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tWe are given an unknown polynomial f 2 Z[x℄ by abla
k box whi
h on input a 2 Z returns a value ra �f(a)for some unknown nonzero rational numbers ra. Ifwe have appropriate upper bounds on the numeratorand denominator of ra and the degree of f , thenthe 
oeÆ
ients of f 
an be 
omputed in probabilisti
polynomial time.Keywords: Hidden polynomial, bla
k box polynomial,approximate 
omputation, short ve
tors, integer lat-ti
es.1 Introdu
tionThere are several ways of representing a univariate poly-nomial over a ring. The two most important date stru
-tures are the list of 
oeÆ
ients, and a list of values,together with a bound on the degree. The transforma-tions between these two representations, namely evalu-ation and interpolation, play a basi
 role in many appli-
ations. In more general domains, in
luding the ringsof interest in number theory, interpolation be
omes theChinese Remainder Algorithm.An interesting variation of the 
lassi
al task ofinterpolation assumes that not the exa
t values aregiven, but only approximations to them. This maymean that ea
h value may be \a little in
orre
t",or that some but not all values are 
orre
t. Theusefulness of this problem �rst appeared in 
odingtheory, with the 
lassi
al Reed-Solomon 
odes and themore re
ent tool of list de
oding. A number-theoreti


version of importan
e in 
ryptography is the hiddennumber problem. It is, of 
ourse, ne
essary to haveenough information in the in
orre
t values to allowre
onstru
tion of the true obje
t.In this paper, we want to re
onstru
t a polynomialfrom approximate values all of whi
h may be in
orre
t,in some 
ontrolled fashion. The 
ase where the di�er-en
e to the true values is bounded (and we work overa �nite prime �eld), has been solved by Shparlinski(2002b). In this paper, we 
onsider the interpolationtask when the ratio to the true value is bounded appro-priately.More pre
isely, we want to 
ompute the 
oeÆ-
ients of a polynomial f 2 Z[x℄ of degree n forwhi
h we are given a multipli
atively approximate bla
kbox MABB(A;�; �) whi
h on input a 2 Z, in time(n log(Ajaj+ 1))O(1) returns a rational multiple ga =ra � f(a) of f(a) for some unknown nonzero ra 2 Q.Here A, �, and � are positive real numbers su
h thatwe 
an write ra = ka=ma with integers ka;ma and(1.1)g
d(ka;ma) = 1; 0 < jkaj � Ajaj�; 0 < jmaj � Ajaj� :The g
d 
ondition is 
onvenient but obviously notne
essary. We assume that the response time of theMABB(A;�; �) is polynomial in the bit length of jgaj(thus queries with large values of a are more expensive).We design a probabilisti
 polynomial time inter-polation algorithm whi
h works for an MABB(A;�; �)with any �+ � < 1=(n+ 2).We also 
onsider the same problem for polynomials
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f 2 Fp [x℄ over a �nite prime �eld Fp of p elementswith a modular multipli
atively approximate bla
k box,MMABB(�; �; p) , whi
h on input a 2 Z returns amultiple ga = ra � f(a) 2 Fp of the value f(a) 2 Fpwith some fa
tor ra 2 F�p su
h that ra � ka=ma mod pfor some integers ka;ma satisfying(1.2)g
d(ka;ma) = 1; 0 < jkaj � p�; 0 < jmaj � p� :We obtain similar results for this problem, but thebound on the possible values of � and � is less generous.The 
orresponding additive problem, where a bla
kbox produ
es a shift sa + f(a) for some integer sa,has been solved in Shparlinski (2001) over Fp , with arather generous error bound on the size of sa (roughlyspeaking, jsaj 
ould be up to p exp(� log1=2 p)).Loosely speaking, the problem we 
onsider in thispaper, as well as the above mentioned additive problem,are variants of the hidden number problem whi
h has itsorigin in pioneering works of Boneh & Venkatesan (1996,1997) and whi
h has proved to be an invaluable toolfor 
ryptography and 
omputer s
ien
e; see Shparlinski(2003) and also surveys given in Shparlinski (2002a,b).It is no surprise that, as in most other works on thehidden number problem, our main tool is a latti
e basisredu
tion algorithm.Venkatesan Guruswami and Avi Wigderson haveremarked that if the fudge fa
tors ra are always integerswith a polynomial bound on their value, then we 
andivide by all integers up to the bound (whi
h evenlydivide the approximate value) and obtain a list whi
h
ontains suÆ
iently many 
orre
t values so that thelist de
oding approa
h of Guruswami & Sudan (1999)re
overs the polynomial. However in this paper, as wellas in Shparlinski (2001), these fa
tors may be 
hosenfrom exponentially large sets.2 Latti
es, linear homogeneous equations,and polynomialsHere we 
olle
t several well-known fa
ts whi
h form theba
kground of our algorithm.We review several related results and de�nitionson latti
es whi
h 
an be found in Gr�ots
hel et al.(1993). For more details and more re
ent referen
es, were
ommend to 
onsult the brilliant surveys of Nguyen& Stern (2000, 2001).Let fb1; : : : ; bsg be a set of linearly independentve
tors in Rr . The setL = fz : z = 
1b1 + : : :+ 
sbs; 
1; : : : ; 
s 2 Zgis 
alled an s-dimensional latti
e with basis fb1; : : : ; bsg.If s = r, the latti
e L is of full rank.To ea
h latti
e L one 
an naturally asso
iate its

volume vol (L) = �det (hbi; bji)si;j=1�1=2 ;where ha; bi denotes the inner produ
t, whi
h does notdepend on the 
hoi
e of the basis fb1; : : : ; bsg.For a ve
tor u, let kuk denote its Eu
lidean norm.The famous Minkowski theorem, see Theorem 5.3.6 inSe
tion 5.3 of Gr�ots
hel et al. (1993), gives the upperbound(2.3) min fkzk : z 2 L n f0gg � s1=2vol (L)1=son the shortest nonzero ve
tor in any s-dimensionallatti
e L via its volume. In fa
t s1=2 
an be repla
ed bythe slightly smaller Hermite 
onstant 
1=2s , see Nguyen& Stern (2000, 2001).The Minkowski bound (2.3) motivates a naturalquestion: how to �nd the shortest ve
tor in a latti
e.Unfortunately, there are several indi
ations that thisproblem is NP-
omplete (when the dimension grows),see Nguyen & Stern (2000, 2001). However, for a relaxedtask of �nding a short ve
tor, the 
elebrated LLLalgorithm of Lenstra et al. (1982) provides a desirablesolution.To simplify our 
al
ulations we use the LLL al-gorithm in its original form. Later developments ofS
hnorr (1987) and quite re
ently by Ajtai et al. (2001)lead to some (rather slight) improvements of our results.We also assume that the basis fb1; : : : ; bsg of L
onsists of ve
tors in Zr (rather than in Rr ), so one
an talk about the bit size of the basis and the notionof a polynomial-time algorithm.Lemma 2.1. There exists a deterministi
 polynomial-time algorithm whi
h, given a basis for an s-dimensionallatti
e L, �nds a nonzero ve
tor v 2 L withkvk � 2(s�1)=2min fkzk : z 2 Lnf0gg:It is also useful to remember that when s issmall (for example, 
onstant), then in polynomial timeone 
an �nd a nonzero ve
tor v 2 L with kvk =min fkzk : z 2 L n f0gg, see Ajtai et al. (2001); Nguyen& Stern (2000, 2001).The set of integer solutions z = (z1; : : : ; zr) 2 Zr ofa linear homogeneous Diophantine equationrXi=1 zi
i = 0forms a latti
e of dimension r � 1 (unless 
1 = � � � =
r = 0). The same is also true for the solutions z 2 Zrof a linear homogeneous 
ongruen
erXi=1 zi
i � 0 mod p



modulo a prime p, ex
ept that in this 
ase the set ofinteger solutions forms a latti
e of dimension r.Finally, for any polynomial f 2 K [x℄ of degree atmost n over any �eld K we have the well-known Newtonrelations(2.4) n+1Xi=0 (�1)i�n+ 1i �f(x+ i) = 0:Moreover, if deg f = n and the 
hara
teristi
 of K isgreater than n + 1 or zero then, be
ause f 
an also beviewed as a linear re
urren
e sequen
e of order exa
tlyn+1, any other linear relation between all (n+2)-tuplesof 
onse
utive values of f has 
oeÆ
ients proportionalto those in (2.4). That is, if for some 
oeÆ
ientsC0; : : : ; Cn+1 2 Kn+1Xi=0(�1)iCif(x+ i) = 0for all positive integer x, thenCi = �(�1)i�n+ 1i �; for 0 � i � n+ 1;and some � 2 K .3 Polynomials over ZThere is some nonuniqueness inherent in our problem.Namely, when the bla
k box 
hooses all its fudge fa
torsra as even integers, then we 
an in prin
iple not tellwhether the original polynomial is f or 2f . Thereforewe 
an at best expe
t a 
onstant multiple of the originalpolynomial as output.We 
all an integer polynomial primitive if thegreatest 
ommon divisor of its 
oeÆ
ients is 1, andits leading term is positive. Ea
h nonzero integerpolynomial has a unique 
onstant multiple whi
h isprimitive, and we make this our target, thus removingthe non-uniqueness just mentioned.As usual we de�ne the height of a polynomial f =Pni=0 fixi 2 Z[x℄ asH(f) = max0�j�n jfj j:We 
onsider the family Pn(H) of primitive polyno-mials of degree n and of height at most H :Pn(H) = 8>>>><>>>>: f(x) = nXi=0 fixi 2 Z[x℄ :g
d(f0; : : : ; fn) = 1;fn � 1;H(f) � H 9>>>>=>>>>; :

Theorem 3.1. Let n and H be positive integers, andlet �; �; Æ be nonnegative real numbers with 0 < Æ < 1and � + � � (1 � Æ)=(n + 2). There is a deterministi
algorithm whi
h, for any f 2 Pn(H), 
omputes the
oeÆ
ients of f in time polynomial in n; logH; logA,and Æ�1 using an MABB(A;�; �) for f .Proof. For ea
h fa
tor ra we always write ra = ka=mawith ka and ma of the form (1.1).Let f 2 Pn(H) and 
 = (
0; : : : ; 
n+1) 2 Zn+2 bethe ve
tor of 
oeÆ
ients in (2.4), that is,
i = (�1)i�n+ 1i �; 0 � i � n+ 1:For a ve
tor b = (b0; : : : ; bn+1) 2 Zn+2, we 
onsider thepolynomial hb = n+1Xi=0 bif(x+ i) 2 Z[x℄:In parti
ular, we have h
 = 0. Moreover, as dis
ussedin Se
tion 2, hb = 0 if and only if the ve
tors b and 
are proportional.We letB = l�(n+ 2)2n+2(2A)2n+4H�1=Æm ;and 
onsider nonzero ve
tors b = (b0; : : : ; bn+1) 2[�B;B℄n+2. We letB = fb 2 [�B;B℄n+2 : b not proportional to 
g:In parti
ular, hb is not identi
ally zero for any b 2 B. ATaylor expansion at i of the ith summand of hb giveshb = nXj=0 n+1Xi=0 bi f (j)(i)j! xj = nXj=0 n+1Xi=0 bi nX�=j��j�f�i��jxj :Estimating ea
h term trivially we obtain for b 2 BH(hb) � (n+2)(n+1)n+12nBH(f) � (n+2)n+22nBH:Hen
e for b 2 B, the absolute value of any zero of hb isless than H(hb) + 1 < (n+ 2)2n+2BH .We now set a = (n + 2)2n+2BH and query theapproximate bla
k box for f with inputs a+ i to re
eivethe valuesga+i = ra+i �f(a+i) = ka+ima+i �f(a+i) for 0 � i � n+1:All values ga+i are nonzero be
ause a � H(f) + 1.We 
onsider the (n+ 1)-dimensional latti
eL = nz = (z0; : : : ; zn+1) 2 Zn+2 : n+1Xi=0 ziga+i = 0o;



and the integersK = n+1Yj=0 ka+j ; M = n+1Yj=0ma+j ;andKi = ka+ima+iM; Mi = ma+ika+i K for 0 � i � n+ 1:Then(3.5)jKij � An+2(a+i)�+�(n+1); jMij � An+2(a+i)�(n+1)+�for 0 � i � n + 1. We see that L 
ontains the \short"ve
tor u = (u0; : : : ; un+1) withui = 
iMi for 0 � i � n+ 1:By (3.5) its norm satis�eskuk � An+2(a+ n+ 1)�(n+1)+�  n+1Xi=0 
2i!1=2� An+2(a+ n+ 1)�(n+1)+� n+1Xi=0 j
ij= 2n+1An+2(a+ n+ 1)�(n+1)+�and thus the algorithm of Lemma 2.1 returns a ve
torv = (v0; : : : ; vn+1) 2 L withkvk � 2(n+1)=2kuk � 23(n+1)=2An+2(a+n+1)�(n+1)+�:We havejviKij � 23(n+1)=2A2n+4(a+ n+ 1)(�+�)(n+2)� (2A)2n+4a(�+�)(n+2)� (2A)2n+4a1�Æ= (2A)2n+4 �(n+ 2)2n+2BH�1�Æ� (n+ 2)2n+2(2A)2n+4HB1�Æ � Bfor 0 � i � n+ 1. Sin
e0 = n+1Xi=0 viMga+i = n+1Xi=0 viKif(a+ i);it follows that (v0K0; : : : ; vn+1Kn+1) is proportional to
, say viKi = �
i for some nonzero � 2 Q and alli � n + 1. We now 
al
ulate the unique interpolationpolynomial g 2 Q[x℄ of degree at most n with g(a+ i) =ga+ivi=
i for 0 � i � n. (The value for i = n + 1 isignored.) Sin
eg(a+ i) = ga+ivi=
i = �ga+i=Ki = �f(a+ i)=Mfor 0 � i � n, g is a nonzero 
onstant multiple off . Finding f from g is trivial. The 
ost estimate isimmediate. 2

4 Polynomials over �nite �eldsHere we show that the approa
h of Se
tion 3 works forpolynomials over Fp for a prime p.To avoid the nonuniqueness problem in the 
aseof polynomials over Fp it is more natural to 
onsidermoni
 polynomials rather than primitive ones. As inany ring, multipli
ation by integers is well-de�ned, sothat ay 2 Fp for any a 2 Z and y 2 Fp . Similarly, wehave h(a) 2 Fp for a 2 Z and h 2 Fp [x℄.We 
onsider the family Mn;p of moni
 polynomialsof degree n:Mn;p = nf(x) = nXi=0 fixi 2 Fp [x℄ : fn = 1o:Theorem 4.1. Let n be a positive integer, and let�; �; Æ; " be nonnegative real numbers with 0 < Æ; " < 1and �+ � = (1� Æ)=(n+ 2)2. Then for any primep > 2(2n+6)(n+2)=Æ"�1=Æthere is a probabilisti
 algorithm whi
h for any f 2Mn;p 
omputes with probability at least 1 � " the 
o-eÆ
ients of f in time polynomial in n; log p; Æ�1 andlog "�1 using an MMABB(�; �; p) for f .Proof. For ea
h fa
tor ra we always write ra = ka=mawith ka and ma are of the form (1.2).The assumptions imply that p > n + 1. We de�nethe ve
tor 
 2 Zn+2 and the polynomials hb 2 Fp [x℄ forb 2 Zn+2 in exa
tly the same way as in the proof ofTheorem 3.1. In parti
ular, we have h
 = 0, and hb = 0if and only if the ve
tors b and 
 are proportional modulop. We let B = �16("p)1=(n+2)�and 
onsider nonzero ve
tors b = (b0; : : : ; bn+1) 2[�B;B℄n+2. We letB = fb 2 [�B;B℄n+2 : b not proportional 
 over Fpg;and for b 2 B, we 
onsider Ab = fa 2 Z : hb(a) = 0g.We have #Ab � n, and A = Sb2BAb has at mostn(2B + 1)n+2 < n3n+2Bn+2 � 6n+2Bn+2 � "pelements. We 
hoose a uniformly at random from Fp , sothat Prob(a 2 A) < ". We now query the approximatebla
k box for f with the inputs a+i to re
eive the valuesga+i = ra+i � f(a+ i) for 0 � i � n+ 1.Be
ause f is not identi
ally zero, at least one valuega+i 2 Fp is nonzero. We 
onsider the (n + 1)-dimensional latti
eL = nz = (z0; : : : ; zn+1) 2 Zn+2 : n+1Xi=0 ziga+i = 0o:



We also denoteK = n+1Yj=0 ka+j ; M = n+1Yj=0ma+jandKi = ka+ima+iM; Mi = ma+ika+i K; 0 � i � n+ 1:In parti
ular(4.6) jKij � p�+(n+1)� ; jMij � p(n+1)�+�for 0 � i � n + 1. We see that L 
ontains the \short"ve
tor u = (u0; : : : ; un+1) 2 L withui = 
iMi for 0 � i � n+ 1:By (4.6) its norm satis�eskuk � p�(n+1)+�  n+1Xi=0 
2i!1=2� p�(n+1)+� n+1Xi=0 j
ij= 2n+1p�(n+1)+� ;and the algorithm of Lemma 2.1 returns a ve
tor v =(v0; : : : ; vn+1) 2 L withkvk � 2(n+2)=2kuk � 22n+2p�(n+1)+�:The assumption in the theorem implies that B � 1, andthereforeB � B + 12 � 112p1=(n+2)"1=(n+2) � 22n+2p(1�Æ)=(n+2):We havejviKa+ij � 22n+2p(�+�)(n+2) � 22n+2p(1�Æ)=(n+2) � Bfor all i � n+ 1. Now we assume that a 62 A. Sin
e0 = n+1Xi=0 viMga+i = n+1Xi=0 viKif(a+ i);it follows that (v0K0; : : : ; vn+1Kn+1) is proportionalmodulo p to 
, say viKi = �
i for some integer � with� 6� 0 mod p and all i � n+ 1. Sin
e p > n+ 1, ea
h 
iwith i � n+ 1 is nonzero modulo p. We now 
al
ulatethe unique interpolation polynomial g 2 Fp [x℄ of degreeat most n with g(a+ i) = ga+ivi=
i 2 Fp for 0 � i � n.(The value for i = n+ 1 is ignored.) Sin
eg(a+ i) = ga+ivi=
i = �ga+i=Ki = �f(a+ i)=Mfor i � n, g is a nonzero 
onstant multiple of f , andf = l
(g)�1 � g, where l
(g) is the leading 
oeÆ
ient ofg. The 
ost estimate is immediate. 2

5 RemarksOur algorithm works with � + � = O(n�1) over Z andwith � + � = O(n�2) over Fp . The example of twopolynomials xg and (x+1)g where deg g = n� 1 showsthat it is impossible to solve this problem with � > 1.Indeed, the bla
k box output a(a+ 1)g(a) is 
onsistentwith both polynomials. It is an open question by howmu
h our bound on � + � 
an be relaxed. Is there apolynomial-time method when � + � = O(n�1) overFp? Finally, 
an the lower bound on p in Theorem 4.1be lowered?It is easy to see that our method 
an also be appliedto interpolating linear re
urren
e sequen
es instead ofpolynomials, whi
h satisfy a given linear re
urren
erelation n+1Xi=0 
iu(x+ i) = 0:The 
ost of the 
orresponding algorithm depends onthe size of the 
oeÆ
ients in the above relation. Tojustify the algorithm one 
an use bounds on the numberof zeros of linear re
urren
e sequen
es over Z and in�nite �elds; see Everest et al. (2002), or the originalpapers Evertse & S
hli
kewei (1999); van der Poorten& S
hli
kewei (1991); S
hli
kewei et al. (1999); S
hmidt(2000).One 
an obtain an algorithm whi
h interpolatesa t-sparse polynomial with only t + 1 queries to anMABB(A;�; �) or an MMABB(�; �; p); the whole al-gorithm however remains polynomial in n, not in t andlogn as one would desire for t-sparse polynomials.One 
an also 
onsider polynomials with rational 
o-eÆ
ients for whi
h there is bla
k box returning rationalmultiples of their values with 
ontrolled numerator anddenominator.Our method, 
ombined with the method of Shpar-linski (2001), 
an be applied to the more general prob-lem of re
overing k polynomials f1; : : : ; fk from poly-nomially many ve
tors Ra � (f1(a); : : : ; fk(a))T + sa forsome \small" matri
es Ra and ve
tors sa.Finally, our method 
an be extended to polynomialsf(x1; : : : ; xm) in m � 2 variables by making Krone
kerqueries of the form f �a; ad+1; : : : ; a(d+1)m�1� and thusredu
ing this 
ase to the univariate 
ase.We 
on
lude by mentioning that it would be in-teresting to 
onsider an analog of our problem over aresidue ring of the integers modulo an integer. One ofour 
ru
ial ingredients, namely the fa
t that the numberof roots of a polynomial is bounded by its degree, doesnot apply anymore. However, over su
h rings one 
antry to use a mu
h weaker bound of Konyagin (1979).Instead of re
overing a hidden polynomial, we 
anask to 
onstru
t a number x given by a bla
k box



returning rpx mod p on input p, for a prime p and asmall rational number rp. One will have additional
onstraints, su
h as bounds on jxj and on the primes.This problem is now under 
onsideration.A
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