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bstract

e are given an unknown polynomial f € Z[z] by a
lack box which on input a € Z returns a value 7, - f(a)
or some unknown nonzero rational numbers r,. If
“we have appropriate upper bounds on the numerator
§and denominator of r, and the degree of f, then
=the coefficients of f can be computed in probabilistic

Hso—-g

s copy- each copyright holder, and in particular use them only for noncommercial pur- mission of the copyright holder. (Last update 2017/11/29-18 :19.)

at

£

3 polynomial time.
fKeywords: Hidden polynomial, black box polynomial,
H zapproximate computation, short vectors, integer lat-

'tlces.

Introduction

1

g There are several ways of representing a univariate poly-
¢nomial over a ring. The two most important date struc-
£tures are the list of coefficients, and a list of values,
2together with a bound on the degree. The transforma-
= tions between these two representations, namely evalu-
2 ation and interpolation, play a basic role in many appli-
catlons In more general domains, including the rings
interest in number theory, interpolation becomes the
hlnese Remainder Algorithm.

An interesting variation of the classical task of
Zinterpolation assumes that not the exact values are
Zgiven, but only approximations to them. This may
Emean that each value may be “a little incorrect”,
or that some but not all values are correct. The
¢ usefulness of this problem first appeared in coding
theory with the classical Reed-Solomon codes and the
2more recent tool of list decoding. A number-theoretic
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version of importance in cryptography is the hidden
number problem. It is, of course, necessary to have
enough information in the incorrect values to allow
reconstruction of the true object.

In this paper, we want to reconstruct a polynomial
from approximate values all of which may be incorrect,
in some controlled fashion. The case where the differ-
ence to the true values is bounded (and we work over
a finite prime field), has been solved by Shparlinski
(2002b). In this paper, we consider the interpolation
task when the ratio to the true value is bounded appro-
priately.

More precisely, we want to compute the coeffi-
cients of a polynomial f € Z[z] of degree n for
which we are given a multiplicatively approxzimate black
bor MABB(A, «,3) which on input a € Z, in time
(nlog(Ala| + 1))0(1) returns a rational multiple g, =
rq - f(a) of f(a) for some unknown nonzero r, € Q.
Here A, a, and 8 are positive real numbers such that
we can write r, = k,/m, with integers k,,m, and
(1.1)

ged(kq,ma) =1, 0 < |kq| < Alal®, 0 < |mq| < Alal?.

The ged condition is convenient but obviously not
necessary. We assume that the response time of the
MABB(A4, a, 8) is polynomial in the bit length of |g,|
(thus queries with large values of a are more expensive).

We design a probabilistic polynomial time inter-
polation algorithm which works for an MABB(A, «, )
with any e+ 8 < 1/(n + 2).

We also consider the same problem for polynomials



f € F,[z] over a finite prime field F, of p elements
with a modular multiplicatively approzimate black boz,
MMABB(«, 3,p) , which on input ¢ € Z returns a
multiple g, = r, - f(a) € F, of the value f(a) € F,
with some factor r, € [} such that r, = ko /m, mod p
for some integers k,, m, satisfying
(1.2)

ged(kq,mg) =1,

0<‘ka|§paa 0<‘ma‘§pﬁ-

We obtain similar results for this problem, but the
bound on the possible values of a and f is less generous.
The corresponding additive problem, where a black
box produces a shift s, + f(a) for some integer s,,
has been solved in Shparlinski (2001) over F,, with a
rather generous error bound on the size of s, (roughly
speaking, |s,| could be up to pexp(— 10g1/2 D)).

Loosely speaking, the problem we consider in this
paper, as well as the above mentioned additive problem,
are variants of the hidden number problem which has its
origin in pioneering works of Boneh & Venkatesan (1996,
1997) and which has proved to be an invaluable tool
for cryptography and computer science; see Shparlinski
(2003) and also surveys given in Shparlinski (2002a,b).

It is no surprise that, as in most other works on the
hidden number problem, our main tool is a lattice basis
reduction algorithm.

Venkatesan Guruswami and Avi Wigderson have
remarked that if the fudge factors r, are always integers
with a polynomial bound on their value, then we can
divide by all integers up to the bound (which evenly
divide the approximate value) and obtain a list which
contains sufficiently many correct values so that the
list decoding approach of Guruswami & Sudan (1999)
recovers the polynomial. However in this paper, as well
as in Shparlinski (2001), these factors may be chosen
from exponentially large sets.

2 Lattices, linear equations,
and polynomials

homogeneous

Here we collect several well-known facts which form the
background of our algorithm.

We review several related results and definitions
on lattices which can be found in Groétschel et al.
(1993). For more details and more recent references, we
recommend to consult the brilliant surveys of Nguyen
& Stern (2000, 2001).

Let {b1,..., bs} be a set of linearly independent

vectors in R”. The set

L={z:z=0c¢b+...4c¢csbs, ¢1,...,¢c5 €L}

is called an s-dimensional lattice with basis {b1,...,bs}.
If s = r, the lattice L is of full rank.

To each lattice L one can naturally associate its

volume

vol (L) = (det ((bs, ba’>)?,j:1)1/2 |

where (a, b) denotes the inner product, which does not
depend on the choice of the basis {b;,...,bs}.

For a vector u, let ||u|| denote its Fuclidean norm.
The famous Minkowski theorem, see Theorem 5.3.6 in
Section 5.3 of Grotschel et al. (1993), gives the upper
bound

(2.3) min {||z||: z € L\ {0}} < s'/2vol (L)/*

on the shortest nonzero vector in any s-dimensional
lattice L via its volume. In fact s'/2 can be replaced by
the slightly smaller Hermite constant 751/2, see Nguyen
& Stern (2000, 2001).

The Minkowski bound (2.3) motivates a natural
question: how to find the shortest vector in a lattice.
Unfortunately, there are several indications that this
problem is NP-complete (when the dimension grows),
see Nguyen & Stern (2000, 2001). However, for a relaxed
task of finding a short vector, the celebrated LLL
algorithm of Lenstra et al. (1982) provides a desirable
solution.

To simplify our calculations we use the LLL al-
gorithm in its original form. Later developments of
Schnorr (1987) and quite recently by Ajtai et al. (2001)
lead to some (rather slight) improvements of our results.

We also assume that the basis {b1,...,bs} of L
consists of vectors in Z" (rather than in R"), so one
can talk about the bit size of the basis and the notion
of a polynomial-time algorithm.

LEMMA 2.1. There exists a deterministic polynomial-
time algorithm which, given a basis for an s-dimensional
lattice L, finds a nonzero vector v € L with

Jlol] <2072 min {||z]|: z € L\{0}}.

It is also useful to remember that when s is
small (for example, constant), then in polynomial time
one can find a nonzero vector v € L with |v|| =
min {||z||: z € L\ {0}}, see Ajtai et al. (2001); Nguyen
& Stern (2000, 2001).

The set of integer solutions z = (z1,...,2,) € Z" of

a linear homogeneous Diophantine equation

r
E Z;Cp = 0
i=1

forms a lattice of dimension r — 1 (unless ¢; = -++ =
¢r = 0). The same is also true for the solutions z € Z"
of a linear homogeneous congruence

”
Zzici = 0mod p

i=1



modulo a prime p, except that in this case the set of
integer solutions forms a lattice of dimension r.

Finally, for any polynomial f € K[z] of degree at
most n over any field K we have the well-known Newton
relations

n+1

S (-1 <” : 1>f(ac +i) =0,

i=0

(2.4)

Moreover, if deg f = n and the characteristic of K is
greater than n + 1 or zero then, because f can also be
viewed as a linear recurrence sequence of order exactly
n+1, any other linear relation between all (n+2)-tuples
of consecutive values of f has coefficients proportional

to those in (2.4). That is, if for some coefficients
007"'70n+1 eK

n+1 ]

Y (-1)Cif(x+i) =0

i=0

for all positive integer x, then
: 1
c; :A(-1)l<”fr ) for 0<i<n+1,
i

and some \ € K

3 Polynomials over Z

There is some nonuniqueness inherent in our problem.
Namely, when the black box chooses all its fudge factors
r, as even integers, then we can in principle not tell
whether the original polynomial is f or 2f. Therefore
we can at best expect a constant multiple of the original
polynomial as output.

We call an integer polynomial primitive if the
greatest common divisor of its coefficients is 1, and
its leading term is positive. Each nonzero integer
polynomial has a unique constant multiple which is
primitive, and we make this our target, thus removing
the non-uniqueness just mentioned.

As usual we define the height of a polynomial f =

Yo fir' € Z[z] as
H(f) =

Orél]a<xn ‘ ]|

We consider the family P, (H) of primitive polyno-
mials of degree n and of height at most H:

= Z fix' e Z|x]
i=0

ng(an-' .fn) = 1:
a2 LH(f) < H

Pu(H) =

THEOREM 3.1. Let n and H be positive integers, and
let a, 3,0 be nonnegative real numbers with 0 < § < 1
and a+ f < (1 —10)/(n+2). There is a deterministic
algorithm which, for any f € Pn(H), computes the
coefficients of f in time polynomial in n,log H,log A,
and 51 using an MABB(A, a, 3) for f.

Proof. For each factor r, we always write r, = k,/m,
with k, and m, of the form (1.1).

Let f € Pp(H) and ¢ = (co,...,cnp1) € Z"F2 be
the vector of coefficients in (2.4), that is,

. 1
(,=Z»:(—1)‘<"J_r > 0<i<n+l.
1

For a vector b = (bg,...,bnt1) € Z™2 we consider the
polynomial
n+1
= bif(z+1i) € Z[a].
i=0

In particular, we have h, = 0. Moreover, as discussed
in Section 2, hy = 0 if and only if the vectors b and ¢
are proportional.

We let

B = {((n + 2)2n+2(2A)2n+4H)1/5-‘

and consider nonzero vectors b =
[-B, B]"*2. We let

B = {b€ [~B,B]"": b not proportional to c}.

In particular, hy is not identically zero for any b € B. A
Taylor expansion at i of the ith summand of hy gives

n n+l1 f n n+l1 n
=S Yl Y S (4) i
j=0 i=0 j=0 i=0 v=j

Estimating each term trivially we obtain for b € B

H(hp) < (m+2)(n+1)""12"BH(f) < (n+2)""?2"BH.

Hence for b € B, the absolute value of any zero of hy is
less than H(hy) +1 < (n + 2)?""?BH.

We now set a = (n + 2)>"*2BH and query the
approximate black box for f with inputs a +i to receive
the values

k. .
29t fla+i) for 0<i < n+1.

Gati = Tati fla+i) =
a+tt a+tt ( ) Marti

All values g,; are nonzero because a > H(f) + 1.
We consider the (n + 1)-dimensional lattice

n+1

Znt1) € 272 Z ZiJati = 0}7
i—0

L={z=(z0,...,



and the integers

n+1 n+1
K =[] kot M= ] mass,
j=0 7=0

and
K; = @M, My="H R for0<i<n+l.
Mea+i a+i
Then
(3.5)

|K;| < An+2(a+i)°‘+6(n+1), |M;| < An+2(a+i)a(n+1)+ﬁ

for 0 <i < mn+ 1. We see that L contains the “short”

vector u = (uq, ..., Upt1) With
u; = c; M; for0<i<n+1.
By (3.5) its norm satisfies
n+1 1/2
lul < A"E(a 4+ )20 (Z )
i=0
n+1
< AE(a 4+ 1)) N g
i=0

= MHIATR2 (g 4 4 1) EDHS

and thus the algorithm of Lemma 2.1 returns a vector
v = (vo,...,0n41) € L with

o]] < 20FD72)|y|] < 28 HD/2 AnH2 (g 4y 4 1)@ FDFE,

We have
|’U,Kl‘ < 93(n+1)/2 g2n+4 (a +n+ 1)(6+a)(n+2)
< (QA)2n+4a(B+a)(n+2)
S (QA)2n+4a1—6
— (2A)2n+4 ((n + 2)2n+QBH)175
< (n+2)2(24)"MHBY < B

for 0 <i <mn+ 1. Since

n+1 n+1
0= Z Unga+i = Z viK,»f(a + i),
i=0 i=0

it follows that (vg Ko, ..., Vn+1K,41) is proportional to
¢, say v;K; = MA¢; for some nonzero A € Q and all
1 < n+ 1. We now calculate the unique interpolation
polynomial g € Q[z] of degree at most n with g(a+1) =
Jativifci for 0 < i < n. (The value for i = n+ 1 is
ignored.) Since

9(a+1) = gayivi/ci = Navi/ Ki = Af(a + i) /M

for 0 < ¢ < n, g is a nonzero constant multiple of
f. Finding f from g is trivial. The cost estimate is
immediate. O

4 Polynomials over finite fields

Here we show that the approach of Section 3 works for
polynomials over F, for a prime p.

To avoid the nonuniqueness problem in the case
of polynomials over F, it is more natural to consider
monic polynomials rather than primitive ones. As in
any ring, multiplication by integers is well-defined, so
that ay € F, for any a € Z and y € F,. Similarly, we
have h(a) € F, for a € Z and h € Fy[z].

We consider the family M,, , of monic polynomials
of degree n:

Moy = {f(x) = ifﬁl eFplz]: fn = 1}.

THEOREM 4.1. Let n be a positive integer, and let
a, 3,6, be nonnegative real numbers with 0 < d,e < 1
and a + 3= (1—208)/(n+2)%. Then for any prime

p > 2 H6)(n+2)/5-1/5

there is a probabilistic algorithm which for any f €
My, computes with probability at least 1 — € the co-
efficients of f in time polynomial in n,logp,d~' and
loge ™! using an MMABB(a, 3,p) for f.

Proof. For each factor r, we always write r, = k,/m,
with k, and m, are of the form (1.2).

The assumptions imply that p > n + 1. We define
the vector ¢ € Z"*? and the polynomials hy, € F,[z] for
b € Z™? in exactly the same way as in the proof of
Theorem 3.1. In particular, we have h, = 0, and hy =0
if and only if the vectors b and ¢ are proportional modulo
p. We let

1
B = \‘E(Ep)l/(n+2)J

and consider nonzero vectors b = (by,...
[-B, B]""2. We let

3 b'ﬂ+1) €

B ={be€[-B,B]""*: bnot proportional ¢ over F,},

and for b € B, we consider A, = {a € Z: hy(a) = 0}.
We have #A, < n, and A = {J,.z As has at most

n(QB + 1)n+2 < n3n+2Bn+2 S 6n+2Bn+2 S ep

elements. We choose a uniformly at random from [, so
that Prob(a € A) < e. We now query the approximate
black box for f with the inputs a+1 to receive the values
GJati = Tari- fla+i) for 0 <i<n+ 1.

Because f is not identically zero, at least one value
gat+i € TF, is nonzero. We consider the (n + 1)-
dimensional lattice

n+1

L= {Z = (ZO:' "7Z'n+1) € Zn+2: Zziga-l—i = 0}
i=0



We also denote

n+1 n+1
K= H kayj, M= Hma+]’
j=0 j=0
and
koL ,
K=o My="0%g g<i<n4l.
Me+i ka+i

In particular
(4.6)

for 0 <i <mn+ 1. We see that L contains the “short”
vector u = (ug, ..., Upt1) € L with

Kl < pH R g < pnets

u; = c; M; for0<i<n+1.
By (4.6) its norm satisfies
n+1 1/2
i < o ($)
i=0
n+1
< polnth+s Z 4]
i=0
— 2n+1pa(n+1)+ﬁ=

and the algorithm of Lemma 2.1 returns a vector v =
(Uo, L ,’Un+1) € L with

[ol] < 207272 ]| < 2P 2pa(ndDE8,

The assumption in the theorem implies that B > 1, and
therefore

B> B+1 S i 1/(n+2) 1/ (n+2) 22n+2p(175)/(n+2).
- 2 712 -
We have

"UiKCH-i‘ < 22n+2p(a+6)(n+2) < 22n+2p(176)/(n+2) <B

for all i <n + 1. Now we assume that a ¢ A. Since

n+1 n+1
0= Z Unga+i = Z viK,»f(a + i),
i=0 i=0
it follows that (voKo,...,vp41K,t1) is proportional

modulo p to ¢, say v; K; = A¢; for some integer A with
AZ0mod p and all i <n+ 1. Since p > n + 1, each ¢;
with ¢ < n + 1 is nonzero modulo p. We now calculate
the unique interpolation polynomial g € F,[z] of degree
at most n with g(a + i) = gayivi/ci € F, for 0 <i < n.
(The value for i = n + 1 is ignored.) Since

g(a+1) = gayivi/ci = Ngavi/ Ki = Af(a +i)/M

for © < m, g is a nonzero constant multiple of f, and
f =1lc(g)~! - g, where lc(g) is the leading coefficient of
g. The cost estimate is immediate. O

5 Remarks

Our algorithm works with a + 3 = O(n™!) over Z and
with @ + 8 = O(n™2) over F,. The example of two
polynomials zg and (z + 1)g where degg = n — 1 shows
that it is impossible to solve this problem with o > 1.
Indeed, the black box output a(a + 1)g(a) is consistent
with both polynomials. It is an open question by how
much our bound on a + 3 can be relaxed. Is there a
polynomial-time method when a + 3 = O(n~!) over
F,? Finally, can the lower bound on p in Theorem 4.1
be lowered?

It is easy to see that our method can also be applied
to interpolating linear recurrence sequences instead of
polynomials, which satisfy a given linear recurrence

relation
n+1

Z ciu(z +1) =0.
i=0

The cost of the corresponding algorithm depends on
the size of the coefficients in the above relation. To
justify the algorithm one can use bounds on the number
of zeros of linear recurrence sequences over Z and in
finite fields; see Everest et al. (2002), or the original
papers Evertse & Schlickewei (1999); van der Poorten
& Schlickewei (1991); Schlickewei et al. (1999); Schmidt
(2000).

One can obtain an algorithm which interpolates
a t-sparse polynomial with only ¢ + 1 queries to an
MABB(A4, a, 3) or an MMABB(a, 3, p); the whole al-
gorithm however remains polynomial in n, not in ¢ and
logn as one would desire for ¢t-sparse polynomials.

One can also consider polynomials with rational co-
efficients for which there is black box returning rational
multiples of their values with controlled numerator and
denominator.

Our method, combined with the method of Shpar-
linski (2001), can be applied to the more general prob-
lem of recovering k polynomials fi,..., fr from poly-
nomially many vectors R, - (f1(a),..., fe(a))T + s, for
some “small” matrices R, and vectors s,.

Finally, our method can be extended to polynomials
f(z1,...,xy) in m > 2 variables by making Kronecker

queries of the form f (a, adtt a(d*‘l)"kl) and thus

reducing this case to the univariate case.

We conclude by mentioning that it would be in-
teresting to consider an analog of our problem over a
residue ring of the integers modulo an integer. One of
our crucial ingredients, namely the fact that the number
of roots of a polynomial is bounded by its degree, does
not apply anymore. However, over such rings one can
try to use a much weaker bound of Konyagin (1979).

Instead of recovering a hidden polynomial, we can
ask to construct a number x given by a black box



returning 7,z mod p on input p, for a prime p and a
small rational number r,. One will have additional
constraints, such as bounds on |z| and on the primes.
This problem is now under consideration.
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