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1 Introdu
tionExponentiation is an important task with several appli
ations in 
omputeralgebra and 
ryptography. If the ground domain is a �nite �eld of \small"
hara
teristi
, then normal bases are a well-known and useful tool for thispurpose. The goal of this paper is a 
omputational framework in whi
h one
an 
ombine the use of these normal bases with fast polynomial arithmeti
.If q is a prime power and Fqn an extension of Fq , then an element � 2 Fqnis normal over Fq if and only if its 
onjugates �; �q; �q2; : : : ; �qn�1 are linearlyindependent over Fq . A qth power of an element represented in this basis is justa 
y
li
 shift of 
oordinates, and a general exponentiation also requires feweroperations than in the usual polynomial representation given by an irredu
iblepolynomial. This is one reason why normal elements are an attra
tive datastru
ture. An apparent drawba
k is that multipli
ation in this data stru
tureis generally based on linear algebra and hen
e seems quite expensive.� Corresponding author.Email address: gathen�upb.de (Joa
him von zur Gathen).URL: http://www-math.upb.de/~aggathen/ (Joa
him von zur Gathen).Preprint submitted to Elsevier S
ien
e 19 February 2004JO
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A 
onstru
tion of spe
ial normal elements is via Gau� periods. We have aninteger k, a prime number r with nk = r � 1, a primitive rth root of unity �in some extension of Fq , a subgroup K � Z�r with k elements, and the Gau�period � = Xa2K �a:Then � 2 Fqn , and it is normal over Fq if and only if q mod r and K generatethe group Z�r , that is, hq;Ki = Z�r (see Ash et al. (1989); Wassermann (1993)).Rather than 
umbersome matrix multipli
ation, as used for general normalbases, one 
an use polynomial multipli
ation to multiply elements in su
h aspe
ial normal basis. One 
an plug in any multipli
ation routine, from 
lassi
alvia Karatsuba to asymptoti
ally fast ones (FFT-based or Cantor's method).This results in a speedup by an order of magnitude and the fastest exponenti-ation algorithms in large �nite �elds of small 
hara
teristi
 known today, bothin theory and in software pra
ti
e.The time taken by the multipli
ation algorithm grows with the parameter k,whi
h is extraneous to the base problem of 
al
ulating in Fqn . It is desirableto 
hoose k small, ideally k = 1 or k = 2. (Then � is 
alled an optimal normalbasis; see Mullin et al. (1989)). But that is not always possible.The appli
ability of this method was broadened by a re
ent generalizationof Gau� periods from prime numbers r to arbitrary integers r. Gau�|whohad used his periods for the 
onstru
tion of the regular 17-gon|had alreadypresaged this, in Arti
le 356 of his Disquisitiones Arithmeti
ae, but neverpublished the general method: \These theorems retain the same or even greaterelegan
e when they are extended to 
omposite values of n. But these mattersare on a higher level of investigation, and we will reserve their 
onsiderationfor another o

asion." [Gau�' n is the r used above.℄The goal of this paper is to show that the use of (fast) polynomial arithmeti
is also feasible with these general Gau� periods. We a
hieve this in threesteps: �rst, when r is a prime power, then when r is arbitrary and the Gau�period is of a spe
ial form, 
alled de
omposable. Lastly, we show that for anarbitrary Gau� period, we 
an always �nd a de
omposable one with the sameparameters.Table 7.1 at the end of the paper shows that for roughly 35% of the �eldextensions in our experiments, general Gau� periods redu
e the minimal valueof k as 
ompared to prime Gau� periods. The progress of the present work isto extend the appli
ability of polynomial arithmeti
 from the prime 
ase tothe general situation. 2



2 Gau� periodsIn an arbitrary normal basis, all known multipli
ation algorithms su
h as theMassey-Omura multiplier make use of linear algebra. Our goal is to repla
ematrix-based multipli
ation by faster algorithms for spe
i�
 normal elements,namely Gau� periods. This has been a
hieved by Gao et al. (1995), Gao et al.(1998), and Gao et al. (2000) for prime Gau� periods over Fq , and also byBlake et al. (1998) for the spe
ial 
ase of optimal normal bases (
orrespondingto k 2 f1; 2g) in F2n . Our results generalize all these.In this se
tion, we present Gau� periods and some of their properties forfurther use. We use the following notation throughout this paper.Notation 2.1. k, n, q, and r are positive integers with q a prime power,r � 2, g
d(q; r) = 1, and �(r) = nk, where � denotes Euler's totientfun
tion, and � is a primitive rth root of unity in an extension �eld of Fq .Furthermore, K is a subgroup of Z�r of order k.We let r = r1 � � � rt with ri = peii for 1 � i � t (2.2)be the prime power fa
torization of r, where p1; : : : ; pt are pairwise distin
tprimes and e1; : : : ; et 2 N�1 . We 
all R1 = Q1�i�t;ei=1 pi the squarefree partof r and R2 = r=R1 the non-squarefree part. (This is not to be 
onfused withanother 
ommon designation, namely that of p1 � � � pt as the squarefree part.)We say that r is squarefree when r = R1. Feisel et al. (1999) introdu
ed thefollowing Gau� periods.Definition 2.3. In the above notation, letb(x) = xR2 � Y1�i�tpijR2 X1�s�ei xr=psi 2 Fq [x℄: (2.4)The Gau� period of type (n;K) over Fq given by � is de�ned as� = Xa2K b(�a):It is easy to see that � 2 Fqn . When r is prime, a prime power, or squarefree,we 
all � a prime, prime power, or squarefree Gau� period, respe
tively. Thede�nition of � simpli�es in these 
ases:r prime or squarefree =) � = Xa2K �a;r = pe a prime power =) � = Xa2K0�s<e �aps:3



Example 2.5. Let q = 2.(i) Let r = 5, � 2 F24 a primitive 5th root of unity, and let K = f1g be theuniquely determined subgroup of Z�5 of order k = 1. Then � = � is aprime Gau� period of type (4; f1g) in F24 over F2 .(ii) Let r = 32, � a primitive 9th root of unity, and K = f1; 8g. Then � =�1�1 + �3�1 + �1�8 + �3�8 = � + �3 + �8 + �6 is a prime power Gau� periodof type (3; f1; 8g) in F23 over F2 .(iii) Let r = 32 � 5, and � be a primitive 45th root of unity. There are threesubgroups of order k = 2 of Z�45 whi
h de�ne three di�erent Gau� periodsin F212 . The subgroup K1 = f1; 26g determines �1 = �14 + �24 + �4 + �39of type (12; f1; 26g), K2 = f1; 44g generates �2 = �14 + �24 + �21 + �31,and K3 = f1; 19g de�nes �3 = �14 + �24 + �6 + �41. �We denote by hq;Ki = fqha : h 2 Z; a 2 Kg the subgroup of Z�r that is jointlygenerated by (q mod r) and K. Normality of Gau� periods 
an be 
hara
terizedby this subgroup.Normal Gau� period theorem 2.6 (Feisel et al. 1999). Let � be theGau� period of type (n;K) over Fq . Then � is normal in Fqn if and onlyif hq;Ki = Z�r .Example 2.5 
ontinued. (i) Sin
e h2; f1gi = f2; 4; 3; 1g = Z�5 , the Gau�period of type (4; f1g) is normal in F16 over F2 .(ii) One 
an easily 
he
k that h2; f1; 8gi = Z�9 . Hen
e, the Gau� period oftype (3; f1; 8g) is normal in F8 over F2 .(iii) Only the two subgroups K1 = f1; 26g and K2 = f1; 44g generate normalGau� periods in F212 over F2 . For K3 = f1; 19g we have h2; f1; 19gi =f1; 2; 4; 8; 16; 17; 19; 23; 31; 32; 34; 38g 6= Z�45. Thus, the Gau� period oftype (12; f1; 19g) over F2 is not normal in F4096 . �Two Gau� periods of the same type but given by di�erent primitive rth rootsof unity are 
onjugate.The following is the main result of this paper.Theorem 2.7. Let � be a normal Gau� period of type (n;K) over Fq , andr = r1 � � � rt the prime power fa
torization (2.2) of r with K � Z�r . Then thereexists a normal Gau� period with the same parameters so that two elementsin Fqn represented in this normal basis 
an be multiplied withO(r � Y1�i�t(log ri � loglog ri)) or O(nk log (nk) loglog (nk))4



operations in Fq .The proof is given at the end of Se
tion 6.3 Towers of groups and �eldsLet � be a normal Gau� period of type (n;K) over Fq , and � the Frobeniusautomorphism of Fqn over Fq . Wassermann (1993), Bemerkung 3.1.2, observedthat for a prime Gau� period, q 7! � indu
es an isomorphism from Z�r =K toGal(Fqn : Fq ). This is also true for general Gau� periods.Let r0 � 2 be a divisor of r,�r0 : Z�r ! Z�r0 with �r0(a) = (a mod r0) (3.1)the 
anoni
al proje
tion of Z�r onto Z�r0, and �r0(K) the image of K � Z�runder this epimorphism. Thus �r0(K) is a subgroup of Z�r0. The order k0 of�r0(K) divides both k = #K and �(r0) = #Z�r0. The following lemma statesthat the 
anoni
al proje
tion gives a normal Gau� period in a sub�eld of Fqn .Lemma 3.2. Let � be a normal Gau� period of type (n;K) over Fq given by�, r0 � 2 a divisor of r, �r0 as in (3.1), k0 = #�r0(K), and n0 = �(r0)=k0. Thenn0 divides n, �r=r0 is a primitive r0th root of unity, and the Gau� period �0 oftype (n0; �r0(K)) over Fq with respe
t to �r=r0 is normal in Fqn0 over Fq .Proof. The 
anoni
al proje
tion �r0 is surje
tive, and hq;Ki = Z�r , hen
eh�r0(q); �r0(K)i = Z�r0. The square of group homomorphisms in Figure 3.1
ommutes. The top and right hand maps are surje
tive, and hen
e also thebottom one. It follows that n0 = #Z�r0=�r0(K) divides n = #Z�r =K. The other
laims are 
lear. �
-��r0Z�r =K Z�r0=�r0(K)?� ?�-�r0hq;Ki = Z�r Z�r0 = h�r0(q); �r0(K)i

Figure 3.1. Four proje
tion homomorphisms.The 
onne
tion between the group Z�r and the normal Gau� period in a sub-�eld plays an important rôle in what follows. We illustrate this in the 
ase of5



prime power Gau� periods. Let r be a prime power pe with e � 2, and let� be a primitive peth root of unity. We suppose that the subgroup K of Z�rde�nes a normal Gau� period � = Pa2KP0�s<e �aps of type (n;K) over Fqwith respe
t to �. Then hq;Ki = Z�pe. For 0 < ` < e, the element �` = �pe�` isa primitive p`th root of unity, and we set n` = �(p`)=#�p`(K). Then�` = Xa2�p`(K) X0�s<` �aps`is the Gau� period of type (n`; �p`(K)) over Fq with respe
t to �` by Lemma 3.2.Sin
e hq; �p`(K)i = Z�p`, the Gau� period �` is normal in Fqn` over Fq .Example 2.5 
ontinued. (ii) The 
anoni
al proje
tion �3 : Z�9 ! Z�3 mapsK = f1; 8g onto the subgroup �3(K) = f1; 2g of Z�3 , and �1 = �32�1 = �3 isa primitive third root of unity. Lemma 3.2 says that �1 = Pa2�3(K) �a1 =�3 + �6 = 1 is a normal Gau� period of type (1; f1; 2g) over F2 . In fa
t, wehave h2; f1; 2gi = Z�3 , and �1 is indeed a normal prime Gau� period. �3.1 Cy
lotomi
 polynomialsPrimitive roots of unity are related to a spe
ial 
lass of polynomials: the
y
lotomi
 polynomials; see Lidl & Niederreiter (1983), Se
tion 2.4 for details.When q is a prime power, r a positive integer 
oprime to q, and � a primitiverth root of unity over Fq , then�r = Y0<s<rg
d(s;r)=1(x� �s) 2 Fq [x℄is the rth 
y
lotomi
 polynomial over Fq . Sin
e the roots of �r are all �(r)distin
t primitive rth roots of unity, the degree of �r is �(r), and � 2 Fq�(r) .Over the �eld Q of rational numbers, the 
y
lotomi
 polynomial �r is alwaysirredu
ible. This is no longer true in the 
ase of a �nite �eld Fq with nonzero
hara
teristi
. But in this 
ase the fa
torization pattern is well-known.Fa
t 3.3 (Lidl & Niederreiter 1983, Theorem 2.47). Let q be a prime power
oprime to a positive integer r, and let N = ordr(q) be the order of q in Z�r .Then the rth 
y
lotomi
 polynomial �r 2 Fq [x℄ fa
tors into �(r)=N distin
tmoni
 irredu
ible polynomials of the same degree N .We denote the d = �(r)=N irredu
ible fa
tors by �1; : : : ; �d 2 Fq [x℄. By theChinese Remainder Theorem we have the isomorphism of Fq -algebras6



�0 : R = Fq [x℄=(�r) ! Fq [x℄=(�1)� � � � � Fq [x℄=(�d)A 7! (A mod �1; : : : ; A mod �d): (3.4)Sin
e �r(�) = 0 for any primitive rth root of unity � 2 Fq�(r) , we know thatthe minimal polynomial �� of � in Fq [x℄ is one of the �1; : : : ; �d. Then'� : Fq (�)! Fq [x℄=(��) with '� X0�i<N Ai� i! = X0�i<N Ai(xi mod ��)is the 
anoni
al isomorphism between the two images of FqN . The �eld Fq (�)is a sub�eld of Fq (�). Thus, we know the image of � in Fq [x℄=(��). The key forfast multipli
ation of Gau� periods lies in the 
hoi
e of a suitable preimage of� in R.For any i � d, let 
i 2 K be su
h that �i = �
i is a root of �i. Then we have� = Xa2K b(�a) = Xa2K b(�
ia) = Xa2K b(�ia);sin
e a 7! 
a is a bije
tion of K. Applying the inverse isomorphism � of �0, wehave the preimage� Xa2K b(xa mod �1); : : : ;Xa2K b(xa mod �d)! = Xa2K b(xa mod �r)of � in R. Finally, let '�1 ; : : : ; '�d be the 
anoni
al isomorphisms with �i = �
iand �i(�i) = 0 for 1 � i � d. We de�ne the homomorphism of Fq -algebras' : Fq (�) ! R = Fq [x℄=(�r)A 7! �('�1(A); : : : ; '�d(A)): (3.5)If A = P0�h<nAh�qh is given as a linear 
ombination of the 
onjugates of �,then '( X0�h<nAh�qh) = X0�i<nAi Xa2K b(xa mod �r):This map allows us to transfer multipli
ation in the normal basis representa-tion of Fqn = Fq (�) to multipli
ation in R, whi
h is just polynomial multipli-
ation modulo �r. Wonderful. The only drawba
k is that the original problemsize is n = dimFq Fqn , while the new problem size nk = �(r) = dimFqR islarger by a fa
tor of k. We want to keep this extraneous fa
tor k as small aspossible. 7



3.2 Field towers, tra
es, and normal elementsWe 
on
lude this se
tion by 
olle
ting some well-known properties on normalelements that are useful subsequently. The properties listed below are truenot only for normal Gau� periods but for all normal bases. We will dis
ussthe algorithmi
 aspe
ts for normal bases generated by Gau� periods in thesubsequent se
tions.3.2.1 The produ
t of normal elements.It is a well-known fa
t (see e.g. Menezes et al. (1993)) that normality is inher-ited along a tower of �eldsFq � Fqn1 � Fqn1n2 � � � � � Fqn1 ���nt ;whenever the degrees n1; : : : ; nt � 1 are pairwise 
oprime.Fa
t 3.6. Let n1 and n2 be two 
oprime positive integers, n = n1 � n2, and�i be a normal element in Fqni over Fq for i = 1; 2. Then � = �1 ��2 is normalin Fqn over Fq .Fa
t 3.6 shows a way to 
ompute the multipli
ation matrix TN of the normalbasis N = (�; : : : ; �qn1n2�1) if g
d(n1; n2) = 1 and the matri
es TNi are alreadygiven for i = 1; 2.Fa
t 3.7. Let n1, n2 and �1; �2 as in Fa
t 3.6 and set n = n1 �n2. Let TN1 =(uj1;h1)0�j1;h1<n1 and TN2 = (vj2;h2)0�j2;h2<n2 be the multipli
ation matri
es ofNi = f�qhi : 0 � h < nig for i = 1; 2.(i) The multipli
ation matrix TN = (tj;h)0�j;h<n of � = �1 � �2 is given bytj;h = uj1;h1 � vj2;h2where j � ji mod ni and h � hi mod ni for i = 1; 2.(ii) The density dN of TN is the produ
t of the densities dN1 and dN2 of TN1and TN2, respe
tively.(iii) The multipli
ation matrix TN 
an be 
al
ulated with dN = dN1 � dN2multipli
ations in Fq from TN1 and TN2.3.2.2 The tra
e of a normal element.The tra
e also inherits normality. The next fa
t is true for all Galois exten-sions over a �nite �eld, see Ha
henberger (1997), Lemma 5.3. Thus the tra
e8



map inherits normality downwards a �eld tower, while multipli
ation indu
esnormality upwards.Fa
t 3.8. Let n1 and n2 be two 
oprime positive integers and n = n1 � n2. If� is normal in Fqn over Fq , then Trqn=qn1 (�) is normal in Fqn1 over Fq .In the spe
ial 
ase where n = n1 � n2 is the produ
t of two 
oprime fa
torswe get some further useful properties. A proof of Lemma 3.9(i) is given inJungni
kel (1993), Lemma 5.1.8, and a spe
ial version of Lemma 3.9(ii) is
ited in Agnew et al. (1993) for optimal normal bases. The proof te
hniquewill be used extensively in our algorithms, in parti
ular analogs of the indexmaps 	n1 and 	n2.Lemma 3.9. Let n1 and n2 be 
oprime positive integers, n = n1 � n2, and let�1 and �2 be normal in Fqn1 and Fqn2 over Fq , respe
tively. Then(i) Trqn=qn2 (�1 � �2) = Trqn1=q(�1) � �2 and(ii) �2 is normal in Fqn over Fqn1 .Proof. (i) We haveTrqn=qn2 (�1 � �2) = X0�i<n=n2(�1 � �2)qin2= X0�i<n=n2 �qin21 � �qin22 = �2 � X0�i<n=n2 �qin21sin
e �2 2 Fqn2 , that is, �qin22 = �2 for all 1 � i < nn2 . Moreover, themap  n2 : f0; : : : ; n1� 1g ! f0; : : : ; n1� 1g with  n2(i) = n2i remn1 is abije
tion and hen
eX0�i<n=n2 �qin21 = X0�i<n1 �qi1 = Trqn1=q(�1):(ii) Sin
e N2 = (�2; : : : ; �qn2�12 ) is a basis for Fqn2 over Fq , the set N2 is a basisof Fqn over Fqn1 . By assumption, n1 and n2 are 
oprime, and hen
e themap  n1 : f0; : : : ; n2 � 1g ! f0; : : : ; n2 � 1g with  n1(i) = n1i remn2 isa bije
tion. Therefore, the set f�qn1h2 : 0 � h < n2g = f�qh2 : 0 � h < n2gis the set of all n2 
onjugates of �2 over Fqn1 , and N2 is a normal basisover Fqn1 as 
laimed. �4 The prime power 
aseWe are now ready to develop an algorithm that integrates polynomial multipli-
ation in a normal basis representation whenever the normal element is a Gau�9
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Fqn1n2Fqn1 Fqn2







HHH HHH�1 �2�1�2�2

Figure 3.2. A tower of �elds given by normal elements if g
d(n1; n2) = 1.period. In this se
tion, we restri
t to the 
ase where � = Pa2KP0�s<e �aps isa prime or prime power Gau� period of type (n;K) over Fq , that is, r = pe.The main result of this se
tion generalizes the approa
h that was des
ribed inGao et al. (1995) and Gao et al. (2000) for prime Gau� periods.Result 4.1. Let p be a prime, e be a positive integer, and � be a normalprime power Gau� period of type (n;K) over Fq , where K is a subgroup ofZ�pe. Two elements of Fqn expressed in the normal basis N = (�; : : : ; �qn�1)
an be multiplied with at most O(pe log pe � loglog pe) operations in Fq .The underlying algorithm is one of the 
ornerstones of this paper. The al-gorithm 
onsists of three parts: multipli
ation in Fq [x℄=(xpe � 1), sorting theprodu
t to identify prime (power) Gau� periods in sub�elds of Fqn , and thenapplying the tra
e map to return to the linear 
ombination of the 
onjugatesof the prime (power) Gau� period.4.1 An algorithm for fast multipli
ationWe start with an example illustrating the algorithmi
 ideas.Example 4.2. Let � be a primitive 9th root of unity, and let � be the normalGau� period of type (3; f1; 8g) over F2 as in Example 2.5(ii). The 
onjugatesof � = � + �3+ �8+ �6 are �21 = �2+ �6+ �7+ �3 and �22 = �4+ �3+ �5+ �6.(i) To 
al
ulate the produ
t �22 � � as linear 
ombination of �; �2; �4, weregard the 
onjugates of � as elements of F2(�). The produ
t in thisextension �eld is�4 � � = (�4 + �3 + �5 + �6) � (� + �3 + �8 + �6) = � + �8Both � and �8 are summands of �. We 
omplete the missing terms to get�4 � � = (� + �3 + �8 + �6) + �3 + �6:10



(ii) Observe that �3 and �6 are primitive third roots of unity over F2 . Weapply the 
anoni
al proje
tion �3 : Z�9 ! Z�3 as de�ned in (3.1). Then�3(f1; 8g) = f1; 2g = Z�3 and hen
e n0 = �(3)=#f1; 2g = 1. Thus, theproje
tion generates the prime Gau� period �1 = �3 + (�3)2 over F2 . Wesubstitute �3 + �6 by �1 to get�4 � � = � + �1:(iii) In order to express �1 as a linear 
ombination of the 
onjugates of � we
ompute the tra
e of � over F2 :Tr23=21(�) = X0�i<3�2i = � + �2 + �4= (� + �3 + �8 + �6) + (�2 + �6 + �7 + �3) + (�4 + �3 + �5 + �6)= � + �7 + �4 + �8 + �2 + �5 + �3 + �6:We sort the summands and apply the fa
t that 0 = �3(�3) = 1 + �3 + �6to get Tr23=21(�) = � � (1 + �6 + �3) + �2 � (�6 + 1 + �3) + �3 + �6= �3 + �6 = �1:Indeed, the tra
e des
ribes a linear 
ombination of the 
onjugates of �for �1. We insert this linear 
ombination�4 � � = � + �1 = � + Tr23=21(�) = �2 + �4whi
h 
ompletes the 
omputation. �We will show that the map ' : Fq (�) ! R = Fq [x℄=(�pe) as in 3.5 is in fa
tan inje
tive ring homomorphism if � is normal over Fq .4.1.1 A sum of Gau� periods.We use the following notation.Notation 4.3. Let � be a primitive peth root of unity. For 0 < ` � e let�p` be the 
anoni
al proje
tion from Z�pe onto Z�p`. Set k` = #�p`(K) andn` = �(p`)=k`. The Gau� period of type (n`; �p`(K)) over Fq with respe
t to�` = �pe�` is denoted by �`. We set n0 = k0 = 1.We take a look at the summands of the produ
t '(A) � '(B), and want towrite a preimage of ' of this produ
t in Fq [x℄=(xpe � 1) in a parti
ular way.We note that xa � xb mod (xpe � 1) if a � b mod pe.11



For all 0 � i < n, we de�ne the positive integersu(i)`;h=#fa 2 K : 1 + aqi 2 pe�`qhKg for 0 < ` � e and 0 � h < n`;v(i)`;h =#fa 2 K : 1 + ap`qi 2 qhKg for 0 < ` < e and 0 � h < n`: (4.4)Furthermore, we setu(i)0;0 = 8><>: 1 if there is a 2 qiK su
h that 1 + aqi � 0 mod pe, and0 otherwise.These numbers de�ne the spe
ial form of the preimage in Fq [x℄=(xpe � 1) of'(A) � '(B) that we are looking for. Subsequently, we suppose that hq;Ki =Z�pe. Sin
e ' is additive, it is suÆ
ient to look at the following produ
t. Ageneralization is shown in Proposition 4.10.Lemma 4.5. Let 0 � i < n and F be the prime sub�eld of Fq . Then there areC(i)0 and C(i)`;h in F for 0 < ` � e and 0 � h < n` su
h that Xa2K X0�s<exapsqi! �  Xb2K X0�s0<exbps0!�C(i)0 + X0<`�e X0�h<n`C(i)`;h Xa2�p`(K) X0�s<`(xpe�`)aps!qh mod (xpe � 1):Sin
e � is a root of (xpe � 1), the produ
t of �qi times � 
an be written as asum of those Gau� periods �` whi
h are given by the 
anoni
al proje
tion ofK onto Z�p`.Corollary 4.6. Let � be the Gau� period of type (n;K) over Fq with respe
tto �. For 0 < ` � e, let �` be the Gau� period of type (n`; �p`(K)) over Fq withrespe
t to �pe�`. For 0 � i < n, let C(i)0 and C(i)`;h for 0 � ` < e and 0 � h < n`as in Lemma 4.5. Then�qi � �=C(i)0 + X0<`�e X0�h<n`C(i)`;h�qh` :We start with a proposition that des
ribes the 
oeÆ
ients of the preimage of'(A) � '(B) in Fq [x℄=(xpe � 1) in terms of u(i)`;h and v(i)`;h.12



Proposition 4.7. Let 0 � i < n be �xed and u(i)`;h and v(i)`;h as in (4.4). SetC 00 = k �P0�`�e �(e� `) �P0�h<n` u(i)`;h� andC 0pe�`qh = kk` � �P`�s�e u(i)s;h +P0<s<`(v(i)s;h + v(n�i)s;h�i)�for all 0 < ` � e and 0 � h < n`:Then Xa2K X0�s<exapsqi! �  Xb2K X0�s0<exbps0!�C 00 + X0<`�e X0�h<n`C 0pe�`qh Xa2�p`(K)(xpe�`)aqh mod (xpe � 1):Proof. A straightforward 
omputation gives Xa2K0�s<exapsqi! �  Xb2K0�s0<exbps0! = Xa;b2K0�s;s0<exapsqi+bps0= Xa;b2K X0�s<exapsqi+bps+0 + X0<`<e0�s<e�`(xaps+`qi+bps + xapsqi+bps+`)!� Xa;b2K0�s<exbps(1+aqi) + Xa;b2K0<`<e0�s<e�`xbps(1+ap`qi)+ Xa;b2K0<`<e0�s<e�`xapsqi(1+bp`qn�i) mod (xpe � 1):We 
onsider the three major summands separately.Fix a 2 K. Then 1 + aqi is either equal 0 modulo pe or there are 0 < ` � eand 0 � h < n` su
h that 1 + aqi 2 pe�`qhK � Zpe. ThenXb2K0�s<exbps(1+aqi) � Xb2K0�s<ex0 � ke mod (xpe � 1)if 1 + aqi � 0 mod pe, and otherwise we have13



Xb2K0�s<exbps(1+aqi)� Xb2K0�s<exbpspe�`qh �Xb2K X0�s<`xbpe�(`�s)qh + X`�s<exbpe+(s�`)qh!� Xb2K0�s<`xbpe�(`�s)qh +Xb2K(e� `)� X0<s�` kks Xb2�ps (K)(xpe�s)bqh + k(e� `) mod (xpe � 1):If a runs through K then we get the �rst intermediate result asXa2K Xb2K0�s<e xbps(1+aqi)!� X0<`�e0�h<n` u(i)`;h �  X0<s�` kks Xb2�ps(K)(xpe�s)bqh + k(e� `)!+ u(i)0;0ke� k � X0�`<e (e� `) � X0�h<n` u(i)`;h!+ X0<`�e0�h<n` kk` X`�s�eu(i)s;h! Xb2�p`(K)(xpe�`)b!qh mod (xpe � 1):For the se
ond sum, we �x a 2 K and 0 < ` < e. Sin
e 1 + ap`qh 2 Z�pe andhq;Ki = Z�pe, there is 0 � h < n su
h that 1 + ap`qi 2 qhK. Then we getXb2K0�s<e�`xbps(1+ap`qi) � Xb2K0�s<e�`xbpsqh� Xb2K`<s�e(xpe�s)bqh � X`<s�e kks Xb2�ps(K)(xpe�s)bqh mod (xpe � 1):If a runs through K then the sum over all 0 < ` < e is given byXa2K0<`<e Xb2K0�s<e�`xbps(1+ap`qi)!� X0<`<e0�h<n` v(i)`;h �  X`<s�e kks � Xb2�ps (K)(xpe�s)bqh!� X1<`�e0�h<n` kk` X0<s<` v(i)s;h! Xb2�p`(K)(xpe�`)b!qh mod (xpe � 1):By 
hanging the rôles of a and b and substituting i by n�i, we get the formula14



for the third summand:Xb2K0<`<e Xa2K0�s<e�`xaps(1+bp`qn�i)!qi
� X1<`�e0�h<n` kk` X0<s<` v(n�i)s;h ! Xa2�p`(K)(xpe�`)a!qi+h
� X1<`�e0�h<n` kk` X0<s<` v(n�i)s;h�i! Xa2�p`(K)(xpe�`)a!qh mod (xpe � 1): �

With the help of this proposition, we 
an group all summands of the preimageof '(A) � '(B) in Fq [x℄=(xpe � 1)|ex
ept the 
onstant 
oeÆ
ient|in termsof Pa2�p` (K)(xpe�`)aqh with 0 < ` � e and 0 � h < n`. Let 0 � i < n be �xedas before; we omit it in the notation. Now our approa
h is to sort these termsinto sums whi
h are preimages of �`, for 0 < ` � e, in R. This is obvious buta little bit te
hni
al. Thus, we want to de�ne two useful sequen
es of integersfor all 0 < ` � e, ` � s < e, and 0 � h < n`:D(e)`;h = 0;C`;h = C 0pe�`qh �D(`)`;h;D(s)`;h = D(s+1)`;h + ks+1k` P0�j<ns+1n` Cs+1;h+jn`: (4.8)
Informally speaking, the D(s)`;h are those parts of the C 0pe�`qh whi
h have alreadybeen identi�ed as Gau� periods. We give some alternative 
omputations of theD(s)`;h to illustrate this.Lemma 4.9. Let D(s)`;h and C`;h be as above. Then(i) D(s)`;h = Ps�s0<e ks0+1k` �P0�j<ns0+1n` Cs0+1;h+jn`� for 0 < ` � s < e,(ii) D(`+1)`;h = k`+1k` P0�j<n`+1n` D(`+1)`+1;h+jn` for 0 < ` < e,(iii) D(`)`;h = k`+1k` P0�j<n`+1n` �D(`+1)`+1;h+jn` + C`+1;h+jn`� for 0 < ` < e.Proof. (i) We pro
eed by indu
tion on s. For s = e� 1, by de�nition we15



have for all 0 < ` < e thatD(e�1)`;h = D(e)`;h + kek` X0�j<nen` Ce;h+jn`= Xe�1�s0<e ks0+1k`  X0�j<ns0+1n` Cs0+1;h+jn`!;using D(e)`;h = 0. We suppose that the 
laimed formula is also true for1 < s + 1 < e. Inserting the indu
tion hypothesis into the de�nition ofD(s)`;h givesD(s)`;h = D(s+1)`;h + ks+1k`  X0�j<ns+1n` Cs+1;h+jn`!= Xs+1�s0<e ks0+1k`  X0�j<ns0+1n` Cs0+1;h+jn`!+ ks+1k` X0�j<ns+1n` Cs+1;h+jn`= Xs�s0<e ks0+1k`  X0�j<ns0+1n` Cs0+1;h+jn`!;and the indu
tion step is 
omplete.(ii) Let 0 < ` < e. ThenD(`+1)`;h = X`+1�s0<e ks0+1k`  X0�j<ns0+1n` Cs0+1;h+jn`!by (i). We sort the summands and use (i) again to obtainD(`+1)`;h = X`+1�s0<e k`+1k` � ks0+1k`+1  X0�j<n`+1n` X0�i<ns0+1n`+1 Cs0+1;h+(jn`+in`+1)!
= k`+1k` � X0�j<n`+1n`  X`+1�s0<e ks0+1k`+1  X0�i<ns0+1n`+1 Cs0+1;(h+jn`)+in`+1!!= k`+1k` � X0�j<n`+1n` D(`+1)`+1;h+jn`:(iii) We use indu
tion on `. For ` = e� 1, we have by de�nitionD(e�1)e�1;h = D(e)e�1;h + keke�1 X0�j< nene�1 Ce;h+jne�1;16



whi
h is just the 
laimed formula sin
e D(e)`;h = 0 for all 0 < ` � e. Weassume that the 
laim also holds for 1 < ` + 1 < e. Then (ii) givesD(`)`;h = D(`+1)`;h + k`+1k` X0�j<n`+1n` C`+1;h+jn`= k`+1k` X0�j<n`+1n` �D(`+1)`+1;h+jn` + C`+1;h+jn`� : �We prove with the help of these sequen
es D(s)`;h and C`;h that the preimage of'(A) � '(B) in Fq [x℄=(xpe � 1) 
an be written as a sum of Gau� periods. Thefollowing proposition in
ludes Lemma 4.5 as the spe
ial 
ase `0 = 0.Proposition 4.10. Let C`;h and D(s)`;h be as in (4.8), and 0 � `0 � e. Then Xa2K0�s<exapsqi! �  Xb2K0�s0<exbps0!�C 00 X`0<`�e0�h<n`C`;h �  Xa2�p`(K) X0�s<`(xpe�`)aps!qh+ X0<`�`00�h<n` C 0pe�`qh �D(`0)`;h ! �  Xa2�p`(K) xpe�`aqh! mod (xpe � 1)for all 0 � `0 � e.Proof. We use indu
tion on `0. For `0 = e, the right hand side of the
laimed equation isC 00 + 0 + X0<`�e0�h<n` C 0pe�`qh �D(e)`;h! �  Xa2�p`(K) xpe�`aqh!whi
h is just the right hand side of the 
ongruen
e in Proposition 4.7, sin
e allD(e)`;h are zero. Now, we suppose that the formula is true for an ` 2 N>0 with0 < `0 � ` � e. Then for all 0 � h < n`017



 C 0pe�`0qh �D(`0)`0;h! �  Xa2�p`0 (K) xpe�`0aqh!(4:8)� C`0;h � Xa2�p`0 (K) X0�s<`0 xpe�`0apsqh � X1�s<`0 xpe�`0apsqh!�  C`0;h � Xa2�p`0 (K) X0�s<`0 xpe�`0apsqh!�  C`0;h � Xa2�p`0 (K) X1�s<`0 xpe�(`0�s)aqh!mod (xpe � 1):We sort the summands by adding the �rst term of the di�eren
e to the already
olle
ted summandsC 00 + X`0<`�e X0�h<n`C`;h �  Xa2�p`(K) X0�s<`(xpe�`)aps!qh+ X0�h<n`0 C`0;h � Xa2�p`0 (K) X0�s<`0 xpe�`0apsqh�C 00 + X`0�`�e X0�h<n`C`;h �  Xa2�p`(K) X0�s<`(xpe�`)aps!qh mod (xpe � 1):The remaining part isX0<`<`00�h<n` C 0pe�`qh �D(`0)`;h ! �  Xa2�p`(K) xpe�`aqh!� X0�h<n`0 C`0;h � Xa2�p`0 (K) X1�s<`0 xpe�(`0�s)aqh� X0<`<`00�h<n` C 0pe�`qh �D(`0)`;h ! �  Xa2�p`(K) xpe�`aqh!� X0�h<n`0 C`0;h � X1�s<`0 k`0ks Xa2�ps(K)(xpe�s)aqh� X0<`<`00�h<n` C 0pe�`qh �  D(`0)`;h + k`0k` � X0�j<n`0n` C`0;h+jn`!!� Xa2�p`(K) xpe�`aqh! mod (xpe � 1):But D(`0)`;h + k`0k` P0�i<n`0n` C`0;h+in` = D(`0�1)`;h by 
onstru
tion in (4.8), and theindu
tion step follows. �18



4.1.2 Applying the tra
e map.The last ingredient is the tra
e map. It provides a way of writing a normalGau� period �` 2 Fqn` as a linear 
ombination of the elements of the normalbasis N = (�; �q; : : : ; �qn�1) of Fqn .Lemma 4.11. Let r = pe be a prime power, and let � be a prime power Gau�period of type (n;K) over Fq with respe
t to �, where hq;Ki = Z�pe. For any0 < ` � e, let �` be the Gau� period of type (n`; �p`(K)) over Fq with respe
tto �pe�`. Then X0�i< nn` �qin` = pe�`�` for 0 < ` � e:Furthermore, we have X0�i<n�qi = �pe�1:We again derive these formulas step by step, and will give a proof of Lemma 4.11as a 
on
lusion at the end of this paragraph. Moreover, we show that thislemma in
ludes the redu
tion modulo �pe we are looking for. We start byde�ning a set of polynomials �0; �`;b 2 Fq [x℄ for 0 < ` < e and b 2 �p`(K).Sin
e we are still working in the ring Fq [x℄=(xpe � 1), we assume all polynomi-als to be redu
ed modulo xpe � 1, that is, we identify (a mod pe) 2 Z�pe withits 
anoni
al representative �a 2 Z, 0 < �a < pe, su
h that �a � a mod pe. For0 < ` < e, 0 � i < n`+1=n`, and b 2 �p`(K), we 
onsiderI`;b;i = fa 2 �p`+1(K) : a � q�in`b mod p`g;the set of all elements in �p`+1(K) that are preimages of q�in`b under the
anoni
al proje
tion � : Z�p`+1 ! Z�p`. For 0 < ` < e and b 2 �p`(K), we set�0 = P0�i<n1 Pa2�p(K)(xpe�1)aqi + 1 2 Fq [x℄ and�`;b = P0�i<n`+1n` Pa2I`;b;i P0�s<`+1(xpe�(`+1))apsqin`�p �P0�s<`(xpe�`)bps 2 Fq [x℄: (4.12)
Proposition 4.13. For 0 < ` < e, let �0 and �`;b be the polynomials as in(4.12) for all b 2 �p`(K). Then �pe divides �0 and �`;b.Proof. Fix 0 < ` < e, and let � : Z�p`+1 ! Z�p` with �(a) = (a mod p`)the 
anoni
al proje
tion from Z�p`+1 onto Z�p`. Sin
e we have �p` = � Æ �p`+1,the proje
tion is a surje
tive homomorphism. Thus, ea
h element b 2 Z�p`has a preimage set ��1(b) = fa 2 Z�p`+1 : a � b mod p`g of order #��1(b) =19



#Z�p`+1#Z�p` = p`(p�1)p`�1(p�1) = p. One 
an easily 
he
k that the kernel of � is ker � =f(1 + p`z) mod p`+1 : 0 � z < pg. This gives a se
ond way to express thepreimage set of b in Z�p`+1:��1(b) = b � ker � = f(b+ zp`) mod p`+1 : 0 � z < pg: (4.14)Here we use that the map  b : f0; : : : ; p � 1g ! f0; : : : ; p � 1g with  b(z) =bz rem p is a permutation be
ause g
d(b; p) = 1.We 
an also give a des
ription of ��1(b) involving I`;b;i. Sin
e we know thatqn` 2 �p`(K), also the inverse of qin` is an element in �p`(K). Thus, the set I`;b;i
ontains k`+1k` elements. For 0 < i < n`+1n` and a 2 I`;b;i, we have �(qin` � a) �qin` � q�in`b � b mod p`. Hen
e, the set fqin`a : 0 � i < n`+1n` and a 2 I`;b;ig isa subset of ��1(b). But U0�i<n`+1 qi�p`+1(K) is a partition of Z�p`+1, and ea
hsubset has n`+1n` � k`+1k` = �(p`+1)�(p`) = p di�erent elements. Therefore, equality holds:��1(b) =�qin`a : 0 � i < n`+1n` and a 2 I`;b;i� : (4.15)With the help of these formulas we have for 0 < ` < e and all b 2 �p`(K):X0�i<n`+1n` Xa2I`;b;i0�s<`+1(xpe�(`+1))aqin`ps(4:15)� Xa2��1(b)0�s<`+1(xpe�(`+1))aps (4:14)� X0�z<p0�s<`+1(xpe�(`+1))ps(b+zp`)� X0�s<`+1 (xpe�(`+1))bps �  X0�z<p(xpe�1)zps!! mod (xpe � 1)For s = 0, the sum in the inner bra
kets vanishes modulo �pe sin
eX0�z<p(xpe�1)z = xpe � 1xpe�1 � 1 � 0 mod �pe :For s � 1, we simplify modulo �pe :X0�z<p(xpe�1)zp1+(s�1) � X0�z<p 1zps�1 � p mod �pe:Inserting both formulas gives 20



X0�i<n`+1n` Xa2I`;b;i X0�s<`+1(xpe�(`+1))apsqin`� (xpe�(`+1))bp0 � 0 + X1�s<`+1(xpe�(`+1))bps � p� p � X0�s<`(xpe�`)bps mod �pe : (4.16)It follows by 
onstru
tion of �`;b in (4.12) that �pe is a divisor of �`;b for0 < ` < e and b 2 �p`(K). For �0 we haveXa2�p(K)0�i<n1 (xpe�1)aqi = Xa2Z�p (xpe�1)a= X0�z<p(xpe�1)z � 1 = xpe � 1xpe�1 � 1 � 1 � �1 mod �pe ;sin
e hq; �p(K)i = Z�p , and the 
laim follows also for �0. �Let �pe�` = �` be a primitive p`th root of unity for 0 � ` < e. Sin
e e� ` � 1and (�`)pe�1 = �pe�`+e�1 = 1, a simple 
omputation gives�0(�`) = Xa2�p(K) X0�i<n1(�pe�1` )aqi + 1 = n1k1 + 1 = �(p) + 1 = p 6= 0 in Fq :Thus, g
d(�0;�p`) = 1 for 0 � ` < e and for all b 2 �p`(K) we haveg
d(�0; �1;b; : : : ; �e�1;b; xpe � 1) = �pe in Fq [x℄: (4.17)Sin
e qin` 2 �p`(K), we 
an write ��1(�p`(K)) as��1(�p`(K)) =�p`+1(K) = ℄0�i<n`+1n` ℄b2�p`(K) I`;b;i:A dire
t 
onsequen
e is that for 0 < ` < e�` = P0�i<n`+1n` Pa2�p`+1(K)P0�s<`+1(xpe�(`+1))apsqin`�p �Pb2�p`(K)P0�s<`(xpe�`)bps (4.18)is divisible by �pe .Remark 4.19. Su

essively applying (4.12) and (4.18), respe
tively, we 
antransform the equation given in Lemma 4.5 into0�Xa2K X0�s<exapsqi1A �0�Xb2K X0�s0<e xbps01A � X0�h<nC 0e;h �0�Xa2K X0�s<exaps1Aqh mod �pe21



where C 0e;h depends on 0 � i < n.This is indeed a way to 
ompute a suitable preimage of '(A) � '(B) in R =Fq [x℄=(�pe). We observe that the �nal formula is due to a basis of R whi
hsupports the ba
k-transformation into a linear 
ombination of the 
onjugatesof a normal Gau� period �.Lemma 4.20. Let � = (x mod �pe) and R = Fq [x℄=(�pe). If Z�pe = hq;Ki fora subgroup K of Z�pe thenB = 8<: X0�s<e �aps : a 2 Z�pe9=;is a basis of R.Proof. The set B0 = f1; �; : : : ; ��(pe)�1g is a basis of R. Sin
e B has atmost #B0 = �(pe) elements, it is suÆ
ient to prove that B0 � hBi.By 
onstru
tion, we have P0�s<e �aps 2 hBi for a 2 Z�pe. By indu
tion on `, we�nd with Proposition 4.13 that for 0 < ` < e we have P0�s<`(�pe�`)aps 2 hBifor a 2 Z�p`, sin
e �`;b(�) = 0. Furthermore, we have �1 2 hBi.Now let 1 � a < �(pe). Then there exist uniquely determined 0 < ` � e and
 2 Z�p` su
h that a � pe�`
 mod pe, andX0�s<`(�pe�`)
ps = �
pe�` + X1�s<`(�pe�`)
ps = �
pe�` + X0�s<`�1(�pe�(`+1))
ps:But bothP0�s<`(�pe�`)
ps andP0�s<`�1(�pe�`+1)
ps are elements of hBi. Hen
e,�
pe�` = �a 2 hBi for all 0 � a < �(pe), and the 
laim follows. �Now we translate this result into the language of tra
es that has motivated the
hoi
e of �`;b. Let Trqn`=qn`�1 be the tra
e map of Fqn` into Fqn`�1 for 0 < ` � e;here n0 = 1 by de�nition. We haveTrqn`=qn`�1 (�`) = X0�i<n`=n`�1 �qin`�1` :Sin
e � is a root of �pe, we 
an apply (4.18) to �` = Pa2�p`K0�s<` (�pe�`)aps. ThenTrqn`+1=qn` (�`+1) = p�` for all 1 � ` < e: (4.21)For �0, we simply have �0(�) = 0 andTrqn1=q(�1) = �1: (4.22)22



The tra
e map is transitive, so that Trqn=qn` (�) = Trqn`+1=qn` (Trqn=qn`+1 (�)).We use this to prove Lemma 4.11 by indu
tion on 0 � ` � e. The 
ase ` = 0is also 
alled the absolute tra
e.Proof (of Lemma 4.11). For ` = e, we have Trqn=qne (�) = Trqne=qne (�) =�e sin
e n = ne. Now we suppose that the 
laim is true for an 1 < ` < e. ThenTrqn=qn` (�`+1)=Trqn`+1=qn` (pe�(`+1)�`+1)= pe�(`+1)Trqn`+1=qn` (�`+1) (4:21)= pe�(`+1)(p�`):For ` = 0 we get Trqn=q(�) = pe�1Trqn1=q(�1) (4:22)= �pe�1 in the same way. �We �nally rewrite Remark 4.19 inserting the root � of �pe .Remark 4.23. The primitive peth root of unity � is a zero of �pe , and wehave �qi � � = X0�h<nC 0e;h�qhfor all 0 � i < n. The C 0e;h depend on the given 0 � i < n. They areelements of the prime sub�eld F of Fq be
ause C(i)pe�`qh 2 F by Lemma 4.5 andall manipulations on the 
oeÆ
ients are done in F. Thus, the multipli
ationmatrix TN has entries in F.4.1.3 The 
omplete algorithm.We have presented all parts of the algorithm, and now summarize the 
ompletemultipli
ation routine.Algorithm 4.24. The prime power 
ase.Input: A normal prime power Gau� period � of type (n;K) over Fq with Ka subgroup of Z�pe of order k, and two elements A = P0�i<nAi�qi andB = P0�i<nBi�qi of Fqn with 
oeÆ
ients Ai; Bi 2 Fq for 0 � i < n.Output: The produ
t C = P0�i<nCi�qi of A and B with 
oeÆ
ients Ci 2 Fqfor 0 � i < n.Transformation from Fqn into Fq [x℄=(xpe � 1):1. A0j  0 and B0j  0 for all 0 < j < pe.2. For all 0 � i < n and a 2 K do set j = aqi rem pe and A0j  Ai andB0j  Bi.3. For 0 < ` < e and all i 2 Z�pe�(`�1) do4. set j = i � p` rem pe and A0j  A0j + A0i, B0j  B0j +B0i.5. Set A0 = P1�j<pe A0jxj and B0 = P1�j<pe B0jxj.Multipli
ation in Fq [x℄=(xpe � 1):23



6. Compute C 0 = P2�j<2pe�1 C 0jxj  A0 �B0 with (fast) polynomial multipli-
ation in Fq [x℄.7. Redu
e C 0 modulo xpe � 1: For 2 � j < pe � 1 do C 0j  C 0j + C 0j+pe. SetC 00 = C 0pe, C 01 = C 0pe+1, C 0 = P0�j<pe C 0jxj.Write the produ
t as a sum of Gau� periods in Fq [x℄=(xpe � 1):8. Set C0 = C 00.9. For all 0 < ` � e and 0 � h < n do D(`)`;h  0 and Ce;h  C 0qh.10. For ` from e� 1 down to 1 do 11{1411. For 0 � h < n` do12. D(`)`;h  k`+1k` �P0�j<n`+1n` (D(`+1)`+1;h+jn` + C`+1;h+jn`).13. For 0 � h < n` do14. C`;h  C 0pe�`qh �D(`)`;h.15. Set C 00 = C0 + P0<`�eP0�h<n` C`;h �Pa2�p`(K)P0�s<`(xpe�`)aps�qh mod(xpe � 1).Redu
tion modulo �pe 2 Fq [x℄ applying the tra
e map:16. For 0 � h < n1 do C1;h  C1;h � C0.17. For 1 � ` < e and 0 � h < n` do18. For 0 � i < n`+1n` do C`+1;h+in`  C`+1;h+in` + p�1 � C`;h.Ba
k transformation from R = Fq [x℄=(�pe) into Fqn :19. For 0 � h < n do set Ch = Ce;h.20. Return C = P0�h<n Ch�qh.Lemma 4.25. Algorithm 4.24 works as spe
i�ed.Proof. The 
omputation of the transformation in steps 1{5 follows thede�nition of Gau� periods. The multipli
ation in steps 6{7 in Fq [x℄=(xpe � 1)generates a preimage of the produ
t of A�B. To 
ompute the redu
tion modulo�pe , we apply the reordering of the summands a

ording to Proposition 4.10in steps 8{15. Noti
e that we 
ompute only the D(`)`;h for 1 � ` < e a

ordingto Lemma 4.9(iii). These are suÆ
ient to get all 
oeÆ
ients of Lemma 4.5,see (4.8). The redu
tion in steps 16{18 is done a

ording to (4.12) and (4.18),respe
tively. Thus, we get the preimage of A � B in the ring R = Fq [x℄=(�pe)under the isomorphism � as stated in Remark 4.19. The �nal ba
k trans-formation (steps 19{20) uses the fa
t that C is a linear 
ombination of the
onjugates of � as 
laimed in Remark 4.23. �It remains to 
ount the number of operations in Fq . M(n) denotes a multi-pli
ation time, so that two polynomials in Fq [x℄ of degree at most n 
an bemultiplied with O(M(n)) operations in Fq . We may useM(n) = n logn log lognby S
h�onhage & Strassen (1971) and S
h�onhage (1977); see also Cantor (1989).We re
all that n` � �(p`) for 1 � ` � e. Furthermore, the teles
oping sum24



below is useful:X1�`�e�(p`) = X1�`�e(p` � p`�1) = pe + X1�`<e p` � X1�`<e p` � p0 = pe � 1:We have the following estimates for ea
h part of the algorithm. We emphasizethe prime 
ase e = 1 sin
e some steps are omitted in this spe
ial situation.� The transformation (steps 1{5) is 
al
ulated with 2 additions for ea
h i 2Z�pe�(`�1) where 0 < ` < e. This results in a total of at mostX0<`<e 2�(pe�(`�1)) = 2 X2�`�e�(p`) = 2(pe � 1� �(p)) = 2pe � 2poperations in Fq . For the prime 
ase e = 1 we have 2(pe�p) = 0 operations.� Sin
e both A0 and B0 have 
onstant 
oeÆ
ient zero, the multipli
ation mod-ulo xpe � 1 in steps 6{7 
an be done withM(pe � 1) + (pe � 3)operations. The se
ond term 
ounts the additions. If e = 1 then p � 1 =�(p) = nk.� The sorting of the summands in steps 8{15 is omitted for the prime 
asee = 1. Otherwise e � 2 and we may assume that k`+1=k` is pre
omputedfor all 0 < ` < e. Then the number of operations is bounded byX1�`<e0�h<n`0BB�1 + n`+1n` � 1 + X0�i<n`+1n` 1 + 11CCA=2 X1�`<en`+1 + X1�`<en` � 2 X2�`�e�(p`) + X1�`<e�(p`)= 2(pe � p) + pe�1 � 1:� The tra
e is applied in steps 16{18. Step 16 is exe
uted for all e � 1 withn1 � p � 1 operations. For e = 1, we have n1 = n. If e � 2 the subsequentiterative 
omputation of the tra
e map in steps 17{18 
an be done withX1�`<e0�h<n` X0�i<n`+1n` 2 = 2 X2�`�en` � 2 X2�`�e�(p`) = 2(pe � p)further operations if we suppose p�1 to be pre
omputed.� The ba
k-transformation (steps 19{20) 
an be done without operations inFq .We summarize this detailed 
ost analysis in the next theorem.25



Theorem 4.26. Let q be a prime power 
oprime to a prime p, and e a positiveinteger su
h that there exists a normal Gau� period � of type (n;K) over Fq ,where K is a subgroup of Z�pe. In the normal basis representation with respe
tto N = (�; : : : ; �qn�1), two elements of Fq 
an be multiplied with at mostM(pe � 1) + 7pe + pe�1 � 6p� 4 + n � M(pe) + 8pe 2 O(M(pe))operations in Fq .We remark that all divisions in the algorithm (steps 12 and 18) are performedin the prime sub�eld of Fqn . The only operations that are performed in Fq areadditions, subtra
tions, and multipli
ations.The result of Gao et al. (1995, 2000) for the prime 
ase kn = '(p) = '(pe) isa 
orollary.Corollary 4.27 (Gao et al. 2000, Theorem 4.1). Let Fqn be given by a nor-mal basis N = (�; : : : ; �qn�1), where � is a prime Gau� period of type (n; k)over Fq . Then two elements of Fq given as a linear 
ombination of the basiselements 
an be multiplied with at mostM(kn) + (k + 1)n� 3operations in Fq .5 De
omposable Gau� periodsThe main work in our 
onne
tion between polynomial arithmeti
 and Gau�periods is for a spe
ial 
ase, namely de
omposable Gau� periods, the topi
 ofthis se
tion. The general 
ase is dealt with later.Let � be a normal Gau� period of type (n;K) over Fq and r = r1 � � � rt theprime power de
omposition as in (2.2), so thatZ�r �= Z�r1 � � � � � Z�rt;K � �r1(K)� � � � � �rt(K): (5.1)Sometimes, K equals this dire
t sum of its proje
tions.Example 2.5 
ontinued. (iii) Re
all the two subgroupsK1 = f1; 26g �= f1; 8g � f1g = �9(K1)� �5(K1);K2 = f1; 44g 6= f1; 19; 26; 44g �= f1; 8g � f1; 4g = �9(K2)� �5(K2)26



of Z�45. Both generate normal Gau� periods in F212 over F2 . Thus K1 is thedire
t sum of its proje
ted images while K2 is not. �Definition 5.2. Let r � 2 be an integer with prime power de
ompositionr = r1 � � � rt, and let K be a subgroup of Z�r .(i) Let �ri : Z�r ! Z�ri for 1 � i � t be the 
anoni
al proje
tion. The sub-group K is 
alled de
omposable ifK �= �r1(K)� � � � � �rt(K):(ii) A Gau� period � of type (n;K) over Fq is de
omposable if and only if Kis de
omposable.Let R1 be the squarefree part of r as in De�nition 2.3. We 
all a Gau� periodof type (n;K) over Fq with K � Z�r squarefree if r = R1. If K is de
omposable,then we 
an fa
tor the normal Gau� period �. For squarefree r, this (and alsoProposition 5.4 below) is in Gao (2001), Theorem 1.5.Lemma 5.3. Let � be a de
omposable normal Gau� period of type (n;K) overFq given by �, r = r1 � � � rt the prime power de
omposition, and for 1 � i � tlet �i be the Gau� period of type (ni; �ri(K)) over Fq with respe
t to �i = �r=ri,where ni = �(ri)=#�ri(K). Then there exist h1; : : : ; ht with 0 � hi < ni fori � t and su
h that � = Y1�i�t�qhii :Before we give the proof, we illustrate it by an example.Example 2.5 
ontinued. (iii) Let � be a primitive 45th root of unity. Thenormal Gau� period � = �14+�24+�4+�39 of type (12; f1; 26g) with f1; 26g �Z�45 is de
omposable. The 
anoni
al proje
tions along the prime power de
om-position of 45 = 32 �5 generate the prime Gau� period �5 = �9 of type (4; f1g)and the prime power Gau� period �9 = �5 + (�5)3 + (�5)8 + (�5)6 of type(3; f1; 8g) over F2 . Computing the produ
t �5 ��9 = �9 � (�5+�15+�40+�30) =�14 + �24 + �4 + �39 veri�es that �5 � �9 is indeed a fa
torization of �. �Proof. We divide the proof into three steps. Sin
e � is normal, we havehq;Ki = Z�r by Theorem 2.6.Claim. A de
omposable normal Gau� period 
an be written as a produ
t ofa squarefree Gau� period and a non-squarefree Gau� period.27



Let R1 be the squarefree part of r and R2 = rR1 , and set ai � a mod Ri fori = 1; 2. For a primitive rth root of unity �, we have �i = �r=Ri a primitiveRith root of unity for i = 1; 2. Hen
e, �a1 = �a11 and �a2 = �a22 . Be
ause K isde
omposable, we have the dire
t sum K = �R1(K) � �R2(K). By a straight-forward 
omputation we have:� =Xa2K b(�a) = Xa2K �R2a � Y1�i�t;pijR2 X1�s�ei �aR1R2=psi= X(a1;a2)2�R1(K)��R2 (K)(�r=R1)a1 � Y1�i�t;pijR2 X1�s�ei(�r=R2)a2R2=psi= X(a1;a2)2�R1(K)��R2 (K) b(�a11 ) � b(�a22 )= Xa12�R1 (K) b(�a11 ) � Xa22�R2(K) b(�a22 ):The �rst fa
tor is a squarefree Gau� period of type � �(R1)#�R1(K) ; �R1(K)� over Fqwith respe
t to �1 = �r=R1, the se
ond one is a non-squarefree Gau� period.This proves the 
laim.Claim. A de
omposable non-squarefree Gau� period whi
h is not a primepower Gau� period 
an be written as a produ
t of a non-squarefree Gau�period and a prime power Gau� period.Let � be a non-squarefree Gau� period. Sin
e it is not a prime power Gau�period, we have t � 2. Set R = r1 � � � rt�1 � 2. Then rt � 2 is a prime power
oprime to R. For a primitive rth root of unity �, we have �1 = �rt = �r=Ra primitive Rth root of unity, and �2 = �R = �r=rt is a primitive rtth root ofunity. Let a1 � a mod R and a2 � a mod rt. Then� =Xa2K b(�a) = Xa2K Y1�i�t X1�s�ei �ar=psi=Xa2K Y1�i�t;pijR X1�s�ei(�rt)aR=psi � Y1�i�t;pijrt X1�s�ei(�R)art=psi= X(a1;a2)2�R(K)��rt(K)� Y1�i�t;pijR X1�s�ei(�1)a1R=psi � Y1�i�t;pijrt X1�s�ei(�2)a2rt=psi�= Xa12�R(K) b(�a11 ) � Xa22�rt(K) b(�a22 );with the �rst fa
tor a non-squarefree Gau� period and the se
ond one a primepower Gau� period. This shows the 
laim.Claim. A squarefree Gau� period whi
h is not a prime Gau� period 
an bewritten as a produ
t of (
onjugates of) a squarefree Gau� period and a primeGau� period. 28



Let � be a primitive rth root of unity, and let R = r1 � � � rt�1, whi
h is greaterthan 1 and 
oprime to rt. Let �1 = �rt be a primitive Rth root of unity and�2 = �R a primitive rtth root of unity, and u1; u2 2 Z su
h that u1rt+u2R = 1;we 
an �nd these by the Extended Eu
lidean Algorithm. Let a1 and a2 be theproje
tions of a onto Z�R and Z�rt, respe
tively, and set n1 = �(R)#�R(K) and n2 =�(rt)#�rt(K) . Sin
e � is normal, we have hq; �R(K)i = Z�R and hq; �rt(K)i = Z�rt.Thus, there are 0 � h1 < n1 and 0 � h2 < n2 su
h that u1 2 qh1�R(K) andu2 2 qh2�rt(K). The �rst fa
tor is a squarefree Gau� period of type (n1; �R(K))over Fq with respe
t to �r=R, and the se
ond fa
tor is a prime Gau� period oftype (n2; �rt(K)) over Fq with respe
t to �r=rt. The 
laim is proven.Indu
tion on the number t of prime divisors of r 
ompletes the proof of thelemma. �5.1 Fast multipli
ation for de
omposable Gau� periodsIf a normal Gau� period is de
omposable then its fa
torization into prime andprime power Gau� periods is related to a tower of �elds. Ea
h Gau� periodalong this tower satis�es the assumptions of Fa
t 3.6, i.e. the extension degreesare pairwise 
oprime.Proposition 5.4. Let r; q; n; k be positive integers su
h that q � 2 and r � 2are 
oprime and �(r) = nk. Let r1 � � � rt be the prime power de
omposition ofr. Let K be a subgroup of Z�r of order k, set Ki = �ri(K) its image of order kionto Z�ri under the 
anoni
al proje
tion �ri, and ni = �(ri)ki for 1 � i � t. Thenthe following are equivalent:(i) hq;Ki = Z�r and K is de
omposable.(ii) hq;Kii = Z�ri for all 1 � i � t, and n = n1 � � �nt with n1; : : : ; nt pairwise
oprime.Proof. \(i))(ii)" The 
anoni
al proje
tion �ri is an epimorphism. Thus,Z�ri = �ri(Z�r ) = �ri(hq;Ki) = hq;Kii for all 1 � i � t. Sin
e K is de
om-posable, we have k = k1 � � �kt and n = �(r)k = Q1�i�t �(ri)ki = Q1�i�t ni.We prove by indu
tion on the number of prime divisors that n1; : : : ; ntare pairwise 
oprime. For i = 1 there is nothing to show. Thus, we sup-pose that the 
laim is true for K0 = K1 � � � � � Ki whi
h is a de
om-posable subgroup of Z�r0 of order k0 where r0 = r1 � � � ri. By 
onstru
-tion we have hq;K0i = Z�r0 and n0 = �(r0)k0 = n1 � � �ni. We suppose thatd = g
d(n0; ni+1) > 1, i.e. n0 � ni+1d < n1 � � �ni+1. Sin
e qni+1 2 Ki+1, wehave qni+1�n0=d 2 Ki+1. But also qn0�ni+1=d 2 K0 sin
e qn0 2 K0, and we 
on-
lude with the help of the Chinese Remainder Theorem that qn0�ni+1=d 2K0�Ki+1. Then #hq;K0�Ki+1i � n0�ni+1d �k0 �ki+1 < (n0 �k0) �(ni+1 �ki+1) =29



�(r0)��(ri+1) = #(Z�r1�� � ��Z�ri+1) whi
h is a 
ontradi
tion. Hen
e, n0 andni+1 are 
oprime. The indu
tion hypothesis guarantees that n1; : : : ; ni arepairwise 
oprime, and the 
laim holds for n1; : : : ; ni+1.\(ii))(i)" The group K 
an be regarded as a subgroup of K1 � � � � � Kt;hen
e k is a divisor of k1 � � �kt. By assumption we have n = n1 � � �nt. Thus,k = �(r)n = Q1�i�t �(ri)ni = k1 � � �kt, i.e. the subgroup K is de
omposable.We always have hq;Ki � Z�r , and it remains to prove the other in
lusionto show equality. Let a be an element in Z�r and ai = �ri(a) for all1 � i � t. For 1 � i � t there are 
0i 2 Ki and 0 � hi < ni su
hthat ai = qhi
0i 2 hq;Kii = Z�ri. But n1; : : : ; nt are pairwise 
oprime,and by the Chinese Remainder Theorem there exist 0 � h < n withh � hi mod ni for 1 � i � t. Sin
e qni 2 Ki, we have qh � qhi
00i mod rifor suitable 
00i 2 Ki, 1 � i � t. We set 
 = (
01=
001; : : : ; 
0t=
00t ) 2 K to geta � qh
 mod r. Thus hq;Ki � Z�r and hen
e hq;Ki = Z�r , as 
laimed. �The fa
torization of a normal de
omposable Gau� period � o�ers a re
ursiveapproa
h to do multipli
ation fast whenever Fqn is represented by a normalbasis N = (�; : : : ; �qn�1).Remark 5.5. Let n1 and n2 be two 
oprime integers, and set n = n1 � n2.Let �1 2 Fqn1 and �2 2 Fqn2 be normal elements over Fq , and � = �1 � �2 bea normal element in Fqn .(i) The element �2 is normal in Fqn over Fqn1 .(ii) Transforming an element given as linear 
ombination of the 
onjugatesof � over Fq into a linear 
ombination of the 
onjugates of �2 over Fqn1
an be 
omputed without operations in Fq .Proof. (i) This is just Lemma 3.9(ii).(ii) Let A = P0�h<nAh�qh be an element in Fqn . Let hi � h mod ni fori = 1; 2. Then �qh = �qh11 � �qh22 andA = X0�h<n1n2Ah ��qh11 � �qh22 � = X0�h2<n20� X0�h1<n1A(h1;h2)�qh11 1A�qh22where we identify h and (h1; h2) = (h mod n1; h mod n2). Sin
e n1 andn2 are 
oprime, we have fn1a remn2 : 0 � a < n2g = f0 � a < n2g andA = X0�h2<n20� X0�h1<n1A(h1;n1h2)�qh11 1A�(qn1 )h22 :This just means sorting the 
oeÆ
ients of A and 
an be done withoutoperations in Fq . �30



5.1.1 A 
onstru
tive proof.We are now ready to apply fast polynomial multipli
ation if Fqn is representedby a normal basisN = (�; : : : ; �qn�1) over Fq , where � is a de
omposable Gau�period.Theorem 5.6. Let � be a de
omposable normal Gau� period of type (n;K)over Fq with K a subgroup of Z�r , and let r1 � � � rt be the prime power de
om-position of r. Then two elements in Fqn given as linear 
ombinations of theelements of the normal basis N = (�; : : : ; �qn�1) 
an be multiplied with atmost O(r � Y1�i�t(log ri � loglog ri))operations in Fq .Proof. We prove the 
laim by indu
tion on the number t of prime divisorsof r. If t = 1, the 
laim follows from Theorem 4.26. Now we suppose t � 2.We 
an write � = Q1�i�t �qhii as a produ
t of 
onjugates of normal prime andprime power Gau� periods �i of type (ni; �ri(K)) over Fq by Lemma 5.3. Setn0 = nnt . The element �0 = Q1�i�t�1 �qhii is normal in Fqn0 over Fq . Sin
e � isde
omposable, Proposition 5.4 
laims that n0 and nt are 
oprime. Then �t is anormal prime or prime power Gau� period in Fqn over Fqn0 by Remark 5.5(i).As 
laimed in Remark 5.5(ii), we 
an multiply two elements in Fqn over Fq bymultiplying them in Fqn over Fqn0 . By Theorem 4.26, the multipli
ation 
anbe done with at most O(M(rt)) operations (additions, multipli
ations) in Fqn0 .Moreover, �0 is a de
omposable normal Gau� period of type (n0; �r1(K)�� � ���rt�1(K)) over Fq . By the indu
tion hypothesis, multipli
ation in Fqn0 
an bedone with at most O(Q1�i�t�1M(ri)) operations in Fq , and the 
laim follows.�Example 2.5 
ontinued. (iii) The de
omposable Gau� period � = �14 +�24+ �4+ �39 of type (12; f1; 26g) with f1; 26g � Z�45 over F2 is normal in F212 .We 
al
ulate the produ
t �22 � �.(i) As shown above, � fa
tors into � = �5 ��9 with �5 a prime Gau� period oftype (4; 1) over F2 , and �9 a prime power Gau� period of type (3; f1; 8g)over F2 where f1; 8g � Z�9 . We transform the task into a multipli
ationover F8 : �4 � � =(�45 � �49) � (�5 � �9) = (�45 � �5) � (�49 � �9):Now �49 � �9 = �29 + �49 as 
omputed in Example 4.2.(ii) It remains to perform the arithmeti
 in F8 over F2 . Sin
e �5 is a primeGau� period, we have�45 � �5 = (�9)4 � (�9) = (�9)5 = 1 = �5 + �25 + �45 + �85:31



(iii) Combining both results gives�4 � �=(�5 + �25 + �45 + �85) � (�29 + �49)=�205 �219 + �215 �219 + �225 �219 + �235 �219 + �205 �229 + �215 �229+�225 �229 + �235 �229=�24 + �21 + �210 + �27 + �28 + �25 + �22 + �211 ;sin
e �2h = �2h15 � �2h29 = (�5 � �9)29h1+4h2 . �6 From general to de
omposable Gau� periodsThere is one step missing to derive Theorem 2.7 from Theorem 5.6: Not ev-ery normal Gau� period is de
omposable, as already illustrated in Exam-ple 2.5(iii).We now show that a normal Gau� period always entails a de
om-posable normal Gau� period with the same parameters. The proof of Theo-rem 6.3 is based on the following result of Gao (2001), Theorem 1.1.Fa
t 6.1. Let Z be an Abelian group of �nite order. Let Q be a subset andK be a subgroup of Z su
h that Z = hQ;Ki. Then, for any dire
t sum ofZ = Z1 � � � � � Zt, there exists a subgroup L of the form L = L1 � � � � � Ltwith Li a subgroup of Zi for 1 � i � t su
h that Z = hQ;Li and Z=L �= Z=K.For our situation, we formulate the following spe
ial 
ase.Corollary 6.2. Let r and q be 
oprime positive integers greater than 2,and r1 � � � rt be the prime power fa
torization (2.2) of r. If there is a subgroupK of Z�r with hq;Ki = Z�r , then there is a de
omposable subgroup L of Z�r ofthe same order #L = #K su
h that hq;Li = Z�r .Theorem 6.3. Let r; q; n; k be positive integers with r; q � 2 su
h that r andq are 
oprime and �(r) = nk. Then there is a normal Gau� period of type(n;K) over Fq with K a subgroup of Z�r of order k if and only if su
h a periodexists with de
omposable K.Proof. This follows from Corollary 6.2 and the Normal Gau� period the-orem 2.6. �We merge Theorem 6.3 with Theorem 5.6, and apply fast polynomial multi-pli
ation to prove Theorem 2.7.Proof (of Theorem 2.7). Let �0 be a general Gau� period of type (n;K)over Fq generating a normal basis in Fqn . By Theorem 6.3 there is a normal32



de
omposable Gau� period � of type (n;L) in Fqn with #L = #K. Thus, we
an write an element of Fqn as a linear 
ombination of the elements of thenormal basis N = (�; : : : ; �qn�1) over Fq . In this 
ase Theorem 5.6 states thatwe 
an apply fast polynomial multipli
ation to 
ompute the produ
t of twoelements in Fqn . Inserting M(ri) = O(ri log ri � loglog ri) for 1 � i � t provesthe 
laimed bound on the number of operations in Fq . �In the �nal estimate of the theorem, one 
an repla
e the fa
tor log(nk) by theentropy of (r1; � � � ; rt).7 Existen
e of normal Gau� periods7.1 A 
riterion for the existen
e of a normal Gau� periodGiven a prime power q and an integer n, how 
an we �nd normal Gau� periodsin Fqn over Fq? We start with two previous results.Fa
t 7.1 (Gao 2001, Theorem 1.4). Let p be a prime, n and e be positiveintegers, and set q = pe. There exist a positive integer r and a subgroupK � Z�r su
h that the Gau� period of type (n;K) over Fq is normal in Fqn ifand only if the following hold:g
d(e; n) = 1, and 8 6 jn in the 
ase p = 2:Fa
t 7.2 (Gao et al. 2000, Theorem 3.1). Let r = pe be a prime power notdivisible by 8, and let q be an integer greater than 1 and 
oprime to r. Letn be a positive divisor of �(r), and K the uniquely determined subgroup ofZ�r of order k = �(r)n . Then hq;Ki = Z�r if and only if g
d(�(r)N ; n) = 1, whereN = ordr(q) is the order of q in Z�r .For the non-
y
li
 group Z�2e with e � 3 this 
riterion is no longer true.Example 7.3. For r = 8 and K = f1; 7g, we have h3;Ki = f1; 3; 5; 7g = Z�8and �(8)#K = 42 = 2. Furthermore, N = ord8(3) = 2, so that �(8)N = 2, andg
d ��(8)N ; �(8)#K � = g
d(2; 2) = 2 6= 1. �For n = 1 and k = #Z�2e, we 
an always 
hoose the trivial subgroup K = Z�2eto get hq;Ki = Z�2e. For n � 2 we re
all that Z�2e is the dire
t produ
t ofthe two 
y
li
 groups f�1g = h�1 mod 2ei and Z2e = h5 mod 2ei = f(4i +1) mod 2e : 0 � i < 2e�2g. We start with the assumption that the subgroupgenerated by q has maximal possible order N = ord2e(q).33



Proposition 7.4. Let r � 16 be a power of 2, and let q � 3 be odd. IfN = ordr(q) = 2e�2 and n � 2 is a divisor of N , then K = f�1g � h5n mod 2eiis a subgroup of Z�r of order k = �(r)=n su
h that hq;Ki = Z�r .Proof. For r = 2e and e � 4, the subgroup K of Z�r has order 2 � 2e�2n =2e�1n = �(r)n . We have #hqi = N = 2e�2, by assumption. Thus, hqi=f�1g = Z2ebe
ause q generates a 
y
li
 subgroup. By 
onstru
tion, �1 2 K, hen
e hqi [(�1)�hqi is a subset of hq;Ki of order 2�2e�2. We 
on
lude that #hq;Ki = �(r),and hq;Ki = Z�r , as 
laimed. �Lemma 7.5. Let e � 4 be an integer, let q be an odd prime power and K bea subgroup of order k of Z�2e su
h that hq;Ki = Z�2e, and n = �(2e)k . If n � 4,then hqi has maximal order N = ord2e(q) = 2e�2.Proof. Sin
e n divides N , we have N � 4. Furthermore, the subgroup Khas order #K = �(2e)n � 2e�14 = 2e�3 � 2. Let�: Z�2e ! Z2e be the 
anoni
alproje
tion with a = �a � f�1g. Then h�qi is a 
y
li
 subgroup of Z2e of orderN � 4. The proje
tion is an epimorphism. Hen
e, h�q; �Ki = Z2e . But n0 =#Z2e=# �K � 2e�2=2e�3 = 2 is divisible by 2, and the subgroup h�qi 
ontains asubgroup of maximal order 2e�2, sin
e Z2e is 
y
li
. We 
on
lude that h�qi =Z2e , and N = ord2e(q) � #Z2e = 2e�2. But a 
y
li
 subgroup of Z�2e has orderat most 2e�2 and thus N = 2e�2. �For e = 3, we have always N = 2, and there is a subgroup K � Z�8 oforder 2 with hq;Ki = Z�8 ; for given q � 3 we 
an 
hoose K = hai witha 2 Z�8 n f1; q mod 8g.The only 
ase left is n = 2 and 2 � N < 2e�2 for e � 4. Here two di�erent 
asesof q are important. Sin
e we have q an odd prime power, either q � 1 mod 4or q � 3 mod 4. These two 
ases have di�erent proje
tions of hqi onto f�1g.We 
onsider the 
anoni
al proje
tion � : Z�2e ! Z�4 . Then ker � = Z2e , and wehave a bije
tion between f�1g = Z�2e= ker � = Z�2e=Z2e and Z�4 applying thefundamental theorem on groups. Thus, hqi=Z2e is f�1g if q � 3 mod 4 and isf1g if q � 1 mod 4.Lemma 7.6. Let e � 4 be an integer, r = 2e, and let q � 3 be an odd integerwith 2 � N = ordr(q) < 2e�2. Then there is a subgroup K � Z�2e of order ksu
h that hq;Ki = Z�r if and only if q � 3 mod 4.Proof. For q � 3 mod 4, we have hqi=Z2e = f�1g. Sin
e n = 2 = #f�1gand f�1g � hqi by assumption, we have hqN=ni = f�1g. Choosing the sub-group K = Z2e of order k = 2e�2 gives hq;Ki = Z�2e.For q � 1 mod 4, we have hqN=ni = h52e�3 mod 2ei = f52e�3 ; 1g � Z�2e. Sin
ee � 4, there are three subgroups of Z�2e of order k = 2e�2 � 4 in this 
ase:34



K1 = h5 mod 2ei, K2 = h�5 mod 2ei, and K3 = f�1g � h52 mod 2ei. For e � 4,we have 2e�3 � 2 and 52e�3 = (�5)2e�3 = (52)2e�4 mod 2e is an element of allthree subgroups. Hen
e, hq;Kii = Ki 6= Z�2e for 1 � i � 3. Thus, there is nosuitable subgroup in the 
ase q � 1 mod 4. �We 
olle
t the �ndings above to get the following 
riteria on the existen
e ofa suitable subgroup K in Z�2e.Lemma 7.7. Let r � 8 be a power of two. Let q > 1 be an odd integer,and n be a divisor of N = ordr(q). Set k = �(r)=n. Then the following areequivalent:(i) There is a subgroup K � Z�r of order k with hq;Ki = Z�r .(ii) One of the following 
riteria holds:� n = 1, or� n = 2 and q � 3 mod 4, or� N = r=4.Proof. We write r = 2e with e � 2. If one of the 
riteria in (ii) is satis�edthen either n = 1 and K = Z�2e, or Proposition 7.4 or Lemma 7.6, respe
tively,guarantee the existen
e of a subgroup K of order k with hq;Ki = Z�2e fore � 4. There are two more 
ases to 
onsider. For e = 3 and n = 2 wehave N = ord8(q) = 2. Then we 
an 
hoose K = f1; 3g if q � 1 mod 4and K = f1; 5g if q � 3 mod 4. Thus, it remains to prove that in the 
asen = 2 and q � 1 mod 4 and N < 2e�2 there is no suitable subgroup. We havehqi=f�1g � Z2e , and thus hqi � h52 mod 2ei. But 52 mod 2e is an element inall three subgroups of order k = 2e�2 of Z�2e; we have 52 2 h5 mod 2ei and52 = (�5)2 2 h�5 mod 2ei and 1 � 52 2 f�1g � h52 mod 2ei. Sin
e we havedis
ussed all possible 
ases, equivalen
e holds. �We now have the following 
riterion for existen
e of a normal Gau� period.For squarefree r, this follows from Theorem 1.5 in Gao (2001).Theorem 7.8. Let q be a prime power and r and n be positive integers su
hthat g
d(r; q) = 1 and n divides �(r). Let k = �(r)n and r1 � � � rt be the primepower de
omposition of r. Then the following properties are equivalent:(i) There is a subgroup K of Z�r of order k su
h that the Gau� period � oftype (n;K) over Fq is normal.(ii) There are pairwise 
oprime positive integers n1; : : : ; nt su
h that n =n1 � � �nt, and� g
d(�(ri)Ni ; ni) = 1 if ri is not divisible by 8, and� ni divides Ni and either ni = 1, or ni = 2 and q � 3 mod 4, orNi = 2e�2if 8 divides riwhere Ni = ordri(q) for 1 � i � t.35



Proof. \(i))(ii)" By Theorem 6.3 there is a de
omposable Gau� period oftype (n;L) over Fq with hq;Li = Z�r . By Proposition 5.4 the ni = �(ri)#�ri(L)for 1 � i � t are pairwise 
oprime and n1 � � �nt = n. Furthermore,hq; �ri(L)i = Z�ri and the 
riteria follows immediately with Fa
t 7.2 andLemma 7.7.\(ii))(i)" By Fa
t 7.2 and Lemma 7.7, respe
tively, there is a subgroupLi of order ki = �(ri)ni su
h that hq;Lii = Z�ri for all 1 � i � t. Obviously,L = L1 � � � � � Lt meets the assumptions of Proposition 5.4. By theNormal Gau� period theorem 2.6, the 
riterion hq;Li = Z�r is suÆ
ientfor the Gau� period of type (n;L) over Fq to be normal. �7.1.1 Experiments.Tables 7.1 and 7.2 present results about the smallest values of k that lead tonormal Gau� periods. Table 7.1 illustrates the progress made by the various
ategories of Gau� periods, going from the most spe
ialized 
ategory \prime"in the �rst row to the general periods in the fourth row. In ea
h row we �nd theper
entage of n having a normal Gau� period of its row 
ategory with a smallervalue of k than any the more spe
ialized 
ategories above it. The extensiondegree n goes from 2 to 10 000. The se
ond 
olumn says, for example, that for26:19% of those n some squarefree Gau� period in F2n over F2 has a smallervalue of k than any prime Gau� period and that no general Gau� periodimproves on this k, and for 2:66% a general Gau� period provides a smallerk than any of the spe
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ategories in the three rows above. Similarly,Table 7.2 shows the per
entage of extensions with squarefree Gau� periodswhen the value of k is bounded in terms of n, again for 2 � n � 10 000. Forboth tables, the value of r was limited to 106.A
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Minimal value of the parameter k fornormal Gau� periods with respe
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