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A onstrution of speial normal elements is via Gau� periods. We have aninteger k, a prime number r with nk = r � 1, a primitive rth root of unity �in some extension of Fq , a subgroup K � Z�r with k elements, and the Gau�period � = Xa2K �a:Then � 2 Fqn , and it is normal over Fq if and only if q mod r and K generatethe group Z�r , that is, hq;Ki = Z�r (see Ash et al. (1989); Wassermann (1993)).Rather than umbersome matrix multipliation, as used for general normalbases, one an use polynomial multipliation to multiply elements in suh aspeial normal basis. One an plug in any multipliation routine, from lassialvia Karatsuba to asymptotially fast ones (FFT-based or Cantor's method).This results in a speedup by an order of magnitude and the fastest exponenti-ation algorithms in large �nite �elds of small harateristi known today, bothin theory and in software pratie.The time taken by the multipliation algorithm grows with the parameter k,whih is extraneous to the base problem of alulating in Fqn . It is desirableto hoose k small, ideally k = 1 or k = 2. (Then � is alled an optimal normalbasis; see Mullin et al. (1989)). But that is not always possible.The appliability of this method was broadened by a reent generalizationof Gau� periods from prime numbers r to arbitrary integers r. Gau�|whohad used his periods for the onstrution of the regular 17-gon|had alreadypresaged this, in Artile 356 of his Disquisitiones Arithmetiae, but neverpublished the general method: \These theorems retain the same or even greaterelegane when they are extended to omposite values of n. But these mattersare on a higher level of investigation, and we will reserve their onsiderationfor another oasion." [Gau�' n is the r used above.℄The goal of this paper is to show that the use of (fast) polynomial arithmetiis also feasible with these general Gau� periods. We ahieve this in threesteps: �rst, when r is a prime power, then when r is arbitrary and the Gau�period is of a speial form, alled deomposable. Lastly, we show that for anarbitrary Gau� period, we an always �nd a deomposable one with the sameparameters.Table 7.1 at the end of the paper shows that for roughly 35% of the �eldextensions in our experiments, general Gau� periods redue the minimal valueof k as ompared to prime Gau� periods. The progress of the present work isto extend the appliability of polynomial arithmeti from the prime ase tothe general situation. 2



2 Gau� periodsIn an arbitrary normal basis, all known multipliation algorithms suh as theMassey-Omura multiplier make use of linear algebra. Our goal is to replaematrix-based multipliation by faster algorithms for spei� normal elements,namely Gau� periods. This has been ahieved by Gao et al. (1995), Gao et al.(1998), and Gao et al. (2000) for prime Gau� periods over Fq , and also byBlake et al. (1998) for the speial ase of optimal normal bases (orrespondingto k 2 f1; 2g) in F2n . Our results generalize all these.In this setion, we present Gau� periods and some of their properties forfurther use. We use the following notation throughout this paper.Notation 2.1. k, n, q, and r are positive integers with q a prime power,r � 2, gd(q; r) = 1, and �(r) = nk, where � denotes Euler's totientfuntion, and � is a primitive rth root of unity in an extension �eld of Fq .Furthermore, K is a subgroup of Z�r of order k.We let r = r1 � � � rt with ri = peii for 1 � i � t (2.2)be the prime power fatorization of r, where p1; : : : ; pt are pairwise distintprimes and e1; : : : ; et 2 N�1 . We all R1 = Q1�i�t;ei=1 pi the squarefree partof r and R2 = r=R1 the non-squarefree part. (This is not to be onfused withanother ommon designation, namely that of p1 � � � pt as the squarefree part.)We say that r is squarefree when r = R1. Feisel et al. (1999) introdued thefollowing Gau� periods.Definition 2.3. In the above notation, letb(x) = xR2 � Y1�i�tpijR2 X1�s�ei xr=psi 2 Fq [x℄: (2.4)The Gau� period of type (n;K) over Fq given by � is de�ned as� = Xa2K b(�a):It is easy to see that � 2 Fqn . When r is prime, a prime power, or squarefree,we all � a prime, prime power, or squarefree Gau� period, respetively. Thede�nition of � simpli�es in these ases:r prime or squarefree =) � = Xa2K �a;r = pe a prime power =) � = Xa2K0�s<e �aps:3



Example 2.5. Let q = 2.(i) Let r = 5, � 2 F24 a primitive 5th root of unity, and let K = f1g be theuniquely determined subgroup of Z�5 of order k = 1. Then � = � is aprime Gau� period of type (4; f1g) in F24 over F2 .(ii) Let r = 32, � a primitive 9th root of unity, and K = f1; 8g. Then � =�1�1 + �3�1 + �1�8 + �3�8 = � + �3 + �8 + �6 is a prime power Gau� periodof type (3; f1; 8g) in F23 over F2 .(iii) Let r = 32 � 5, and � be a primitive 45th root of unity. There are threesubgroups of order k = 2 of Z�45 whih de�ne three di�erent Gau� periodsin F212 . The subgroup K1 = f1; 26g determines �1 = �14 + �24 + �4 + �39of type (12; f1; 26g), K2 = f1; 44g generates �2 = �14 + �24 + �21 + �31,and K3 = f1; 19g de�nes �3 = �14 + �24 + �6 + �41. �We denote by hq;Ki = fqha : h 2 Z; a 2 Kg the subgroup of Z�r that is jointlygenerated by (q mod r) and K. Normality of Gau� periods an be haraterizedby this subgroup.Normal Gau� period theorem 2.6 (Feisel et al. 1999). Let � be theGau� period of type (n;K) over Fq . Then � is normal in Fqn if and onlyif hq;Ki = Z�r .Example 2.5 ontinued. (i) Sine h2; f1gi = f2; 4; 3; 1g = Z�5 , the Gau�period of type (4; f1g) is normal in F16 over F2 .(ii) One an easily hek that h2; f1; 8gi = Z�9 . Hene, the Gau� period oftype (3; f1; 8g) is normal in F8 over F2 .(iii) Only the two subgroups K1 = f1; 26g and K2 = f1; 44g generate normalGau� periods in F212 over F2 . For K3 = f1; 19g we have h2; f1; 19gi =f1; 2; 4; 8; 16; 17; 19; 23; 31; 32; 34; 38g 6= Z�45. Thus, the Gau� period oftype (12; f1; 19g) over F2 is not normal in F4096 . �Two Gau� periods of the same type but given by di�erent primitive rth rootsof unity are onjugate.The following is the main result of this paper.Theorem 2.7. Let � be a normal Gau� period of type (n;K) over Fq , andr = r1 � � � rt the prime power fatorization (2.2) of r with K � Z�r . Then thereexists a normal Gau� period with the same parameters so that two elementsin Fqn represented in this normal basis an be multiplied withO(r � Y1�i�t(log ri � loglog ri)) or O(nk log (nk) loglog (nk))4



operations in Fq .The proof is given at the end of Setion 6.3 Towers of groups and �eldsLet � be a normal Gau� period of type (n;K) over Fq , and � the Frobeniusautomorphism of Fqn over Fq . Wassermann (1993), Bemerkung 3.1.2, observedthat for a prime Gau� period, q 7! � indues an isomorphism from Z�r =K toGal(Fqn : Fq ). This is also true for general Gau� periods.Let r0 � 2 be a divisor of r,�r0 : Z�r ! Z�r0 with �r0(a) = (a mod r0) (3.1)the anonial projetion of Z�r onto Z�r0, and �r0(K) the image of K � Z�runder this epimorphism. Thus �r0(K) is a subgroup of Z�r0. The order k0 of�r0(K) divides both k = #K and �(r0) = #Z�r0. The following lemma statesthat the anonial projetion gives a normal Gau� period in a sub�eld of Fqn .Lemma 3.2. Let � be a normal Gau� period of type (n;K) over Fq given by�, r0 � 2 a divisor of r, �r0 as in (3.1), k0 = #�r0(K), and n0 = �(r0)=k0. Thenn0 divides n, �r=r0 is a primitive r0th root of unity, and the Gau� period �0 oftype (n0; �r0(K)) over Fq with respet to �r=r0 is normal in Fqn0 over Fq .Proof. The anonial projetion �r0 is surjetive, and hq;Ki = Z�r , heneh�r0(q); �r0(K)i = Z�r0. The square of group homomorphisms in Figure 3.1ommutes. The top and right hand maps are surjetive, and hene also thebottom one. It follows that n0 = #Z�r0=�r0(K) divides n = #Z�r =K. The otherlaims are lear. �
-��r0Z�r =K Z�r0=�r0(K)?� ?�-�r0hq;Ki = Z�r Z�r0 = h�r0(q); �r0(K)i

Figure 3.1. Four projetion homomorphisms.The onnetion between the group Z�r and the normal Gau� period in a sub-�eld plays an important rôle in what follows. We illustrate this in the ase of5



prime power Gau� periods. Let r be a prime power pe with e � 2, and let� be a primitive peth root of unity. We suppose that the subgroup K of Z�rde�nes a normal Gau� period � = Pa2KP0�s<e �aps of type (n;K) over Fqwith respet to �. Then hq;Ki = Z�pe. For 0 < ` < e, the element �` = �pe�` isa primitive p`th root of unity, and we set n` = �(p`)=#�p`(K). Then�` = Xa2�p`(K) X0�s<` �aps`is the Gau� period of type (n`; �p`(K)) over Fq with respet to �` by Lemma 3.2.Sine hq; �p`(K)i = Z�p`, the Gau� period �` is normal in Fqn` over Fq .Example 2.5 ontinued. (ii) The anonial projetion �3 : Z�9 ! Z�3 mapsK = f1; 8g onto the subgroup �3(K) = f1; 2g of Z�3 , and �1 = �32�1 = �3 isa primitive third root of unity. Lemma 3.2 says that �1 = Pa2�3(K) �a1 =�3 + �6 = 1 is a normal Gau� period of type (1; f1; 2g) over F2 . In fat, wehave h2; f1; 2gi = Z�3 , and �1 is indeed a normal prime Gau� period. �3.1 Cylotomi polynomialsPrimitive roots of unity are related to a speial lass of polynomials: theylotomi polynomials; see Lidl & Niederreiter (1983), Setion 2.4 for details.When q is a prime power, r a positive integer oprime to q, and � a primitiverth root of unity over Fq , then�r = Y0<s<rgd(s;r)=1(x� �s) 2 Fq [x℄is the rth ylotomi polynomial over Fq . Sine the roots of �r are all �(r)distint primitive rth roots of unity, the degree of �r is �(r), and � 2 Fq�(r) .Over the �eld Q of rational numbers, the ylotomi polynomial �r is alwaysirreduible. This is no longer true in the ase of a �nite �eld Fq with nonzeroharateristi. But in this ase the fatorization pattern is well-known.Fat 3.3 (Lidl & Niederreiter 1983, Theorem 2.47). Let q be a prime poweroprime to a positive integer r, and let N = ordr(q) be the order of q in Z�r .Then the rth ylotomi polynomial �r 2 Fq [x℄ fators into �(r)=N distintmoni irreduible polynomials of the same degree N .We denote the d = �(r)=N irreduible fators by �1; : : : ; �d 2 Fq [x℄. By theChinese Remainder Theorem we have the isomorphism of Fq -algebras6



�0 : R = Fq [x℄=(�r) ! Fq [x℄=(�1)� � � � � Fq [x℄=(�d)A 7! (A mod �1; : : : ; A mod �d): (3.4)Sine �r(�) = 0 for any primitive rth root of unity � 2 Fq�(r) , we know thatthe minimal polynomial �� of � in Fq [x℄ is one of the �1; : : : ; �d. Then'� : Fq (�)! Fq [x℄=(��) with '� X0�i<N Ai� i! = X0�i<N Ai(xi mod ��)is the anonial isomorphism between the two images of FqN . The �eld Fq (�)is a sub�eld of Fq (�). Thus, we know the image of � in Fq [x℄=(��). The key forfast multipliation of Gau� periods lies in the hoie of a suitable preimage of� in R.For any i � d, let i 2 K be suh that �i = �i is a root of �i. Then we have� = Xa2K b(�a) = Xa2K b(�ia) = Xa2K b(�ia);sine a 7! a is a bijetion of K. Applying the inverse isomorphism � of �0, wehave the preimage� Xa2K b(xa mod �1); : : : ;Xa2K b(xa mod �d)! = Xa2K b(xa mod �r)of � in R. Finally, let '�1 ; : : : ; '�d be the anonial isomorphisms with �i = �iand �i(�i) = 0 for 1 � i � d. We de�ne the homomorphism of Fq -algebras' : Fq (�) ! R = Fq [x℄=(�r)A 7! �('�1(A); : : : ; '�d(A)): (3.5)If A = P0�h<nAh�qh is given as a linear ombination of the onjugates of �,then '( X0�h<nAh�qh) = X0�i<nAi Xa2K b(xa mod �r):This map allows us to transfer multipliation in the normal basis representa-tion of Fqn = Fq (�) to multipliation in R, whih is just polynomial multipli-ation modulo �r. Wonderful. The only drawbak is that the original problemsize is n = dimFq Fqn , while the new problem size nk = �(r) = dimFqR islarger by a fator of k. We want to keep this extraneous fator k as small aspossible. 7



3.2 Field towers, traes, and normal elementsWe onlude this setion by olleting some well-known properties on normalelements that are useful subsequently. The properties listed below are truenot only for normal Gau� periods but for all normal bases. We will disussthe algorithmi aspets for normal bases generated by Gau� periods in thesubsequent setions.3.2.1 The produt of normal elements.It is a well-known fat (see e.g. Menezes et al. (1993)) that normality is inher-ited along a tower of �eldsFq � Fqn1 � Fqn1n2 � � � � � Fqn1 ���nt ;whenever the degrees n1; : : : ; nt � 1 are pairwise oprime.Fat 3.6. Let n1 and n2 be two oprime positive integers, n = n1 � n2, and�i be a normal element in Fqni over Fq for i = 1; 2. Then � = �1 ��2 is normalin Fqn over Fq .Fat 3.6 shows a way to ompute the multipliation matrix TN of the normalbasis N = (�; : : : ; �qn1n2�1) if gd(n1; n2) = 1 and the matries TNi are alreadygiven for i = 1; 2.Fat 3.7. Let n1, n2 and �1; �2 as in Fat 3.6 and set n = n1 �n2. Let TN1 =(uj1;h1)0�j1;h1<n1 and TN2 = (vj2;h2)0�j2;h2<n2 be the multipliation matries ofNi = f�qhi : 0 � h < nig for i = 1; 2.(i) The multipliation matrix TN = (tj;h)0�j;h<n of � = �1 � �2 is given bytj;h = uj1;h1 � vj2;h2where j � ji mod ni and h � hi mod ni for i = 1; 2.(ii) The density dN of TN is the produt of the densities dN1 and dN2 of TN1and TN2, respetively.(iii) The multipliation matrix TN an be alulated with dN = dN1 � dN2multipliations in Fq from TN1 and TN2.3.2.2 The trae of a normal element.The trae also inherits normality. The next fat is true for all Galois exten-sions over a �nite �eld, see Hahenberger (1997), Lemma 5.3. Thus the trae8



map inherits normality downwards a �eld tower, while multipliation induesnormality upwards.Fat 3.8. Let n1 and n2 be two oprime positive integers and n = n1 � n2. If� is normal in Fqn over Fq , then Trqn=qn1 (�) is normal in Fqn1 over Fq .In the speial ase where n = n1 � n2 is the produt of two oprime fatorswe get some further useful properties. A proof of Lemma 3.9(i) is given inJungnikel (1993), Lemma 5.1.8, and a speial version of Lemma 3.9(ii) isited in Agnew et al. (1993) for optimal normal bases. The proof tehniquewill be used extensively in our algorithms, in partiular analogs of the indexmaps 	n1 and 	n2.Lemma 3.9. Let n1 and n2 be oprime positive integers, n = n1 � n2, and let�1 and �2 be normal in Fqn1 and Fqn2 over Fq , respetively. Then(i) Trqn=qn2 (�1 � �2) = Trqn1=q(�1) � �2 and(ii) �2 is normal in Fqn over Fqn1 .Proof. (i) We haveTrqn=qn2 (�1 � �2) = X0�i<n=n2(�1 � �2)qin2= X0�i<n=n2 �qin21 � �qin22 = �2 � X0�i<n=n2 �qin21sine �2 2 Fqn2 , that is, �qin22 = �2 for all 1 � i < nn2 . Moreover, themap  n2 : f0; : : : ; n1� 1g ! f0; : : : ; n1� 1g with  n2(i) = n2i remn1 is abijetion and heneX0�i<n=n2 �qin21 = X0�i<n1 �qi1 = Trqn1=q(�1):(ii) Sine N2 = (�2; : : : ; �qn2�12 ) is a basis for Fqn2 over Fq , the set N2 is a basisof Fqn over Fqn1 . By assumption, n1 and n2 are oprime, and hene themap  n1 : f0; : : : ; n2 � 1g ! f0; : : : ; n2 � 1g with  n1(i) = n1i remn2 isa bijetion. Therefore, the set f�qn1h2 : 0 � h < n2g = f�qh2 : 0 � h < n2gis the set of all n2 onjugates of �2 over Fqn1 , and N2 is a normal basisover Fqn1 as laimed. �4 The prime power aseWe are now ready to develop an algorithm that integrates polynomial multipli-ation in a normal basis representation whenever the normal element is a Gau�9
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Figure 3.2. A tower of �elds given by normal elements if gd(n1; n2) = 1.period. In this setion, we restrit to the ase where � = Pa2KP0�s<e �aps isa prime or prime power Gau� period of type (n;K) over Fq , that is, r = pe.The main result of this setion generalizes the approah that was desribed inGao et al. (1995) and Gao et al. (2000) for prime Gau� periods.Result 4.1. Let p be a prime, e be a positive integer, and � be a normalprime power Gau� period of type (n;K) over Fq , where K is a subgroup ofZ�pe. Two elements of Fqn expressed in the normal basis N = (�; : : : ; �qn�1)an be multiplied with at most O(pe log pe � loglog pe) operations in Fq .The underlying algorithm is one of the ornerstones of this paper. The al-gorithm onsists of three parts: multipliation in Fq [x℄=(xpe � 1), sorting theprodut to identify prime (power) Gau� periods in sub�elds of Fqn , and thenapplying the trae map to return to the linear ombination of the onjugatesof the prime (power) Gau� period.4.1 An algorithm for fast multipliationWe start with an example illustrating the algorithmi ideas.Example 4.2. Let � be a primitive 9th root of unity, and let � be the normalGau� period of type (3; f1; 8g) over F2 as in Example 2.5(ii). The onjugatesof � = � + �3+ �8+ �6 are �21 = �2+ �6+ �7+ �3 and �22 = �4+ �3+ �5+ �6.(i) To alulate the produt �22 � � as linear ombination of �; �2; �4, weregard the onjugates of � as elements of F2(�). The produt in thisextension �eld is�4 � � = (�4 + �3 + �5 + �6) � (� + �3 + �8 + �6) = � + �8Both � and �8 are summands of �. We omplete the missing terms to get�4 � � = (� + �3 + �8 + �6) + �3 + �6:10



(ii) Observe that �3 and �6 are primitive third roots of unity over F2 . Weapply the anonial projetion �3 : Z�9 ! Z�3 as de�ned in (3.1). Then�3(f1; 8g) = f1; 2g = Z�3 and hene n0 = �(3)=#f1; 2g = 1. Thus, theprojetion generates the prime Gau� period �1 = �3 + (�3)2 over F2 . Wesubstitute �3 + �6 by �1 to get�4 � � = � + �1:(iii) In order to express �1 as a linear ombination of the onjugates of � weompute the trae of � over F2 :Tr23=21(�) = X0�i<3�2i = � + �2 + �4= (� + �3 + �8 + �6) + (�2 + �6 + �7 + �3) + (�4 + �3 + �5 + �6)= � + �7 + �4 + �8 + �2 + �5 + �3 + �6:We sort the summands and apply the fat that 0 = �3(�3) = 1 + �3 + �6to get Tr23=21(�) = � � (1 + �6 + �3) + �2 � (�6 + 1 + �3) + �3 + �6= �3 + �6 = �1:Indeed, the trae desribes a linear ombination of the onjugates of �for �1. We insert this linear ombination�4 � � = � + �1 = � + Tr23=21(�) = �2 + �4whih ompletes the omputation. �We will show that the map ' : Fq (�) ! R = Fq [x℄=(�pe) as in 3.5 is in fatan injetive ring homomorphism if � is normal over Fq .4.1.1 A sum of Gau� periods.We use the following notation.Notation 4.3. Let � be a primitive peth root of unity. For 0 < ` � e let�p` be the anonial projetion from Z�pe onto Z�p`. Set k` = #�p`(K) andn` = �(p`)=k`. The Gau� period of type (n`; �p`(K)) over Fq with respet to�` = �pe�` is denoted by �`. We set n0 = k0 = 1.We take a look at the summands of the produt '(A) � '(B), and want towrite a preimage of ' of this produt in Fq [x℄=(xpe � 1) in a partiular way.We note that xa � xb mod (xpe � 1) if a � b mod pe.11



For all 0 � i < n, we de�ne the positive integersu(i)`;h=#fa 2 K : 1 + aqi 2 pe�`qhKg for 0 < ` � e and 0 � h < n`;v(i)`;h =#fa 2 K : 1 + ap`qi 2 qhKg for 0 < ` < e and 0 � h < n`: (4.4)Furthermore, we setu(i)0;0 = 8><>: 1 if there is a 2 qiK suh that 1 + aqi � 0 mod pe, and0 otherwise.These numbers de�ne the speial form of the preimage in Fq [x℄=(xpe � 1) of'(A) � '(B) that we are looking for. Subsequently, we suppose that hq;Ki =Z�pe. Sine ' is additive, it is suÆient to look at the following produt. Ageneralization is shown in Proposition 4.10.Lemma 4.5. Let 0 � i < n and F be the prime sub�eld of Fq . Then there areC(i)0 and C(i)`;h in F for 0 < ` � e and 0 � h < n` suh that Xa2K X0�s<exapsqi! �  Xb2K X0�s0<exbps0!�C(i)0 + X0<`�e X0�h<n`C(i)`;h Xa2�p`(K) X0�s<`(xpe�`)aps!qh mod (xpe � 1):Sine � is a root of (xpe � 1), the produt of �qi times � an be written as asum of those Gau� periods �` whih are given by the anonial projetion ofK onto Z�p`.Corollary 4.6. Let � be the Gau� period of type (n;K) over Fq with respetto �. For 0 < ` � e, let �` be the Gau� period of type (n`; �p`(K)) over Fq withrespet to �pe�`. For 0 � i < n, let C(i)0 and C(i)`;h for 0 � ` < e and 0 � h < n`as in Lemma 4.5. Then�qi � �=C(i)0 + X0<`�e X0�h<n`C(i)`;h�qh` :We start with a proposition that desribes the oeÆients of the preimage of'(A) � '(B) in Fq [x℄=(xpe � 1) in terms of u(i)`;h and v(i)`;h.12



Proposition 4.7. Let 0 � i < n be �xed and u(i)`;h and v(i)`;h as in (4.4). SetC 00 = k �P0�`�e �(e� `) �P0�h<n` u(i)`;h� andC 0pe�`qh = kk` � �P`�s�e u(i)s;h +P0<s<`(v(i)s;h + v(n�i)s;h�i)�for all 0 < ` � e and 0 � h < n`:Then Xa2K X0�s<exapsqi! �  Xb2K X0�s0<exbps0!�C 00 + X0<`�e X0�h<n`C 0pe�`qh Xa2�p`(K)(xpe�`)aqh mod (xpe � 1):Proof. A straightforward omputation gives Xa2K0�s<exapsqi! �  Xb2K0�s0<exbps0! = Xa;b2K0�s;s0<exapsqi+bps0= Xa;b2K X0�s<exapsqi+bps+0 + X0<`<e0�s<e�`(xaps+`qi+bps + xapsqi+bps+`)!� Xa;b2K0�s<exbps(1+aqi) + Xa;b2K0<`<e0�s<e�`xbps(1+ap`qi)+ Xa;b2K0<`<e0�s<e�`xapsqi(1+bp`qn�i) mod (xpe � 1):We onsider the three major summands separately.Fix a 2 K. Then 1 + aqi is either equal 0 modulo pe or there are 0 < ` � eand 0 � h < n` suh that 1 + aqi 2 pe�`qhK � Zpe. ThenXb2K0�s<exbps(1+aqi) � Xb2K0�s<ex0 � ke mod (xpe � 1)if 1 + aqi � 0 mod pe, and otherwise we have13



Xb2K0�s<exbps(1+aqi)� Xb2K0�s<exbpspe�`qh �Xb2K X0�s<`xbpe�(`�s)qh + X`�s<exbpe+(s�`)qh!� Xb2K0�s<`xbpe�(`�s)qh +Xb2K(e� `)� X0<s�` kks Xb2�ps (K)(xpe�s)bqh + k(e� `) mod (xpe � 1):If a runs through K then we get the �rst intermediate result asXa2K Xb2K0�s<e xbps(1+aqi)!� X0<`�e0�h<n` u(i)`;h �  X0<s�` kks Xb2�ps(K)(xpe�s)bqh + k(e� `)!+ u(i)0;0ke� k � X0�`<e (e� `) � X0�h<n` u(i)`;h!+ X0<`�e0�h<n` kk` X`�s�eu(i)s;h! Xb2�p`(K)(xpe�`)b!qh mod (xpe � 1):For the seond sum, we �x a 2 K and 0 < ` < e. Sine 1 + ap`qh 2 Z�pe andhq;Ki = Z�pe, there is 0 � h < n suh that 1 + ap`qi 2 qhK. Then we getXb2K0�s<e�`xbps(1+ap`qi) � Xb2K0�s<e�`xbpsqh� Xb2K`<s�e(xpe�s)bqh � X`<s�e kks Xb2�ps(K)(xpe�s)bqh mod (xpe � 1):If a runs through K then the sum over all 0 < ` < e is given byXa2K0<`<e Xb2K0�s<e�`xbps(1+ap`qi)!� X0<`<e0�h<n` v(i)`;h �  X`<s�e kks � Xb2�ps (K)(xpe�s)bqh!� X1<`�e0�h<n` kk` X0<s<` v(i)s;h! Xb2�p`(K)(xpe�`)b!qh mod (xpe � 1):By hanging the rôles of a and b and substituting i by n�i, we get the formula14



for the third summand:Xb2K0<`<e Xa2K0�s<e�`xaps(1+bp`qn�i)!qi
� X1<`�e0�h<n` kk` X0<s<` v(n�i)s;h ! Xa2�p`(K)(xpe�`)a!qi+h
� X1<`�e0�h<n` kk` X0<s<` v(n�i)s;h�i! Xa2�p`(K)(xpe�`)a!qh mod (xpe � 1): �

With the help of this proposition, we an group all summands of the preimageof '(A) � '(B) in Fq [x℄=(xpe � 1)|exept the onstant oeÆient|in termsof Pa2�p` (K)(xpe�`)aqh with 0 < ` � e and 0 � h < n`. Let 0 � i < n be �xedas before; we omit it in the notation. Now our approah is to sort these termsinto sums whih are preimages of �`, for 0 < ` � e, in R. This is obvious buta little bit tehnial. Thus, we want to de�ne two useful sequenes of integersfor all 0 < ` � e, ` � s < e, and 0 � h < n`:D(e)`;h = 0;C`;h = C 0pe�`qh �D(`)`;h;D(s)`;h = D(s+1)`;h + ks+1k` P0�j<ns+1n` Cs+1;h+jn`: (4.8)
Informally speaking, the D(s)`;h are those parts of the C 0pe�`qh whih have alreadybeen identi�ed as Gau� periods. We give some alternative omputations of theD(s)`;h to illustrate this.Lemma 4.9. Let D(s)`;h and C`;h be as above. Then(i) D(s)`;h = Ps�s0<e ks0+1k` �P0�j<ns0+1n` Cs0+1;h+jn`� for 0 < ` � s < e,(ii) D(`+1)`;h = k`+1k` P0�j<n`+1n` D(`+1)`+1;h+jn` for 0 < ` < e,(iii) D(`)`;h = k`+1k` P0�j<n`+1n` �D(`+1)`+1;h+jn` + C`+1;h+jn`� for 0 < ` < e.Proof. (i) We proeed by indution on s. For s = e� 1, by de�nition we15



have for all 0 < ` < e thatD(e�1)`;h = D(e)`;h + kek` X0�j<nen` Ce;h+jn`= Xe�1�s0<e ks0+1k`  X0�j<ns0+1n` Cs0+1;h+jn`!;using D(e)`;h = 0. We suppose that the laimed formula is also true for1 < s + 1 < e. Inserting the indution hypothesis into the de�nition ofD(s)`;h givesD(s)`;h = D(s+1)`;h + ks+1k`  X0�j<ns+1n` Cs+1;h+jn`!= Xs+1�s0<e ks0+1k`  X0�j<ns0+1n` Cs0+1;h+jn`!+ ks+1k` X0�j<ns+1n` Cs+1;h+jn`= Xs�s0<e ks0+1k`  X0�j<ns0+1n` Cs0+1;h+jn`!;and the indution step is omplete.(ii) Let 0 < ` < e. ThenD(`+1)`;h = X`+1�s0<e ks0+1k`  X0�j<ns0+1n` Cs0+1;h+jn`!by (i). We sort the summands and use (i) again to obtainD(`+1)`;h = X`+1�s0<e k`+1k` � ks0+1k`+1  X0�j<n`+1n` X0�i<ns0+1n`+1 Cs0+1;h+(jn`+in`+1)!
= k`+1k` � X0�j<n`+1n`  X`+1�s0<e ks0+1k`+1  X0�i<ns0+1n`+1 Cs0+1;(h+jn`)+in`+1!!= k`+1k` � X0�j<n`+1n` D(`+1)`+1;h+jn`:(iii) We use indution on `. For ` = e� 1, we have by de�nitionD(e�1)e�1;h = D(e)e�1;h + keke�1 X0�j< nene�1 Ce;h+jne�1;16



whih is just the laimed formula sine D(e)`;h = 0 for all 0 < ` � e. Weassume that the laim also holds for 1 < ` + 1 < e. Then (ii) givesD(`)`;h = D(`+1)`;h + k`+1k` X0�j<n`+1n` C`+1;h+jn`= k`+1k` X0�j<n`+1n` �D(`+1)`+1;h+jn` + C`+1;h+jn`� : �We prove with the help of these sequenes D(s)`;h and C`;h that the preimage of'(A) � '(B) in Fq [x℄=(xpe � 1) an be written as a sum of Gau� periods. Thefollowing proposition inludes Lemma 4.5 as the speial ase `0 = 0.Proposition 4.10. Let C`;h and D(s)`;h be as in (4.8), and 0 � `0 � e. Then Xa2K0�s<exapsqi! �  Xb2K0�s0<exbps0!�C 00 X`0<`�e0�h<n`C`;h �  Xa2�p`(K) X0�s<`(xpe�`)aps!qh+ X0<`�`00�h<n` C 0pe�`qh �D(`0)`;h ! �  Xa2�p`(K) xpe�`aqh! mod (xpe � 1)for all 0 � `0 � e.Proof. We use indution on `0. For `0 = e, the right hand side of thelaimed equation isC 00 + 0 + X0<`�e0�h<n` C 0pe�`qh �D(e)`;h! �  Xa2�p`(K) xpe�`aqh!whih is just the right hand side of the ongruene in Proposition 4.7, sine allD(e)`;h are zero. Now, we suppose that the formula is true for an ` 2 N>0 with0 < `0 � ` � e. Then for all 0 � h < n`017



 C 0pe�`0qh �D(`0)`0;h! �  Xa2�p`0 (K) xpe�`0aqh!(4:8)� C`0;h � Xa2�p`0 (K) X0�s<`0 xpe�`0apsqh � X1�s<`0 xpe�`0apsqh!�  C`0;h � Xa2�p`0 (K) X0�s<`0 xpe�`0apsqh!�  C`0;h � Xa2�p`0 (K) X1�s<`0 xpe�(`0�s)aqh!mod (xpe � 1):We sort the summands by adding the �rst term of the di�erene to the alreadyolleted summandsC 00 + X`0<`�e X0�h<n`C`;h �  Xa2�p`(K) X0�s<`(xpe�`)aps!qh+ X0�h<n`0 C`0;h � Xa2�p`0 (K) X0�s<`0 xpe�`0apsqh�C 00 + X`0�`�e X0�h<n`C`;h �  Xa2�p`(K) X0�s<`(xpe�`)aps!qh mod (xpe � 1):The remaining part isX0<`<`00�h<n` C 0pe�`qh �D(`0)`;h ! �  Xa2�p`(K) xpe�`aqh!� X0�h<n`0 C`0;h � Xa2�p`0 (K) X1�s<`0 xpe�(`0�s)aqh� X0<`<`00�h<n` C 0pe�`qh �D(`0)`;h ! �  Xa2�p`(K) xpe�`aqh!� X0�h<n`0 C`0;h � X1�s<`0 k`0ks Xa2�ps(K)(xpe�s)aqh� X0<`<`00�h<n` C 0pe�`qh �  D(`0)`;h + k`0k` � X0�j<n`0n` C`0;h+jn`!!� Xa2�p`(K) xpe�`aqh! mod (xpe � 1):But D(`0)`;h + k`0k` P0�i<n`0n` C`0;h+in` = D(`0�1)`;h by onstrution in (4.8), and theindution step follows. �18



4.1.2 Applying the trae map.The last ingredient is the trae map. It provides a way of writing a normalGau� period �` 2 Fqn` as a linear ombination of the elements of the normalbasis N = (�; �q; : : : ; �qn�1) of Fqn .Lemma 4.11. Let r = pe be a prime power, and let � be a prime power Gau�period of type (n;K) over Fq with respet to �, where hq;Ki = Z�pe. For any0 < ` � e, let �` be the Gau� period of type (n`; �p`(K)) over Fq with respetto �pe�`. Then X0�i< nn` �qin` = pe�`�` for 0 < ` � e:Furthermore, we have X0�i<n�qi = �pe�1:We again derive these formulas step by step, and will give a proof of Lemma 4.11as a onlusion at the end of this paragraph. Moreover, we show that thislemma inludes the redution modulo �pe we are looking for. We start byde�ning a set of polynomials �0; �`;b 2 Fq [x℄ for 0 < ` < e and b 2 �p`(K).Sine we are still working in the ring Fq [x℄=(xpe � 1), we assume all polynomi-als to be redued modulo xpe � 1, that is, we identify (a mod pe) 2 Z�pe withits anonial representative �a 2 Z, 0 < �a < pe, suh that �a � a mod pe. For0 < ` < e, 0 � i < n`+1=n`, and b 2 �p`(K), we onsiderI`;b;i = fa 2 �p`+1(K) : a � q�in`b mod p`g;the set of all elements in �p`+1(K) that are preimages of q�in`b under theanonial projetion � : Z�p`+1 ! Z�p`. For 0 < ` < e and b 2 �p`(K), we set�0 = P0�i<n1 Pa2�p(K)(xpe�1)aqi + 1 2 Fq [x℄ and�`;b = P0�i<n`+1n` Pa2I`;b;i P0�s<`+1(xpe�(`+1))apsqin`�p �P0�s<`(xpe�`)bps 2 Fq [x℄: (4.12)
Proposition 4.13. For 0 < ` < e, let �0 and �`;b be the polynomials as in(4.12) for all b 2 �p`(K). Then �pe divides �0 and �`;b.Proof. Fix 0 < ` < e, and let � : Z�p`+1 ! Z�p` with �(a) = (a mod p`)the anonial projetion from Z�p`+1 onto Z�p`. Sine we have �p` = � Æ �p`+1,the projetion is a surjetive homomorphism. Thus, eah element b 2 Z�p`has a preimage set ��1(b) = fa 2 Z�p`+1 : a � b mod p`g of order #��1(b) =19



#Z�p`+1#Z�p` = p`(p�1)p`�1(p�1) = p. One an easily hek that the kernel of � is ker � =f(1 + p`z) mod p`+1 : 0 � z < pg. This gives a seond way to express thepreimage set of b in Z�p`+1:��1(b) = b � ker � = f(b+ zp`) mod p`+1 : 0 � z < pg: (4.14)Here we use that the map  b : f0; : : : ; p � 1g ! f0; : : : ; p � 1g with  b(z) =bz rem p is a permutation beause gd(b; p) = 1.We an also give a desription of ��1(b) involving I`;b;i. Sine we know thatqn` 2 �p`(K), also the inverse of qin` is an element in �p`(K). Thus, the set I`;b;iontains k`+1k` elements. For 0 < i < n`+1n` and a 2 I`;b;i, we have �(qin` � a) �qin` � q�in`b � b mod p`. Hene, the set fqin`a : 0 � i < n`+1n` and a 2 I`;b;ig isa subset of ��1(b). But U0�i<n`+1 qi�p`+1(K) is a partition of Z�p`+1, and eahsubset has n`+1n` � k`+1k` = �(p`+1)�(p`) = p di�erent elements. Therefore, equality holds:��1(b) =�qin`a : 0 � i < n`+1n` and a 2 I`;b;i� : (4.15)With the help of these formulas we have for 0 < ` < e and all b 2 �p`(K):X0�i<n`+1n` Xa2I`;b;i0�s<`+1(xpe�(`+1))aqin`ps(4:15)� Xa2��1(b)0�s<`+1(xpe�(`+1))aps (4:14)� X0�z<p0�s<`+1(xpe�(`+1))ps(b+zp`)� X0�s<`+1 (xpe�(`+1))bps �  X0�z<p(xpe�1)zps!! mod (xpe � 1)For s = 0, the sum in the inner brakets vanishes modulo �pe sineX0�z<p(xpe�1)z = xpe � 1xpe�1 � 1 � 0 mod �pe :For s � 1, we simplify modulo �pe :X0�z<p(xpe�1)zp1+(s�1) � X0�z<p 1zps�1 � p mod �pe:Inserting both formulas gives 20



X0�i<n`+1n` Xa2I`;b;i X0�s<`+1(xpe�(`+1))apsqin`� (xpe�(`+1))bp0 � 0 + X1�s<`+1(xpe�(`+1))bps � p� p � X0�s<`(xpe�`)bps mod �pe : (4.16)It follows by onstrution of �`;b in (4.12) that �pe is a divisor of �`;b for0 < ` < e and b 2 �p`(K). For �0 we haveXa2�p(K)0�i<n1 (xpe�1)aqi = Xa2Z�p (xpe�1)a= X0�z<p(xpe�1)z � 1 = xpe � 1xpe�1 � 1 � 1 � �1 mod �pe ;sine hq; �p(K)i = Z�p , and the laim follows also for �0. �Let �pe�` = �` be a primitive p`th root of unity for 0 � ` < e. Sine e� ` � 1and (�`)pe�1 = �pe�`+e�1 = 1, a simple omputation gives�0(�`) = Xa2�p(K) X0�i<n1(�pe�1` )aqi + 1 = n1k1 + 1 = �(p) + 1 = p 6= 0 in Fq :Thus, gd(�0;�p`) = 1 for 0 � ` < e and for all b 2 �p`(K) we havegd(�0; �1;b; : : : ; �e�1;b; xpe � 1) = �pe in Fq [x℄: (4.17)Sine qin` 2 �p`(K), we an write ��1(�p`(K)) as��1(�p`(K)) =�p`+1(K) = ℄0�i<n`+1n` ℄b2�p`(K) I`;b;i:A diret onsequene is that for 0 < ` < e�` = P0�i<n`+1n` Pa2�p`+1(K)P0�s<`+1(xpe�(`+1))apsqin`�p �Pb2�p`(K)P0�s<`(xpe�`)bps (4.18)is divisible by �pe .Remark 4.19. Suessively applying (4.12) and (4.18), respetively, we antransform the equation given in Lemma 4.5 into0�Xa2K X0�s<exapsqi1A �0�Xb2K X0�s0<e xbps01A � X0�h<nC 0e;h �0�Xa2K X0�s<exaps1Aqh mod �pe21



where C 0e;h depends on 0 � i < n.This is indeed a way to ompute a suitable preimage of '(A) � '(B) in R =Fq [x℄=(�pe). We observe that the �nal formula is due to a basis of R whihsupports the bak-transformation into a linear ombination of the onjugatesof a normal Gau� period �.Lemma 4.20. Let � = (x mod �pe) and R = Fq [x℄=(�pe). If Z�pe = hq;Ki fora subgroup K of Z�pe thenB = 8<: X0�s<e �aps : a 2 Z�pe9=;is a basis of R.Proof. The set B0 = f1; �; : : : ; ��(pe)�1g is a basis of R. Sine B has atmost #B0 = �(pe) elements, it is suÆient to prove that B0 � hBi.By onstrution, we have P0�s<e �aps 2 hBi for a 2 Z�pe. By indution on `, we�nd with Proposition 4.13 that for 0 < ` < e we have P0�s<`(�pe�`)aps 2 hBifor a 2 Z�p`, sine �`;b(�) = 0. Furthermore, we have �1 2 hBi.Now let 1 � a < �(pe). Then there exist uniquely determined 0 < ` � e and 2 Z�p` suh that a � pe�` mod pe, andX0�s<`(�pe�`)ps = �pe�` + X1�s<`(�pe�`)ps = �pe�` + X0�s<`�1(�pe�(`+1))ps:But bothP0�s<`(�pe�`)ps andP0�s<`�1(�pe�`+1)ps are elements of hBi. Hene,�pe�` = �a 2 hBi for all 0 � a < �(pe), and the laim follows. �Now we translate this result into the language of traes that has motivated thehoie of �`;b. Let Trqn`=qn`�1 be the trae map of Fqn` into Fqn`�1 for 0 < ` � e;here n0 = 1 by de�nition. We haveTrqn`=qn`�1 (�`) = X0�i<n`=n`�1 �qin`�1` :Sine � is a root of �pe, we an apply (4.18) to �` = Pa2�p`K0�s<` (�pe�`)aps. ThenTrqn`+1=qn` (�`+1) = p�` for all 1 � ` < e: (4.21)For �0, we simply have �0(�) = 0 andTrqn1=q(�1) = �1: (4.22)22



The trae map is transitive, so that Trqn=qn` (�) = Trqn`+1=qn` (Trqn=qn`+1 (�)).We use this to prove Lemma 4.11 by indution on 0 � ` � e. The ase ` = 0is also alled the absolute trae.Proof (of Lemma 4.11). For ` = e, we have Trqn=qne (�) = Trqne=qne (�) =�e sine n = ne. Now we suppose that the laim is true for an 1 < ` < e. ThenTrqn=qn` (�`+1)=Trqn`+1=qn` (pe�(`+1)�`+1)= pe�(`+1)Trqn`+1=qn` (�`+1) (4:21)= pe�(`+1)(p�`):For ` = 0 we get Trqn=q(�) = pe�1Trqn1=q(�1) (4:22)= �pe�1 in the same way. �We �nally rewrite Remark 4.19 inserting the root � of �pe .Remark 4.23. The primitive peth root of unity � is a zero of �pe , and wehave �qi � � = X0�h<nC 0e;h�qhfor all 0 � i < n. The C 0e;h depend on the given 0 � i < n. They areelements of the prime sub�eld F of Fq beause C(i)pe�`qh 2 F by Lemma 4.5 andall manipulations on the oeÆients are done in F. Thus, the multipliationmatrix TN has entries in F.4.1.3 The omplete algorithm.We have presented all parts of the algorithm, and now summarize the ompletemultipliation routine.Algorithm 4.24. The prime power ase.Input: A normal prime power Gau� period � of type (n;K) over Fq with Ka subgroup of Z�pe of order k, and two elements A = P0�i<nAi�qi andB = P0�i<nBi�qi of Fqn with oeÆients Ai; Bi 2 Fq for 0 � i < n.Output: The produt C = P0�i<nCi�qi of A and B with oeÆients Ci 2 Fqfor 0 � i < n.Transformation from Fqn into Fq [x℄=(xpe � 1):1. A0j  0 and B0j  0 for all 0 < j < pe.2. For all 0 � i < n and a 2 K do set j = aqi rem pe and A0j  Ai andB0j  Bi.3. For 0 < ` < e and all i 2 Z�pe�(`�1) do4. set j = i � p` rem pe and A0j  A0j + A0i, B0j  B0j +B0i.5. Set A0 = P1�j<pe A0jxj and B0 = P1�j<pe B0jxj.Multipliation in Fq [x℄=(xpe � 1):23



6. Compute C 0 = P2�j<2pe�1 C 0jxj  A0 �B0 with (fast) polynomial multipli-ation in Fq [x℄.7. Redue C 0 modulo xpe � 1: For 2 � j < pe � 1 do C 0j  C 0j + C 0j+pe. SetC 00 = C 0pe, C 01 = C 0pe+1, C 0 = P0�j<pe C 0jxj.Write the produt as a sum of Gau� periods in Fq [x℄=(xpe � 1):8. Set C0 = C 00.9. For all 0 < ` � e and 0 � h < n do D(`)`;h  0 and Ce;h  C 0qh.10. For ` from e� 1 down to 1 do 11{1411. For 0 � h < n` do12. D(`)`;h  k`+1k` �P0�j<n`+1n` (D(`+1)`+1;h+jn` + C`+1;h+jn`).13. For 0 � h < n` do14. C`;h  C 0pe�`qh �D(`)`;h.15. Set C 00 = C0 + P0<`�eP0�h<n` C`;h �Pa2�p`(K)P0�s<`(xpe�`)aps�qh mod(xpe � 1).Redution modulo �pe 2 Fq [x℄ applying the trae map:16. For 0 � h < n1 do C1;h  C1;h � C0.17. For 1 � ` < e and 0 � h < n` do18. For 0 � i < n`+1n` do C`+1;h+in`  C`+1;h+in` + p�1 � C`;h.Bak transformation from R = Fq [x℄=(�pe) into Fqn :19. For 0 � h < n do set Ch = Ce;h.20. Return C = P0�h<n Ch�qh.Lemma 4.25. Algorithm 4.24 works as spei�ed.Proof. The omputation of the transformation in steps 1{5 follows thede�nition of Gau� periods. The multipliation in steps 6{7 in Fq [x℄=(xpe � 1)generates a preimage of the produt of A�B. To ompute the redution modulo�pe , we apply the reordering of the summands aording to Proposition 4.10in steps 8{15. Notie that we ompute only the D(`)`;h for 1 � ` < e aordingto Lemma 4.9(iii). These are suÆient to get all oeÆients of Lemma 4.5,see (4.8). The redution in steps 16{18 is done aording to (4.12) and (4.18),respetively. Thus, we get the preimage of A � B in the ring R = Fq [x℄=(�pe)under the isomorphism � as stated in Remark 4.19. The �nal bak trans-formation (steps 19{20) uses the fat that C is a linear ombination of theonjugates of � as laimed in Remark 4.23. �It remains to ount the number of operations in Fq . M(n) denotes a multi-pliation time, so that two polynomials in Fq [x℄ of degree at most n an bemultiplied with O(M(n)) operations in Fq . We may useM(n) = n logn log lognby Sh�onhage & Strassen (1971) and Sh�onhage (1977); see also Cantor (1989).We reall that n` � �(p`) for 1 � ` � e. Furthermore, the telesoping sum24



below is useful:X1�`�e�(p`) = X1�`�e(p` � p`�1) = pe + X1�`<e p` � X1�`<e p` � p0 = pe � 1:We have the following estimates for eah part of the algorithm. We emphasizethe prime ase e = 1 sine some steps are omitted in this speial situation.� The transformation (steps 1{5) is alulated with 2 additions for eah i 2Z�pe�(`�1) where 0 < ` < e. This results in a total of at mostX0<`<e 2�(pe�(`�1)) = 2 X2�`�e�(p`) = 2(pe � 1� �(p)) = 2pe � 2poperations in Fq . For the prime ase e = 1 we have 2(pe�p) = 0 operations.� Sine both A0 and B0 have onstant oeÆient zero, the multipliation mod-ulo xpe � 1 in steps 6{7 an be done withM(pe � 1) + (pe � 3)operations. The seond term ounts the additions. If e = 1 then p � 1 =�(p) = nk.� The sorting of the summands in steps 8{15 is omitted for the prime asee = 1. Otherwise e � 2 and we may assume that k`+1=k` is preomputedfor all 0 < ` < e. Then the number of operations is bounded byX1�`<e0�h<n`0BB�1 + n`+1n` � 1 + X0�i<n`+1n` 1 + 11CCA=2 X1�`<en`+1 + X1�`<en` � 2 X2�`�e�(p`) + X1�`<e�(p`)= 2(pe � p) + pe�1 � 1:� The trae is applied in steps 16{18. Step 16 is exeuted for all e � 1 withn1 � p � 1 operations. For e = 1, we have n1 = n. If e � 2 the subsequentiterative omputation of the trae map in steps 17{18 an be done withX1�`<e0�h<n` X0�i<n`+1n` 2 = 2 X2�`�en` � 2 X2�`�e�(p`) = 2(pe � p)further operations if we suppose p�1 to be preomputed.� The bak-transformation (steps 19{20) an be done without operations inFq .We summarize this detailed ost analysis in the next theorem.25



Theorem 4.26. Let q be a prime power oprime to a prime p, and e a positiveinteger suh that there exists a normal Gau� period � of type (n;K) over Fq ,where K is a subgroup of Z�pe. In the normal basis representation with respetto N = (�; : : : ; �qn�1), two elements of Fq an be multiplied with at mostM(pe � 1) + 7pe + pe�1 � 6p� 4 + n � M(pe) + 8pe 2 O(M(pe))operations in Fq .We remark that all divisions in the algorithm (steps 12 and 18) are performedin the prime sub�eld of Fqn . The only operations that are performed in Fq areadditions, subtrations, and multipliations.The result of Gao et al. (1995, 2000) for the prime ase kn = '(p) = '(pe) isa orollary.Corollary 4.27 (Gao et al. 2000, Theorem 4.1). Let Fqn be given by a nor-mal basis N = (�; : : : ; �qn�1), where � is a prime Gau� period of type (n; k)over Fq . Then two elements of Fq given as a linear ombination of the basiselements an be multiplied with at mostM(kn) + (k + 1)n� 3operations in Fq .5 Deomposable Gau� periodsThe main work in our onnetion between polynomial arithmeti and Gau�periods is for a speial ase, namely deomposable Gau� periods, the topi ofthis setion. The general ase is dealt with later.Let � be a normal Gau� period of type (n;K) over Fq and r = r1 � � � rt theprime power deomposition as in (2.2), so thatZ�r �= Z�r1 � � � � � Z�rt;K � �r1(K)� � � � � �rt(K): (5.1)Sometimes, K equals this diret sum of its projetions.Example 2.5 ontinued. (iii) Reall the two subgroupsK1 = f1; 26g �= f1; 8g � f1g = �9(K1)� �5(K1);K2 = f1; 44g 6= f1; 19; 26; 44g �= f1; 8g � f1; 4g = �9(K2)� �5(K2)26



of Z�45. Both generate normal Gau� periods in F212 over F2 . Thus K1 is thediret sum of its projeted images while K2 is not. �Definition 5.2. Let r � 2 be an integer with prime power deompositionr = r1 � � � rt, and let K be a subgroup of Z�r .(i) Let �ri : Z�r ! Z�ri for 1 � i � t be the anonial projetion. The sub-group K is alled deomposable ifK �= �r1(K)� � � � � �rt(K):(ii) A Gau� period � of type (n;K) over Fq is deomposable if and only if Kis deomposable.Let R1 be the squarefree part of r as in De�nition 2.3. We all a Gau� periodof type (n;K) over Fq with K � Z�r squarefree if r = R1. If K is deomposable,then we an fator the normal Gau� period �. For squarefree r, this (and alsoProposition 5.4 below) is in Gao (2001), Theorem 1.5.Lemma 5.3. Let � be a deomposable normal Gau� period of type (n;K) overFq given by �, r = r1 � � � rt the prime power deomposition, and for 1 � i � tlet �i be the Gau� period of type (ni; �ri(K)) over Fq with respet to �i = �r=ri,where ni = �(ri)=#�ri(K). Then there exist h1; : : : ; ht with 0 � hi < ni fori � t and suh that � = Y1�i�t�qhii :Before we give the proof, we illustrate it by an example.Example 2.5 ontinued. (iii) Let � be a primitive 45th root of unity. Thenormal Gau� period � = �14+�24+�4+�39 of type (12; f1; 26g) with f1; 26g �Z�45 is deomposable. The anonial projetions along the prime power deom-position of 45 = 32 �5 generate the prime Gau� period �5 = �9 of type (4; f1g)and the prime power Gau� period �9 = �5 + (�5)3 + (�5)8 + (�5)6 of type(3; f1; 8g) over F2 . Computing the produt �5 ��9 = �9 � (�5+�15+�40+�30) =�14 + �24 + �4 + �39 veri�es that �5 � �9 is indeed a fatorization of �. �Proof. We divide the proof into three steps. Sine � is normal, we havehq;Ki = Z�r by Theorem 2.6.Claim. A deomposable normal Gau� period an be written as a produt ofa squarefree Gau� period and a non-squarefree Gau� period.27



Let R1 be the squarefree part of r and R2 = rR1 , and set ai � a mod Ri fori = 1; 2. For a primitive rth root of unity �, we have �i = �r=Ri a primitiveRith root of unity for i = 1; 2. Hene, �a1 = �a11 and �a2 = �a22 . Beause K isdeomposable, we have the diret sum K = �R1(K) � �R2(K). By a straight-forward omputation we have:� =Xa2K b(�a) = Xa2K �R2a � Y1�i�t;pijR2 X1�s�ei �aR1R2=psi= X(a1;a2)2�R1(K)��R2 (K)(�r=R1)a1 � Y1�i�t;pijR2 X1�s�ei(�r=R2)a2R2=psi= X(a1;a2)2�R1(K)��R2 (K) b(�a11 ) � b(�a22 )= Xa12�R1 (K) b(�a11 ) � Xa22�R2(K) b(�a22 ):The �rst fator is a squarefree Gau� period of type � �(R1)#�R1(K) ; �R1(K)� over Fqwith respet to �1 = �r=R1, the seond one is a non-squarefree Gau� period.This proves the laim.Claim. A deomposable non-squarefree Gau� period whih is not a primepower Gau� period an be written as a produt of a non-squarefree Gau�period and a prime power Gau� period.Let � be a non-squarefree Gau� period. Sine it is not a prime power Gau�period, we have t � 2. Set R = r1 � � � rt�1 � 2. Then rt � 2 is a prime poweroprime to R. For a primitive rth root of unity �, we have �1 = �rt = �r=Ra primitive Rth root of unity, and �2 = �R = �r=rt is a primitive rtth root ofunity. Let a1 � a mod R and a2 � a mod rt. Then� =Xa2K b(�a) = Xa2K Y1�i�t X1�s�ei �ar=psi=Xa2K Y1�i�t;pijR X1�s�ei(�rt)aR=psi � Y1�i�t;pijrt X1�s�ei(�R)art=psi= X(a1;a2)2�R(K)��rt(K)� Y1�i�t;pijR X1�s�ei(�1)a1R=psi � Y1�i�t;pijrt X1�s�ei(�2)a2rt=psi�= Xa12�R(K) b(�a11 ) � Xa22�rt(K) b(�a22 );with the �rst fator a non-squarefree Gau� period and the seond one a primepower Gau� period. This shows the laim.Claim. A squarefree Gau� period whih is not a prime Gau� period an bewritten as a produt of (onjugates of) a squarefree Gau� period and a primeGau� period. 28



Let � be a primitive rth root of unity, and let R = r1 � � � rt�1, whih is greaterthan 1 and oprime to rt. Let �1 = �rt be a primitive Rth root of unity and�2 = �R a primitive rtth root of unity, and u1; u2 2 Z suh that u1rt+u2R = 1;we an �nd these by the Extended Eulidean Algorithm. Let a1 and a2 be theprojetions of a onto Z�R and Z�rt, respetively, and set n1 = �(R)#�R(K) and n2 =�(rt)#�rt(K) . Sine � is normal, we have hq; �R(K)i = Z�R and hq; �rt(K)i = Z�rt.Thus, there are 0 � h1 < n1 and 0 � h2 < n2 suh that u1 2 qh1�R(K) andu2 2 qh2�rt(K). The �rst fator is a squarefree Gau� period of type (n1; �R(K))over Fq with respet to �r=R, and the seond fator is a prime Gau� period oftype (n2; �rt(K)) over Fq with respet to �r=rt. The laim is proven.Indution on the number t of prime divisors of r ompletes the proof of thelemma. �5.1 Fast multipliation for deomposable Gau� periodsIf a normal Gau� period is deomposable then its fatorization into prime andprime power Gau� periods is related to a tower of �elds. Eah Gau� periodalong this tower satis�es the assumptions of Fat 3.6, i.e. the extension degreesare pairwise oprime.Proposition 5.4. Let r; q; n; k be positive integers suh that q � 2 and r � 2are oprime and �(r) = nk. Let r1 � � � rt be the prime power deomposition ofr. Let K be a subgroup of Z�r of order k, set Ki = �ri(K) its image of order kionto Z�ri under the anonial projetion �ri, and ni = �(ri)ki for 1 � i � t. Thenthe following are equivalent:(i) hq;Ki = Z�r and K is deomposable.(ii) hq;Kii = Z�ri for all 1 � i � t, and n = n1 � � �nt with n1; : : : ; nt pairwiseoprime.Proof. \(i))(ii)" The anonial projetion �ri is an epimorphism. Thus,Z�ri = �ri(Z�r ) = �ri(hq;Ki) = hq;Kii for all 1 � i � t. Sine K is deom-posable, we have k = k1 � � �kt and n = �(r)k = Q1�i�t �(ri)ki = Q1�i�t ni.We prove by indution on the number of prime divisors that n1; : : : ; ntare pairwise oprime. For i = 1 there is nothing to show. Thus, we sup-pose that the laim is true for K0 = K1 � � � � � Ki whih is a deom-posable subgroup of Z�r0 of order k0 where r0 = r1 � � � ri. By onstru-tion we have hq;K0i = Z�r0 and n0 = �(r0)k0 = n1 � � �ni. We suppose thatd = gd(n0; ni+1) > 1, i.e. n0 � ni+1d < n1 � � �ni+1. Sine qni+1 2 Ki+1, wehave qni+1�n0=d 2 Ki+1. But also qn0�ni+1=d 2 K0 sine qn0 2 K0, and we on-lude with the help of the Chinese Remainder Theorem that qn0�ni+1=d 2K0�Ki+1. Then #hq;K0�Ki+1i � n0�ni+1d �k0 �ki+1 < (n0 �k0) �(ni+1 �ki+1) =29



�(r0)��(ri+1) = #(Z�r1�� � ��Z�ri+1) whih is a ontradition. Hene, n0 andni+1 are oprime. The indution hypothesis guarantees that n1; : : : ; ni arepairwise oprime, and the laim holds for n1; : : : ; ni+1.\(ii))(i)" The group K an be regarded as a subgroup of K1 � � � � � Kt;hene k is a divisor of k1 � � �kt. By assumption we have n = n1 � � �nt. Thus,k = �(r)n = Q1�i�t �(ri)ni = k1 � � �kt, i.e. the subgroup K is deomposable.We always have hq;Ki � Z�r , and it remains to prove the other inlusionto show equality. Let a be an element in Z�r and ai = �ri(a) for all1 � i � t. For 1 � i � t there are 0i 2 Ki and 0 � hi < ni suhthat ai = qhi0i 2 hq;Kii = Z�ri. But n1; : : : ; nt are pairwise oprime,and by the Chinese Remainder Theorem there exist 0 � h < n withh � hi mod ni for 1 � i � t. Sine qni 2 Ki, we have qh � qhi00i mod rifor suitable 00i 2 Ki, 1 � i � t. We set  = (01=001; : : : ; 0t=00t ) 2 K to geta � qh mod r. Thus hq;Ki � Z�r and hene hq;Ki = Z�r , as laimed. �The fatorization of a normal deomposable Gau� period � o�ers a reursiveapproah to do multipliation fast whenever Fqn is represented by a normalbasis N = (�; : : : ; �qn�1).Remark 5.5. Let n1 and n2 be two oprime integers, and set n = n1 � n2.Let �1 2 Fqn1 and �2 2 Fqn2 be normal elements over Fq , and � = �1 � �2 bea normal element in Fqn .(i) The element �2 is normal in Fqn over Fqn1 .(ii) Transforming an element given as linear ombination of the onjugatesof � over Fq into a linear ombination of the onjugates of �2 over Fqn1an be omputed without operations in Fq .Proof. (i) This is just Lemma 3.9(ii).(ii) Let A = P0�h<nAh�qh be an element in Fqn . Let hi � h mod ni fori = 1; 2. Then �qh = �qh11 � �qh22 andA = X0�h<n1n2Ah ��qh11 � �qh22 � = X0�h2<n20� X0�h1<n1A(h1;h2)�qh11 1A�qh22where we identify h and (h1; h2) = (h mod n1; h mod n2). Sine n1 andn2 are oprime, we have fn1a remn2 : 0 � a < n2g = f0 � a < n2g andA = X0�h2<n20� X0�h1<n1A(h1;n1h2)�qh11 1A�(qn1 )h22 :This just means sorting the oeÆients of A and an be done withoutoperations in Fq . �30



5.1.1 A onstrutive proof.We are now ready to apply fast polynomial multipliation if Fqn is representedby a normal basisN = (�; : : : ; �qn�1) over Fq , where � is a deomposable Gau�period.Theorem 5.6. Let � be a deomposable normal Gau� period of type (n;K)over Fq with K a subgroup of Z�r , and let r1 � � � rt be the prime power deom-position of r. Then two elements in Fqn given as linear ombinations of theelements of the normal basis N = (�; : : : ; �qn�1) an be multiplied with atmost O(r � Y1�i�t(log ri � loglog ri))operations in Fq .Proof. We prove the laim by indution on the number t of prime divisorsof r. If t = 1, the laim follows from Theorem 4.26. Now we suppose t � 2.We an write � = Q1�i�t �qhii as a produt of onjugates of normal prime andprime power Gau� periods �i of type (ni; �ri(K)) over Fq by Lemma 5.3. Setn0 = nnt . The element �0 = Q1�i�t�1 �qhii is normal in Fqn0 over Fq . Sine � isdeomposable, Proposition 5.4 laims that n0 and nt are oprime. Then �t is anormal prime or prime power Gau� period in Fqn over Fqn0 by Remark 5.5(i).As laimed in Remark 5.5(ii), we an multiply two elements in Fqn over Fq bymultiplying them in Fqn over Fqn0 . By Theorem 4.26, the multipliation anbe done with at most O(M(rt)) operations (additions, multipliations) in Fqn0 .Moreover, �0 is a deomposable normal Gau� period of type (n0; �r1(K)�� � ���rt�1(K)) over Fq . By the indution hypothesis, multipliation in Fqn0 an bedone with at most O(Q1�i�t�1M(ri)) operations in Fq , and the laim follows.�Example 2.5 ontinued. (iii) The deomposable Gau� period � = �14 +�24+ �4+ �39 of type (12; f1; 26g) with f1; 26g � Z�45 over F2 is normal in F212 .We alulate the produt �22 � �.(i) As shown above, � fators into � = �5 ��9 with �5 a prime Gau� period oftype (4; 1) over F2 , and �9 a prime power Gau� period of type (3; f1; 8g)over F2 where f1; 8g � Z�9 . We transform the task into a multipliationover F8 : �4 � � =(�45 � �49) � (�5 � �9) = (�45 � �5) � (�49 � �9):Now �49 � �9 = �29 + �49 as omputed in Example 4.2.(ii) It remains to perform the arithmeti in F8 over F2 . Sine �5 is a primeGau� period, we have�45 � �5 = (�9)4 � (�9) = (�9)5 = 1 = �5 + �25 + �45 + �85:31



(iii) Combining both results gives�4 � �=(�5 + �25 + �45 + �85) � (�29 + �49)=�205 �219 + �215 �219 + �225 �219 + �235 �219 + �205 �229 + �215 �229+�225 �229 + �235 �229=�24 + �21 + �210 + �27 + �28 + �25 + �22 + �211 ;sine �2h = �2h15 � �2h29 = (�5 � �9)29h1+4h2 . �6 From general to deomposable Gau� periodsThere is one step missing to derive Theorem 2.7 from Theorem 5.6: Not ev-ery normal Gau� period is deomposable, as already illustrated in Exam-ple 2.5(iii).We now show that a normal Gau� period always entails a deom-posable normal Gau� period with the same parameters. The proof of Theo-rem 6.3 is based on the following result of Gao (2001), Theorem 1.1.Fat 6.1. Let Z be an Abelian group of �nite order. Let Q be a subset andK be a subgroup of Z suh that Z = hQ;Ki. Then, for any diret sum ofZ = Z1 � � � � � Zt, there exists a subgroup L of the form L = L1 � � � � � Ltwith Li a subgroup of Zi for 1 � i � t suh that Z = hQ;Li and Z=L �= Z=K.For our situation, we formulate the following speial ase.Corollary 6.2. Let r and q be oprime positive integers greater than 2,and r1 � � � rt be the prime power fatorization (2.2) of r. If there is a subgroupK of Z�r with hq;Ki = Z�r , then there is a deomposable subgroup L of Z�r ofthe same order #L = #K suh that hq;Li = Z�r .Theorem 6.3. Let r; q; n; k be positive integers with r; q � 2 suh that r andq are oprime and �(r) = nk. Then there is a normal Gau� period of type(n;K) over Fq with K a subgroup of Z�r of order k if and only if suh a periodexists with deomposable K.Proof. This follows from Corollary 6.2 and the Normal Gau� period the-orem 2.6. �We merge Theorem 6.3 with Theorem 5.6, and apply fast polynomial multi-pliation to prove Theorem 2.7.Proof (of Theorem 2.7). Let �0 be a general Gau� period of type (n;K)over Fq generating a normal basis in Fqn . By Theorem 6.3 there is a normal32



deomposable Gau� period � of type (n;L) in Fqn with #L = #K. Thus, wean write an element of Fqn as a linear ombination of the elements of thenormal basis N = (�; : : : ; �qn�1) over Fq . In this ase Theorem 5.6 states thatwe an apply fast polynomial multipliation to ompute the produt of twoelements in Fqn . Inserting M(ri) = O(ri log ri � loglog ri) for 1 � i � t provesthe laimed bound on the number of operations in Fq . �In the �nal estimate of the theorem, one an replae the fator log(nk) by theentropy of (r1; � � � ; rt).7 Existene of normal Gau� periods7.1 A riterion for the existene of a normal Gau� periodGiven a prime power q and an integer n, how an we �nd normal Gau� periodsin Fqn over Fq? We start with two previous results.Fat 7.1 (Gao 2001, Theorem 1.4). Let p be a prime, n and e be positiveintegers, and set q = pe. There exist a positive integer r and a subgroupK � Z�r suh that the Gau� period of type (n;K) over Fq is normal in Fqn ifand only if the following hold:gd(e; n) = 1, and 8 6 jn in the ase p = 2:Fat 7.2 (Gao et al. 2000, Theorem 3.1). Let r = pe be a prime power notdivisible by 8, and let q be an integer greater than 1 and oprime to r. Letn be a positive divisor of �(r), and K the uniquely determined subgroup ofZ�r of order k = �(r)n . Then hq;Ki = Z�r if and only if gd(�(r)N ; n) = 1, whereN = ordr(q) is the order of q in Z�r .For the non-yli group Z�2e with e � 3 this riterion is no longer true.Example 7.3. For r = 8 and K = f1; 7g, we have h3;Ki = f1; 3; 5; 7g = Z�8and �(8)#K = 42 = 2. Furthermore, N = ord8(3) = 2, so that �(8)N = 2, andgd ��(8)N ; �(8)#K � = gd(2; 2) = 2 6= 1. �For n = 1 and k = #Z�2e, we an always hoose the trivial subgroup K = Z�2eto get hq;Ki = Z�2e. For n � 2 we reall that Z�2e is the diret produt ofthe two yli groups f�1g = h�1 mod 2ei and Z2e = h5 mod 2ei = f(4i +1) mod 2e : 0 � i < 2e�2g. We start with the assumption that the subgroupgenerated by q has maximal possible order N = ord2e(q).33



Proposition 7.4. Let r � 16 be a power of 2, and let q � 3 be odd. IfN = ordr(q) = 2e�2 and n � 2 is a divisor of N , then K = f�1g � h5n mod 2eiis a subgroup of Z�r of order k = �(r)=n suh that hq;Ki = Z�r .Proof. For r = 2e and e � 4, the subgroup K of Z�r has order 2 � 2e�2n =2e�1n = �(r)n . We have #hqi = N = 2e�2, by assumption. Thus, hqi=f�1g = Z2ebeause q generates a yli subgroup. By onstrution, �1 2 K, hene hqi [(�1)�hqi is a subset of hq;Ki of order 2�2e�2. We onlude that #hq;Ki = �(r),and hq;Ki = Z�r , as laimed. �Lemma 7.5. Let e � 4 be an integer, let q be an odd prime power and K bea subgroup of order k of Z�2e suh that hq;Ki = Z�2e, and n = �(2e)k . If n � 4,then hqi has maximal order N = ord2e(q) = 2e�2.Proof. Sine n divides N , we have N � 4. Furthermore, the subgroup Khas order #K = �(2e)n � 2e�14 = 2e�3 � 2. Let�: Z�2e ! Z2e be the anonialprojetion with a = �a � f�1g. Then h�qi is a yli subgroup of Z2e of orderN � 4. The projetion is an epimorphism. Hene, h�q; �Ki = Z2e . But n0 =#Z2e=# �K � 2e�2=2e�3 = 2 is divisible by 2, and the subgroup h�qi ontains asubgroup of maximal order 2e�2, sine Z2e is yli. We onlude that h�qi =Z2e , and N = ord2e(q) � #Z2e = 2e�2. But a yli subgroup of Z�2e has orderat most 2e�2 and thus N = 2e�2. �For e = 3, we have always N = 2, and there is a subgroup K � Z�8 oforder 2 with hq;Ki = Z�8 ; for given q � 3 we an hoose K = hai witha 2 Z�8 n f1; q mod 8g.The only ase left is n = 2 and 2 � N < 2e�2 for e � 4. Here two di�erent asesof q are important. Sine we have q an odd prime power, either q � 1 mod 4or q � 3 mod 4. These two ases have di�erent projetions of hqi onto f�1g.We onsider the anonial projetion � : Z�2e ! Z�4 . Then ker � = Z2e , and wehave a bijetion between f�1g = Z�2e= ker � = Z�2e=Z2e and Z�4 applying thefundamental theorem on groups. Thus, hqi=Z2e is f�1g if q � 3 mod 4 and isf1g if q � 1 mod 4.Lemma 7.6. Let e � 4 be an integer, r = 2e, and let q � 3 be an odd integerwith 2 � N = ordr(q) < 2e�2. Then there is a subgroup K � Z�2e of order ksuh that hq;Ki = Z�r if and only if q � 3 mod 4.Proof. For q � 3 mod 4, we have hqi=Z2e = f�1g. Sine n = 2 = #f�1gand f�1g � hqi by assumption, we have hqN=ni = f�1g. Choosing the sub-group K = Z2e of order k = 2e�2 gives hq;Ki = Z�2e.For q � 1 mod 4, we have hqN=ni = h52e�3 mod 2ei = f52e�3 ; 1g � Z�2e. Sinee � 4, there are three subgroups of Z�2e of order k = 2e�2 � 4 in this ase:34



K1 = h5 mod 2ei, K2 = h�5 mod 2ei, and K3 = f�1g � h52 mod 2ei. For e � 4,we have 2e�3 � 2 and 52e�3 = (�5)2e�3 = (52)2e�4 mod 2e is an element of allthree subgroups. Hene, hq;Kii = Ki 6= Z�2e for 1 � i � 3. Thus, there is nosuitable subgroup in the ase q � 1 mod 4. �We ollet the �ndings above to get the following riteria on the existene ofa suitable subgroup K in Z�2e.Lemma 7.7. Let r � 8 be a power of two. Let q > 1 be an odd integer,and n be a divisor of N = ordr(q). Set k = �(r)=n. Then the following areequivalent:(i) There is a subgroup K � Z�r of order k with hq;Ki = Z�r .(ii) One of the following riteria holds:� n = 1, or� n = 2 and q � 3 mod 4, or� N = r=4.Proof. We write r = 2e with e � 2. If one of the riteria in (ii) is satis�edthen either n = 1 and K = Z�2e, or Proposition 7.4 or Lemma 7.6, respetively,guarantee the existene of a subgroup K of order k with hq;Ki = Z�2e fore � 4. There are two more ases to onsider. For e = 3 and n = 2 wehave N = ord8(q) = 2. Then we an hoose K = f1; 3g if q � 1 mod 4and K = f1; 5g if q � 3 mod 4. Thus, it remains to prove that in the asen = 2 and q � 1 mod 4 and N < 2e�2 there is no suitable subgroup. We havehqi=f�1g � Z2e , and thus hqi � h52 mod 2ei. But 52 mod 2e is an element inall three subgroups of order k = 2e�2 of Z�2e; we have 52 2 h5 mod 2ei and52 = (�5)2 2 h�5 mod 2ei and 1 � 52 2 f�1g � h52 mod 2ei. Sine we havedisussed all possible ases, equivalene holds. �We now have the following riterion for existene of a normal Gau� period.For squarefree r, this follows from Theorem 1.5 in Gao (2001).Theorem 7.8. Let q be a prime power and r and n be positive integers suhthat gd(r; q) = 1 and n divides �(r). Let k = �(r)n and r1 � � � rt be the primepower deomposition of r. Then the following properties are equivalent:(i) There is a subgroup K of Z�r of order k suh that the Gau� period � oftype (n;K) over Fq is normal.(ii) There are pairwise oprime positive integers n1; : : : ; nt suh that n =n1 � � �nt, and� gd(�(ri)Ni ; ni) = 1 if ri is not divisible by 8, and� ni divides Ni and either ni = 1, or ni = 2 and q � 3 mod 4, orNi = 2e�2if 8 divides riwhere Ni = ordri(q) for 1 � i � t.35



Proof. \(i))(ii)" By Theorem 6.3 there is a deomposable Gau� period oftype (n;L) over Fq with hq;Li = Z�r . By Proposition 5.4 the ni = �(ri)#�ri(L)for 1 � i � t are pairwise oprime and n1 � � �nt = n. Furthermore,hq; �ri(L)i = Z�ri and the riteria follows immediately with Fat 7.2 andLemma 7.7.\(ii))(i)" By Fat 7.2 and Lemma 7.7, respetively, there is a subgroupLi of order ki = �(ri)ni suh that hq;Lii = Z�ri for all 1 � i � t. Obviously,L = L1 � � � � � Lt meets the assumptions of Proposition 5.4. By theNormal Gau� period theorem 2.6, the riterion hq;Li = Z�r is suÆientfor the Gau� period of type (n;L) over Fq to be normal. �7.1.1 Experiments.Tables 7.1 and 7.2 present results about the smallest values of k that lead tonormal Gau� periods. Table 7.1 illustrates the progress made by the variousategories of Gau� periods, going from the most speialized ategory \prime"in the �rst row to the general periods in the fourth row. In eah row we �nd theperentage of n having a normal Gau� period of its row ategory with a smallervalue of k than any the more speialized ategories above it. The extensiondegree n goes from 2 to 10 000. The seond olumn says, for example, that for26:19% of those n some squarefree Gau� period in F2n over F2 has a smallervalue of k than any prime Gau� period and that no general Gau� periodimproves on this k, and for 2:66% a general Gau� period provides a smallerk than any of the speialized ategories in the three rows above. Similarly,Table 7.2 shows the perentage of extensions with squarefree Gau� periodswhen the value of k is bounded in terms of n, again for 2 � n � 10 000. Forboth tables, the value of r was limited to 106.AknowledgementsWe thank the anonymous referees for a large number of orretions and usefulsuggestions, and Vitor Pan for his e�orts in handling the paper.ReferenesG. B. Agnew, R. C. Mullin & S. A. Vanstone (1993). An Implementationof Ellipti Curve Cryptosystems Over F2155 . IEEE Journal on Seleted Areas inCommuniations 11(5), 804{813.D.W. Ash, I.F. Blake & S.A. Vanstone (1989). Low omplexity normal bases.Disrete Applied Mathematis 25, 191{210.36



Minimal value of the parameter k fornormal Gau� periods with respet to the lasslass n q 2 3 5 7 11 13 17 19prime 57:79 63:04 63:25 63:24 64:71 65:27 64:93 65:20squarefree 26:19 29:22 30:35 23:35 25:78 25:16 32:33 22:59prime power 0:87 0:89 0:92 0:84 0:95 1:08 0:79 0:62general 2:66 6:85 5:48 12:56 8:56 8:49 1:95 11:58no normal GP 12:50 0:00 0:00 0:00 0:00 0:00 0:00 0:00Table 7.1The perentage for whih the minimal parameter k 2 N�1 is given by the speiallass of a Gau� period. The values are given for all �eld extensions Fqn with 2 �n < 10000. The values for q are given in the �rst row; e.g. the distribution over thebinary �eld F2 is listed in the seond olumn. The searh for k = �(r)=n is restritedto r � 1 000 000. Existene of normal bases generated by asquarefree Gau� period with given parameter k � 1k n q 2 3 5 7 11 13 17 19k = 1 4:70 4:76 4:92 4:65 4:43 4:57 4:50 4:72k � 2 25:22 25:78 24:60 23:21 23:77 22:67 25:18 22:75k � log2 n 75:90 86:23 86:11 85:18 85:24 84:51 86:31 83:84k � pn 87:24 99:65 99:68 99:63 99:66 99:57 99:57 99:50k <1 87:50 100:00 100:00 100:00 100:00 100:00 100:00 99:98Table 7.2Perentage of �eld extensions Fqn over Fq with 2 � n < 10000 for whih thereis a normal basis given by a squarefree Gau� period of type (n;K) over Fq . Therows show the distribution if the value for k = #K is restrited. We limited ourexperiments for r with �(r) = nk to 2 � r < 1 000 000.Ian F. Blake, Ron M. Roth & Gadiel Seroussi (1998). EÆient Arith-meti in GF (2n) through Palindromi Representation. Tehnial Report HPL-98-134, Visual Computing Department, Hewlett Pakard Laboratories. Available viawww.hpl.hp.om/tehreports/98/HPL-98-134.html.David G. Cantor (1989). On Arithmetial Algorithms over Finite Fields. Journalof Combinatorial Theory, Series A 50, 285{300.Sandra Feisel, Joahim von zur Gathen & M. Amin Shokrollahi(1999). Normal bases via general Gau� periods. Mathematis of Compu-tation 68(225), 271{290. URL http://www.ams.org/journal-getitem?pii=S0025-5718-99-00988-6.Shuhong Gao (2001). Abelian Groups, Gauss Periods, and Normal Bases. Finite37
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