
Efficient FPGA-based Karatsuba multipliers for

polynomials over F2

Joachim von zur Gathen and Jamshid Shokrollahi

B-IT, Görresstr. 13, Universität Bonn, 53113 Bonn, Germany
gathen@bit.uni-bonn.de

jamshid@bit.uni-bonn.de

Abstract. We study different possibilities of implementing the Karat-
suba multiplier for polynomials over F2 on FPGAs.
This is a core task for implementing finite fields of characteristic 2. Al-
gorithmic and platform dependent optimizations yield efficient hardware
designs. The resulting structure is hybrid in two different aspects. On
the one hand, a combination of the classical and the Karatsuba meth-
ods decreases the number of bit operations. On the other hand, a mix-
ture of sequential and combinational circuit design techniques includes
pipelining and can be adapted flexibly to time-area constraints. The
approach—both theory and implementation—can be viewed as a further
step towards taming the machinery of fast algorithmics for hardware
applications.

Keywords: Finite field arithmetic, fast multiplication, asymptotically fast
algorithms, Karatsuba method, hardware, FPGA.

1 Introduction

Arithmetic in finite fields is a central algorithmic task in cryptography. There
are two types of groups associated to such fields: their multiplicative group of
invertible elements, and elliptic (or hyperelliptic) curves. These can then be used
in group-based cryptography, relying on the difficulty of computing discrete loga-
rithms. Here we focus on fields of characteristic 2. The most fundamental task in
arithmetic is multiplication. In our case, this amounts to multiplication of poly-
nomials over F2, followed by a reduction modulo the fixed polynomial defining
the field extension. This reduction can itself be performed by using multiplica-
tion routines or by a small hardware circuit when the polynomial is sparse. A
trinomial can be used in many cases, and it is conjectured that otherwise a pen-
tanomial can be found (see [6]). As to the other arithmetic operations, addition
is bitwise XORing of vectors, squaring a special case of multiplication (much
simplified by using a normal basis), and inversion more expensive and usually
kept to a minimum.

Classical methods to multiply two n-bit polynomials require O(n2) bit oper-
ations. The Karatsuba algorithm reduces this to O(nlog

2
3), and fast Fourier

JO
A

C
H

IM
V

O
N

Z
U

R
G

A
T

H
E

N
&

JA
M

S
H

ID
S

H
O

K
R

O
L

L
A

H
I

(2
00

5)
.

E
ffi

ci
en

tF
PG

A
-b

as
ed

K
ar

at
su

ba
m

ul
tip

lie
rs

fo
rp

ol
yn

om
ia

ls
ov

er
F
2
.

In
Se

le
ct

ed
A

re
as

in
C

ry
pt

og
ra

ph
y

(S
AC

20
05

),
B

A
R

T
P

R
E

N
E

E
L

&
S

TA
FF

O
R

D
TA

V
A

R
E

S,
ed

ito
rs

,n
um

be
r3

89
7

in
L

ec
tu

re
N

ot
es

in
C

om
pu

te
rS

ci
en

ce
,3

59
–3

69
.S

pr
in

ge
r-

V
er

la
g,

K
in

gs
to

n,
O

N
,C

an
ad

a.
IS

B
N

3-
54

0-
33

10
8-

5.
U

R
L
h
t
t
p
s
:
/
/
d
x
.
d
o
i
.
o
r
g
/
1
0
.
1
0
0
7
/
1
1
6
9
3
3
8
3

.
T

hi
sd

oc
um

en
ti

sp
ro

vi
de

d
as

a
m

ea
ns

to
en

su
re

tim
el

y
di

ss
em

in
at

io
n

of
sc

ho
la

rl
y

an
d

te
ch

ni
ca

lw
or

k
on

a
no

n-
co

m
m

er
ci

al
ba

si
s.

C
op

yr
ig

ht
an

d
al

lr
ig

ht
s

th
er

ei
n

ar
e

m
ai

nt
ai

ne
d

by
th

e
au

th
or

s
or

by
ot

he
rc

op
yr

ig
ht

ho
ld

er
s,

no
tw

ith
st

an
di

ng
th

at
th

es
e

w
or

ks
ar

e
po

st
ed

he
re

el
ec

tr
on

ic
al

ly
.I

ti
s

un
de

rs
to

od
th

at
al

lp
er

so
ns

co
py

-
in

g
an

y
of

th
es

e
do

cu
m

en
ts

w
ill

ad
he

re
to

th
e

te
rm

s
an

d
co

ns
tr

ai
nt

s
in

vo
ke

d
by

ea
ch

co
py

ri
gh

t
ho

ld
er

,a
nd

in
pa

rt
ic

ul
ar

us
e

th
em

on
ly

fo
r

no
nc

om
m

er
ci

al
pu

r-
po

se
s.

T
he

se
w

or
ks

m
ay

no
tb

e
po

st
ed

el
se

w
he

re
w

ith
ou

tt
he

ex
pl

ic
it

w
ri

tte
n

pe
r-

m
is

si
on

of
th

e
co

py
ri

gh
th

ol
de

r.
(L

as
tu

pd
at

e
20

17
/1

1/
29

-1
8

:1
9.

)



2

transformations to O(n log n loglog n). The Cantor multiplier with a cost of
O(n(log n)2(loglog n)3) is designed for fields of characteristic 2, but we do not
study it here (see [3] and [4]). Traditional lore held that asymptotically fast
methods are not suitable for hardware. We disprove this view in the present
paper, continuing our work in [7].

Our methods are asymptotically good and thus efficient for large degrees.
Sophisticated implementation strategies decrease the crossover points between
different algorithms and make them efficient for practical applications. Much
care is required for software implementations (see [5], chapter 8, and Shoup’s
NTL software). The Karatsuba method has the lowest crossover point with the
classical algorithm.

In hardware, the methods used are either platform independent or platform
dependent. The first group consists of algorithmic optimizations which reduce the
total number of operations, whereas the second approach uses specific properties
of implementation environments to achieve higher performance.

The Karatsuba algorithm, for multiplication of large integers, was introduced
in [10]. This algorithm is based on a formula for multiplying two linear polyno-
mials which uses only 3 multiplications and 4 additions, as compared to 4 multi-
plications and 1 addition in the classical formula. The extra number of additions
disappears asymptotically. This method can be applied recursively to 2m-bit
polynomials, where m is an integer. Here we optimize and adapt the Karatsuba
algorithm for hardware realization of cryptographic algorithms.

FPGAs provide useful implementation platforms for cryptographic algorithms
both for prototyping where early error finding is possible, and as systems on chips
where system parameters can easily be changed to satisfy evolving security re-
quirements.

Efficient software implementations of Karatsuba multipliers using general
purpose processors have been discussed thoroughly in the literature (see [12],
[1], [11], [8], chapter 2, and [5], chapter 8), but hardware implementations have
attracted less attention. The only works known to us are [9], [14], and our pre-
vious paper [7]. [9] and [14] suggest to use algorithms with O(n2) operations
to multiply polynomials which contain a prime number of bits. Their proposed
number of bit operations is by a constant factor smaller than the classical method
but asymptotically larger than those for the Karatsuba method. [7] contains a
hybrid implementation of the Karatsuba method which reduces the latency by
pipelining and by mixing sequential and combinational circuits.

The present work is to our knowledge the first one which tries to decrease
the resource usage of polynomial multipliers using both known algorithmic and
platform dependent methods. We present the best choice of hybrid multiplica-
tion algorithms for polynomials with at most 128 bits, as long as the choice
is restricted to three (recursive) methods, namely classical, Karatsuba, and a
variant of Karatsuba for quadratic polynomials. The “best” refers to minimizing
the area measure. This is an algorithmic and machine independent optimiza-
tion. In an earlier implementation ([7]) we had designed a 240-bit multiplier on
a XC2V6000-4FF1517-4 FPGA. We re-use this structure to illustrate a second



3

type of optimization, which is machine-dependent. Our goal is a 240-bit multi-
plier with small area-time cost. This measure may be thought as the time on a
single-bit processor. We now put a single 30-bit multiplier on our FPGA and use
three Karatsuba steps to get from 240 = 23 ·30 to 30 bits. This requires judicious
application of multiplexer and adder circuitry, but the major computational cost
still resides in the multiplier. 27 = 33 small multiplications are required for one
240-bit product, and these inputs are fed into the single small multiplier in a
pipelined fashion. This has the pleasant effect of keeping the total delay small
and the area reduced, with correspondingly small propagation delays. Using this
240-bit multiplier we cover in particular the 233-bit polynomials proposed by
NIST for elliptic curve cryptography in [13].

One reviewer wrote: The idea of using such a generalization of Karatsuba’s

method is not new, but it is usually dismissed for operands of relatively small

sizes because of lower performance in software implementations. The fact that

some area on an FPGA is saved is an interesting and new remark: the kind of

remark usually “obvious” after one has seen it, but that only few seem able to

see in the first place.

The structure of this paper is as follows. First the Karatsuba method and its
cost are studied in Section 2. Section 3 is devoted to optimized hybrid Karat-
suba implementations. Section 4 shows how a hybrid structure and pipelining
improves resource usage in our circuit from [7]. Section 5 analyzes the effect of
the number of recursion levels on the performance, and Section 6 concludes the
paper.

2 The Karatsuba algorithm

The three coefficients of the product (a1x + a0)(b1x + b0) = a1b1x
2 + (a1b0 +

a0b1)x + a0b0 are “classically” computed with 4 multiplications and 1 addition
from the four input coefficients a1, a0, b1, and b0. The following formula uses
only 3 multiplications and 4 additions:

(a1x + a0)(b1x + b0) = a1b1x
2 + ((a1 + a0)(b1 + b0)− a1b1 − a0b0)x + a0b0. (1)

We call this the 2-segment Karatsuba method or K2. Setting m = ⌈n/2⌉, two
n-bit polynomials (thus of degrees less than n) can be rewritten and multiplied
using the formula:

(f1x
m + f0)(g1x

m + g0) = h2x
2m + h1x

m + h0,

where f0, f1, g0, and g1 are m-bit polynomials respectively. The polynomials h0,
h1, and h2 are computed by applying the Karatsuba algorithm to the polynomials
f0, f1, g0, and g1 as single coefficients and adding coefficients of common powers
of x together. This method can be applied recursively. The circuit to perform a
single stage is shown in Figure 1.

The “Overlap circuit” adds common powers of x in the three generated prod-
ucts. For example if n = 8, then the input polynomials have degree at most 7,



4

f1 f0
g1 g0

×High multiplier + + × Low multiplier

× Middle multiplier

+
−

+
−

Overlap circuit

h2 h1 h0

Fig. 1. The circuit to perform one level of the Karatsuba multiplication

each of the polynomials f0, f1, g0, and g1 is 4 bits long and thus of degree at
most 3, and their products will be of degree at most 6. The effect of the overlap
module in this case is represented in Figure 2, where coefficients to be added
together are shown in the same columns.

f1g1

f0g1 + f1g0

f0g0

x14 x13 x12 x11 x10 x9 x8

x10 x9 x8 x7 x6 x5 x4

x6 x5 x4 x3 x2 x1 x0

Fig. 2. The overlap circuit for the 8-bit Karatsuba multiplier

Figures 1 and 2 show that we need three recursive multiplication calls and
some additions: 2m for input adders, 2(2m− 1) for output adders, and 2(m− 1)

for the overlap module; where m = ⌈n/2⌉. If M
(2)
n is the total number of bit

operations to multiply two n-bit polynomials, then

M
(2)
n ≤ 3 M

(2)
m + 8m − 4. (2)

When n is a power of 2, with the initial values of M
(2)
1 = 1 we get:

M
(2)
n ≤ 7 ⌈nlog

2
3⌉ − 8n + 2. (3)

The gain in Karatsuba’s method is visually illustrated in Figure 8.2 of [5]. The
delay of the circuit for n ≥ 2 is at most

4⌈log2 n⌉ (4)



5

times the delay of a single gate. On the other hand, a classical multiplier for
n-bit polynomials requires

2n2 − 2n + 1 (5)

gates and has a propagation delay of

1 + ⌈log2 n⌉. (6)

To multiply two quadratic polynomials, we use the following formula from
[2] which we call 3-segment Karatsuba or K3. It uses 6 multiplications and 12
additions when used for fields of characteristic 2, compared to 9 multiplications
and 4 additions in the classical method:

(a2x
2 + a1x + a0)(b2x

2 + b1x + b0) =

a2b2x
4 + ((a1 + a2)(b1 + b2) − a1b1 − a2b2)x

3

+ ((a2 + a0)(b2 + b0) − a0b0 + a1b1 − a2b2)x
2 (7)

+ ((a1 + a0)(b1 + b0) − a0b0 − a1b1)x + a0b0.

Similar to (2) we can write the recursive costs of K3 as:

M
(3)
n ≤ 6 M

(3)
m + 22m− 10, (8)

where m = ⌈n/3⌉.
Since log2 3 ≈ 1.5850 < 1.6309 ≈ log3 6, this approach is asymptotically infe-

rior to the original Karatsuba method. One result of this paper is to determine
the range of usefulness for this method (namely some n ≤ 81) on our type of
hardware.

3 Hybrid design

For fast multiplication software, a judicious mixture of table look-up and classi-
cal, Karatsuba and even faster (FFT) algorithms must be used (see [5], chapter
8, and [8], chapter 2). The corresponding issues for hardware implementations
have not been discussed in the literature, except that our previous paper [7] uses
classical multipliers for polynomials with up to 40 bits.

We present a general methodology and execute it in the special case of a
toolbox with these algorithms: classical, K2, and K3. The general idea is that we
have a toolbox A of recursive multiplication algorithms. Each algorithm A ∈ A
computes the product of two polynomials of degree less than n, for any n. The
cost of A consists in some arithmetic operations plus recursive multiplications.
For simplicity, we assume that the optimal hybrid multiplication routine using

A is built from the bottom up. For each n ≥ 1, we determine the best method
for n-bit polynomials, starting with a single arithmetic operation (namely, a
multiplication) for constant polynomials (n = 1). For n ≥ 2, we compute the
cost of applying each A ∈ A to n-bit polynomials, using the already computed



6

optimal values for the recursive calls. We then enter into our table one of the
algorithms with minimal cost.

We now execute this general approach on our toolbox A = {classical,K2,K3}.
The costs are given in (2) and (8). Whenever necessary, polynomials are padded
with leading zeros. The results are shown in Table 1.

The first column gives the number n of bits, so that we deal with polynomials
of degree up to n− 1. The second column “rec” specifies the first recursive level,
that is the algorithm from A = {classical,K2,K3} to be used, abbreviated as
{C, 2, 3}. The column “cost” gives the total number of arithmetic operations.
The next column states the “ratio” of practice to theory, namely c · cost/nlog

2
3,

where the constant c is chosen so that the last entry is 1. The asymptotic regime
visibly takes over already at the fairly small values that we consider. The final
column gives the cost of algorithm from [14], which is Karatsuba-based. We know
of no other implementation that can be easily compared with ours.

For example, the entry n = 41 refers to polynomials of degree up to 40. The
entry 2 in column “A” says that K2 is to be employed at the top of the recursion.
Since m = ⌈41/2⌉ = 21, (2) says that three pairs of 21-bit polynomials need to
be multiplied, plus 8 ·21−4 = 164 operations. One has to look up the algorithm
for 21 bits in the table. Continuing in this way, the prescription for 41 bits is:

n 41 21 7
algorithm K2 K3 C

add 164 144 85

total = 164 + 3 · (144 + 6 · 85) = 2126.

In the recursive call of K2 at n = 41, the inputs are split into two pieces of 20
and 21 bits. It is tempting to single out one of the three recursive multiplications
as a 20-bit operation, and indeed this view is taken in [14]. They pad input
polynomials with enough zero coefficients and apply the Karatsuba method in
a recursive manner. Operations involving a coefficient known to be zero are
neglected. In our designs, we use three 21-bit multiplications, for a small loss in
the operations count but a huge gain in modularity: we only implement a single
21-bit multiplier, thus simplifying the design and enabling pipelining. Section 4
exemplifies this (with 30 rather than 21 bits).

We note that designers of fast arithmetic software have used the general
methodology sketched above, in particular formulating it as breakpoint between
different algorithms. The classical algorithm can also be viewed recursively, which
is used for some results in Table 2 below.

The goal of our hybrid design is to minimize the total arithmetic cost. The
same methodology can, of course, also be applied to multi-objective applications,
say minimizing A and AT. A concern with them would be to limit the number
of table entries that are kept.

4 Hardware structure

According to (4) and (6), the delay of a fully parallel combinational Karatsuba
multiplier is almost 4 times that of a classical multiplier. It is the main disad-



7

Table 1. The number of operations for the hybrid method for polynomial degrees
below 128, and Karatsuba’s algorithm according to [14]

length hybrid Karatsuba length hybrid Karatsuba
rec cost ratio rec cost ratio

3 C 13 0.404 19 66 2 4886 1.131 5402
4 C 25 0.492 33 67 2 4894 1.106 5675
5 C 41 0.567 61 68 2 4894 1.081 5812
6 2 59 0.611 77 69 2 4926 1.063 6091
7 C 85 0.689 110 70 2 4926 1.039 6231
8 2 103 0.676 127 71 2 4934 1.017 6374
9 3 134 0.730 175 72 2 4934 0.995 6041
10 2 159 0.733 219 73 2 5713 1.127 6737
11 C 221 0.875 257 74 2 5713 1.103 6883
12 2 221 0.763 275 75 2 5721 1.081 7032
13 2 307 0.933 346 76 2 5721 1.059 7107
14 2 307 0.830 382 77 2 5753 1.043 7262
15 3 346 0.838 421 78 2 5753 1.022 7340
16 2 369 0.807 441 79 2 5761 1.003 7421
17 2 470 0.934 572 80 2 5761 0.983 7381
18 2 470 0.853 593 81 3 6536 1.094 7777
19 2 553 0.921 707 82 2 6702 1.100 7935
20 2 553 0.849 733 83 2 6710 1.080 8096
21 3 654 0.930 817 84 2 6710 1.060 8177
22 2 747 0.986 855 85 2 7528 1.167 8344
23 2 755 0.929 896 86 2 7528 1.146 8428
24 2 755 0.869 917 87 2 7536 1.126 8515
25 3 992 1.070 1064 88 2 7536 1.106 8559
26 3 992 1.005 1138 89 2 7544 1.087 8738
27 3 992 0.947 1215 90 2 7544 1.068 8828
28 2 1029 0.927 1254 91 2 7699 1.071 8921
29 2 1154 0.984 1337 92 2 7699 1.053 8968
30 2 1154 0.932 1379 93 2 7731 1.039 9067
31 2 1231 0.944 1424 94 2 7731 1.022 9117
32 2 1231 0.898 1447 95 2 7739 1.006 9170
33 2 1542 1.071 1714 96 2 7739 0.989 9197
34 2 1542 1.021 1848 97 2 9904 1.245 9800
35 2 1550 0.981 1985 98 2 9904 1.225 10102
36 2 1550 0.938 2054 99 2 9912 1.207 10407
37 2 1807 1.047 2197 100 2 9912 1.188 10560
38 2 1807 1.003 2269 101 2 9944 1.173 10871
39 2 1815 0.967 2344 102 2 9944 1.155 11027
40 2 1815 0.929 2355 103 2 9952 1.138 11186
41 2 2126 1.047 2537 104 2 9952 1.121 11266
42 2 2126 1.007 2615 105 2 9984 1.107 11589
43 3 2396 1.094 2696 106 2 9984 1.091 11751
44 3 2396 1.055 2737 107 2 9992 1.075 11916
45 3 2396 1.018 2824 108 2 9992 1.060 11999
46 2 2445 1.003 2868 109 2 10357 1.082 12170
47 2 2453 0.973 2915 110 2 10357 1.067 12256
48 2 2453 0.941 2939 111 2 10365 1.053 12345
49 2 3172 1.177 3238 112 2 10365 1.038 12390
50 2 3172 1.140 3388 113 2 11522 1.137 12737
51 2 3180 1.108 3541 114 2 11522 1.122 12911
52 2 3180 1.074 3618 115 2 11530 1.107 13088
53 2 3188 1.045 3777 116 2 11530 1.092 13177
54 2 3188 1.014 3857 117 2 11562 1.080 13360
55 2 3307 1.022 3940 118 2 11562 1.066 13452
56 2 3307 0.993 3982 119 2 11570 1.052 13547
57 2 3690 1.078 4153 120 2 11570 1.038 13595
58 2 3690 1.048 4239 121 2 12295 1.089 13790
59 2 3698 1.022 4328 122 2 12295 1.075 13888
60 2 3698 0.996 4373 123 2 12303 1.062 13989
61 2 3937 1.033 4468 124 2 12303 1.048 14040
62 2 3937 1.006 4516 125 2 12335 1.038 14147
63 2 3945 0.983 4567 126 2 12335 1.025 14201
64 2 3945 0.959 4593 127 2 12343 1.013 14258
65 2 4886 1.159 5132 128 2 12343 1.000 14288



8

vantage of the Karatsuba method for hardware implementations. In [7], we have
suggested as solution a pipelined Karatsuba multiplier for 240-bit polynomials,
shown in Figure 3.

240-bit multiplier

120-bit multiplier

40-bit
multiplier

40-bit adder

· · ·

79-bit adder

· · ·

Overlap module

120-bit adder

· · ·

239-bit adder

· · ·

Overlap module

Fig. 3. The 240-bit multiplier in [7]

The innermost part of the design is a combinational pipelined 40-bit classical
multiplier equipped with 40-bit and 79-bit adders. The multiplier, these adders,
and the overlap module, together with a control circuit, constitute a 120-bit
multiplier. The algorithm is based on a modification of a Karatsuba formula for
3-segment polynomials which is similar to but slightly different from (7). (We
were not aware of this better formula at that time.)

Another suitable control circuit performs the 2-segment Karatsuba method
for 240 bits by means of a 120-bit recursion, 239-bit adders, and an overlap
circuit.

This multiplier can be seen as implementing the factorization 240 = 2 · 3 · 40.
Table 1 implies that it is usually best to apply the 2-segment Karatsuba, except
for small inputs. Translating this into hardware reality, we now present a better
design based on the factorization 240 = 2 · 2 · 2 · 30. The resulting structure is
shown in Figure 4.

The 30-bit multiplier follows the recipe of Table 1. It is a combinational
circuit without feedback and the design goal was to minimize its area. In general,
k pipeline stages can perform n parallel multiplications in n + k − 1 instead of
nk clock cycles without pipelining.

We have implemented our design, the structure of [7], and a purely classical
implementation, on an XC2V6000-4FF1517-4 FPGA. The classical design has
a classical 30-bit multiplier and applies the three classical recursion steps. The
results after place and route are shown in Table 2. The second column shows
the number of clock cycles for a multiplication. The third column represents the
area in terms of number of slices. This measure contains both logic elements, or
LUTs, and flip-flops used for pipelining. The fourth column is the multiplication



9

240-bit multiplier

120-bit multiplier

60-bit multiplier

30-bit
multiplier

30-bit adder

· · ·

59-bit adder

· · ·

Overlap module

60-bit adder

· · ·

119-bit adder

· · ·

Overlap module

120-bit adder

· · ·

239-bit adder

· · ·

Overlap module

Fig. 4. The new 240-bit multiplier

time as returned by the hardware synthesis tool. Finally the last column shows
the product of area and time in order to compare the AT measures of our designs.

The synchronization is set so that the 30-bit multipliers require 1 and 4
clock cycles for classical and hybrid Karatsuba implementations, respectively.
The new structure is smaller than the implementation in [7] but requires more
area than the classical one. This drawback is due to the complicated structure
of the Karatsuba method but is compensated by speed as seen in the time and
AT measures. In the next section we further improve our structure by decreasing
the number of recursions.

Table 2. Time and area of different multipliers for 240-bit polynomials

Multiplier Number of Number of Multiplication AT

type clock cycles slices time Slices × µs

classical 106 1328 1.029µs 1367

The circuit of [7] (Fig. 3) 54 1660 0.655µs 1087

Hybrid Karatsuba (Fig. 4) 55 1513 0.670µs 1014

5 Hybrid polynomial multiplier with few recursions

In the recursive Karatsuba multiplier of [7], the core of the system, namely
the combinational multipliers, is idle for about half of the time. To improve
resource usage, we reduce the communication overhead by decreasing the levels
of recursion. In this new 240-bit multiplier, an 8-segment Karatsuba is applied at



10

once to 30-bit polynomials. We computed symbolically the formulas describing
three recursive levels of Karatsuba, and implemented these formulas directly.

The new circuit is shown in Figure 5. The multiplexers mux1 to mux6 are
adders at the same time. Their inputs are 30-bit sections of the two original
240-bit polynomials which are added according to the Karatsuba rules. Now
their 27 output pairs are pipelined as inputs into the 30-bit multiplier. The 27
corresponding 59-bit polynomials are subsequently combined according to the
overlap rules to yield the final result. Time and space consumptions are shown
in Table 3 and compared with the results of [7]. The columns are as in Table 2.
We see that this design improves on the previous ones in all respects.

Input1 Input2

a(x) b(x)

mux1 mux2

mux3 mux4

mux5 mux6

30 bit

multiplier

Decoder

acc0 acc1 · · · acc14

Overlap circuit

C
o
n
tr
o
l
m

o
d
u
le

Output

Fig. 5. The structure of the Karatsuba multiplier with fewer number of recursions

Table 3. Time and area of different 240-bit multipliers with reduced number of recur-
sion levels

Multiplier Number of Number of Multiplication AT

type clock cycles slices time Slices × µs

classical 56 1582 0.523µs 827

The circuit of [7](Fig. 3) 54 1660 0.655µs 1087

Hybrid Karatsuba (Fig. 5) 30 1480 0.378µs 559



11

6 Conclusion

In this paper we have shown how combining algorithmic techniques with platform
dependent strategies can be used to develop designs which are highly optimized
for FPGAs. These modules have been considered as appropriate implementation
targets for cryptographic purposes both as prototyping platforms and as system
on chips.

We improved the structure proposed in [7] in both time and area aspects.
The time has been improved by decreasing the number of recursion stages. To
minimize the area we have further improved the results of [14], as witnessed in
Table 1, by applying the Karatsuba method in a hybrid manner. The benefits
of hybrid implementations are well known for software implementations, where
the crossover points between subquadratic and classical methods depend on the
available memory and processor word size. There seems to be no previous sys-
tematic investigation on how to apply these methods efficiently for hardware
implementations. In this paper we have shown that a hybrid implementation
mixing classical and two Karatsuba methods can result in significant area sav-
ings.

Comparisons with the work of [7] are shown in Table 3. The asymptotic
methods are better than classical multipliers both with respect to time and area
measures. An obvious open question is to optimize a larger class of recursive
algorithms than our K2 and K3.

7 Acknowledgements

We thank Roberto Avanzi for various pointers to the literature and for pointing
out to us the formula from [2].

References

1. Bailey, D.V., Paar, C.: Optimal extension fields for fast arithmetic in public-
key algorithms. In Krawczyk, H., ed.: Advances in Cryptology: Proceedings of
CRYPTO ’98, Santa Barbara CA. Number 1462 in Lecture Notes in Computer
Science, Springer-Verlag (1998) 472–485

2. Blahut, R.E.: Fast Algorithms for Digital Signal Processing. Addison-Wesley,
Reading MA (1985)

3. Cantor, D.G.: On arithmetical algorithms over finite fields. Journal of Combina-
torial Theory, Series A 50 (1989) 285–300

4. von zur Gathen, J., Gerhard, J.: Arithmetic and factorization of polynomials over
F2. In Lakshman, Y.N., ed.: Proceedings of the 1996 International Symposium
on Symbolic and Algebraic Computation ISSAC ’96, Zürich, Switzerland, ACM
Press (1996) 1–9 Technical report tr-rsfb-96-018, University of Paderborn, Ger-
many, 1996, 43 pages. Final version in Mathematics of Computation.

5. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Second edn. Cam-
bridge University Press, Cambridge, UK (2003) First edition 1999.



12

6. von zur Gathen, J., Nöcker, M.: Polynomial and normal bases for finite fields.
Journal of Cryptology (2005) to appear.

7. Grabbe, C., Bednara, M., Shokrollahi, J., Teich, J., von zur Gathen, J.: FPGA
designs of parallel high performance GF (2233) multipliers. In: Proc. of the IEEE In-
ternational Symposium on Circuits and Systems (ISCAS-03). Volume II., Bangkok,
Thailand (2003) 268–271

8. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag (2003)

9. Jung, M., Madlener, F., Ernst, M., Huss, S.: A Reconfigurable Coprocessor for
Finite Field Multiplication in GF (2n). In: Workshop on Cryptographic Hardware
and Embedded Systems, Hamburg, IEEE (2002)

10. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics–Doklady 7 (1963) 595–596 translated from Doklady Akademii Nauk
SSSR, Vol. 145, No. 2, pp. 293–294, July, 1962.

11. Koç, Ç.K., Erdem, S.S.: Improved Karatsuba-Ofman Multiplication in GF (2m).
US Patent Application (2002)

12. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen,
Essen, Germany (1994)

13. U.S. Department of Commerce / National Institute of Standards and Technol-
ogy: Digital Signature Standard (DSS). (2000) Federal Information Processings
Standards Publication 186-2.

14. Weimerskirch, A., Paar, C.: Generalizations of the karatsuba algorithm for efficient
implementations. Technical report, Ruhr-Universität-Bochum, Germany (2003)


