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Abstract. We show that for arbitrary positive integers a1, . . . , am, with
probability at least 6/π2 + o(1), the gcd of two linear combinations of
these integers with rather small random integer coefficients coincides
with gcd(a1, . . . , am). This naturally leads to a probabilistic algorithm
for computing the gcd of several integers, with probability at least 6/π2+
o(1), via just one gcd of two numbers with about the same size as the
initial data (namely the above linear combinations). Naturally, this al-
gorithm can be repeated to achieve any desired confidence level.

1 Introduction

For a vector u = (u1, . . . , um) ∈ R
m we define its height as

h(u) = max
i=1,...,m

|ui|.

We let a = (a1, . . . , am) ∈ N
m be a vector of m ≥ 2 positive integers, x =

(x1, . . . , xm),y = (y1, . . . , ym) ∈ N
m be two integer vectors of the same length,

where N = {1, 2, . . .}, and consider the linear combinations

a · x =
m∑

i=1

aixi and a · y =
m∑

i=1

aiyi.

Then clearly gcd(a1, . . . , am) divides gcd(a · x,a · y), and we want to show
that in fact, equality holds quite often.

For an integer M , we denote by ρa(M) the probability that, for x,y chosen
uniformly in N

m with height at most M ,

gcd(a1, . . . , am) = gcd(a · x,a · y). (1)

Assuming that a · x and a · y behave as independent random integer multi-
ples of gcd(a1, . . . , am), it is reasonable to expect that (1) holds with probability
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ζ(2)−1 = 6/π2 where ζ(s) is the Riemann zeta function. Here we obtain a lower
bound for ρa(M) which for a very wide range of m, M , and N = h(a) shows that
this quantity is asymptotically at least that big. The range in which this is estab-
lished improves quite substantially the corresponding result of [2]. In particular,
our result implies that one can choose M of order lnN in the algorithm of [2]
rather than of order N as in Corollary 3 of [2], thus reducing quite dramatically
the size of the operands which arise in the algorithm of [2].

The lower bound on ρa(M) plays a crucial role in the analysis of a fast
probabilistic algorithm for computing the gcd of several integers which has been
studied in [2]. This algorithm, for any δ > 0, requires only about

1
ln(π2/(π2 − 6))

ln δ−1 = 1.06802 . . . ln δ−1 (2)

pairwise gcd computations, to achieve success probability at least 1 − δ (where
ln z is the natural logarithm of z > 0). For comparison, it is noted that the
naive deterministic approach may require up to m − 1 gcd computations. A
drawback of the algorithm of [2] is that for its proof of correctness to work, the
arguments given to the gcd computations have to be substantially larger than
the original inputs. Our results now imply that one may choose the operands
of that algorithm of approximately the same size as the inputs. An exact cost
analysis depends on the cost of the particular gcd algorithm, a variety of which
can be found in [3].

A well-known fact says that gcd(a1, . . . , am) equals 1 with probability ζ−1(m)
for random integers a1, . . . , am; see [4], Theorem 332, for a precise formulation in
the case m = 2. It is important to not confuse our result which holds for arbitrary
(“worst-case”) inputs with the “average-case” result which follows from this fact.

2 Main Result

We show that for a wide choice of parameters ρa(M) ≥ 0.607. More precisely,
we have the following.

Theorem 1. Let a ∈ Z
m be of height at most N . Then for any M > m, we

have ρa(M) ≥ ζ(2)−1 − ∆, where ∆ = O
(
ln−1(M/m) + M−1 ln(MN)

)
.

Proof. Without loss of generality we can assume that M/m is large enough
because otherwise the result is trivial. As in [2], we remark that it is enough to
consider only the case gcd(a1, . . . , am) = 1.

We define Q as the largest integer with the condition
∏

p≤Q

p ≤ (M/m)1/2,

where the product is taken over all primes p ≤ Q. By the Prime Number Theo-
rem, see Theorem 4.4 of [1], we have Q = (1/2 + o(1)) ln(M/m).
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Let L be the set of all pairs of integer vectors x,y ∈ N
m with h(x), h(y) ≤ M .

For an integer k ≥ 2, we denote by P (k) the largest prime divisor of k, and set
P (1) = 1. We define the following subsets:

• Q = {(x,y) ∈ L | Q ≥ P (gcd(a · x,a · y)) > 1},
• R = {(x,y) ∈ L | M > P (gcd(a · x,a · y)) > Q},
• S = {(x,y) ∈ L | P (gcd(a · x,a · y)) ≥ M},
• T = {(x,y) ∈ L | p| gcd(a · x,a · y) for some p ≤ Q}.

Obviously Q ⊆ T , and

1 − ρa(M) = M−2m (#Q + #R + #S) ≤ M−2m (#T + #R + #S) .

For an integer d ≥ 1, let us denote by Ud(M) the set of all integer vectors
x ∈ N

m with h(x) ≤ M and d|a · x, and put Ud(M) = #Ud(M). Because
gcd(a1, . . . , am) = 1 , we obviously have Up(p) = pm−1 for any prime p. Then, for
any squarefree d, by the Chinese Remainder Theorem, we conclude that Ud(d) =
dm−1, and Ud(dK) = Kmdm−1 for any integer K. Finally, using Ud(d �M/d�) ≤
Ud(M) ≤ Ud(d �M/d�), we obtain that for d = o(M/m),

Ud(M) = (M/d + O(1))mdm−1 =
Mm

d
(1 + O(d/M))m

=
Mm

d
exp (O(dm/M)) =

Mm

d
(1 + O(md/M)) .

(3)

It is also clear that for any prime p

Up(M) ≤ (M/p + 1)Mm−1 = Mm/p + Mm−1. (4)

By the inclusion exclusion principle we have

M2m − #T =
∑

d≥1
1≤P (d)≤Q

µ(d)Ud(M)2

where µ is the Möbius function. We recall that µ(1) = 1, µ(d) = 0 if d ≥ 2 is not
squarefree, and µ(d) = (−1)ν(d) otherwise, where ν(d) is the number of prime
divisors of d; see Section 2.1 of [1]. From the definition of Q we see that any
squarefree d with P (d) ≤ Q does not exceed (M/m)1/2. Now from (3) we derive
that for such d,

Ud(M)2 =
M2m

d2 (1 + O(md/M)) =
M2m

d2 + O
(
mM2m−1/d)

)
.
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Therefore

M2m − #T (M) =
∑

d≥1
1≤P (d)≤Q

µ(d)
(

M2m

d2 + O
(
mM2m−1/d)

))

= M2m
∑

d≥1
1≤P (d)≤Q

µ(d)
d2 + O

⎛

⎝mM2m−1
∑

d≤(M/m)1/2

d−1

⎞

⎠

= M2m
∏

p≤Q

(
1 − 1

p2

)
+ O

(
mM2m−1 ln(M/m)

)
.

We now recall that

∏

p≤Q

(
1 − 1

p2

)
=

∏

p

(
1 − 1

p2

)
+ O(Q−1) = ζ(2)−1 + O(Q−1)

see Section 11.4 of [1]. Thus

#T = (1 − ζ(2)−1)M2m + O
(
M2mQ−1 + mM2m−1 ln(M/m)

)
.

When 2M/ ln2 M ≥ m, then the last term is smaller than the last but one
term.

Thus
#T = (1 − ζ(2)−1)M2m + O

(
M2mQ−1) .

For #R, using (4), and the inequality (a + b)2 ≤ 2(a2 + b2) we get

#R ≤
∑

Q<p<M

Up(M)2 ≤ 2
∑

Q<p<M

(
M2m

p2 + M2m−2
)

≤ 2M2m
∑

k>Q

1
k2 + 2M2m−2

∑

k<M

1

= O
(
M2mQ−1 + M2m−1) = O

(
M2mQ−1) .

Finally, using (4) again, we derive

#S ≤
∑

p≥M

Up(M)2 ≤ Mm−1
∑

p≥M

Up(M)

= Mm−1
∑

h(x)≤M

∑

p≥M
p|a·x

1 = Mm−1
∑

h(x)≤M

ν(a · x)

= O

⎛

⎝Mm−1
∑

h(x)≤M

lna · x

⎞

⎠ ,
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because for any integer k ≥ 2 we have ν(k) = O(ln k/ ln ln k). Taking into
account that a · x ≤ mMN we finish the proof. 	


Corollary 2 Let a ∈ Z
m be of height at most N . Then for any M such that

M/ max{m, lnN} → ∞, we have

ρa(M) ≥ ζ(2)−1 + o(1).

3 Algorithmic Implications

It is easy to see that Corollary 2 implies that for any a1, . . . , am one can compute
gcd(a1, . . . , am) probabilistically as the gcd of two integers of asymptotically the
same bit lengths as the original data, while the result of [2] only guarantees the
same for two integers of bit lengths twice more. The probability of success in
both cases is, asymptotically, at least ζ(2)−1 = 6/π2 = 0.6079 . . .. Repeating this
several times and choosing the smallest result one gets an efficient and reliable
algorithm to compute the above gcd which is an attractive alternative to the
m-step (deterministic) chain of computation

gcd(a1, . . . , am) = gcd(gcd(a1, a2), a3, . . . , am)
= gcd(. . . (gcd(gcd(a1, a2), a3), . . . , am).

For illustration, we take l-bit primes p1, . . . , pm, a = p1 · · · pm, and ai = a/pi

for i ≤ m. Then indeed m − 1 steps are necessary until the gcd, which equals 1,
is found.

After i−1 steps, the current value of the gcd has about (m− i)l bits, and the
reduction of the (m − 1)l-bit ai+1 modulo this gcd takes about 2l2(m − i)(i − 1)
operations in naive arithmetic; see [3], Section 2.4. This comes to a total of about
l2m3/3 operations. If one gcd of n-bit integers costs about cn2 operations, for
a constant c, then all the gcds required amount to cm3/3, for a grand total of
l2m3(1 + c)/3 operations.

In our algorithm, we can choose xi and yi of ln(ml) bits. The inner products
together cost just over 2lm2 ln(ml) operations, and the single gcd about cl2m2.
The latter is the dominant cost, and thus our algorithm is faster by a factor of
about m/3 than the standard one.

In other words, if k < m/3, maybe k ≈
√

m, and confidence at least 1−ζ(2)−k

is sufficient, then the k-fold repetition of our algorithm is faster. (In practice, one
would not just repeat, but reduce the inputs modulo the gcd candidate obtained
so far, and either find that it divides all of them and thus is the true gcd, or
continue with the smaller values.)

The advantage of our method evaporates when one uses fast arithmetic.
The worst-case example is not quite as esoteric as it may look. In resultant

and subresultant computations with several integer polynomials in several vari-
ables, nontrivial gcds occur with definite patterns.
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4 Conclusion and Open Questions

It would be interesting to evaluate the constant implicit in the bound of The-
orem 1. This should be possible, but may involve some nontrivial amount of
technical details.

We believe that in fact ρa(M) ∼ ζ(2)−1 under the condition of Corollary 2
(or some similar conditions maybe marginally more restrictive). We believe that
better sieving technique should produce such a result. Although it may have no
algorithmic application it is a natural question which would be interesting to
resolve.

Finally, we remark that the approach of [2] leads to an algorithm for an
the extended gcd problem; see [3] for the background on this problem. Namely,
solving the the extended gcd problem for a · x and a · x we obtain a relation

c1a1 + . . . + cnan = d

for some integers c1, . . . , cn, d with d > 0. Repeating this the appropriate number
of times, given by (2), and choosing the relation with the smallest value of d, we
solve he extended gcd problem with probability at least 1 − δ.
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