mission of the copyright holder. (Last update 2017/11/29-18 :20.)

each copyright holder, and in particular use them only for noncommercial pur-

This document is provided as a means to ensure timely dissemination of scholarly ~ are maintained by the authors or by other copyright holders, notwithstanding that ing any of these documents will adhere to the terms and constraints invoked by ~ poses. These works may not be posted elsewhere without the explicit written per-

and technical work on a non-commercial basis. Copyright and all rights therein these works are posted here electronically. It is understood that all persons copy-

JOACHIM VON ZUR GATHEN & IGOR E. SHPARLINSKI (2008). Approximate polynomial gcd : small degree and small height perturbations. In Proceedings of LATIN 2008,
Bizios, Rio de Janeiro, Brazil, EDUARDO SANY LABER, CLAUDSON BORNSTEIN, LOANA TITO NOGUEIRA & LUERBIO FARIA, editors, volume 4957 of Lecture Notes in

Computer Science, 276-283. Springer-Verlag, Berlin, Heidelberg. ISSN 0302-9743. URL https://dx.doi.org/10.1007/978-3-540-78773-024.

Approximate polynomial gcd:
small degree and small height perturbations

Joachim von zur Gathen' and Igor E. Shparlinski?

L B-IT, Universitit Bonn
53113 Bonn, Germany
gathen@bit.uni-bonn.de
2 Department of Computing, Macquarie University
NSW 2109, Australia
igor@ics.mq.edu.au

Abstract. We consider the following computational problem: we are
given two coprime univariate polynomials fo and fi over a ring R and
want to find whether after a small perturbation we can achieve a large
ged. We solve this problem in polynomial time for two notions of “large”
(and “small”): large degree (when R = F is an arbitrary field, in the
generic case when fy and fi have a so-called normal degree sequence),
and large height (when R = Z).

Key words: FEuclidean algorithm, ged, approximate computation

1 Introduction

Symbolic (exact) computations of the ged of two univariate polynomials form
a well-developed topic of computer algebra. These methods are not directly ap-
plicable when the coefficients are “inexact” real numbers, maybe coming from
physical measurements. The appropriate model here is to ask for a “large” ged,
allowing “small” additive perturbations of the inputs. Numerical analysis pro-
vides several ways of formalizing this, and “approximate gcd” computations are
an emerging topic of computer algebra with a growing literature. We only point
to Bini & Boito (2007) and its references.

The present paper considers two “exact” notions of approximate gceds. Namely,
let fo, f1 € Flz] be two univariate polynomials over a field F, both of degree at
most n, and d and e integers. We are interested in perturbations ug, u; € F|z]
of degree at most e such that degged(fo + wo, f1 + u1) > d. We show that if
e < min{2d — n,n — d}, then the problem has at most one solution, and if one
exists, we can find it in polynomial time. Then we also consider polynomials
over Z and obtain similar results for perturbations v € Z[z] of small height that
achieve a ged(fo, f1 +v) of large height (without any restrictions on their degree
except that degv < n).

These results are natural polynomial analogues of those obtained recently by
Howgrave-Graham (2001).

We prove that our algorithms solve the problem under rather restrictive
assumptions. It remains an open question whether either a variant or some other
algorithm can tackle a larger set of input values.

We also remark that finding multidimensional analogues, that is, constructing
algorithms to find “small” perturbations ug,...,us—1 of fo,..., fs—1 such that
ged(fo + wo, -y fs—1 +us—1) is “large” (in both number and polynomial cases)
is another interesting direction of research.

2 Gecd of large degree

We write fquog and frem g for the quotient and remainder on division of f by
nonzero g. Thus f = (fquog) - g+ (fremg) and deg(fremg) < degg.

The degree sequence of two univariate polynomials fy, f1 € F[z] is the se-
quence of degrees deg fo, deg f1,deg fa,... of the remainders fy, f1, fa,... in the
Euclidean algorithm. Usually, but not always, deg f;_1 = 1 + deg f;, and we say
that fo, f1 have a normal degree sequence if that is the case for all i. We denote
by M a polynomial multiplication time over F, so that two polynomials of de-
gree at most n can be multiplied with O(M(n)) operations in F. We may use
M(n) = nlognloglogn. In particular M(n) € O1(n), where as usual A € O(B)
means that |A| < ¢1B(log(B + 2))°* for some constants ¢, ce > 0; see von zur
Gathen & Gerhard (2003, Chapter 8).

For our first result, we consider a field F and univariate polynomials fy, f1 €
Flx]. We ask for perturbations ug, u1 € F[z] of small degree so that the perturbed
polynomials have a gcd of large degree. More precisely, we also have integers
ep, €1, d, and we consider the set

U = {(ug,u1) € Flx]*: degu; <e; fori = 0,1, degged(fo + uo, f1 +u1) = d}.
(1)

If e; is negative, then the condition is meant to imply that u; = 0. As an
example, we can take fi,g,up € F[z] of degrees ni,m,eq, respectively, with
eo < ny <m,and fo = gfi—ug,d =ny,and e; = ny—m—1. Then U = {(uop,0)},
and the hypotheses in the theorem below are satisfied.

The algorithm below executes the Extended Euclidean Algorithm (EEA) for
(fo, f1)- It produces a finite series of “lines” (r;, s;,t;) such that s; fo+t; f1 = r;,
where degr; < n is strictly decreasing with growing j (see von zur Gathen &
Gerhard 2003, Section 3.2). We have s; = to = 0, and all other s; and ¢; are
nonzero. Furthermore, since deg s; and degt; are strictly increasing (see von zur
Gathen & Gerhard 2003, Lemma 3.10), there is at most one “line” (r, s,t) with
a prescribed degree for s (or t). We denote as lc(f) the leading coefficient of a
polynomial f.

Algorithm 2. Approximate ged of large degree.

Input: fo, f1 € Flz] monic of degrees ng > nq, respectively, coprime and with a
normal degree sequence. Furthermore, integers d, ey, e; with d > 0 and

eo < min{2d — ny,ng — d}, e1 < min{2d — ng,n; — d}.

Output: U as in (1).

1. Execute the EEA with input (fo, f1).

2. Check if the EEA computes (r,s,t) with sfo + tfi = r and ng — degt =
n1 — degs = d. If not, return U = @.

3. Otherwise, if s = 0, then let ug = —(fo rem f1) and return U = {(uo,0)} if
degug < eg, and else Y = @. If t = 0, then return U = &.

4. {We now have sfy +tf1 =r and st # 0.} Compute

ho = fo quo t,
h1 = f1 quo s.

If hg and hq are not associates, return U = .
5. Else, compute

h = 1C(h0)71h0,

a=lc(t)™,
qo = atv
q1 = —as,

u; = q;h — f; for i =0, 1.

6. If degu; < e; for ¢ = 0,1, then return & = {(ug, u1)}, else return U = @.

Theorem 3. Let fy, f1, n = ng, n1, d, ey, ey satisfy the input specification of
Algorithm 2. Then the set U contains at most one element, and Algorithm 2
computes it with O(M(n)logn) operations in F.

Proof. We have noted above that there is at most one “line” (r, s,t) in the EEA
with sfo+tf1 =r and ng —degt = ny — deg s = d. If there is no such line, then
our algorithm returns Y = @. Otherwise we take that line.

We first have to check that any (ug, u1) returned by the algorithm is actually
in the set . This is clear in Step 3. For an output in Step 6, we note that

ng(fO + uo, fl + Ul) = ng(QOha Chh) = thd(S7 t) = h7
since ged(s,t) =1 (see von zur Gathen & Gerhard 2003, Lemma 3.8 (v)),
deg h = deg hg = deg fo — degt =d,

and indeed (ug,u1) € U.
To show correctness of the algorithm it remains to show that if & # &, then
the algorithm indeed returns this set ¢/, and that ¢/ has at most one element.
So we now suppose that U # &, let (ug, u1) € U, and h = ged(fo+uo, f1+u1),
so that degh = d. One first checks that the algorithm deals correctly with the
two special cases d = ng and d = ny. In the other cases, there exist uniquely
determined qo, ¢1 € F[z] such that

f’i ZQZh_u’L for 7::0517 (4)

since degu; < 2d —ni1—; < d = degh. Eliminating h from these two equations,
we find

¢1fo — qof1 = qour — quuo, (5)
and call this polynomial g = gou; — q1ug. We have degqo = no —d < ng. Now g
is nonzero, because otherwise fy would divide qg, a polynomial of smaller degree

than fy, which would imply that ¢y = 0, a contradiction.
We have

degqo + degg < ng —d+ max{(ng —d) +e1,(n1 —d) + eo} < no,

since e; < 2d —ny_; for 1 =0, 1.

Thus (5) satisfies the degree inequalities of the EEA, and by the well-known
uniqueness property of polynomial continued fractions (see, for example, von zur
Gathen & Gerhard (2003, Lemma 5.15)), there exist a remainder r and corre-
sponding Bézout coefficients s, ¢ in the EEA for fy and f;, and nonzero a € F[z]
so that

sfo+tfi=rand (9,q1,—qo) = a(r, s,t).

Furthermore, since the Euclidean degree sequence is normal, « is a constant.
We have ng — degqop = ng — degt = d, similarly n; — degq1 = d, and degu; <
e; < n; —d = deggq;, so that u; equals the remainder of f; on division by g;, for
i =0,1. It follows from (4) that indeed (ug,u1) is returned by the algorithm.

In particular, since at most one (ug,u1) is returned by the algorithm and it
equals each element of U (if U # @), U contains at most one element.

The cost for computing a single line in the Extended Euclidean Scheme is
O(M(n)logn); see von zur Gathen & Gerhard (2003, Algorithm 11.4). All other

operations are not more expensive. a

In particular the cost of Algorithm 2 is in On).

Figure 1 indicates at the bottom the triangle of values in the eg-d-plane
satisfying the restriction required for ey, with large ng = ni+ 1. There are trivial
solutions u; = —f;remh for ¢ = 0,1 when ep,e; > d — 1, for any h of degree
d; these form the area above the diagonal. We ran experiments with “random”
polynomials, with and without a planted perturbed gcd. Values in the bottom
triangle were, of course, correctly dealt with. We also ran the algorithm without
any of the bounds d, eg, e;. Then it would typically compute (ug,u1) € U with
ep =ng —d and 1 < d < ny, which is the dotted line in Figure 1. Planted gcds
with d < ng/2 were usually not detected.

3 Gecd of large height

We now look at the same problem in a different setting which we consider only for
polynomials over Z (although it can be extended to polynomials over other fields
and rings). Namely, we consider the case where the height H(f) = max{|f;|: 0 <
j < n} of a polynomial

F=Yfal €Za]

=0

€0

no

Fig. 1. The three areas — bottom triangle, half-plane, dotted line — are explained in
the text.

is the measure of interest.
We first need to know that a large polynomial takes a small value only very
rarely. Our bound is in fact the same as for the number of roots of the polynomial.

Lemma 6. Let h € Z[z] have degree d > 3, let A > 2 be an integer, and
A={a€Z: —A<a<A, |h(a) < H(h)27 44"}
Then #A < d.

Proof. Let ag,...,aq € {—A,..., A} be d + 1 distinct integers, and let V =
(al)o<i,j<a be the corresponding (d + 1) x (d + 1) Vandermonde matrix. Each
column of V' has Lo-norm at most

(Z A2i)1/2 < 21/2 44,

0<i<d
We write h = hgz® + -+ - + hix + hg. Then
V- (ho,...,ha)" = (h(ag),...,h(aq))"
The determinant of V' is a nonzero integer, therefore from Cramer’s rule and

Hadamard’s inequality we find

1/2

_ < (91/2 gdyd N2
H(h) = max by < 224037 h(ay)
0<j<d

< 1/2(91/2 gd\d NP s)
< (d+1)77(27/7A9) Ogljagdlh(aj)l_%‘l Orgjagdlh(%)l,

which proves the claim. a

The bound of Lemma 6 can be improved slightly by estimating the deter-
minant of V more carefully.

We also need the following statement which has essentially been proved
in Howgrave-Graham (2001). For the sake of completeness we present a suc-
cinct proof. The ged of two integers, at least one of which is nonzero, is taken
to be positive.

Lemma 7. Let Fy and F} be integers. Then the set of all integers V with
|V| < |F1| and
ng(Fo,Fl + V) >2 |FOV|

can be computed in time polynomial in log (|FoFy| + 1).
Proof. For an integer V we write

F F
A:gcd(Fo,Fl—l—V), GOZZO; Glz%v.

We have |Fy + V| < 2|F1|. Then one verifies that
F()V _ (Fl + ‘/1)(FOV1 - Fl‘/O)

F - F = .
0G1 — F1Go = — G A2
Hence
By Go| _2RI(AV]) _ 1
Fy G1 |F1|G%A2 - 2G%

Thus Go/G1 is one of the convergents in the continued fraction expansion of
Fy/Fy, and can be found in polynomial time. Thus A = Fy/Gq can take only
polynomially many values. For each of them, we verify whether V =G, A — F;
satisfies the condition of the lemma. a

The ged of polynomials fo and f1 in Z[z] is monic if one of fy or f; is. We
now consider for given fo, f1 € Z[z] and integers D, E the set

V={velZlz] : Hw) < E, H(ged(fo, f1 +v)) > D}. (8)

Algorithm 9. Approximate ged of large degree.

Input: fo, f1 € Flz] monic of degrees n > ny and heights Hy and H;, respec-
tively, and such that ged(fo, f1) = 1. Furthermore, we are given a positive
€ < 1 and positive integers D and E.

Output: V asin (8).

1. Initialize V = @. Put A = (45’1712} and choose n + 1 distinct integers

ag, - - -, @p41 uniformly at random in the interval {—A, ..., A}.
2. Evaluate fi(a;) for j =0,...,nand ¢ =0, 1.
3. Foreachj = 0,...,n, compute continued fraction expansions of fy(a;)/f1(a;)

and find the set of all V; with

ged (fo(ag), f1(a;) + V;) > D2 A~

4. For each possible choice (Vp, ..., V;) compute the unique interpolation poly-
nomial v € Q[z] of degree at most n with v(a;) = V; for all j. If v satisfies
the conditions in (8), then add v to V.

5. Return V.

Theorem 10. Let fy, f1, €, D, E be inputs to Algorithm 9. If
E< H2 " e p2 4 1) "

and ,

D 2 2n+2(4€—1n2 + 1)n +n(H0E)1/2,
then Algorithm 9 computes V with probability 1 — € in time polynomial in
(log(DHye~ 1)),

Proof. Let v € V as in (8), h = ged(fo, f1 +v), and d = deg h. We want to show
that with probability at least 1 — e, v is found in step 4.
For ag, ..., a, chosen in step 1, by Lemma 6 we see that with probability at

least "
4n E\"
1— (1——) 1—e¢,
< 2A+1> U)o E

we have simultaneously

h(aj)| > H(R)2 A" > D274 and |fi(a;)] > H2 "A™™

for each j = 0,...,n and 7 = 0,1, since each a; has to avoid the at most
d+2n < 3n “small” values of h, fy and fi, and also the values ag, ...,a;—1. We
also have

[fi(a))| = 12" AT > 2BA" > [o(ay)|
for each 7, so that fi(a;)+wv(a;) # 0. Since the value of a polynomial ged divides
the ged of the polynomial values, we find

ged (folay), frlay) +v(a;)) = [h(a;)| = D277 AT .
On the other hand,
|fZ(CLJ)| S 2H1An and |v(aj)| S 2EA™

for each j =0,...,n and ¢ = 0, 1. Thus, under the conditions of the theorem we
have

2(| folaz)v(ay)])'? < (16HoEA*™)'/?
< (16D22_2"_4(4a_1n2 + 1)—2n2—2nA2n)1/2
< (D2272nA72n2)1/2 _ D2an7n2.
The above inequalities show that Lemma 7 applies and step 3 indeed finds the
value V; = v(a;). Thus Algorithm 9 works correctly. For any j, the set of all V;
in step 3 can be computed in time polynomial in nlog(HoH1e~!), by Lemma 7.

Finally, the number of possibilities for the vector (Vp,...,V,,) is polynomial in
(log DHye~1)™. O

4 Acknowledgements

The first author’s work was supported by the B-IT Foundation, and the second
author’s by ARC grant DP0556431. Thanks go to Daniel Loebenberger for help
with the figure, and to Mark Giesbrecht.

References

1. DarIO A. BINI & PaoLa Borro (2007). Structured Matrix-Based Methods for
Polynomial e-ged: Analysis and Comparisons. Proceedings of the 2007 International
Symposium on Symbolic and Algebraic Computation ISSAC2007, Waterloo, Ontario,
Canada 9-16. URL 10.1145/1277548.1277551.

2. JOACHIM VON ZUR GATHEN & JURGEN GERHARD (2003). Modern Computer Al-
gebra. Cambridge, UK, 2nd edition. ISBN 0-521-82646-2, 800. URL http:
//cosec.bit.uni-bonn.de/science/mca.html. First edition 1999.

3. Nick HOWGRAVE-GRAHAM (2001). Approximate integer common divisor. 51-66.
URL http://www.springerlink.com/content/ak783wexe7ghp5db/.

