or prime power Gaufl period of type (n,K) over F,, that is, r = p°,
The main result of this section generalizes the approach that was described in
Gao et al. (1995) and Gao et al. (2000) for prime Gaufl periods.

REsuLT 4.1. Let p be a prime, e be a positive integer, and « be a normal
prime power Gaufy period of type (n,K) over F,, where K is a subgroup of
Z).. Two elements of Fyn expressed in the normal basis N' = (a,. .., a?" ™)
can be multiplied with at most O(p®log p® - loglog p°) operations in F,,.

The underlying algorithm is one of the cornerstones of this paper. The al-
gorithm consists of three parts: multiplication in F,[z]/(2?" — 1), sorting the
product to identify prime (power) Gauf periods in subfields of F;n, and then
applying the trace map to return to the linear combination of the conjugates
of the prime (power) Gauf} period.

4.1 An algorithm for fast multiplication

We start with an example illustrating the algorithmic ideas.

EXAMPLE 4.2. Let ¢ be a primitive 9th root of unity, and let o be the normal
Gauf} period of type (3,{1,8}) over Fy as in Example 2.5(ii). The conjugates
Ofa:C+C3+CS+CG are o2 :C2+CG+C7+C3 and o2 :C4+C3+CS+<6-

(i) To calculate the product a® - « as linear combination of a, a2 a*, we
regard the conjugates of a as elements of Fy(¢). The product in this
extension field is

ot a=("+C+C+O) (T HCHO) =+

Both ¢ and ¢® are summands of a. We complete the missing terms to get

' a=(C+E+EHE)FE+

10



(ii) Observe that ¢* and (° are primitive third roots of unity over Fy. We
apply the canonical projection m3: Zg — Z; as defined in (3.1). Then
m3({1,8}) = {1,2} = Z3 and hence n' = ¢(3)/#{1,2} = 1. Thus, the
projection generates the prime Gaufy period a; = ¢ + (¢?)? over Fy. We
substitute ¢* + (% by ay to get

a4-a:a+a1.

(iii) In order to express «; as a linear combination of the conjugates of o we
compute the trace of o over Fy:

Troajor (@) = > o =a+a’+a
0<i<3

=(C+CHEHEO)VH(EHEHTHE)+H (T HC P+
=CHHEFEHEFCHCHE
We sort the summands and apply the fact that 0 = ®3(¢3) =1+ (3 + (6
to get

Tryspo (@) =C- 1+ + )+ (CH+1+F)+ P+ ¢°
:C3+C6:O£1.

Indeed, the trace describes a linear combination of the conjugates of «
for cr;. We insert this linear combination

o' a=a+ar =a+Trm(a)=a®+a'

which completes the computation.

We will show that the map ¢: F,(a) = R = F,[z|/(®,) as in 3.5 is in fact
an injective ring homomorphism if « is normal over F,.

4.1.1 A sum of Gauf$ periods.

We use the following notation.

NOTATION 4.3. Let ¢ be a primitive p°th root of unity. For 0 < ¢ < e let
Tyt be the canonical projection from Z,. onto Z),. Set k, = #m,(K) and

ne = ¢(p*)/ke. The GauB$ period of type (ng, 7, (K)) over F, with respect to
¢ = """ is denoted by cy. We set ng = ko = 1.

We take a look at the summands of the product ¢(A) - ¢(B), and want to
write a preimage of ¢ of this product in F,[z]/(2P" — 1) in a particular way.
We note that ¢ = z° mod (27" — 1) if @ = b mod p°.

11



For all 0 < i < n, we define the positive integers

u%:#{aEK: 1+ag € p"“q"K} for 0 < £ < eand 0 < h < ny, (4.4
véf,)lz#{aEICzl—l-apfqithlC} for 0 < ¢ <eand 0 <h < ny. .

Furthermore, we set

G 1 if there is a € ¢’K such that 1 + ag’ = 0 mod p°, and

) _
Upo =

)

0 otherwise.

These numbers define the special form of the preimage in F,[z]/(x?" — 1) of
©(A) - ¢(B) that we are looking for. Subsequently, we suppose that (¢, ) =
Zy.. Since ¢ is additive, it is sufficient to look at the following product. A
generalization is shown in Proposition 4.10.

LEMMA 4.5. Let 0 <7 <n and F be the prime subfield of F,. Then there are
Céz) and C’éz,)l inF for0 < ¢ <eand0<h < ny such that

ack 0<s<e b ’C0<S’<6
h

=+ > ¥ A £ 5w ) mod @ -

0<l<e 0<h<mn, aEwpz(lC) 0<s</

Since ¢ is a root of (27" — 1), the product of af times o can be written as a

sum of those Gaufl periods ay which are given by the canonical projection of
K onto Z;[.

COROLLARY 4.6. Let a be the Gaufi period of type (n, K) over F, with respect
to (. For 0 < ( < e, let cy be the GauB period of type (ng, m,¢(K)) over F, with

respect to (P For 0 < i < n, let C’éi) and Cé’,)l for0</¢<eand0<h<mny
as in Lemma 4.5. Then

ol a=c" + >y C’éf,)lazh.

0<t<e 0<h<ny

We start with a proposition that describes the coefficients of the preimage of
¢(A) - ¢(B) in Fy[z]/(2”" — 1) in terms of u% and vg,)l

12



PROPOSITION 4.7. Let 0 < i < n be fixed and u% and vé’,)l as in (4.4). Set

Co =k Xo<i<e ((6 — 1) Co<h<n, Ugf;z) and
Chretgn = k% : (Zégsge uy% + Zo<s<e(v§fi + vg?h_—lz)))
forall0 <l <eand0<h < ny.

3

Then

[z x o) (x5 o)

ack 0<s<e be 0<s'<e
=Co+ Y, D> Choup Y (""" mod (2" — 1).
0<<e 0<h<ny aEWM(K)

ProOOF. A straightforward computation gives

< Z xapstf) ( Z xbpsl> _ Z xapsq“rbpsl

ack beK a,beX
0<s<e 0<s'<e 0<s,s'<e
_ Z ( Z xapsqi+bps+0+ Z ($aps“qi+bps +xapsqi+bps“)>
a,be K \0<s<e 0<l<e
0<s<e—/
sz 1—|—aq)+ Z $(14ap’q?)
a,beX a,bek
0<s<e 0<t<e
0<s<e—t
L n—i e
+ Z 2P0 (14bpta™ ") ) o (27" —1).
a,bell
0<t<e
0<s<e—¢

We consider the three major summands separately.

Fix a € K. Then 1 + aq’ is either equal 0 modulo p® or there are 0 < ¢ < e
and 0 < h < ny such that 1+ aq® € p*~*¢"K C Z,e. Then

S g ted) = 5™ 40 = femod (2 — 1)

bek beK
0<s<e 0<s<e

if 1 + a¢® = 0 mod p°, and otherwise we have

13



Z v (1+ag) Z L — Z(

be \0<s</
0<s<e

I<s<e

— Z xbpe—(f—s)qh 4 Z(e . é)
beK

be
0<s<t

-y

0<s<t

S (@) 4 k(e — £) mod (

o —1).
5 bemys (K)

If @ runs through K then we get the first intermediate result as

(% i)

a€l \ beK
0<s<e
Z uz ( Z — Z (xl’“s)bqh + k(e — E)) + u(()%ke
0<t<e 0<s<t 5b€ﬂs(K)
0<h<ny
=k- Z ((e—ﬂ)- Z u%)
0<t<e 0<h<ng
qh
+ 3 (£ 2 ) ( T @) maw -,
0<t<e \™ p<s<e ber ¢ (K)
0<h<ng P

For the second sum, we fix a € K and 0 < ¢ < e. Since 1 + ap’q" € Z,. and
(q,K) = Z,:., there is 0 < h < n such that 1 + ap’q’ € ¢"IKC. Then we get

s L i
Z bp* (tapt’) —

s h
E: et
bek

beK
0<s<e—/¢ 0<s<e l
=) (z Z — 3 (@ )" mod (2% — 1),
bekC l<s<e st’iTps(’C)
{<s<e

If @ runs through K then the sum over all 0 < ¢ < e is given by

s l i
E: ( E: bp° (1+ap‘e ))
a€El beK

0<t<e 0<s<e—t

i k e—s h
= =T T )
0<h<ng - P

h

k ; et )" .
S (£ 5 ) S @) maw -
1<t<e ke 0<s<t bem ¢ (K)
0<h<ng

By changing the roles of a and b and substituting ¢ by n—1, we get the formula

14
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for the third summand:

(X e

beK ack >
0<l<e 0<s<e—{
qi+h
k e [
=T (E ) ( T ey
1<t<e \"M o<s<t aen ¢(K)
0<h<n, P
k a"
_ pe
= Z (k_z shl)( ) mod (2P —1). O
1<t<e \"M 0<s<t aem [(zc
0<h<n, P

With the help of this proposition, we can group all summands of the preimage
of ¢(A) - ¢(B) in F,[z]/(z”" — 1)—except the constant coefficient—in terms
of zaeﬂp[(,c)(xp“l)aqh with 0 < £ < eand 0 < h < ng. Let 0 < i < n be fixed
as before; we omit it in the notation. Now our approach is to sort these terms
into sums which are preimages of oy, for 0 < ¢ < e, in R. This is obvious but
a little bit technical. Thus, we want to define two useful sequences of integers
forall0 </ <e, f<s<e,and 0 < h < ny:

DY) =0,

Con = Cleeep — DY, (4.8)

(s) _ (5+1) ksi1
D = Digy " + 5 Togje e Cottpgng
- 4

Informally speaking, the ng are those parts of the C;}E_[qh which have already

been identified as Gaufl periods. We give some alternative computations of the
D) to illustrate this
4,h .

LEMMA 4.9. Let Dgs,z and Cy, be as above. Then

kg
(1) DZh = Zs<s I<e kz—l (ZO<‘<nsl+1 Cs’—l—l,h—l—jng) for 0 < ¢ S s <e,
n
[+1 _k I+1
(i) D _ z+1 ZO<]< z+1 DEJFU)LHW for 0 <l < e,

k (£+1)
(111) Dlh [+1 ZO<]< Z+1 (Dl+1,h+jn[ + C[+1’h+jn[) for 0 < E < e.

PrOOF. (i) We proceed by induction on s. For s = e — 1, by definition we

15



have for all 0 < ¢ < e that

(e=1) _ my(e)
Déh De,h k Z Cehtjny
fo<y<"z
ki
+1
- Z k Z Cortthgng |
e—1<s'<e £ 0<j< 2t s+1

using Dée,z = 0. We suppose that the claimed formula is also true for

1 < s+ 1 < e. Inserting the induction hypothesis into the definition of
Df,z gives

S S k
D=0+ (5 e

¢ i
0<j<—~

kg ks
= > k—:l< Z Cs'+1,h+jnl>+ k+1 > Casiniing

14

stlss’<e 0<j<EEL 0<j<=5t
kg
s'+1
= X > Cotthign |
s<s'<e £

U<]< s+1

and the induction step is complete.
(ii) Let 0 < ¢ < e. Then

14 ks’
D= % /; 2 Corneng

(+1<s'<e 0<j<tsltL Ms +1

by (i). We sort the summands and use (i) again to obtain

(e+1) Kovr kg
DZ,h - Z k ’ k Z Z CS'+1;h+(jn[+inl+1)
frissce BT Qg it g Ee

k kg
= % . Z ( Z +1 ( Z CS’+1,(h+jn[)+in[+1>>
l+1<s'<e

k
¢ U§j<nfl_+1 41 0§i<nsl_+1
‘ ne41

ke
R (4+1)
Tk ) Z Df+1,h+jnz'
‘ S
OSJ<T

(iii) We use induction on ¢. For ¢ = e — 1, we have by definition

e—1 e ke
Df(;—l,i)l = Dg—)l,h +

Z Ce,h+jn5717

e—1 . ne
0=j< Ne—1

k

16



which is just the claimed formula since Dge}z =0forall 0 < ¢ <e We
assume that the claim also holds for 1 < £+ 1 < e. Then (ii) gives

@& A+ Ry
Dy =Dyy * + o > Ceitptjn
¢ it

ke

ke (£+1)

= > (Dé+1,h+jn[ + Cf+1,h+jnz) -
Y4 0§j<nf{;1

We prove with the help of these sequences Dés,z and Cy, that the preimage of
©(A) - p(B) in F,[z]/(x?" — 1) can be written as a sum of Gauf} periods. The
following proposition includes Lemma 4.5 as the special case ¢/ = 0.

PrOPOSITION 4.10. Let Cyp, and Dés,z be as in (4.8), and 0 < ' < e. Then

(z ) ()

0<s<e 0<s'<e
h

cax an( x g

U'<t<e a€m ¢ (K) 0<s<t
0<h<ng
! (") pe—tagh e
+ Y <Cpe—lqh -Dg) ) DY« mod (2P — 1)
o<e<e aem_¢(K)
0<h<ny P

for all 0 < V' < e.

ProOF. We use induction on ¢'. For ¢/ = e, the right hand side of the
claimed equation is

Co+0+ Y (C;e_zqh - ng) : ( 3 xl’”aqh>
K)

0<t<e aem 4(
0<h<n, P

which is just the right hand side of the congruence in Proposition 4.7, since all
D) are zero. Now, we su that the f la is true f /e N ith

0h . , ppose tha e formula 1s true for an £ € Nyg wit
0< V¢ </{<e. Then forall 0 < h < ny

17



(G- D) (& o)
aEm ot (K)

(458) Cgl’h . Z ( Z xpe Z ps h Z xpe Z pSq h>

a€m yr(K) \0<s<t! 1<s<t!

— (Cl,’h . Z Z xpe l p° h) (Ce, . Z Z P ([ —s) >
AT 41 (K) 0<s<#/ a€m g (K) 1<s<¥!
mod (2" — 1).
We sort the summands by adding the first term of the difference to the already
collected summands

h

Cot > > C&h'( > > (1‘””)‘”’3>q

0'<f<e 0<h<ny aET ¢ (K) 0<s<?

+ Z Con- Z Z xpe_llapsqh

0<h<ngy aETl'pl/ (K) 0<s<t/

—o Y Y cé,h.( T v (xp”)aw)q mod (27" — 1)

' <t<e 0<h<ny aET ¢ (K) 0<s<?

The remaining part is

5 (G0} (5 o)
K)

o<e<t acm_y(
0<h<ny P
e—(t'=s), h
> Cen- > Xm0
0<h<ngp aem g (K) 1<s<¥!
— ' ) p—Lagh
= Z (Cpe‘[qh_Df,h ' Z xr
o<e<t! acm ¢ (K)
0<h<ng P
C k[’ pefs aqh
> Con- X - 3 (@)
0<h<ng 1<s<t 8 aempys (K)
= ! pl) 4 ke C
= ¥ (g = (D +35 . Censin
o<t i
0<h<ny 0<i<=;
e—{  _h e
( d>oooah > mod (zF —1).
aEﬂpg(lC)

But Dgfh) kf’ Zo<l<n[[/ Co htin, = Dgh R by construction in (4.8), and the

induction step follows. O
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4.1.2  Applying the trace map.

The last ingredient is the trace map. It provides a way of writing a normal
GauB period oy € Fyn, as a linear combination of the elements of the normal
basis N = (a,a,...,00" ") of Fyn.

LEMMA 4.11. Let r = p° be a prime power, and let « be a prime power Gauf3
period of type (n,K) over F, with respect to (, where (q,K) = Z,.. For any
0 < ¢ <e, let oy be the GauB period of type (ng, m,(KC)) over F, with respect

to ¢*". Then

Z o =pta, for 0 < £ <e.
U§i<%

Furthermore, we have

We again derive these formulas step by step, and will give a proof of Lemma 4.11
as a conclusion at the end of this paragraph. Moreover, we show that this
lemma includes the reduction modulo ®,. we are looking for. We start by
defining a set of polynomials 7o, 7, € Fy[z] for 0 < ¢ < e and b € 7, (K).
Since we are still working in the ring F,[z]/(zP° — 1), we assume all polynomi-

als to be reduced modulo " — 1, that is, we identify (a mod p°) € Z). with

its canonical representative a € Z, 0 < a < p®, such that a = a mod p°. For
0</l<e 0<i<ng/ng and b e myu(K), we consider

Tipi = {a € mpr1 (K): a = ¢ b mod p'},

the set of all elements in 7,1 (K) that are preimages of ¢~"b under the

canonical projection m: Z 4, — Z,. For 0 < £ < e and b € m,(K), we set

To = ZU§i<n1 Zaeﬂ'p(lC)(xpeil)aqi +1e Fq [SC] and
e—(L+1) s in
Tep = Zog«”ﬁ% Zaefz,b,i 20§s<£+1($” o yerrat (4.12)

—D- Zogsd(xpe_z)bps € F,[z].

PROPOSITION 4.13. For 0 < ¢ < e, let 7y and 145 be the polynomials as in
(4.12) for all b € 7, (K). Then ®,. divides 1y and 7y.

PROOF. Fix 0 < ¢ < e, and let 7: Z,,, — Z, with w(a) = (a mod )
the canonical projection from Z ), onto Z . Since we have m, = 7 0 41,
the projection is a surjective homomorphism. Thus, each element b € Z;l
has a preimage set 7'(b) = {a € Z),,: a = bmod p} of order #1~'(b) =

19



#2o _ plp-1)
#Z; = et
{(1 4+ p’2) mod p**': 0 < 2z < p}. This gives a second way to express the

preimage set of b in Zle.

5 =D One can easily check that the kernel of 7 is kerm =

7 b) = b-kerm = {(b+ zp") mod p'*': 0 < z < p}. (4.14)

Here we use that the map ¢,: {0,....,p — 1} — {0,...,p — 1} with ¢,(2) =
bzrem p is a permutation because ged(b, p) = 1.

We can also give a description of 7 '(b) involving Zy;,;. Since we know that
¢" € T, (K), also the inverse of ¢"¢ is an element in 7, (K). Thus, the set Zp,;
contains kfﬁ elements. For 0 < i < ”fl—tl and a € Iy, we have 7(¢™ - a) =
¢™ - q¢~™b = bmod p’. Hence, the set {¢"™a: 0 <i < "é—jl and a € Ty} is
a subset of 77'(b). But Wo<icp,,, ¢'mpe+1(K) is a partition of L1, and each

subset has 2t ke _ 0™
ne

¥ o) — P different elements. Therefore, equality holds:

(b)) = {qmla: 0<i< Pl and a € Ig’b’i} . (4.15)

Ty

With the help of these formulas we have for 0 < ¢ < e and all b € 7, (K):

Z Z pe= (£+1) aqznzp

0<i< 41 aEIlb1

0<s<l+1
(425) Z (xpe’““))aps (424) Z (xpe’““))ps(bwp[)
—1
A 0<scent
—(L+1) -1
= Z ((LEPE )bps ) ( Z (LEPE )ZPS>> mod (LEPE _ 1)
0<s<l+1 0<z<p

For s = 0, the sum in the inner brackets vanishes modulo ®,. since

P° 1
%EOmodd)pe
x J—

> @)=

0<z<p

For s > 1, we simplify modulo ®,-

> (z7 )P = > 177" = p mod B

0<2<p 0<2<p

Inserting both formulas gives
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Z Z Z S apsqi"l

U<Z<“z+1aelzb10<s<£+1

( e (L+1) ) 0 + Z l+1)

1<s<f+1
=p- > (v b” mod P (4.16)
0<s<t

It follows by construction of 75, in (4.12) that @, is a divisor of 7, for
0<{¢<eandbemu(K). For 1y we have

Z (xpefl)aqi _ Z (xpefl)a

acm,(KC)

aGZ;
0<i<ny
pe
e—1 r ].
Z(:Cp )Z—lzﬁ—lE—lmodCI)pe,
0<z<p € o

since (¢, m,(K)) = Z, and the claim follows also for 7.

O

Let C”e_z = (; be a primitive p‘th root of unity for 0 < ¢ < e. Since e — ¢ > 1
and (Q)pef1 — (P77 =1, a simple computation gives

= Y Y @) =k 1= 6(p)+1=

—p#£0inF,.
aeﬂ¢(K)0<z<n1

Thus, ged(ro, @pe) =1 for 0 < ¢ < e and for all b € 7,:(K) we have

ged(To, Tipy - - - s Te—1.bs i 1) = ®pe in F,[z]. (4.17)

Since ¢™ € 7, (K), we can write 77" (m,¢(K)) as
7 N (K)) = (K) = |4 W s

0<i< “fl—tl bem ¢ (K)

A direct consequence is that for 0 < / < e

_ e—(L+1)\ gpsgine
T = Zog«"f% Za€7rpz+1(lc) Z0§:<£-|—1(xp ) (4.18)
—P* Yber (k) Yo<scr(@? )P
is divisible by ®,.

REMARK 4.19. Successively applying (4.12) and (4.18), respectively, we can
transform the equation given in Lemma 4.5 into

qh
(£ 2 ) (8,2 )= (g 5] mao,
ack 0<s<e beK 0<s'<e

0<h<n ack 0<s<e
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where C, ;, depends on 0 <i < n.

This is indeed a way to compute a suitable preimage of ¢(A) - p(B) in R =
F,[z]/(®ye). We observe that the final formula is due to a basis of R which
supports the back-transformation into a linear combination of the conjugates
of a normal Gauf} period .

LEMMA 4.20. Let ( = (z mod @) and R = Fy[z]/(®ye). If Z. = (g, K) for
a subgroup K of Z . then

B = ZC“”S:aEZ;e
0<s<e
is a basis of R.

PROOF. The set B = {1,(,..., (™)1} is a basis of R. Since B has at
most #B" = ¢(p°) elements, it is sufficient to prove that B’ C (B).

By construction, we have 3o, ¢ € (B) fora € Z,.. By induction on ¢, we

find with Proposition 4.13 that for 0 < ¢ < e we have ZOSSQ(CPE_[)“”S € (B)
for a € Z. since 74(¢) = 0. Furthermore, we have —1 € (B).

Now let 1 < a < ¢(p°). Then there exist uniquely determined 0 < ¢ < e and
¢ € Z, such that a = p°~‘c mod p¢, and

> (@ =TT (@) =T Y (@)

0<s<? 1<s<t 0<s<l—1

But both Y o<, (7 )% and Tpeyep 1 (¢ )" are elements of (B). Hence,
¢ = ¢ e (B) for all 0 < a < ¢(p°), and the claim follows. O

Now we translate this result into the language of traces that has motivated the
choice of 7p4. Let Tryn, qne-1 be the trace map of Fyr, into Fyne—1 for 0 < £ < e;
here ny = 1 by definition. We have

T‘rqnz/qnl—l (ag) = Z Oéz ! .

0<i<ny/ng—1

Since € is a root of ®,c, we can apply (4.18) to ay = Zaeﬂpm(d’ﬁl)“ps. Then
0<s<?

Tryrest jgne (qer1) = pay for all 1 < £ <e. (4.21)
For 7y, we simply have 75({) = 0 and

Trqnl/q(al) = —1 (422)
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The trace map is transitive, so that Trgn /g (@) = Trgnec jgne (Trgn jgresr (@),
We use this to prove Lemma 4.11 by induction on 0 < ¢ < e. The case £ =0
is also called the absolute trace.

PROOF (of Lemma 4.11). For £ = e, we have Trgn/gne (@) = Trgne jgne () =
a, since n = n,. Now we suppose that the claim is true for an 1 < £ < e. Then

+1)Oé£+1)

4.21 _
Trqnf+1/q“z (Ol£-|-1) ( 2 ) pe (é-l—l)(

Trqn/qw (Ozg_H) = Tranl Jqm (pe_(é

e—(£+1)

=p pay).

For £ = 0 we get Trgnq(a) = p* ' Trgni jq (o) “2 4

¢lin the same way. [

We finally rewrite Remark 4.19 inserting the root ¢ of ®,..

REMARK 4.23. The primitive p°th root of unity ¢ is a zero of ®,., and we
have . .
al o= Z Cq pot
0<h<n
for all 0 < i < n. The C;, depend on the given 0 < i < n. They are
elements of the prime subfield F of ¥, because C’;?,lqh € F by Lemma 4.5 and

all manipulations on the coefficients are done in F. Thus, the multiplication
matrix Ty has entries in F.

4.1.3  The complete algorithm.

We have presented all parts of the algorithm, and now summarize the complete
multiplication routine.

ALGORITHM 4.24. The prime power case.
Input: A normal prime power Gauf} period « of type (n, ) over F, with K
a subgroup of Z. of order k, and two elements A = 37,,, A and
B = Yycicn Bia? of Fn with coefficients A;, B; € F, for 0 < i < n.
Output: The product C' =3, Ci;a? of A and B with coefficients C; € F,
for 0 <i < n.

Transformation from Fpn into F,[z]/(2x?" —1):

1. A} <0 and B} + 0 for all 0 < j < p*. '

2. For all 0 < i < nand a € K do set j = ag'remp® and A, < A; and
f%-%—l%.

3. Fr0<({<eandalli€Z; ., do

4. set j =i-p‘remp® and Ay« AL+ Al Bl < B} + B,.

5. Set A" =3 ;e Aia? and B' = 30, Bjal.
Multiplication in F,[x]/(xP" — 1):
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6. Compute C" = Yo ope_1 Cja? < A~ B' with (fast) polynomial multipli-
cation in F,[x].
7. Reduce €' modulo 27" — 1: For 2 < j < p® — 1 do C + Ch+ Clype.
Co=Che, C1 = Cle 1, C' = Focjcpe Ci7. e
Write the product as a sum of Gauf periods in Fy[z]/(z? — 1):
8. Set CO = C(I]
9. Forall 0 < £ < eand 0 < h <ndoDf)« 0and Cey ¢ Cly.
10. For ¢ from e — 1 down to 1 do 11-14
11. For 0 < h < ny do
¢ k 041
12. Dtgl)z — Zl ) ZU§j<nfL—'Zl(Dtg++1,l)z+jng + Cé+1,h+jnz)-
13. For 0 < h < ny do ,
14. Cpp 4 Clyyn — DY)
e—1{

h
15. Set C" = Cy + Do0<t<e 220<h<ny Cen (Zaew(lc) Zogsd(ﬁp )aps)q mod
(27" —1).
Reduction modulo ®,e € F,[x] applying the trace map:
16. For 0 < h < n; do Cl,h — Cl,h — Co-
17. For1 </ <eand 0 < h < ny do
18. For 0 <1 < nfl—jl do Cg+1,h+im — Cg+1,h+mz +p71 : Cg,h.
Back transformation from R = F,[x]/(Pye) into Fyn:
19. For 0 < h <ndoset C, = Cep.
20. Return C'= > g<pcn Chat".

Set

LEMMA 4.25. Algorithm 4.24 works as specified.

Proor. The computation of the transformation in steps 1-5 follows the
definition of Gauf§ periods. The multiplication in steps 6-7 in F,[z]/(zP" — 1)
generates a preimage of the product of A-B. To compute the reduction modulo
®,c, we apply the reordering of the summands according to Proposition 4.10
in steps 8-15. Notice that we compute only the D%{ for 1 < ¢ < e according
to Lemma 4.9(iii). These are sufficient to get all coefficients of Lemma 4.5,
see (4.8). The reduction in steps 16-18 is done according to (4.12) and (4.18),
respectively. Thus, we get the preimage of A - B in the ring R = F,[z]/(Pe)
under the isomorphism x as stated in Remark 4.19. The final back trans-
formation (steps 19-20) uses the fact that C' is a linear combination of the
conjugates of o as claimed in Remark 4.23. O

It remains to count the number of operations in F,. M(n) denotes a multi-
plication time, so that two polynomials in F,[z] of degree at most n can be
multiplied with O(M(n)) operations in F,. We may use M(n) = nlognloglogn
by Schonhage & Strassen (1971) and Schénhage (1977); see also Cantor (1989).
We recall that n, < qﬁ(pé) for 1 < ¢ < e. Furthermore, the telescoping sum
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below is useful:

Yo )= 0 -p )=+ X =Y - =p 1.

1<t<e 1<t<e 1<t<e 1<t<e

We have the following estimates for each part of the algorithm. We emphasize
the prime case e = 1 since some steps are omitted in this special situation.

e The transformation (steps 1-5) is calculated with 2 additions for each i €
Z;e,([,l) where 0 < ¢ < e. This results in a total of at most

S 200y =2 3 g0 =200° — 1 —6(p)) =2p° — 2p

0<tl<e 2<t<e

operations in F,. For the prime case e = 1 we have 2(p® —p) = 0 operations.
e Since both A" and B’ have constant coefficient zero, the multiplication mod-
ulo 27° — 1 in steps 6-7 can be done with

M(p® —1) + (p° = 3)

operations. The second term counts the additions. If e = 1 then p — 1 =

¢(p) = nk.

e The sorting of the summands in steps 8-15 is omitted for the prime case
e = 1. Otherwise e > 2 and we may assume that kg, 1/k,; is precomputed
for all 0 < ¢ < e. Then the number of operations is bounded by

s 1+ﬂ—1+ Z 1+1

1<t<e 0<i< HEL

0<h<ng

=2 ) gt Y, ng <2 Z o)+ > 00"
1<l<e 1<t<e 2<t<e 1<l<e

=2(p° —p) +pt— 1.

e The trace is applied in steps 16-18. Step 16 is executed for all e > 1 with
ny < p — 1 operations. For e = 1, we have n; = n. If e > 2 the subsequent
iterative computation of the trace map in steps 17-18 can be done with

Yooo> 2=23 m<2 Y () =20 ~p)

1<t<e 0<i< el 2<t<e 2<t<e
0<h<n[ - e

further operations if we suppose p~! to be precomputed.
e The back-transformation (steps 19-20) can be done without operations in
F

q-

We summarize this detailed cost analysis in the next theorem.
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THEOREM 4.26. Let g be a prime power coprime to a prime p, and e a positive
integer such that there exists a normal Gauf period « of type (n, K) over F,,
where K is a subgroup of Z .. In the normal basis representation with respect

toN = (a,...,07 "), two elements of F, can be multiplied with at most
M(p® — 1) + 7p° +p*' — 6p — 4 +n < M(p) + 8p° € O(M(p%))

operations in I, .

We remark that all divisions in the algorithm (steps 12 and 18) are performed

in the prime subfield of Fy». The only operations that are performed in I, are
additions, subtractions, and multiplications.

The result of Gao et al. (1995, 2000) for the prime case kn = ¢(p) = ¢(p°) is
a corollary.

COROLLARY 4.27 (Gao et al. 2000, Theorem 4.1). Let F,» be given by a nor-
mal basis N = («, ..., aqnfl), where « is a prime Gauf3 period of type (n, k)
over F,. Then two elements of F, given as a linear combination of the basis
elements can be multiplied with at most

M(kn) + (k+1)n — 3

operations in I, .

5 Decomposable Gauf3 periods

The main work in our connection between polynomial arithmetic and Gaufl
periods is for a special case, namely decomposable Gauf$ periods, the topic of
this section. The general case is dealt with later.

Let a be a normal Gauf period of type (n,K) over F, and r = ry---r; the
prime power decomposition as in (2.2), so that

Ly =L X - XL
1

T

KCm (K)x-xm,(K). (5.1)
Sometimes, K equals this direct sum of its projections.
EXAMPLE 2.5 CONTINUED. (iii) Recall the two subgroups

,C1 = {1,26} = {1,8} X {1} = 7rg(IC1) X 7T5(’C1),
Ko = {1,44) # {1,19,26, 44} = {1,8} x {1,4} = 19(Ks) x 75(KCs)
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of Zj5. Both generate normal Gaufl periods in Fai2 over Fy. Thus Ky is the
direct sum of its projected images while ICy is not. O

DEFINITION 5.2. Let r > 2 be an integer with prime power decomposition
r=ry---1, and let K be a subgroup of Z.

(i) Let m,: Z) — 7. for 1 < i <t be the canonical projection. The sub-
group K is called decomposable if

K=, (K)x- xmx.,(K).

ii) A Gauf} period « of type (n, K) over F, is decomposable if and only if IC
q
is decomposable.

Let R; be the squarefree part of r as in Definition 2.3. We call a Gauf} period
of type (n, K) over F, with K C Z squarefree if r = R;. If K is decomposable,
then we can factor the normal Gauf} period «. For squarefree r, this (and also
Proposition 5.4 below) is in Gao (2001), Theorem 1.5.

LEMMA 5.3. Let o be a decomposable normal Gaufl period of type (n, K) over
F, given by (, r = ry---r; the prime power decomposition, and for 1 <i <1
let o; be the Gau8 period of type (n;, m,,(K)) over F, with respect to (; = (",
where n; = ¢(r;)/#m,,(K). Then there exist hy,...,hy with 0 < h; < n; for
1 < t and such that

Before we give the proof, we illustrate it by an example.

EXAMPLE 2.5 CONTINUED. (iii) Let ¢ be a primitive 45th root of unity. The
normal Gauf} period o = (" +¢* +(*+¢3 of type (12, {1,26}) with {1,26} C
Z3s is decomposable. The canonical projections along the prime power decom-
position of 45 = 325 generate the prime Gauf} period az = ¢? of type (4, {1})
and the prime power Gauf} period ag = ¢° + (¢°)* + (¢°)® + (¢°)° of type
(3,{1,8}) over F,. Computing the product as-ag = - (C°+ P+ "0+ ¢30) =
CH 4 2 4 ¢ 4 3 verifies that a5 - ag is indeed a factorization of . O

Proor. We divide the proof into three steps. Since « is normal, we have
(¢, K) =7 by Theorem 2.6.

CLAIM. A decomposable normal Gaufl period can be written as a product of
a squarefree Gaufl period and a non-squarefree Gauf3 period.
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Let R; be the squarefree part of r and Ry = and set a; = a mod R; for

.
Ri
i = 1,2. For a primitive rth root of unity ¢, we have ¢; = ¢"/% a primitive
R;th root of unity for i = 1,2. Hence, ({ = ("* and {§ = (5*. Because K is
decomposable, we have the direct sum K = 7g, (K) X 7, (K). By a straight-

forward computation we have:

o= Z b(Ca) — Z CRQQ . H Z CaRlRQ/pf

ack ack 1<i<tpi| Ry 1<s<e;
— Z (CT'/Rl)al . H Z (CT‘/RQ)aQRQ/pf
(a1,a2)€m R, (K) xR, (K) 1<i<t,pi|Ry 1<s<e;

SRR CR
MY b,

The first factor is a squarefree Gaufl period of type <#fr(}:f1(3c) TR, (IC)) over F,

with respect to ¢; = ("B, the second one is a non-squarefree GauB period.
This proves the claim.

CrLAIM. A decomposable non-squarefree Gaufs period which is not a prime
power Gaufl period can be written as a product of a non-squarefree Gauf3
period and a prime power Gauf} period.

Let a be a non-squarefree Gaufl period. Since it is not a prime power Gaufl
period, we have t > 2. Set R =ry---r;,_1 > 2. Then r, > 2 is a prime power
coprime to R. For a primitive rth root of unity ¢, we have ¢; = (" = ¢"/F
a primitive Rth root of unity, and ¢, = ¢® = ¢’/" is a primitive r,th root of
unity. Let a; = @ mod R and as; = a mod r;. Then

N CED M | D S

aek ack 1<i<t 1<s<e;

— Z H Z (Crt)aR/pf . H Z (CR)art/pf
a€l 1<i<t,p;|R 1<s<e; 1<i<t,p;|rs 1<s<e;

=y (I @ X )
(a1,a2)€mR(K)xmy, (K) ~1<i<t,p;|R 1<s<e; 1<i<t,p;|re 1<s<e;

= > be) - X (e,
a1E7TR()C) agEﬂ'rt(lC)

with the first factor a non-squarefree Gaufl period and the second one a prime
power Gaufl period. This shows the claim.

CLAIM. A squarefree GauB period which is not a prime Gauf} period can be

written as a product of (conjugates of) a squarefree Gaufl period and a prime
GauB period.
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Let ¢ be a primitive rth root of unity, and let R = ry ---r;_;, which is greater
than 1 and coprime to r;. Let (; = (™ be a primitive Rth root of unity and
(o = (% a primitive r,th root of unity, and u;, us € Z such that uyr; +usR = 1;
we can find these by the Extended Euclidean Algorithm. Let a; and ay be the

projections of a onto Z and Z), respectively, and set n; = #?r(}z}BC) and ny, =
# Since a is normal, we have (¢, 7r(K)) = Zp and (¢, 7., (K)) = Z.

Thus, there are 0 < hy < ny and 0 < hy < ny such that u; € ¢"7x(K) and
uy € ¢"m,, (). The first factor is a squarefree Gauf§ period of type (ny, Tr(K))
over I, with respect to (" and the second factor is a prime Gauf period of
type (ng, T, (K)) over F, with respect to ¢"/". The claim is proven.

Induction on the number ¢ of prime divisors of » completes the proof of the
lemma. O

5.1 Fast multiplication for decomposable Gaufl periods

If a normal Gauf} period is decomposable then its factorization into prime and
prime power Gaufl periods is related to a tower of fields. Each Gaufl period
along this tower satisfies the assumptions of Fact 3.6, i.e. the extension degrees
are pairwise coprime.

PROPOSITION 5.4. Let r,q,n, k be positive integers such that g > 2 andr > 2
are coprime and ¢(r) = nk. Let ry - - -1, be the prime power decomposition of
r. Let K be a subgroup of Z) of order k, set K; = m,, (IC) its image of order k;

onto Z;, under the canonical projection T, and n; = ‘b “ for1 < i <t. Then

the foﬂowmg are equivalent:

(i) (q,K) =Z) and K is decomposable.
(ii) (g, Ki) = 2, for all 1 <i <t, and n = ny---n, with ny,...,n, pairwise
coprime.

PROOF. “(i)=(ii)” The canonical projection m,, is an epimorphism. Thus,
Zy = T (Z)F) =7, ({(q, K)) = (g, K;) for all 1 < i < ¢. Since K is decom-
posable, we have k = k;---k, and n = @ [li<ict ‘bg:_) = Tli<ict 4.
We prove by induction on the number of prime divisors ‘that N1, ..., Ty
are pairwise coprime. For 7 = 1 there is nothing to show. Thus, we sup-
pose that the claim is true for K' = K; x --- x K; which is a decom-
posable subgroup of Z) of order k' where ' = ry---7;. By construc-
tion we have (¢,K') = Z) and n' = ¢5§’) = ny---n;. We suppose that
d = ged(n',nipq) > 1, ie. n' - 25 < ny---nyypg. Since @M € Kigq, we

have ¢"+1'/4 ¢ ;. ;. But also q” nit1/d ¢ K since ¢" € K', and we con-

clude with the help of the Chinese Remamder Theorem that ¢" ™i+1/4 ¢

K'x Kit1. Then # (g, K'x K;11) < - R ki < (0K (nig ki) =
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¢(r')-d(riv1) = #(Z; x- - -xZ;,, ) which is a contradiction. Hence, n" and
n;11 are coprime. The induction hypothesis guarantees that ny, ..., n; are
pairwise coprime, and the claim holds for ny,...,n;;.

“(ii)=(1)” The group K can be regarded as a subgroup of K; x - - x K;;
hence k is a divisor of k; - - - k;. By assumption we have n = n - - - n;. Thus,
k= @ = [Ti<i<t d’gj) = ky -k, i.e. the subgroup K is decomposable.

We always have (¢, ) C Z, and it remains to prove the other inclusion

to show equality. Let a be an element in Z* and a;, = 7,,(a) for all
1 <i <t Forl < i <t there are ¢, € K; and 0 < h; < n; such
that a; = ¢"c; € (¢, K;) = Z). But ny,...,n, are pairwise coprime,

and by the Chinese Remainder Theorem there exist 0 < h < n with
h = h; mod n; for 1 < i < t. Since ¢" € K;, we have ¢" = ¢"i¢! mod r;
for suitable ¢ € K;, 1 <i <t. Weset ¢ = (c}/c],...,c,/c]) € K to get
a = ¢"c mod r. Thus {(q,K) D Z} and hence (g, ) = Z, as claimed. [

The factorization of a normal decomposable Gaufl period « offers a recursive
approach to do multiplication fast whenever F,» is represented by a normal
basis N = (a,...,a?" ).

REMARK 5.5. Let ny; and ns be two coprime integers, and set n = ny - ns.
Let oy € Fyny and oy € Fyno be normal elements over F,, and o = o - oy be
a normal element in Fyn.

(i) The element ay is normal in Fyn over Fyn, .

(ii) Transforming an element given as linear combination of the conjugates
of a over [, into a linear combination of the conjugates of ay over Fyn,
can be computed without operations in IF,.

PROOF. (i) This is just Lemma 3.9(ii).
(ii) Let A = Yocpen A,a? be an element in F,». Let h; = h modn; for

. h hq ha
i=1,2. Then a? =af -al” and

A= 3 Aol ef)= % ( 2 A(hl,hﬁagm) o

0<h<ning 0<ha<ny \0<hi<ni

where we identify h and (hq, hy) = (h mod ny, h mod ns). Since n; and
ny are coprime, we have {njaremny: 0 < a <ny} = {0 < a < ny} and

hy n1\ho

A = Z Z A(hhth)a’{ Otgq ) .
0<ha<ny \0<hi<ni

This just means sorting the coefficients of A and can be done without

operations in I, . Il
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5.1.1 A constructive proof.

We are now ready to apply fast polynomial multiplication if Fy» is represented
by a normal basis N = (a,...,a?" ") over F,, where o is a decomposable Gauf3
period.

THEOREM 5.6. Let a be a decomposable normal Gauf period of type (n, K)
over F, with K a subgroup of 7, and let r - - -1, be the prime power decom-
position of r. Then two elements in Fy» given as linear combinations of the
elements of the normal basis N' = (a, ..., oﬂn*l) can be multiplied with at
most
O(r- [[ (logr; - loglogr;))
1<i<t
operations in I, .

PrROOF. We prove the claim by induction on the number ¢ of prime divisors

of r. If t = 1, the claim follows from Theorem 4.26. Now we suppose t > 2.

We can write oo = [[;<;<; a?hi as a product of conjugates of normal prime and

prime power GauBl periods a; of type (n;, 7, (K)) over F, by Lemma 5.3. Set
h

n' = . The element o' = [Tj<;<4_y al" is normal in . over Fy. Since « is

decomposable Proposition 5.4 claims that n’ and n; are coprime. Then ay is a
normal prime or prime power Gauf} period in Fyn over F,,» by Remark 5.5(i).
As claimed in Remark 5.5(ii), we can multiply two elements in F» over F, by
multiplying them in Fy» over F .». By Theorem 4.26, the multiplication can
be done with at most O(M(r;)) operations (additions, multiplications) in ..
Moreover, o' is a decomposable normal Gauf} period of type (n', 7, () x - - - X
Tr,_, (K)) over F,. By the induction hypothesis, multiplication in F ., can be
done with at most O(I];<;<;_ 1 M(r;)) operations in F,, and the claim follows.

0

EXAMPLE 2.5 CONTINUED. (iii) The decomposable Gauf} period a = ¢! +
C* M4 ¢% of type (12, {1 26}) with {1,26} C Zj; over Fy is normal in Fau.
We calculate the product o?

(i) Asshown above, « factors into o = a5+ g with a5 a prime Gauf} period of
type (4,1) over Fy, and ag a prime power Gauf} period of type (3, {1, 8})
over Fy where {1,8} C Zg. We transform the task into a multiplication
over [Fg:

o' o =(az - ag) - (a5 - ag) = (a5 - as) - (ag - ag).

Now ag - ag = o + g as computed in Example 4.2.
(ii) It remains to perform the arithmetic in Fg over Fy. Since «j; is a prime

Gauf} period, we have

a5 -5 = () () = () =1 =05+ a5+ a5 +af.
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(iii) Combining both results gives

4 2 4 8 2 4
a" o= (a5 + a; + as + az) - (o + o)
20 ol 21 ol 22 ol 23 ol 20 92 21 92
=0y 0y + a5 g + a5 g +ay g + a5 g + Q5 Qg
22 92 23 92
+ o5 oy + i
4 1 10 7 8 5 2 11
=a® +a® +a® +a* +a* +a¥ +a* +a*

2h1 2h2

since a2 = 2" 02" = (a5 - ag)?" 2, O

6 From general to decomposable Gaufl periods

There is one step missing to derive Theorem 2.7 from Theorem 5.6: Not ev-
ery normal Gaufl period is decomposable, as already illustrated in Exam-
ple 2.5(iii).We now show that a normal Gauf} period always entails a decom-
posable normal Gaufl period with the same parameters. The proof of Theo-
rem 6.3 is based on the following result of Gao (2001), Theorem 1.1.

FAcT 6.1. Let Z be an Abelian group of finite order. Let Q be a subset and
KC be a subgroup of Z such that Z = (Q,K). Then, for any direct sum of
Z = Z; X -+ X Zy, there exists a subgroup L of the form L = Ly X -+ X L,
with L; a subgroup of Z; for 1 < i < t such that Z = (Q,L) and Z/L = Z /K.

For our situation, we formulate the following special case.

COROLLARY 6.2. Let r and q be coprime positive integers greater than 2,
and rq - - -r; be the prime power factorization (2.2) of r. If there is a subgroup
IC of Z) with (q, ) = Z), then there is a decomposable subgroup L of Z.) of
the same order #L = #K such that (q, L) = 7).

THEOREM 6.3. Let r,q,n, k be positive integers with r,q > 2 such that r and
q are coprime and ¢(r) = nk. Then there is a normal Gaufl period of type
(n, K) over F, with KC a subgroup of Z) of order k if and only if such a period
exists with decomposable IC.

Proor. This follows from Corollary 6.2 and the Normal Gauf} period the-
orem 2.6. 0

We merge Theorem 6.3 with Theorem 5.6, and apply fast polynomial multi-
plication to prove Theorem 2.7.

PROOF (of Theorem 2.7). Let o' be a general Gaufl period of type (n,K)
over [, generating a normal basis in Fy». By Theorem 6.3 there is a normal
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decomposable Gaufl period « of type (n, £) in Fyn with #L£ = #K. Thus, we
can write an element of Fy» as a linear combination of the elements of the
normal basis N = (a,...,a?""") over F,. In this case Theorem 5.6 states that
we can apply fast polynomial multiplication to compute the product of two
elements in Fyn. Inserting M(r;) = O(r;logr; - loglogr;) for 1 < i <t proves
the claimed bound on the number of operations in IF,. O

In the final estimate of the theorem, one can replace the factor log(nk) by the
entropy of (ry,--- 7).

7 Existence of normal Gauf} periods
7.1 A criterion for the existence of a normal Gauf$ period

Given a prime power ¢ and an integer n, how can we find normal Gauf3 periods
in Fy» over F,? We start with two previous results.

Fact 7.1 (Gao 2001, Theorem 1.4). Let p be a prime, n and e be positive
integers, and set ¢ = p°. There exist a positive integer r and a subgroup
IKC C Z) such that the Gaufl period of type (n,K) over F, is normal in Fyn if
and only if the following hold:

ged(e,n) =1, and 8 fn in the case p = 2.

Fact 7.2 (Gao et al. 2000, Theorem 3.1). Let r = p° be a prime power not
divisible by 8, and let q¢ be an integer greater than 1 and coprime to r. Let
n be a positive divisor of ¢(r), and K the uniquely determined subgroup of
Z) of order k = @ Then (q,K) = Z) if and only ifgcd(%, n) = 1, where
N = ord,(q) is the order of q in Z.

For the non-cyclic group Zj. with e > 3 this criterion is no longer true.

ExAMPLE 7.3. For r = 8 and K = {1, 7}, we have (3,K) = {1,3,5,7} = Zg
and 28 = 4 = 2 Furthermore, N = ordg(3) = 2, so that @ = 2, and

#K 2
ged (@,%) =ged(2,2) =2 # 1. O

For n = 1 and k = #7Z,., we can always choose the trivial subgroup K = Z.
to get (q,K) = Zj.. For n > 2 we recall that ZJ. is the direct product of
the two cyclic groups {£1} = (=1 mod 2¢) and Z5. = (5 mod 2¢) = {(4i +
1) mod 2¢: 0 < i < 272}, We start with the assumption that the subgroup
generated by ¢ has maximal possible order N = ordse (q).
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PROPOSITION 7.4. Let r > 16 be a power of 2, and let ¢ > 3 be odd. If
N =ord,(q) =22 and n > 2 is a divisor of N, then K = {£1} - (5" mod 2°)
is a subgroup of Z) of order k = ¢(r)/n such that {q,K) = Z.

262

PrOOF. For r = 2¢ and e > 4, the subgroup K of Z) has order 2 - =
r - ¢£L). We have #(q) = N = 2°72 by assumption. Thus, (q)/{+1} = Zs

because g generates a cyclic subgroup. By construction, —1 € K, hence (¢) U
(—1)-(q) is a subset of (g, K) of order 2-2¢72. We conclude that #{q, K) = ¢(r),
and (¢, ) =7, as claimed. O

LEMMA 7.5. Let e > 4 be an integer, let ¢ be an odd prime power and K be
a subgroup of order k of Z;. such that (q,K) = Z3., and n = @ Ifn > 4,
then {q) has maximal order N = ordy(q) = 2¢72.

PROOF. Since n d1v1des N, we have N > 4. Furthermore, the subgroup K
has order #K = d) < E- Vo ges > 2. Let : Zy. — Z5. be the canonical
projection with a = a - {il} Then (q) is a cyclic subgroup of Zs of order
N > 4. The projection is an epimorphism. Hence, (7, K) = Z.. But n’' =
# Zoe [#K > 2672/2¢73 = 2 is divisible by 2, and the subgroup (g) contains a
subgroup of maximal order 272, since Z is cyclic. We conclude that (q) =
Ze, and N = ordoe (q) > #2Z5. = 2¢72. But a cyclic subgroup of ZJ. has order
at most 272 and thus N = 272, O

For ¢ = 3, we have always N = 2, and there is a subgroup K C Zg of
order 2 with (¢,K) = Zg; for given ¢ > 3 we can choose K = (a) with
a € Zg \ {1,q mod 8}.

The only case leftisn = 2 and 2 < N < 2¢° 2 for e > 4. Here two different cases
of ¢ are important. Since we have ¢ an odd prime power, either ¢ = 1 mod 4
or ¢ = 3 mod 4. These two cases have different projections of (¢) onto {£1}.
We consider the canonical projection 7: Zy. — Zj. Then ker m = Z5¢, and we
have a bijection between {+1} = Zj./ kerm = Z. /25 and Zj applying the
fundamental theorem on groups. Thus, (q)/Zs is {1} if ¢ = 3 mod 4 and is
{1} if ¢ =1 mod 4.

LEMMA 7.6. Let e > 4 be an integer, r = 2°, and let ¢ > 3 be an odd integer
with 2 < N = ord,(q) < 2¢72. Then there is a subgroup K C ZJ. of order k
such that (q,KC) = Z) if and only if ¢ = 3 mod 4.

PrOOF. For ¢ = 3 mod 4, we have (¢)/ 25 = {£1}. Since n = 2 = #{£1}
and {£1} C {(g) by assumption, we have (¢"/") = {41}. Choosing the sub-
group K = Zo of order k = 2¢72 gives (q, K) = Z5..

For ¢ = 1 mod 4, we have (¢™/") = (5*° mod 2°¢) = {5*°,1} C Zj. Since
e > 4, there are three subgroups of Zj. of order k = 2°72 > 4 in this case:
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K1 = (5 mod 2¢), Ky = (=5 mod 2°), and K3 = {£1} - (5% mod 2¢). For e > 4,
we have 2°°3 > 2 and 527" = (—=5)2" = (52)2"" mod 2¢ is an element of all
three subgroups. Hence, (¢, K;) = K; # Zj. for 1 < i < 3. Thus, there is no
suitable subgroup in the case ¢ = 1 mod 4. 0

We collect the findings above to get the following criteria on the existence of
a suitable subgroup K in Z..

LEMMA 7.7. Let r > 8 be a power of two. Let ¢ > 1 be an odd integer,
and n be a divisor of N = ord,(q). Set k = ¢(r)/n. Then the following are
equivalent:

(i) There is a subgroup K C Z of order k with {(q,K) = 7.
(ii) One of the following criteria holds:

e n=1,or

e n=2and q¢=3mod4, or

o N=r/4.

PrROOF. We write r = 2¢ with e > 2. If one of the criteria in (ii) is satisfied
then either n = 1 and K = Z,., or Proposition 7.4 or Lemma 7.6, respectively,
guarantee the existence of a subgroup K of order k with (¢, K) = Zj. for
e > 4. There are two more cases to consider. For e = 3 and n = 2 we
have N = ordg(q) = 2. Then we can choose X = {1,3} if ¢ = 1 mod 4
and £ = {1,5} if ¢ = 3 mod 4. Thus, it remains to prove that in the case
n=2and ¢ =1mod 4 and N < 2°72 there is no suitable subgroup. We have
(q)/{£1} C 2y, and thus {¢) C (5* mod 2¢). But 5% mod 2¢ is an element in
all three subgroups of order k = 2°72 of ZJ.; we have 52 € (5 mod 2¢) and
52 = (=5)? € (=5 mod 2 and 1-5% € {+1} - (5* mod 2¢). Since we have
discussed all possible cases, equivalence holds. 0

We now have the following criterion for existence of a normal Gauf} period.
For squarefree r, this follows from Theorem 1.5 in Gao (2001).

THEOREM 7.8. Let q be a prime power and r and n be positive integers such
that ged(r,q) = 1 and n divides ¢(r). Let k = @ and ry -+ -1y be the prime
power decomposition of r. Then the following properties are equivalent:

(i) There is a subgroup K of Z) of order k such that the Gauf§ period a of
tvpe (n, ) over F, is normal.

(ii) There are pairwise coprime positive integers ny,...,n; such that n =
ny - -+ ny, and
. gcd(d)x;),ni) = 1 if r; is not divisible by 8, and
e n,; divides N; and eithern; = 1, orn; = 2 and ¢ = 3 mod 4, or N; = 2¢ 2

if 8 divides r;

where N; = ord,.(q) for 1 <i < t.
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PROOF. “(i)=(ii)” By Theorem 6.3 there is a decomposable Gauf} period of
type (n, £) over F, with (g, £) = ZX. By Proposition 5.4 the n; = 2%

#ﬂ'ri(ﬁ)
for 1 < ¢ < t are pairwise coprime and n;---n; = n. Furthermore,
(q,m, (L)) = Z) and the criteria follows immediately with Fact 7.2 and

Lemma 7.7.

“(ii)=(i)” By Fact 7.2 and Lemma 7.7, respectively, there is a subgroup
L; of order k; = % such that (g, £;) = Z; for all 1 <4 <t. Obviously,
L =L X X [,Zt meets the assumptions of Proposition 5.4. By the
Normal Gauf} period theorem 2.6, the criterion (g, L) = Z is sufficient
for the Gauf period of type (n, £) over F, to be normal. O

7.1.1 FEzxperiments.

Tables 7.1 and 7.2 present results about the smallest values of £ that lead to
normal Gauf§ periods. Table 7.1 illustrates the progress made by the various
categories of Gauf} periods, going from the most specialized category “prime”
in the first row to the general periods in the fourth row. In each row we find the
percentage of n having a normal Gauf} period of its row category with a smaller
value of k£ than any the more specialized categories above it. The extension
degree n goes from 2 to 10 000. The second column says, for example, that for
26.19% of those n some squarefree Gauf3 period in Fy. over Fy, has a smaller
value of k£ than any prime Gaufl period and that no general Gaufl period
improves on this &, and for 2.66% a general Gaufl period provides a smaller
k than any of the specialized categories in the three rows above. Similarly,
Table 7.2 shows the percentage of extensions with squarefree Gaufl periods
when the value of k is bounded in terms of n, again for 2 < n < 10000. For
both tables, the value of 7 was limited to 10°.
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Minimal value of the parameter & for

normal Gauf} periods with respect to the class

class \ ¢ 2 3 5 7 11 13 17 19

prime 57.79 | 63.04 | 63.25 | 63.24 | 64.71 | 65.27 | 64.93 | 65.20
squarefree 26.19 | 29.22 | 30.35 | 23.35 | 25.78 | 25.16 | 32.33 | 22.59
prime power 087 089 | 092 | 0.84 | 095 | 1.08| 0.79| 0.62
general 2.66 | 685 | 548 | 12.56 | 8.56 | 849 | 1.95| 11.58
no normal GP || 12.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Table 7.1

The percentage for which the minimal parameter k& € N> is given by the special
class of a Gauf} period. The values are given for all field extensions [F;» with 2 <
n < 10000. The values for g are given in the first row; e.g. the distribution over the
binary field Fy is listed in the second column. The search for k = ¢(r)/n is restricted
to < 1000 000.

Existence of normal bases generated by a

squarefree Gaufl period with given parameter k > 1

E o\ q 2 3 5 7 11 13 17 19
k=1 470 | 476 | 4.92| 4.65| 4.43| 457| 450 | 4.72
k<2 95.22 | 25.78 | 24.60 | 23.21 | 23.77| 22.67| 25.18 | 22.75

kE <logyn | 75.90 | 86.23 | 86.11 | 85.18 | 85.24 | 84.51 | 86.31 | 83.84
kE<yn 87.24 1 99.65| 99.68 | 99.63 | 99.66 | 99.57 | 99.57 | 99.50

k< oo 87.50 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 99.98
Table 7.2

Percentage of field extensions Fy» over F, with 2 < n < 10000 for which there
is a normal basis given by a squarefree Gaufl period of type (n,K) over F,. The
rows show the distribution if the value for k& = #K is restricted. We limited our
experiments for r with ¢(r) = nk to 2 < r < 1000 000.

IAN F. BLAKE, RoN M. RoTH & GADIEL SEROUSSI (1998). Efficient Arith-
metic in GF(2") through Palindromic Representation. Technical Report HPL-98-
134, Visual Computing Department, Hewlett Packard Laboratories. Available via
www.hpl.hp.com/techreports/98/HPL-98-134 .html.

DAvID G. CANTOR (1989). On Arithmetical Algorithms over Finite Fields. Journal
of Combinatorial Theory, Series A 50, 285-300.

SANDRA FEISEL, JOACHIM VON ZUR GATHEN & M. AMIN SHOKROLLAHI
(1999). Normal bases via general Gaufl periods. Mathematics of Compu-
tation 68(225), 271-290. URL http://www.ams.org/journal-getitem?pii=
S0025-5718-99-00988-6.

SHUHONG GAO (2001). Abelian Groups, Gauss Periods, and Normal Bases. Finite

37



Fields and Their Applications 7(1), 148-164.

SHUHONG GAO, JOACHIM VON ZUR GATHEN & DANIEL PANARIO (1995). Gauss
periods and fast exponentiation in finite fields. In Proceedings of LATIN ’95,
Valparaiso, Chile, number 911 in Lecture Notes in Computer Science, 311-322.
Springer-Verlag. ISSN 0302-9743. Final version in Mathematics of Computation
and Journal of Symbolic Computation.

SHUHONG GAO, JOACHIM VON ZUR GATHEN & DANIEL PANARIO (1998). Gauss
periods: orders and cryptographical applications. Mathematics of Computation
67(221), 343-352. URL http://www.ams.org/jourcgi/amsjournal?fn=120&pgl=
pii&s1=80025%571898009351. With microfiche supplement.

SHUHONG GAO, JOACHIM VON ZUR GATHEN, DANIEL PANARIO & VICTOR SHOUP
(2000). Algorithms for Exponentiation in Finite Fields. Journal of Symbolic Compu-
tation 29(6), 879-889. URL http://www.idealibrary.com/links/doi/10.1006/
jsco0.1999.0309.

CARL FRIEDRICH GAUSS (1801). Disquisitiones Arithmeticae. Gerh. Fleischer Tun.,
Leipzig. English translation by ARTHUR A. CLARKE, Springer-Verlag, New York,
1986.

DIrRK HACHENBERGER (1997). Finite Fields: Normal Bases and Completely Free
Elements. The Kluwer international series in engineering and computer science.
Kluwer Academic Publishers, Boston/Dordrecht/London.

D. JUNGNICKEL (1993). Finite Fields: Structure and Arithmetics. BI Wis-
senschaftsverlag, Mannheim.

RupoLF LIDL & HARALD NIEDERREITER (1983). Finite Fields. Number 20 in
Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading MA.
ALFRED J. MENEZES, IAN F. BLAKE, XUHoONG GAO, RoNALD C. MULLIN,
ScoTT A. VANSTONE & TOMIK YAGHOOBIAN (1993). Applications of finite fields.
Kluwer Academic Publishers, Norwell MA.

R. C. MuLLIN, I. M. ONYSZCHUK, S. A. VANSTONE & R. M. WILSON (1989).
Optimal normal bases in GF(p"). Discrete Applied Mathematics 22, 149-161.

A. SCHONHAGE (1977). Schnelle Multiplikation von Polynomen iiber Kérpern der
Charakteristik 2. Acta Informatica 7, 395-398.

A. SCHONHAGE & V. STRASSEN (1971). Schnelle Multiplikation grofier Zahlen.
Computing 7, 281-292.

ALFRED WASSERMANN (1993). Zur Arithmetik in endlichen Kérpern. Bayreuther
Math. Schriften 44, 147-251.

38



