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Abstract

The fastest algorithms for factoring a univariate polynomial f of de-
gree n over a finite field use a baby-step/giant-step approach. The set
{1,...,n} of potential factor degrese is partitioned into intervals. In a
first stage, for each interval the product of all irreducible factors with de-
gree in the interval is determined, generalizing the method of Cantor &
Zassenhaus. In a second stage, each polynomial corresponding to a multi-
factor interval—containing two or more irreducible factors—is completely
factored. The goal in this work is to analyze the behavior of this algorithm
on uniformly random squarefree input polynomials, for various partitions.
To this end, we study several parameters such as the expected number
of multi-factor intervals, the expected number of irreducible factors with
degrees lying in multi-factor intervals, the number of gcds executed in
the factoring process, the expected total degree among the irreducible
factors with degrees in multi-factor intervals, and the probability of a
polynomial to have no multi-factor interval. We concentrate on partitions
with polynomially growing interval sizes, and determine the partition that
minimizes the expected number of geds.

January 12, 2009

1 Introduction

Let I, be a finite field with ¢ elements, and consider univariate polynomials of
degree n over F,. There are several methods for factoring a poynomial f € F,[x];
see [13, 14] for presentations and surveys. A popular one, the Cantor-Zassenhaus
method, proceeds in three stages: squarefree factorization (SQF), distinct degree
factorization (DDF), and equal degree factorization (EDF); see [5].



The DDF is by far the most expensive stage for random polynomials. It
calculates the ged of the given polynomial with 27 —z for i = 1,...,n = deg f,
thus using n geds. (In fact, one can stop at n/2.) In order to circumvent
this bottleneck, the interval method splits the set {1,...,n} of potential factor
degrees into intervals, for each interval computes an interval polynomial that
comprises all ¢° —z for i in the interval, then calculates a single ged and removes
it from the polynomial to be factored (coarse DDF, giant steps). This ged is
the product of all irreducible factors whose degree lies in the interval. If there
are two or more of them, we have a multi-factor interval and have to separate
these factors (fine DDF, baby steps). This can be done by resorting to the
Cantor-Zassenhaus approach of computing consecutive gcds for each integer in
the interval. There are also other ways of doing this.

The method was introduced with constant interval sizes [15], and has also
been used with growing interval sizes [11]. This method reduces the number of
geds from linear in n to about +/n and has been used to factor polynomials of
large degree [2] and to test them for irreducibility and primitivity [4].

This paper deals with polynomially growing interval sizes and studies various
combinatorial properties for uniformly random squarefree input polynomials.
The quantities studied include the average values of the number of multi-factor
intervals, the total length of all multi-factor intervals, and the sum of the degrees
in the multi-factor intervals. The second quantity is an upper bound on the
number of geds in the fine DDF stage. When a fast ged algorithm with softly
linear cost is used, then the third quantity is, up to factors logn, an upper
bound on the cost of all geds in the fine DDF stage.

We find that the least number of geds is required when the interval endpoints
are the cubes of integers (so that the interval length grows quadratically). This
is an unexpected result. In [12], quadratically growing endpoints had been used,
in the belief (disproven in this paper) that this partition were optimal.

The main result of this paper is to determine how far the intention of mini-
mizing geds by the interval method can be realized.

The natural cost measure for this kind of algorithm is the total number of
operations in the field. Specific interval polynomials and their cost are given in
the papers cited above. But the generation of general interval polynomials has
not been studied well enough to commit to a “state of the art” cost function
for this step. Calculating all 27 as in [15] and multiplying together the interval
polynomials gives a cost of O(n? + nlogq). Various “early abort” strategies
should be used in any practical implementation. If, at some point in the al-
gorithm, the “remaining” polynomial has degree less than twice the degree up
to which DDF has been performed so far, then this remaining polynomial is
irreducible. Also, irreducibility testing is faster than factoring, and it may be
beneficial to run an irreducibility test on the “remaining” polynomial during
the execution.

For a realistic average-case analysis and thus recommendations for setting
the parameters in this type of algorithm, the following needs to be done:

e interval polynomial generation and its (average) cost,



e influence of early abort, both in the coarse and the fine DDF,

e substitute our uniformly random squarefree polynomials by the output
distribution of the SQF stage,

e consider other strategies for the fine DDF.

This is left to future work.

We now comment on the structure of the paper. Generating functions and
asymptotic analysis play crucial role. We revise the required asymptotic meth-
ods in Section 2. We introduce notation and revisit the DDF algorithm in
Section 3. Section 4 treats the important case of the total length of multi-factor
intervals, or equivalently, the upper bound on the number of geds executed.
We provide expectation and variance for this number. The probability that a
polynomial has no multi-factor intervals is given in Section 5. In Section 6 we
give the expected value and variance for the number of multi-factor intervals
and for the sum of the degrees in multi-factor intervals. Finally, conclusions and
further work are discussed in Section 7.

2 Asymptotic analysis

The proofs in this paper are based on the usual techniques in analytic combina-
torics. They proceed in two steps: first the derivation of generating functions
for the quantities of interest, and then the use of asymptotic analysis for the
extraction of coefficient asymptotics. This methodology was successfully used
in [8] for the complete analysis of classical algorithms for the factorization of
polynomials over finite fields. We refer to that paper for an introduction to the
usage of this symbolic method in problems dealing with polynomials over finite
fields, and to [10] for a general presentation of the method. In any case, we
comment on this technique the first time we encounter it, in the next section.
We give a detailed proof in that section.

We require the following result due to Darboux [6] (see Olver’s book [21],
p. 310).

Fact 2.1. Let us assume that the smallest singularity of f(z) has absolute value
r and suppose that that we can find a “comparison” function g(z) having the
following properties:

e g(z) is holomorphic in 0 < |z| < r,
o f(2) —g(z) is continuous in 0 < |z| < r, and
e the coefficients b, in the Laurent expansion
o0
g(z) = Z bp 2", 0<lzl <,
n=—oo

have known asymptotic behaviour.



Then, as n — oo, we have
an = by +o(r™").
We also need the following result from [9] (see also [20]).

Fact 2.2. Let f(z) be a function analytic in a domain
D={z€C: |z| < z,]| Arg (z —1/q)] >g_5}’

where z1 > % and € are positive real numbers. Let k > 0 be any integer, and «
a real number with o # 0,—1,—=2,.... If in a neighborhood of z =1/q, f(z) has
an expansion of the form

1
(1—qz)>

then the coefficient of z" in f satisfies, asymptotically,

f(z) =

(106 _1qz>k (1 -+ o(1), 1)

a—1

I'(a)

[2"]f(z) =¢" (logn)* (1 +o(1)). (2)

We draw the attention of the reader to the recent paper [7] that combines
Darboux and singularity analysis. Indeed, it may be possible to derive our
results using that paper. However, we have not been able to simplify our results
using [7].

The asymptotics are usually done with respect to n, the degree of the polyno-
mial considered, while the size q of the field is considered to be fixed. Sometimes,
however, we may also analyze asymptotic behavior with respect to ¢, in which
case we state this explicitly.

We denote by I, the number of irreducible polynomials of degree n over the
finite field IFy. It is well-known that

n n/2
1, =1 +0<q ) 3)
n

n

for instance, see [8]. Simple and explicit lower and upper bounds for I,, are also
known ([19], p. 142, Ex. 3.26 & 3.27):

n n/2_1 n _
@ a1 o _d"—g )
n (g—Dn n

3 Distinct-degree factorization with polynomi-
ally growing interval sizes

We start by giving some definitions and notations required in the rest of the
paper. An interval partition of {1...n} is a sequence S = (so,...,Sm) of



integers with 0 = sg < s1 < -++ < 85, = n. The length of s is the number m of
intervals. The kth interval and its length are

T ={sk—1+1,...,sx} and dy = s, — sSp—1 = #mx, (5)

for1<k<m.

The DDF algorithms of von zur Gathen and Shoup [15], Kaltofen and
Shoup [18], Shoup [24], and von zur Gathen and Gerhard [11] break {1,...,n}
into the intervals of some partition S. The input polynomial f is assumed to be
squarefree, which is easy to achieve by applying a squarefree factorization rou-
tine. First, they use a baby-step giant-step technique to compute the modular
powers 27 mod f for several values of 7. The giant steps produce the powers
27" for the points of the partition, and the baby steps then compute the inter-
mediate values for each interval where this is required. A coarse DDF computes
a partial factorization f = f1- fo--- where fi is the product of all irreducible
factors of the original polynomial with degrees belonging to 7. If fi has degree
less than 2(sk—1 + 1), then 7 contains at most one irreducible factor, and there
is no need for further computation. Otherwise, a fine DDF is executed for this
partial factorization using the basic DDF algorithm.

We can guarantee the above condition by assuming that each irreducible f
with deg fir € m, has degree less than 2(sx—1 + 1). Thus we say that S grows
benignly if 2s;_1 > sy, for all k < m. Such a partition grows not faster than the
geometric series with quotient 2. For example, partitions of the form s, = k¢
for a real number a > 1, s = ¢*” for a real number b < 1/2, or si equal to the
kth Fibonacci number, are benignly growing. In a benignly growing partition
fine DDFs are only necessary in multi-factor intervals.

Although some of our methods work in this generality, our formulas become
more transparent for polynomially growing partitions, where s, = |k’ | for some
fixed real j > 1 and all k. Throughout the paper, we make this simplifying
assumption, and drop the rounding symbol by writing s, = k’. For each n, this
also gives an interval partition for n by taking the smallest m with s, > n and
truncating the last interval if necessary.

The costly step in these algorithms is the computation of the gth powers
modulo a polynomial. For these computations, von zur Gathen and Shoup [15]
propose the “iterated Frobenius” algorithm. Kaltofen and Shoup [18] and
Shoup [24] use repeated squaring for the baby step, and modular composi-
tions (Brent and Kung [3]) for the giant step (modular compositions only for
the practical version). Finally, von zur Gathen and Gerhard [11] use repeated
squaring since they are computing over Fo only.

An interval polynomial for an interval m, = {sg_1+1,..., s} is a polynomial
that is divisible by any irreducible factor whose degree lies in 7. For example,
by Theorem 3.20 in Lidl and Niederreiter [19], [[;c,, 29" — g is divisible by every
irreducible polynomial in I, [z] of degree dividing any ¢ € {sx—1+1...s5}. These
interval polynomials are taken in von zur Gathen and Shoup [15]. Kaltofen and
Shoup [18] and Shoup [24] use the interval polynomial [Ty, <,, ., | xdt g9,

The coarse and fine DDF algorithms below are essentially taken from von zur



Gathen and Gerhard [11]. For these algorithms we assume that the required
interval polynomials and the modular powers z? for 1 < i < n have been
previously computed.

Algorithm Coarse distinct-degree factorization

Input: A monic squarefree polynomial f € F,[z] of degree n and an interval
partition 7y, ...,y of {1,...,n}.

Output: The polynomials Hy = Hiemc h; for 1 < k < m, where h; is the product
of all monic irreducible factors of f of degree i with sp_1 < i < s.

fr= 1
for k := 1 to m do
Let gr be an interval polynomial for m.
Compute the remainder Rj of g, on division by f*.

Hy := gcd (Ri, f*);

fro= 17 Hes
endfor;
return Hi,...,Hp, f*;

Algorithm Fine distinct-degree factorization

Input: A polynomial Hy = Hiem h;, where h; is the product of all monic
irreducible factors of the polynomial f to be factored of degree i for sp_1 < i <
Sk

Output: The polynomials h; € Fy[z] for sp—1 < i < si.

h* = Hy;

for i := s,_1+1 to s do
hi := ged (h*,29 —x mod h*);
h* := h*/h;;

endfor;

return hg, ,41,---,Rs,;

4 Number of gcds executed

As we explained in the introduction, recent algorithms for factoring polynomials
over finite fields were developed to reduce the number of geds. It is then natural
to consider the number of geds executed as an important measure for the cost
of the algorithms.

The number of gcds executed is the sum of two numbers: the number of
geds at the coarse DDF level (that is, the number m of parts of the interval
partition) and the number of geds at the fine DDF level. For parttions of the
form s, = k7, the first number is roughly n'/7.



We now estimate the number of geds at the fine DDF stage assuming that
when an interval is multi-factor the number of geds executed equals the length
of the interval. Of course, there is a faster algorithm that would stop as soon
as we reach the second largest degree irreducible factor inside the multi-factor
interval, but this complicates considerably the analysis and we do not consider
it here (see [8] for a similar analysis for the basic DDF algorithm).

Theorem 4.1. Let j > 1 be a real number and s, = k7 an interval parti-
tion. Then, the expected number of gcds executed in multi-factor intervals of a
polynomial of degree n behaves, for n — oo, as follows:

o it converges to a constant for j < 2;

o it is asymptotic to 4(1 —1/q)Inn for j = 2; and

o it is asymptotic, for j > 2, to

i3
AN L -2
q) j—221-2/i

PROOF. The first part of the proof is for general s;. We use the notation (5).
Let Z be the collection of all monic irreducible polynomials in Fy[z]. Symboli-
cally, the family of all monic polynomials can be represented by

H (1—|—w—|—w2—|—w3+-~),
wel

while the family of all squarefree polynomials can be represented by
[[a+w).
weT

In the same way, the collection of monic polynomials that contain at most one
irreducible factor per interval is represented by

Hl—l—Zw

k>1 degwemy,

We now transform this symbolic expression into a generating function. Let z be a
variable. The substitution w + 298" produces generating functions; see [8, 22].
For instance the generating functions P(z) and S(z) of monic polynomials and
monic squarefree polynomials, respectively, are given by

Iy
P(z) = H <ﬁ) and S(z) = H (1+ zk)bc .

k>1 k>1

We recall that another simpler expression is known for P(z). Indeed, since the
number of monic polynomials of degree n over IF, is ¢", we immediately obtain

1
C1—gqz

P(z)



In our case, the bivariate generating function corresponding to marking the
size dj. of the kth interval 7, if it contains more than one irreducible factor can
be derived by marking all intervals, and then subtracting all those intervals that
have 0 or 1 irreducible factor. This approach gives the generating function

sz = T (ud [T (a+29"+a—u®) (”ZWZ))'

k>1 lemy lemy,

The coefficient [2"u?]S;(z,u) equals the number of squarefree polynomials of
degree n that require ¢ gcds in multi-factor intervals of the given partition.
The mean value of the number of gcds in multi-factor intervals for a polyno-
mial is obtained by differentiating S1(z,u) with respect to u, and then setting
u =1 (for instance, see [23], Theorem 3.11).
The derivative of S;(z,u) with respect to w is

Sl(z u) Z dkudkfl (Héeﬂ'k(l + ZZ)IE _ (1 + Z[Eﬂ—k_ IZZZ))
=1 u Tliem, (L4297 + (1= uh) (L4 Xen, Lezt)

Evaluating the derivative at u = 1 we get

ZSl(Z,l) de <1—H 1—|—Z (1—}—2[@2’))
u=1 k>1 lemy, lemy,

We observe that

051(z,u)
Ju

Siz1) =[] (1+:)" = 5(2),

k>1
the generating function of squarefree polynomials. We can write (see [8])

1—gz?
1—gqgz

S(z) =S1(2,1) = , and  [2")S(2) =¢" —¢"!, forn > 1.

Thus, the expected value of the number of geds in multi-factor intervals is given
by

051(z,u)
e e ()
where
Q1(z) = 1—qz de<1—H1+z <1—|—Zlgz>>
k>1 LETY LETY

Let us estimate

1-J a+H7" <1+ 3 Ig%).

lemy lemy,



First, let z = ¢/q and using Equation (3), we have

Z I,2* Z % + 0 (qu_skfl/Q)

lemy lemy,
tSk—1+1 tde _ 1
= O (dug™+/2) .
Sk_1+1<t—1>+ k4

This means that each coefficient of the difference of two polynomials in ¢t = z¢q
is absolutely O (qu’s’c—l/?); later estimates are in the same spirit.

Now,
th—1=1+t-D%—1= Y (dzk)(t—l)

1<i<dy

so we get

> Lt~ Ty f(spoy + 1),

In <£ (1+ ﬁ‘“))

(
= exp< Zlgz+ S5 - )
[

In a similar way we obtain

H (1+ze)_h = exp

LeTmy,

lemy ZEM

— Igzz> =1- tsl"_lJrldk/(sk,l + 1) + - (7)
€M

Hence, we have

1-— H (1+z <1+ Z Im) (t*s T dy /(s 1+1))

Lemy, Lemy,

From now on we consider partitions the form s, = k7, so that s;_; = (k — 1)
and dy = sp — Sx—1 ~ jk’~!. We observe that s ~ sx_1. Moreover, with the
change z = t/q, 1 — qz? becomes 1 — t2/q, and thus we have

t 2
Q1 (5) ~ Z (1 - 5) 2k t2g3 /g2

E>1

t2 i ;
~ Z (1 _ _) t2(k—1) +2j3kj—3. (8)

k>1 q

We immediately conclude that for n — oo and j < 2, the expected number of
geds executed in multi-factor intervals of a polynomial converges to a constant.
As we will comment later, this implies that in this case the total number of gcds
is governed by the number of gcds at the coarse level.



Let us consider now the case j > 2 and let t = e~ ", so that h — 0% is
equivalent to t — 17. As h — 07, we have from Equation (8)

e_h oo €—4h ) ;
o)) <_) ~ / (e—Qh _ ) BRI g2 =1 g
q 1 q

Let u=2h(k — 1), s0 k—1= ()" dk =1 (£)" 2 and when k =1, we
have u = 0. Thus,

e~h o e\ 1-3/j 1 1/j du
0 () ~ / o2h _ 3 ( ) ( )
q 0 q 2h 2h U
—4h oo —u 1_2/J
I T <Ly
1 <6 q ) /0 u 2h Y
42 (672}1 B e*q‘”b) - .
= / e % u2/7 du.
0

(2h) 2/

For j # 2, the integral is the well-known Gamma function T'; see [1], for example.
Then we have

o (2 ~ Pl o) (1-2)

q (2h)1=2/7 j

42 1 ) 1 1-2/j
—J__(1-2)r(1-2) (— ,
21-2/J q Jj) \1—t

where, as before, the last approximation holds since h — 0%, 1 —¢ — 07, and
e~ — 1. Thus, we have

. 1 t 52 1 2 1 2-2/j
e = () et () (-2 ()

We transfer to coefficients using Fact 2.2 obtaining

g (1 1) D) s

91-2/]

9/ 1 (2 - %)
Since T'(1 + z) = z!, we simplify 1“(1—2F/(32‘)7/g/(]2_)—2/j) to 1712/‘].. Therefore, we
conclude
051(z,u) 73 1 LY 19y
n LS S = (1-= /3
[Z ] ou 1 [ ]1_qu1( ) _2 21—2/J q n

This completes the proof for j > 2.
Finally, we have to consider the case j = 2. We start from Equation (8)
separating the case k = 1. Since s;, = k2, we obtain

t tQ(k 1)2
o) lr-E) g2
k>2

10




Sk Number of geds in multi-factor intervals
k2 4(1—-1/q) lnn
k>/? 27.20(1 — 1/q)n'/®
K3 21.43(1 — 1/q)n'/3
K7/? 21.24(1 — 1/q)n3/7
. =3 o/
k*(j >2) JJTQ 21—12/.; (1-1/q) n!=2/

Table 1: Expected number of gcds in multi-factor intervals for a polynomial
using partition sy.

As in the case j > 2, let t = e~", so when h — 0%, t — 1=. We have, as
h— 0F,
—h —4h 00 —4h —2h(k—1)2
O <€_> ~ 8 (e—Q’L - ) +/ 8 (e_2h - ) c dk.
q q 2 q k

We again consider u = 2h(k — 1)%,s0 k — 1= (&) '", and dk = 1 (1)1/2 du,

2h
Now Q1 (e‘h/q) is asymptotic to
w (U221 punN/2du
(r) 2() %

—_4h [e%S) —4h
8 <e2h i > —|—/ 8 (€2h ¢ ) e
q 2h q
~ 8 (e‘zh — €_4h> +4 (e‘zh — €_4h> /OO e’ du.
q q 2n U

We have the well-known Ezponential Integral E7(2h) (see [1]), with asymp-
totic behaviour Fj(z) ~ In(1/z), which leads to the asymptotic approximation
4(1 = 1/¢)In(1/(1 — t)). Singularity analysis for functions of slow variation in
Equations (1) and (2) gives

1

[2"] 1—gqz

2~ 1(1- )

Table 1 shows the expected number of geds in multi-factor intervals for
several partitions under the hypothesis of Theorem 4.1.
We consider now the variance of the number of geds.

Theorem 4.2. The variance of the number of geds executed in the factorization
process has asymptotic order n?=3/7.

PrROOF. We showed in Theorem 4.1 that

Si(z,u) = H <ud"‘ H (1—|—z€)le + (1 — udr) <1+ Z Igzj)) ;

k>1 lemy lemy,

11



and that the derivative of S1(z,u) with respect to u is equal to

dpu®—1 1+ 29" - dpud=1 (1 + It
S1(Z,u) Z k y HZE”k( ; Ig) k y ( Zéé‘rrk Z )
r>1 Ut Heem (425" + (1 — udr) (1 + Zeewk Loz )
To compute the second moment we need

1 0%51(z,u)
Si(z,u)  Ou?

2

_ A Tyer, (142" = deu® "1 (14 Yy, 1)
a k%:l us [[pep, (14 ze)h + (1 —ub) (1+ > ten Ipzt)
di(di — 1yu® 2], (1+29)"
Z <udk [Teer, 1+ zz)l‘Z + (1 —u) (1+ > tem, Iizt)
di(d — Vu®™=2 (143, 1e2Y)
ude [Toer, 1+ zz)lE + (1 —udr) (1+ > tem, Ing)>
dpudr—1 Héem (1 + ze)h — dpude—t (1 + Zéewk Igze) ?
- Z < uk [Ty, (1+ ZZ)IE + (1 —ut) (1+ > tem Ipz*) )
Evaluating the previous expression at v = 1, we obtain

1 0%51(z,u) |
Si(z,1)  Ou? u=l1

( (o) (o))
(-

: ,m( ( ) (o))

We have shown in Equation (7) that
- d
[+ ~ 1—pmon
Sk
Lemy

Now, let z =t/q. We have

k>1

k>1

|
i?

o1l ATl

tt ,
1 I8~ 1 1l — t?
+ > Iz Tl

lemy lemy, i=0
tSk—1+1 d
~ 1+ <dk+(k)(t—1)+--->.
Sk—1 2

12




Since s ~ sx—_1, we get for a certain function f,

d2
1— <1 +> IM) (H (1+ zf)—fe> ~ tzsk*1+282—’“ + f(t—1).
leTy, Lemy k—1
The right hand side of the second derivative expression is asymptotic to
d%: t2€k 142 k‘ t2€k 1+2 d?‘ t4sk,1+4
> o + Z - -
E>1 k 1 E>1 k-1

Let now s, = k7, di, ~ jk’~! and t = e~". Then, we have

o) i 2
1 8251(%”) | o~ / e—2h(k—1)i—2hj3 k33 dk
Si(z,1)  Ou? “ 1 (k—1)%

I > o= 2h(k=1)7 —2h ;4 kY4 _ o~ 4h(k=1)7—4h ;6 k%—0 dk
1 G Te=nu)

As before, for the first and second integrals we use the change of variables
u=2hk—-1),s0 k—-1= (& )1/7, and dk = 1 (%)1/‘] du " For the other

J u
integral we use the similar change of variables u = 4h(k — 1)?. We obtain

j2e—2h ) o/ 2 j3e—2h o0 _—
(e [} oo an) s+ g [

j5e—4h oo ‘
- / e ul=87 qy
0

 (4h)2-5/i
‘4 —4h -3 _,—2h
J e 9 . Je .
eyl (L=2/5)+ h2—3/i92-3/; (2 -3/7)
]56_4h

—mr@ —5/7).

We have that S1(z,1) = S(2) = (1—¢2?)/(1—gz), and for t = z/q, this becomes
(1—12/q)/(1 —t). Hence, as t — 1, we get

0281 (z,u) 1 - , 1\
T ouz |u:1 ~ (1__> 22 4/]F( —2/9) (m)

7 1 \*3%9 j° 1 \3-%/i
+oaa; 1 (2= 3/7) (m) ~ posn N2 5/) (m) :

The main term is

13



By singularity analysis (Fact 2.2), we finally conclude that the second moment
is asymptotic to

1— 1 7 T2 3/])71273/‘]' —(1- 1 Ln%B/J’
q) 223/ T(3 - 3/j) q) 2273/9(2j - 3) '

Since the order of the expected value for the number of geds executed at the
fine DDF level (Theorem 4.1) is constant, logn or n'=2/7 the variance is given
by the second moment. We have a standard deviation of order n'=3/2)) 1

5 Probability of a polynomial to have no multi-
factor intervals

When the partial factorization for interval mp = {skx—1 + 1...s,} has degree
less than 2(sx—1 + 1), it is clear that it contains at most one irreducible factor,
and that there is no need for running a fine distinct-degree factorization for
the interval. In this section, we study the probability that a random squarefree
polynomial has at most one irreducible factor in each interval for a given interval
partition. In other words, we want the probability that a polynomial has no
multi-factor intervals for the interval partition. The next theorem answers this
question for benignly growing interval sizes.

Theorem 5.1. The probability that a squarefree polynomial has no multi-factor
intervals in a polynomially growing partition with intervals my, wa, ... approaches,
for n — oo, the value (1 —1/q)Ci(q) where

Ci(g) =] <<1 +> mﬂ) <H (1 q—f)ff>> : (9)

k>1 lemy lemy,

Proor.  The generating function counting the number of monic squarefree
polynomials that contain at most one irreducible factor per interval is

Pi(z) = H <1 + Z Igzj) .
k>1 lemy

The coefficient [2"]P;(z) equals the number of polynomials of degree n with no
more than one irreducible factor in each interval, i.e., the number of polynomials
without multi-factor intervals in the interval partition. Since

1 1 \" 1 \"
1—qz:n>1(1—z”> :HH<1——Z€) ’

k>1LeEmy

where the first equality shows two well-known representations for the generating

14



function of the polynomials over Fy [8], we have

pz) = ] <1+ > IM)

k>1 lemy,
1 4 N
— 1_qu <(1+Zlgz) H(1_z)e>.
k>1 lemy, lemy,

Let us call

Py(z) = H <<1 + Z Igze> (H (1- ze)le>> .
k>1 lemy lemy,

In the following, all our O() and o() are taken as ¢ — oo, with ¢ € 7 and
as k — oo, unless stated otherwise. First of all we have

H (1—24)1E exp(Z Igln(l—z£)>

Lemy, Lemy

Il

o]

M

ko)
~

&
/|\

Y

~
) Nm
~
w No:
~
~~
~—

Lemy,
' 228
= exp —Zlgz _ZIZT_
lemy, Lemy

We have

H (1 — ZZ)IZ = exp <— Z Ieze_’_ Z fe(Z)) y

lemy, lemy lemy,
where

20 3¢
Zfe(Z)Z—ZIeT—ZIe?—---. (10)

lemy, lemy lemy
Furthermore, Equation (3) implies for j > 2,

St = Y <@sz)£ +0 (q1/227)€>

Lemy, Lemy,

0 (Z (gl2l)" + (ql/leljy) -

lemy, lemy,

Let us write f(z) = ;5 (EZGM fe(z)). Thus, f(2) is analytic in |z| < qg V2.

15



On the other hand,
1+ Z Igzz = exp <ln <1 + Z Igz€>>
Lem Lemy
3
(Z [zzf> ..
lemy

= exp ZI@ZZ—%<Z Igzé> +
1 ? 1 ’
P(z) =exp [ £(2)+ Y —§<zw> +§<Zw> o

W =

Thus, provided |z| < 1/¢, we have

LET lemy
k>1 lemy, lemy
(11
Suppose now that z = exp(—if)/q, for z complex. We have that |z| = 1/q
corresponds to I(0) = 0, |z] < 1/q corresponds to () > 0, and |z| > 1/q
corresponds to §(#) < 0. For the application of Darboux’s method (Fact 2.1)
the important case is when @ is real.
We write s, = k’ with j > 1 and recall dj, from (5). We have from Equa-
tion (3), as £ — oo,

Le~i0g—t — € - L0 (qfe/z) 7
SO
o o0
O ] P
Lem LeTy, LETY
e—ito
- Y ——+0 (dra=72). (12)
LETY
Furthermore,
e—iée 1
| Z / | < Z A
lemy lemy,

Then, for any k > 1, we have

dy;
WS 2

Sk—1 <€§sk

dy,

< %
Sp—1+1

~| =

We have dj, = s, — sx_1 ~ jk’ =t = o(sy). Then, as k — oo, we have s, ~ sj_1,

and ) p
k

L 1

> 7 (13)

S
LeTy k

16



However, in what follows we only need ZZGW 1/¢ = O (dy/sk). Since dj > 1,
we have dy /s > 1/sk, and we obtain

dpg~**1/2 =0 (d—k) )
Sk

We conclude that, for |z| < 1/q,
d
Y =0 (%).
Sk
LeTy,

Thus, for j > 1, we have

(i) o ((2))

Let us define g,(0) = (ZZEM ng’ze*iw)j, j > 2. Then, g(0) defined by

2 3

g0) =exp [ _% <Z Igelqu> +% (Z Igel”qé> _
k>1 LETY LETY

(14)

is the exponential of an absolutely convergent series of continuous functions

g;(6), hence is a continuous function of §. We need to know more than this
however to apply Fact 2.1. We shall need to know that

e ” Ci(9)
Pl( q )_ L—c 0
is a continuous function of 6 for all 6, where C1(q) = exp(f(1/¢))g(0) = P2(1/q)

is given in Equation (9).
Let

rm(z) = Z %

n>m

In the following we give an estimate for r,,(z) that will play a central role in
the proof of the continuity of P (e7%/q) — C1(q)/(1 — e™"), when z = e~ /q.
Let E(u) denote the exponential integral

In this, v and v are real, u > 1, however we shall later choose the path of
integration to be the straight line with &(v) constant and R(v) > 0 when J(v) #
0. Define ¢(z) by

1+ 2¢(2) = Z_l = ZBij7

62
>0

17



where Bj is the jth Bernoulli number. Then we have
¢(z) =Y Bj12’.
Jj=0
Now provided |u| < 1 we have

i 0o =i m
—1i6 n u
() e S

—i6 m -
Thus, as long as 6 # 0, f; vy defines 7,,(e~%). If we, following Gour-

1—u
don [16], set u = e~?/™ we find

, > d
rm(e—ze) — / e v/m _’U
i v

im6 ev/m -1

* v v dv ) .
[ (0 () % = Bt + o),
where N

R (w) = i/ e Yo(v/m)dv.

m Jw

We observe that ¢(z) is analytic in |z| < 27 with ¢(0) = By = —1/2. Further-
more, when z = z + iy with x > 7 and |y| < m, we have

1

1
6(2)] < i

e e s
er —1 T e™—1

$0 R (w) = O(e™®®) /m) uniformly for R(w) > 0 and |I(w)| < 2mr. More-
over, by repeated integration by parts, one has for any fixed N

, ] (N=1)(;
Ry (imf) = e="™° (@ +o o) mN(ZH)> + Ky (im0),

and ) -
) — —vg) (L
Ky (imb) = N /imee 0] (m) dv,

where the path of integration is the horizontal line from 0 — imS(6) to co —
imS(0), with () fixed and J(0) < 27 to avoid the singularity of ¢(z) at 2mi.

‘We observe that
eiéﬁ(w)
Ky(w) =0 (W)

uniformly for R(w) > 0 and |I(w)| < 2mm. More than this is true however,
Kn(w) is an analytic function of w for R(w) > 0, |3(0)| < 3mx/2, or any cmn
as long as ¢ < 2.

18



We now use the above estimate of r,, (

2.

LeTy,

Since Ky(w) = O (

e—m)

N +1

Sk

L=sp_1+1

—R(w)

) We have

e—iée ) )
— =7, (6—19) — T, (6—19)

E(Z‘Skfle) —

+6—isk,19 <
_677;51‘-,9 (

+K5k—1 (isk—la) -

E(iskg)

M ¢(29 0 1

Sk—1 Si 1 - (52] 1))

(ib) ¢(Z9) 1

T T O (@))
K, (isi0).

, we have that K,, , (isp—10) and K, (is0) are of

smaller order than the error term. Furthermore, in this finite sum we can allow
le=%| = 1. Now according to 5.1.11 of Abramowitz and Stegun [1]

SO

E(isp_10) — E(isy0) = In ( il

E(z):—fy—lnz—zw

oo n.n

nn.:
n=1

) + h(6),

Sk—1

where ﬁ(@) has a power series expansion in 6 at § = 0 with E(O) = 0. Thus, for
certain hy(6), with hx(0) = 0, we have

exp

= exp

= exp

where H ()

—il0

Ze

Lemy,

k>1

q E>1

—n (1+ . >+hk(9).
Sk—1

According to Equation (11), Ps(e

%:®+XI—ZFW@% :
O

fCl

oy

f(e i0

(15)

~9/4) equals

1+

o ) +hk(9))j

Jj=2

(1)
25

j=2

Z(_Tl)jl (1+ Sj:) — H(0)

j=2

(1+52) + mio)

= D p>1 Hi(0) has a convergent power series expansion in . We

observe that the sum on j converges since In? (14 dg/sk—1) is asymptotic to

(dr/s1)7,

for j > 2.
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Now, using C1(q) = exp(f(1/¢))g(0) = P2(1/q), where ¢g(0) is given in
Equation (14), we get

2 () = cimen(s(55) o(2)) o

Using the previous expression for Pa(e~/q), and since P;(2) = Px(2)/(1 - qz),
we have for certain coefficients a;

P e\ Cilg) _ Py (eq ) IO
! q 1—e—i0 1—e—i0 1—e—i0

_ Gig) ; Ci(q)
= - exp ;aﬂ =

—i6

- ) —f (%)) exp(—H(0)) does

We remark that the #-expansion of exp ( f (

not have a constant term.
Moreover, for certain coefficients b;

1 1
1—e % i0(1_§+...)

1 it 11 4
— — = _ .97
w<1+2+ ) i9+2+2b]9.

jz1
e ¥ Ci(q)
P, — ,
' ( q ) 1—e?
is analytic at # = 0, and at all other real 8 such that |0] < w. An application of
Darboux method (Fact 2.1) with f(z) = Pi(z) and g(z) = C1(q)/(1 — qz) gives

[2"1P1(2) ~ Ci(q)g™

It now follows that

Equivalently, the probability that a squarefree polynomial has no multi-factor
intervals is asymptotic to (1 —1/¢)C1(q), where Ci(q) is given in Equation (9),
as n — 00. |

2
We observe that as ¢ — oo, f(1/q) — 0, and since > -, (d") converges

Sk
implies that s ~ s;y_1, we have

1 (q) — exp _%Z(%)2+%Z(%)3_... |

S S
=1 \ Sk k

and so in the limit C(q) is positive.
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6 Analysis of interval parameters for DDF

This section provides useful information on parameters related to partitions of
the interval [1...n]. The main results of this section are precise analyses of
the mean value of the number of multi-factor intervals for a polynomial, the
mean value of the number of irreducible factors of a polynomial whose degrees
lie in any of its multi-factor intervals, and the mean value of the total degree of
irreducible factors (of a polynomial) whose degrees lie in any of the multi-factor
intervals for the polynomial. In the next section we provide the variances of
these quantities.

6.1 Number of multi-factor intervals for a polynomial

Given an interval partition, the expected number of multi-factor intervals for
a polynomial gives useful information on the number of fine distinct-degree
factorizations that will be needed. The next theorem quantifies this expectation.

Theorem 6.1. The expected number of multi-factor intervals that a squarefree
polynomial has for a polynomially growing partition with intervals mi,ma, . ..
approaches, for n — oo, the value (1 —1/q)Ca(q) where

Calg) =) <1 - (1 +> ng—5> (H (1+ q—f)—ff>> : (16)

k>1 lemy lemy,

PROOF. The bivariate generating function corresponding to marking an interval
m if it contains more than one irreducible factor can be derived marking all
intervals, and then subtracting all those that have 0 or 1 irreducible factor.
This approach, that is similar to Theorem 4.1, gives the generating function

Sg(z,u):H<uH (1+29" +(1—u) <1+Zlgz>>.

k>1 lemy, lemy,

The coefficient [2"u‘]S(z,u) equals the number of squarefree polynomials of
degree n with ¢ multi-factor intervals in the given partition. The derivative of
Sa(z,u) with respect to u at v =1 is

Sa(z,1) | Y <1 - (1 +> Izzf> ITa +zf)ff>

k>1 lemy lemy
Let

Qa(2) =) <1 - <1 +> IM) T« +z€)—h> ,

k>1 lemy, lemy,

The proof is very similar to the one in Theorem 5.1, and we use the notation
established there. We have that if z = e~ /g, then

H(1+z4) —exp< ST n+ > iz )

lemy, ey lemy,

21



where
z=1< Iz%)—l( Iz3£>
e\ ) e\ )
Observe that this is sligthly different from f;(z) in Theorem 5.1, and this minor
change will not introduce any important modification in the proof.
Let us write f(2) = > 5, (X ten, Je(2)). and as before, f(z) is analytic in
|z| < ¢~'/2. Then,

I[@+H" <1 +3 IM)

lemy, lemy,
S O AR W)
LETY Lemy,

3
(Z Ie%) — ...
lemy,

= eXp(ZfAz))eXp —% (ZIM)Z%(ZIM)B—---

lemy, lemy, lemy

2
exp Z 12" — % (Z Igzj) +

lemy, lemy,

ol

We remark that this is the same expression in Theorem 5.1 with the minor
change already stated. Hence, exactly as in that theorem, we get

I (+H7" <1 +Y Ie%)

Lemy, temy,
= exp(—Hy(0))exp (Z fe (e_w/q)>
Lemy,

1
exp (—=In® {1+ i +11n3 14 di - ).
2 Sk—1 3 Sk—1

Now if |z| < eg~1/2, and using Equation (10), we have

)
| Z fe (e_ie/CI) =0 ((Sk — Sk—1) GQSk—l) =0 (deQSk,l) ,

LeTy,
1n<1—|— di > :O<%>.
Sk—1 Sk

Thus, expanding exp (—H(0)), we have

I +H" <1 +y Ie%)

and

lemy, lemy,
2 .
_H J
= 140 deQSkfl + <%> +Z( k'(e)) )
ok = F
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Hence, since €2%*-1 is exponentially small, we obtain as k — oo
di \’ (—H(0))
1-— 1 1 I = - — AL AV
ZH( -|-z ( —I—Z zz) <<3k) ) Z i
€T Lemy, j>1

The sum over k in Q2(z) is therefore a uniformly convergent sum of analytic
functions of 6 hence an analytic function of 8. We may therefore apply Darboux’s
method as before to obtain

[2"]Q2(2) ~ C2(q)q",
where Ca(q) = Q2(1/q) is given in Equation (16). We obtain the expected value
(1=1/q)C2(q). |
To find the limit of Ca(q) as ¢ — oo, as we did after Theorem 5.1, we just
set Y yen, fe(1/q) to zero in
-1
1nj ( i )
Sk—1

Z 1—exp ng( ) Z
k>1 lemy j=1
6.2 Number of factors in any multi-factor interval for a
polynomial

In this section, we study the number of multi-factor intervals for partitions.
We give the expected number of factors of a polynomial that lie in any of its
multi-factor intervals.

Theorem 6.2. Let m,m2,... be the intervals of a partition of [1...n] of the
, 2
form si = kI such that > po (z—i‘) converges. Then, the expected number of

wrreducible factors whose degrees lie in multi-factor intervals that a squarefree
polynomial has approaches, for n — oo, the value (1 —1/q)Cs(q), where

- (S (S ) o).

k>1 \lemy Lemy Lemy

PrOOF. The bivariate generating function counting the number of irreducible
factors whose degrees lie in any multi-factor interval for a squarefree polynomial

Sg(z,u)zl_[(H 1+uz +Z 1—ngz>.

k>1 \lEmy LETY

The coefficient [2"u?]S3(z, u) gives the number of polynomials of degree n with
1 irreducible factors lying in any of their multi-factor intervals. Differentiating
S3(z,u) with respect to u gives

S [ 2tens (Hjem,j#(l + “Zj)l"'feze) = 2tenm, Loz
3z, u
HZEM (1 + uzt)le + Zeewk(l —u)lp2t

E>1
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Evaluating the derivative in u = 1, since S3(z,1) = S(z) we obtain

2
11__qqzz Qs(2),
with
D ten (Hjewk,j;éé(l + Zj)IjIeZe) — 2 tem I

Qs3(z) = ; o L+ )" .

We have
Qs(z) = Z <Z (1 +zz)7h Izt — (Z Iz%) <H (1 +ZZ)IZ>> )
k>1 \lem temy temy

For |z| < 1/q, we have

H (1 —1—24)7& = exp (— Z Ii2* +0 <Z Izz%>> ) (17)

lemy lemy lemy

and clearly

Z (1 + zz)_le Izt = Z LY+ 0 <Z Igz%) )

Lemy leTy, Lemy
SO
Qs3(z) = Z ((Z Igzj) <1 — exp (— Z Igze>> +0 <Z Ifz%>> .
k>1 lemy, leTy, lemy,

(1)
In this expression the sum of the big-Oh term is absolutely convergent. We
have shown in Theorem 5.1 that, provided |z < 1/q, | .., I02'| = O(di/s1),
so the terms being summed over k are of order O((dy/sk)?). The sum over k
therefore converges absolutely. The proof of Theorem 5.1 applies again with
minor changes to give that the expected number of irreducible factors whose
degree lie in multi-factor intervals approaches, as n — oo, to (1—1/¢)Q3(1/q) =
(1-1/9)Cs(q), as stated in the theorem.

6.3 Total degree of factors in all multi-factor intervals

The cost of the different stages in the factorization algorithms depends on the
size g of the field, and on the degree of the polynomial being considered. In
particular, the cost of the fine distinct-degree factorization algorithm depends
on the degree of the polynomial being passed to the algorithm. This reducible
polynomial has as degree the sum of the degrees of its irreducible factors in
the interval. Therefore, information on the total degree of irreducible factors
lying in any of the multi-factor intervals for a polynomial is useful for estimating
the total cost of these algorithms. We study this total degree in the following
theorem.
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Theorem 6.3. Let j > 1 be a real number, s, = k7 an interval partition

of [1...n] with intervals 71, m2,..., and d, = sp — Sx—1. Then, the expected
total degree of irreducible factors that lie in any of the multi-factor intervals of
a squarefree polynomial, when considering the intervals 71, mo,. .., approaches,
forn — oo,

12
<1 _ 1) J_ nl—l/J.
q) J—1

PrROOF. The bivariate generating function counting the total degree of irre-
ducible factors in any of the multi-factor intervals for a squarefree polynomial

Sy(z,u) = H <H (1+ ugzg)lk + Z (1- uZ)Ie%) .

k>1 \lEmy LETY

The coefficient [2"u?]S4(2,u) gives the number of squarefree polynomials of de-
gree n, where 7 is the total degree of the irreducible factors lying in any multi-
factor interval for the polynomial. Differentiating S4(z,u) with respect to u, we
have

(L1241 0, 0\—1 1 20\,
Si(z,u) Z<(Ze€m w7121+ ufe) ) [, (1 + ')

2N Mo, O+ a7 Sy, (1 )Tt

> tem CIout=12¢
Hée-rrk(l + UZZZ)IK + Z@Ewk (1 _ UZ)IZ,ZZ .

Evaluating the derivative in v = 1 and using that S4(z,1) = S(z) = (1 —
q2?)/(1 — qz), we obtain
1 — qz?

1— qz Q4(z)a

with

2
Yvem T (Meem, (1 +29") = Yien, Hez*
Qu(z) = Z temy 14 ( Lemy ) Lemy,

K>1 [leen, (1 + 200
_ Z(glﬂe_(gjmz T+,
k>1 \lemy LET) LETY

The above expression for Q4(z) reminds us of the expression for Q3(z). However
in this case we have for |z| < 1/q

3 fifz; = Y ro <Z em”)

lemy, lemy lemy,
= > UL+ O (drg ), (19)
Lemy,
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where we have used that the number of terms in the sum is dj and si_; is the
smallest value in 7;. Thus, corresponding to Equation (18) for Qs(z), applying
Equation (17), and comparing the error terms O ((Zeem 01;2%) (Zeewk I;2%%))
and O (drg—®+-1), we have

Qu(x) =2 ((Z “zze> (1 —oxp (— > M)) L0 (qu‘s“)> |

Now we let z = t/q and using Equation (3), we have

Sl = Yoo (an)

Lem lemy,

d
psk-1+1 (—ttk__ll) + O (qu*Sk—l/Q) .

The proof is now very similar to previous ones with only some adjustments.
Indeed,

dp,
tdk—1:(1+t—1)dk—1:Z(d_’“>(t—1)i,

2
=1
SO

Sk71+1tdk —1 sp—1+1
t ﬁ:t dk"’gk(t—l),

where gr(t — 1) has a power series expansion in ¢ — 1.
We have that

2
1—exp <— Z Igze> = Z LizX+0 (Z Igze>
Lemy, Lemy, LETY

When z = t/q = e~ /q, using Equations (12) and (15), we have for certain
hk(a) with Ay (0) =0

D Iz =In (1 Tt ) + hi(0) + O (qu*Sk—lﬂ) .

Sk—
LETY k=1

Thus, if z = t/q, then 6 near 0 corresponds to ¢ near 1, and using ﬁk for the
expansion of hy(6) in powers of ¢t — 1, we have

> L' =In (1 4 ) +hi(t—1)+0 (qufs:c-m) ,

Sk—
Lemy, k-1

Near t = 1 we have

Q4 (é) = ; (tskl“dk In (1 + SZZ—’“1> +Gr(t—1)+0 <<j—:>2>> ,
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where Gi(t — 1) = gx(t — 1)In (1 + ) + hy(t — 1)t*-1dy,. Furthermore,

Sk—1

> k>1 Gi(t — 1) converges for ¢ near 1. Near [t| =1 we get

<&<2>:§:Pkﬁ”ﬁ;+f@,

Sh—
=1 k—1

where f(t) is analytic at ¢t = 1, and we used that t =1 + (¢ — 1), with multiples
of t — 1 absorbed in f(t). We determine the behavior of ¢ near 1 by considering
t real positive.

Until here, the argument is valid for arbitrary benignly growing partitions,
but now we take polynomially growing partitions with s, = k7 and use 5. If we
let t = e~ ", then dj ~ jk=1 as k — oo and

—h 00 .
@ (T) =D PR 4 f(eh).
k=1

Since t = e~ ", h — 0% is equivalent to t — 1~. Approximating the summa-
tion by the integral, by a routine application of Euler-MacLaurin (see [17], for
example), we have as h — 0%

7h fo'e)
Q4 <6—) ~ / e % e ME=D" ki=2 g
q 1 '

Considering u = h(k—1)7, we get k—1 = (u/h)*/7, and dk = (1/5)(u/h)*/ du/u.
Thus,

e~h ® ha oy (uNTTYI L puNT du
Q&zﬂ NﬂleJe ) G T
o [Tet punte je=h o _1)
= Je /0 o (h) du——hl_l/j A e “u du

. _h 1-1/j
Je 1 ) 1 1

= 2L _r(1-=)~jr(1-2) (—
v ( j) / ( j) (1—t) ’

where the last approximation holds since when h — 07, 1 —¢ — 0T, e~
and I' is the Gamma function. This implies that, ast — 17,

t ] 1 1 1-1/j
@G- ()
Finally,
1—gqz2° C1-t%/q [t 1 1 [ 1\
e - g)- (=g)r(-5) (=)

We transfer to coefficients using Fact 2.2 obtaining that the mean total degree
of factors in multi-factor intervals is asymptotic to

I‘(l—l.) 2

1 . 1 )

(1 _ _) — I itV = (1 _ _> I =i,
q p(g_%) q) j—1
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Sk Total degree in multi-factor intervals
k3/? 4.5(1 —1/q)n'/?
k2 4(1—-1/q)/n
k? 4.5(1 —1/q)n?/?
k(> 1) Lo (1-1/q)n' "1

Table 2: Expected total degree of factors in multi-factor intervals for partition

S.

Table 2 shows the expected total degree of factors in multi-factor intervals
for partition under the hypothesis of Theorem 6.3.

6.4 Variances

In this section we provide the variances for the several mean values given in the
previous subsections. We assume partitions of the form s, = k7.

Theorem 6.4. The variances of the number of multi-factor intervals and the
number of factors that lie in a multi-factor interval are asymptotic to constants
D,, where D, depends on the parameter being estimated.

The variance of the total degree of irreducible factors that lie in multi-factor
intervals has asymptotic order n®~'/7.

PROOF. We only prove in detail the total degree variance since it is fairly more
technical than the others.

We counsider the second moment by differentiating again S4(z, u) with respect
to u and putting v = 1. We have

0%84(z, 5 |
# = S4(z,u)Q3(z,u) + 54(z,u)%, (20)
where
Qa(z,u) Z (Y renm, Lou' 25 (1 + uf28) ™) Ty, (1 + 025"
o k=1 [leen, (L +uf2f)0e + 5 e, (1= u) ezt

> e CLut—12t 01
— HZEM (1 T uZZZ)IE + Zéewk(l — UZ)IZZg . ( )

The term S4(z,u)Q3%(z,u) is of smaller order, as we will see later. We con-
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centrate on computing 9Q4(z, u)/du. We get

u[ lz Iy _ 2
(Bt e (B 10
k=1 err (14 ufzf) ey > vem, (1— ul) Ipzt

0(0=1)Iut 22" I
ZZM = e, (14 u'29)"

T e, b= 4 Sy 2 (1)
Srem, P e (1 uts) "
. 1%:1 Héewk (1+ UZZZ)I[ + Eeewk (1 —ub) Ip2*
o 3 Bt e i e, (L 0'5)" = B 0~ DI

T
E>1 [len, 1+ ut2t)™ + > tem, Izt (1 —ub)

Let us now consider the partial derivative in the last sum. Logarithmic differ-
entiation gives

0 I I 0I,2°
O TT ey = T Y

Lemy lemy, Lemy

When we put v = 1 in the expression for the partial derivative of Q4(z,u) there
is considerable simplification

s (2 (5o (mo o)

k>1 lemy lemy lemy
2
f(f — 1)[@2’[ €21522e gIgZe
DI DD et Dl D D
k>1 \lemy 1+2 lemy, (1 + ZZ) lemy 1+
> <Z 0 - 1)&%) <H (1+ z@)‘”> .
k>1 \lemy Lemy,

Next we analyze each factor in the above expression. By Equation (7), we have

T (+2" ‘~exp< Zfez> e L
Lemy, lemy,
Now, using Equation (19), we simplify

(12"
Do T = DL M O (dkg )

Lemy Lemy
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Then, when z =t/q, > ;... 012" becomes

#Sk—1+1 d dy, .

tf = t—1)

> T ( ; )< )
LETY =1

d
tSk—1+1 (dk + <2k>(t_ 1)+ ) .
Hence, we have that

- (Z f{iz; - <Z He%) <H (1+24)114>> ot

82
LETY Lemy, LETY k

Next we obtain

is of smaller order term.
We finally consider the terms

> 4(«’31—:);26 - <Z = 1)&%) <H (1 +/)I‘> .

lemy lemy lemy

Using similar expressions as before, we get when z = t/q

Skp—1+1 2
(Eee) (5 o)
Lemy k k—1

Asymptotically, >, (£ — 1)t is > tem, ¢t*=1, and it can be studied differenti-
ating Y, t°. We get

I e L e <d2’“> +G(t—-1),

lemy

where G(t — 1) is analytic at ¢ = 1. Thus,

(Z(g_ 1)#) (tsk—1+1dk> N (Skfl +1)t25k_1+1di Nd%tQSk—lJrl,

S S
Lemy, k k
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We now follow a similar derivation to the one for the asymptotics of the
expected total degree. We have

0Q4(z,u d?
)| 5 (g g B g ),
E>1 k

where f(t — 1) is analytic at t = 1 with f(0) = 0. As before, let now s;, = k7,
di ~ jk7~1 and t = e~ . Then,

0Q4(z,u 9195 _oh(k_1)_ 27 9i—9 _oh(k—1) —
a(u ) ey~ Z(’]lej 2g=2h(k=1)/—h | ;2}.2j=2~2h(k=1)'=2h
E>1

4 k4 o—4h(k=1) —ah

- /DQ (jzkzj—Q (e—Qh(k—l)J—h +€—2h(k—1)1—2h)
k=1

_j4k2j—46—4h(k—1)1—4h) dk.

For the first two integrals we use the change of variables u = h(k — 1), so
k—1= (u/2h)"7, and dk = (1/4)(u/2h)*/7 (du/u). For the other integral we
use the similar change of variables u = 4h(k — 1)’. Thus, we get

9Qa(z,u) T o ohy —ony (N fu Y1
gu =t /OJG e () (55) du

ju
oo 2-4/j /5 1
4 —u,—4h (U u
- et (@) @)

/0 4h 4h Jju
_ (e em®) gl gy — e e300 gy
22-1/ip2-175 |, 42-3/ip2-3/7 |, '

Using the Gamma function we obtain

0Q4(z,u)

T |u:1

j (efh + 672h) ) j3e—4h )
22,1/]']12,1/]' F(2 - 1/]) - 42,3/‘]']12,3/]' F(2 - 3/])

j 1 2-1/j j3 1 2-3/j
mm—l“)(l—_t) —mm—?’/ﬂ(l—_t) |

Finally, since the last term is negligible, we have

o 1 : 1 3-1/j
sw,w% oy~ (1 _ _> T = 1/)) (1—) .

q —t
By singularity analysis (Fact 2.2), we obtain

0Q4(z,u) 1 i T@=1/j) o 1)
S4(Zau)T lu=1 ™~ 1- E 22-1/i T'(3 — 1/j)n
_ L o1y
3j —122-1/ '

(22)
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To conclude we still need to show that Sy(z,u)Q3(z,u) is of smaller order;
see Equation (20). Thus, using Equation (21), and as we have seen in this
theorem, we have

Z@
QZ(Z,U) luey = Z <Z f{i T <Z (Ieze> (H (1 +Ze)—le>>

k>1 \lemy lemy lemy,

2
ditQSk— 1+2

~ X
Sk

E>1

Letting s, = k7, d, ~ jk’~! and t = e~", with a similar analysis as before, we
obtain when z = t/q,

Sut/0.0@30/01) ~ (1 1) P LD (LY

and again using singularity analysis, we obtain the asymptotic value

AN GBSV ey
¢) B2/

that is of smaller order than n?>~1/7; see Equation (22).

Therefore, the second moment has order asymptotic to n?~/7, and since
the expectation square has order n2~2/7 the variance is given by the second
moment with standard deviation of order n!=1/(27), |

7 Conclusions and recommendations

We briefly comment on the relation between our results and the factorization
algorithms of Section 3. It is intuitively clear that in order to reduce the number
of collisions in intervals of irreducible factors of randomly chosen polynomials, it
is convenient to consider partitions s = k’ with j > 1, and as small as possible.
This implies that in the limit we have the partition with intervals of size 1. In
terms of the DDF algorithm, this leads to the basic DDF algorithm. However,
the smaller j is, the larger is the length of the partition. So, in the case of small
j, we will have less work at the fine level, and more work at the coarse level
of the algorithm. Our theorems corroborate this intuition. These observations
introduce an interesting tradeoff for choosing the best interval partition for the
factorization algorithms.

We consider the length of multi-factor intervals, that gives an upper bound
on the number of geds executed, as the most important measure when comparing
different partitions of the form s = k7, for j > 1. It is clear that the number of
geds at the coarse DDF level is roughly n'/7. The computation of the expected
number of geds at the fine DDF level, however, is rather more difficult. The
estimates for the length of multi-factor intervals in the fine DDF level, given in
Theorem 4.1, indicate a different behaviour depending on j.
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e For 1 < j < 2, the length of multi-factor intervals converges to a constant.
In this case, the total number of geds is governed by the coarse DDF level
at a cost of roughly n'/7 geds. Hence, in this range the best partition is
with j close to 2 and total cost of about \/n geds.

e For j = 2, the gcds at the fine DDF level start showing some weight
(41nn), but overall the number of geds is determined by the coarse level
at a cost of \/n geds.

e For j > 2, we still have n'/7 geds at the coarse DDF level but now we

have, in addition,
3
<1—1> "7 12 nli%
q) J—229277

gcds at the fine DDF level. Comparing the two number of geds for coarse
and fine DDF we get that in the range 2 < j < 3 the cost is governed by
the coarse DDF level, while in the range j > 3 the cost is determined by
the fine DDF algorithm. At j = 3, both exponent are the same, giving
order n'/3 geds for the whole process.

We can conclude that the best partition of the form s, = k7, for j > 1, in terms
of minimizing the expected length of multi-factor intervals (upper bound on the
number of geds) is s, = k3.
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