
Polynomial interpolation from multiplesJoahim von zur GathenFaulty of Computer Siene, Eletrial Engineeringand Mathematis, Universit�at Paderborn33095 Paderborn, Germanygathen�upb.dehttp://www-math.upb.de/~gathen/Igor E. ShparlinskiDepartment of Computing, Maquarie UniversitySydney, NSW 2109, Australiaigor�omp.mq.edu.auhttp://www.omp.mq.edu.au/~igor/Otober 2, 2003AbstratWe are given an unknown polynomial f 2 Z[x℄ by ablak box whih on input a 2 Z returns a value ra �f(a)for some unknown nonzero rational numbers ra. Ifwe have appropriate upper bounds on the numeratorand denominator of ra and the degree of f , thenthe oeÆients of f an be omputed in probabilistipolynomial time.Keywords: Hidden polynomial, blak box polynomial,approximate omputation, short vetors, integer lat-ties.1 IntrodutionThere are several ways of representing a univariate poly-nomial over a ring. The two most important date stru-tures are the list of oeÆients, and a list of values,together with a bound on the degree. The transforma-tions between these two representations, namely evalu-ation and interpolation, play a basi role in many appli-ations. In more general domains, inluding the ringsof interest in number theory, interpolation beomes theChinese Remainder Algorithm.An interesting variation of the lassial task ofinterpolation assumes that not the exat values aregiven, but only approximations to them. This maymean that eah value may be \a little inorret",or that some but not all values are orret. Theusefulness of this problem �rst appeared in odingtheory, with the lassial Reed-Solomon odes and themore reent tool of list deoding. A number-theoreti

version of importane in ryptography is the hiddennumber problem. It is, of ourse, neessary to haveenough information in the inorret values to allowreonstrution of the true objet.In this paper, we want to reonstrut a polynomialfrom approximate values all of whih may be inorret,in some ontrolled fashion. The ase where the di�er-ene to the true values is bounded (and we work overa �nite prime �eld), has been solved by Shparlinski(2002b). In this paper, we onsider the interpolationtask when the ratio to the true value is bounded appro-priately.More preisely, we want to ompute the oeÆ-ients of a polynomial f 2 Z[x℄ of degree n forwhih we are given a multipliatively approximate blakbox MABB(A;�; �) whih on input a 2 Z, in time(n log(Ajaj+ 1))O(1) returns a rational multiple ga =ra � f(a) of f(a) for some unknown nonzero ra 2 Q.Here A, �, and � are positive real numbers suh thatwe an write ra = ka=ma with integers ka;ma and(1.1)gd(ka;ma) = 1; 0 < jkaj � Ajaj�; 0 < jmaj � Ajaj� :The gd ondition is onvenient but obviously notneessary. We assume that the response time of theMABB(A;�; �) is polynomial in the bit length of jgaj(thus queries with large values of a are more expensive).We design a probabilisti polynomial time inter-polation algorithm whih works for an MABB(A;�; �)with any �+ � < 1=(n+ 2).We also onsider the same problem for polynomials
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f 2 Fp [x℄ over a �nite prime �eld Fp of p elementswith a modular multipliatively approximate blak box,MMABB(�; �; p) , whih on input a 2 Z returns amultiple ga = ra � f(a) 2 Fp of the value f(a) 2 Fpwith some fator ra 2 F�p suh that ra � ka=ma mod pfor some integers ka;ma satisfying(1.2)gd(ka;ma) = 1; 0 < jkaj � p�; 0 < jmaj � p� :We obtain similar results for this problem, but thebound on the possible values of � and � is less generous.The orresponding additive problem, where a blakbox produes a shift sa + f(a) for some integer sa,has been solved in Shparlinski (2001) over Fp , with arather generous error bound on the size of sa (roughlyspeaking, jsaj ould be up to p exp(� log1=2 p)).Loosely speaking, the problem we onsider in thispaper, as well as the above mentioned additive problem,are variants of the hidden number problem whih has itsorigin in pioneering works of Boneh & Venkatesan (1996,1997) and whih has proved to be an invaluable toolfor ryptography and omputer siene; see Shparlinski(2003) and also surveys given in Shparlinski (2002a,b).It is no surprise that, as in most other works on thehidden number problem, our main tool is a lattie basisredution algorithm.Venkatesan Guruswami and Avi Wigderson haveremarked that if the fudge fators ra are always integerswith a polynomial bound on their value, then we andivide by all integers up to the bound (whih evenlydivide the approximate value) and obtain a list whihontains suÆiently many orret values so that thelist deoding approah of Guruswami & Sudan (1999)reovers the polynomial. However in this paper, as wellas in Shparlinski (2001), these fators may be hosenfrom exponentially large sets.2 Latties, linear homogeneous equations,and polynomialsHere we ollet several well-known fats whih form thebakground of our algorithm.We review several related results and de�nitionson latties whih an be found in Gr�otshel et al.(1993). For more details and more reent referenes, wereommend to onsult the brilliant surveys of Nguyen& Stern (2000, 2001).Let fb1; : : : ; bsg be a set of linearly independentvetors in Rr . The setL = fz : z = 1b1 + : : :+ sbs; 1; : : : ; s 2 Zgis alled an s-dimensional lattie with basis fb1; : : : ; bsg.If s = r, the lattie L is of full rank.To eah lattie L one an naturally assoiate its

volume vol (L) = �det (hbi; bji)si;j=1�1=2 ;where ha; bi denotes the inner produt, whih does notdepend on the hoie of the basis fb1; : : : ; bsg.For a vetor u, let kuk denote its Eulidean norm.The famous Minkowski theorem, see Theorem 5.3.6 inSetion 5.3 of Gr�otshel et al. (1993), gives the upperbound(2.3) min fkzk : z 2 L n f0gg � s1=2vol (L)1=son the shortest nonzero vetor in any s-dimensionallattie L via its volume. In fat s1=2 an be replaed bythe slightly smaller Hermite onstant 1=2s , see Nguyen& Stern (2000, 2001).The Minkowski bound (2.3) motivates a naturalquestion: how to �nd the shortest vetor in a lattie.Unfortunately, there are several indiations that thisproblem is NP-omplete (when the dimension grows),see Nguyen & Stern (2000, 2001). However, for a relaxedtask of �nding a short vetor, the elebrated LLLalgorithm of Lenstra et al. (1982) provides a desirablesolution.To simplify our alulations we use the LLL al-gorithm in its original form. Later developments ofShnorr (1987) and quite reently by Ajtai et al. (2001)lead to some (rather slight) improvements of our results.We also assume that the basis fb1; : : : ; bsg of Lonsists of vetors in Zr (rather than in Rr ), so onean talk about the bit size of the basis and the notionof a polynomial-time algorithm.Lemma 2.1. There exists a deterministi polynomial-time algorithm whih, given a basis for an s-dimensionallattie L, �nds a nonzero vetor v 2 L withkvk � 2(s�1)=2min fkzk : z 2 Lnf0gg:It is also useful to remember that when s issmall (for example, onstant), then in polynomial timeone an �nd a nonzero vetor v 2 L with kvk =min fkzk : z 2 L n f0gg, see Ajtai et al. (2001); Nguyen& Stern (2000, 2001).The set of integer solutions z = (z1; : : : ; zr) 2 Zr ofa linear homogeneous Diophantine equationrXi=1 zii = 0forms a lattie of dimension r � 1 (unless 1 = � � � =r = 0). The same is also true for the solutions z 2 Zrof a linear homogeneous ongruenerXi=1 zii � 0 mod p



modulo a prime p, exept that in this ase the set ofinteger solutions forms a lattie of dimension r.Finally, for any polynomial f 2 K [x℄ of degree atmost n over any �eld K we have the well-known Newtonrelations(2.4) n+1Xi=0 (�1)i�n+ 1i �f(x+ i) = 0:Moreover, if deg f = n and the harateristi of K isgreater than n + 1 or zero then, beause f an also beviewed as a linear reurrene sequene of order exatlyn+1, any other linear relation between all (n+2)-tuplesof onseutive values of f has oeÆients proportionalto those in (2.4). That is, if for some oeÆientsC0; : : : ; Cn+1 2 Kn+1Xi=0(�1)iCif(x+ i) = 0for all positive integer x, thenCi = �(�1)i�n+ 1i �; for 0 � i � n+ 1;and some � 2 K .3 Polynomials over ZThere is some nonuniqueness inherent in our problem.Namely, when the blak box hooses all its fudge fatorsra as even integers, then we an in priniple not tellwhether the original polynomial is f or 2f . Thereforewe an at best expet a onstant multiple of the originalpolynomial as output.We all an integer polynomial primitive if thegreatest ommon divisor of its oeÆients is 1, andits leading term is positive. Eah nonzero integerpolynomial has a unique onstant multiple whih isprimitive, and we make this our target, thus removingthe non-uniqueness just mentioned.As usual we de�ne the height of a polynomial f =Pni=0 fixi 2 Z[x℄ asH(f) = max0�j�n jfj j:We onsider the family Pn(H) of primitive polyno-mials of degree n and of height at most H :Pn(H) = 8>>>><>>>>: f(x) = nXi=0 fixi 2 Z[x℄ :gd(f0; : : : ; fn) = 1;fn � 1;H(f) � H 9>>>>=>>>>; :

Theorem 3.1. Let n and H be positive integers, andlet �; �; Æ be nonnegative real numbers with 0 < Æ < 1and � + � � (1 � Æ)=(n + 2). There is a deterministialgorithm whih, for any f 2 Pn(H), omputes theoeÆients of f in time polynomial in n; logH; logA,and Æ�1 using an MABB(A;�; �) for f .Proof. For eah fator ra we always write ra = ka=mawith ka and ma of the form (1.1).Let f 2 Pn(H) and  = (0; : : : ; n+1) 2 Zn+2 bethe vetor of oeÆients in (2.4), that is,i = (�1)i�n+ 1i �; 0 � i � n+ 1:For a vetor b = (b0; : : : ; bn+1) 2 Zn+2, we onsider thepolynomial hb = n+1Xi=0 bif(x+ i) 2 Z[x℄:In partiular, we have h = 0. Moreover, as disussedin Setion 2, hb = 0 if and only if the vetors b and are proportional.We letB = l�(n+ 2)2n+2(2A)2n+4H�1=Æm ;and onsider nonzero vetors b = (b0; : : : ; bn+1) 2[�B;B℄n+2. We letB = fb 2 [�B;B℄n+2 : b not proportional to g:In partiular, hb is not identially zero for any b 2 B. ATaylor expansion at i of the ith summand of hb giveshb = nXj=0 n+1Xi=0 bi f (j)(i)j! xj = nXj=0 n+1Xi=0 bi nX�=j��j�f�i��jxj :Estimating eah term trivially we obtain for b 2 BH(hb) � (n+2)(n+1)n+12nBH(f) � (n+2)n+22nBH:Hene for b 2 B, the absolute value of any zero of hb isless than H(hb) + 1 < (n+ 2)2n+2BH .We now set a = (n + 2)2n+2BH and query theapproximate blak box for f with inputs a+ i to reeivethe valuesga+i = ra+i �f(a+i) = ka+ima+i �f(a+i) for 0 � i � n+1:All values ga+i are nonzero beause a � H(f) + 1.We onsider the (n+ 1)-dimensional lattieL = nz = (z0; : : : ; zn+1) 2 Zn+2 : n+1Xi=0 ziga+i = 0o;



and the integersK = n+1Yj=0 ka+j ; M = n+1Yj=0ma+j ;andKi = ka+ima+iM; Mi = ma+ika+i K for 0 � i � n+ 1:Then(3.5)jKij � An+2(a+i)�+�(n+1); jMij � An+2(a+i)�(n+1)+�for 0 � i � n + 1. We see that L ontains the \short"vetor u = (u0; : : : ; un+1) withui = iMi for 0 � i � n+ 1:By (3.5) its norm satis�eskuk � An+2(a+ n+ 1)�(n+1)+�  n+1Xi=0 2i!1=2� An+2(a+ n+ 1)�(n+1)+� n+1Xi=0 jij= 2n+1An+2(a+ n+ 1)�(n+1)+�and thus the algorithm of Lemma 2.1 returns a vetorv = (v0; : : : ; vn+1) 2 L withkvk � 2(n+1)=2kuk � 23(n+1)=2An+2(a+n+1)�(n+1)+�:We havejviKij � 23(n+1)=2A2n+4(a+ n+ 1)(�+�)(n+2)� (2A)2n+4a(�+�)(n+2)� (2A)2n+4a1�Æ= (2A)2n+4 �(n+ 2)2n+2BH�1�Æ� (n+ 2)2n+2(2A)2n+4HB1�Æ � Bfor 0 � i � n+ 1. Sine0 = n+1Xi=0 viMga+i = n+1Xi=0 viKif(a+ i);it follows that (v0K0; : : : ; vn+1Kn+1) is proportional to, say viKi = �i for some nonzero � 2 Q and alli � n + 1. We now alulate the unique interpolationpolynomial g 2 Q[x℄ of degree at most n with g(a+ i) =ga+ivi=i for 0 � i � n. (The value for i = n + 1 isignored.) Sineg(a+ i) = ga+ivi=i = �ga+i=Ki = �f(a+ i)=Mfor 0 � i � n, g is a nonzero onstant multiple off . Finding f from g is trivial. The ost estimate isimmediate. 2

4 Polynomials over �nite �eldsHere we show that the approah of Setion 3 works forpolynomials over Fp for a prime p.To avoid the nonuniqueness problem in the aseof polynomials over Fp it is more natural to onsidermoni polynomials rather than primitive ones. As inany ring, multipliation by integers is well-de�ned, sothat ay 2 Fp for any a 2 Z and y 2 Fp . Similarly, wehave h(a) 2 Fp for a 2 Z and h 2 Fp [x℄.We onsider the family Mn;p of moni polynomialsof degree n:Mn;p = nf(x) = nXi=0 fixi 2 Fp [x℄ : fn = 1o:Theorem 4.1. Let n be a positive integer, and let�; �; Æ; " be nonnegative real numbers with 0 < Æ; " < 1and �+ � = (1� Æ)=(n+ 2)2. Then for any primep > 2(2n+6)(n+2)=Æ"�1=Æthere is a probabilisti algorithm whih for any f 2Mn;p omputes with probability at least 1 � " the o-eÆients of f in time polynomial in n; log p; Æ�1 andlog "�1 using an MMABB(�; �; p) for f .Proof. For eah fator ra we always write ra = ka=mawith ka and ma are of the form (1.2).The assumptions imply that p > n + 1. We de�nethe vetor  2 Zn+2 and the polynomials hb 2 Fp [x℄ forb 2 Zn+2 in exatly the same way as in the proof ofTheorem 3.1. In partiular, we have h = 0, and hb = 0if and only if the vetors b and  are proportional modulop. We let B = �16("p)1=(n+2)�and onsider nonzero vetors b = (b0; : : : ; bn+1) 2[�B;B℄n+2. We letB = fb 2 [�B;B℄n+2 : b not proportional  over Fpg;and for b 2 B, we onsider Ab = fa 2 Z : hb(a) = 0g.We have #Ab � n, and A = Sb2BAb has at mostn(2B + 1)n+2 < n3n+2Bn+2 � 6n+2Bn+2 � "pelements. We hoose a uniformly at random from Fp , sothat Prob(a 2 A) < ". We now query the approximateblak box for f with the inputs a+i to reeive the valuesga+i = ra+i � f(a+ i) for 0 � i � n+ 1.Beause f is not identially zero, at least one valuega+i 2 Fp is nonzero. We onsider the (n + 1)-dimensional lattieL = nz = (z0; : : : ; zn+1) 2 Zn+2 : n+1Xi=0 ziga+i = 0o:



We also denoteK = n+1Yj=0 ka+j ; M = n+1Yj=0ma+jandKi = ka+ima+iM; Mi = ma+ika+i K; 0 � i � n+ 1:In partiular(4.6) jKij � p�+(n+1)� ; jMij � p(n+1)�+�for 0 � i � n + 1. We see that L ontains the \short"vetor u = (u0; : : : ; un+1) 2 L withui = iMi for 0 � i � n+ 1:By (4.6) its norm satis�eskuk � p�(n+1)+�  n+1Xi=0 2i!1=2� p�(n+1)+� n+1Xi=0 jij= 2n+1p�(n+1)+� ;and the algorithm of Lemma 2.1 returns a vetor v =(v0; : : : ; vn+1) 2 L withkvk � 2(n+2)=2kuk � 22n+2p�(n+1)+�:The assumption in the theorem implies that B � 1, andthereforeB � B + 12 � 112p1=(n+2)"1=(n+2) � 22n+2p(1�Æ)=(n+2):We havejviKa+ij � 22n+2p(�+�)(n+2) � 22n+2p(1�Æ)=(n+2) � Bfor all i � n+ 1. Now we assume that a 62 A. Sine0 = n+1Xi=0 viMga+i = n+1Xi=0 viKif(a+ i);it follows that (v0K0; : : : ; vn+1Kn+1) is proportionalmodulo p to , say viKi = �i for some integer � with� 6� 0 mod p and all i � n+ 1. Sine p > n+ 1, eah iwith i � n+ 1 is nonzero modulo p. We now alulatethe unique interpolation polynomial g 2 Fp [x℄ of degreeat most n with g(a+ i) = ga+ivi=i 2 Fp for 0 � i � n.(The value for i = n+ 1 is ignored.) Sineg(a+ i) = ga+ivi=i = �ga+i=Ki = �f(a+ i)=Mfor i � n, g is a nonzero onstant multiple of f , andf = l(g)�1 � g, where l(g) is the leading oeÆient ofg. The ost estimate is immediate. 2

5 RemarksOur algorithm works with � + � = O(n�1) over Z andwith � + � = O(n�2) over Fp . The example of twopolynomials xg and (x+1)g where deg g = n� 1 showsthat it is impossible to solve this problem with � > 1.Indeed, the blak box output a(a+ 1)g(a) is onsistentwith both polynomials. It is an open question by howmuh our bound on � + � an be relaxed. Is there apolynomial-time method when � + � = O(n�1) overFp? Finally, an the lower bound on p in Theorem 4.1be lowered?It is easy to see that our method an also be appliedto interpolating linear reurrene sequenes instead ofpolynomials, whih satisfy a given linear reurrenerelation n+1Xi=0 iu(x+ i) = 0:The ost of the orresponding algorithm depends onthe size of the oeÆients in the above relation. Tojustify the algorithm one an use bounds on the numberof zeros of linear reurrene sequenes over Z and in�nite �elds; see Everest et al. (2002), or the originalpapers Evertse & Shlikewei (1999); van der Poorten& Shlikewei (1991); Shlikewei et al. (1999); Shmidt(2000).One an obtain an algorithm whih interpolatesa t-sparse polynomial with only t + 1 queries to anMABB(A;�; �) or an MMABB(�; �; p); the whole al-gorithm however remains polynomial in n, not in t andlogn as one would desire for t-sparse polynomials.One an also onsider polynomials with rational o-eÆients for whih there is blak box returning rationalmultiples of their values with ontrolled numerator anddenominator.Our method, ombined with the method of Shpar-linski (2001), an be applied to the more general prob-lem of reovering k polynomials f1; : : : ; fk from poly-nomially many vetors Ra � (f1(a); : : : ; fk(a))T + sa forsome \small" matries Ra and vetors sa.Finally, our method an be extended to polynomialsf(x1; : : : ; xm) in m � 2 variables by making Kronekerqueries of the form f �a; ad+1; : : : ; a(d+1)m�1� and thusreduing this ase to the univariate ase.We onlude by mentioning that it would be in-teresting to onsider an analog of our problem over aresidue ring of the integers modulo an integer. One ofour ruial ingredients, namely the fat that the numberof roots of a polynomial is bounded by its degree, doesnot apply anymore. However, over suh rings one antry to use a muh weaker bound of Konyagin (1979).Instead of reovering a hidden polynomial, we anask to onstrut a number x given by a blak box



returning rpx mod p on input p, for a prime p and asmall rational number rp. One will have additionalonstraints, suh as bounds on jxj and on the primes.This problem is now under onsideration.Aknowledgement. The authors thankVenkatesan Guruswami and Avi Wigderson for usefuldisussions and in partiular for attrating our atten-tion to the possible appliation of list deoding as inGuruswami & Sudan (1999), to the speial ase wherethe fudge fators are polynomially bounded in value.ReferenesMikl�os Ajtai, Ravi Kumar&D. Sivakumar (2001).A Sieve Algorithm for the Shortest Lattie VetorProblem. In Proeedings of the Thirty-third AnnualACM Symposium on the Theory of Computing, Her-sonissos, Crete, Greee, 601{610. ACM Press, 1515Broadway, New York, New York 10036. ISBN 1-58113-349-9.Dan Boneh & Ramarathnam Venkatesan (1996).Hardness of Computing the Most Signi�ant Bitsof Seret Keys in DiÆe-Hellman and RelatedShemes. In Advanes in Cryptology: Pro-eedings of CRYPTO '96, Santa Barbara CA,N. Koblitz, editor, number 1109 in LetureNotes in Computer Siene, 129{142. Springer-Verlag, Springer-Verlag. ISBN 3-540-61512-1. ISSN0302-9743. URL http://link.springer.de/link/servie/series/0558/tos/t1109.htm.Dan Boneh & Ramarathnam Venkatesan (1997).Rounding in latties and its ryptographi applia-tions. Proeedings of the 8th Annual ACM-SIAMSymposium on Desrete Algorithms, ACM 675{681. URL http://rypto.stanford.edu/~dabo/abstrats/nonuniform.html.Graham Everest, Alf van der Poorten, IgorShparlinski & Thomas Ward (2002). Exponen-tial funtions, linear reurrene sequenes, and theirappliations.Jan-Hendrik Evertse & Hans Peter Shlik-ewei (1999). The Absolute Subspae Theorem andlinear equations with unknowns from a multiplia-tive group. Number Theory in Progress 1, 121{142.URL http://www.math.leidenuniv.nl/~evertse/98-absolute.pdf.Martin Gr�otshel, L�aszl�o Lov�asz & AlexanderShrijver (1993). Geometri Algorithms and Com-binatorial Optimization. Number 2 in Algorithms and
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