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1 Introduction

In this paper we address the problem of parallel computation of the inverse
of integers modulo an integer M . That is, given positive integers M ≥ 3
and x < M , with gcd(x,M) = 1, we want to compute its modular inverse
invM (x) ∈ IN defined by the conditions

x · invM (x) ≡ 1 mod M, 1 ≤ invM (x) < M. (1.1)

Since invM (x) ≡ xϕ(M)−1 mod M , where ϕ is the Euler function, inversion is
a special case of the more general question of modular exponentiation. Both
these problems can also be considered over finite fields and other algebraic
domains.
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For inversion, exponentiation and gcd, several parallel algorithms are in the
literature [1, 2, 8, 9, 10, 11, 12, 13, 14, 19, 20, 17]. The question of obtaining
a general parallel algorithm running in poly-logarithmic time (log n)O(1) for
n-bit integers M is wide open [10, 11].

Some lower bounds on the depth of arithmetic circuits are known [10, 14].
On the other hand, some examples indicate that for this kind of problem the
Boolean model of computation may be more powerful than the arithmetic
model; see discussions of these phenomena in [8, 10, 14].

In this paper we show that the method of [4, 24] can be adapted to derive
non-trivial lower bounds on Boolean CREW PRAMs. It is based on estimates
of exponential sums.

Our bounds are derived from lower bounds for the sensitivity σ(f) (or crit-
ical complexity) of a Boolean function f(X1, . . . , Xn) with binary inputs
X1, . . . , Xn. It is defined as the largest integer m ≤ n such that there is
a binary vector x = (x1, . . . , xn) for which f(x) 6= f(x(i)) for m values of
i ≤ n, where x(i) is the vector obtained from x by flipping its ith coordinate.
In other words, σ(f) is the maximum, over all input vectors x, of the number
of points y on the unit Hamming sphere around x with f(y) 6= f(x); see e.g.,
[27].

Since [3], the sensitivity has been used as an effective tool for obtaining lower
bounds of the CREW PRAM complexity, i.e., the complexity on a parallel
random access machine with an unlimited number of all-powerful processors,
where each machine can read from and write to one memory cell at each step,
but where no write conflicts are allowed: each memory cell may be written
into by only one processor, at each time step.

By [21], 0.5 log2(σ(f)/3) is a lower bound on the parallel time for computing
f on such machines, see also [5, 6, 7, 27]. This yields immediately the lower
bound Ω(log n) for the OR and the AND of n input bits. It should be con-
trasted with the common CRCW PRAM, where write conflicts are allowed,
provided every processor writes the same result, and where all Boolean func-
tions can be computed in constant time (with a large number of processors).

The contents of the paper is as follows. In Section 2, we prove some auxiliary
results on exponential sums. We apply these in Section 3 to obtain a lower
bound on the sensitivity of the least bit of the inverse modulo a prime.
In Section 4, we use the same approach to obtain a lower bound on the
sensitivity of the least bit of the inverse modulo an odd square free M . The
bound is somewhat weaker, and the proof becomes more involved due to zero-
divisors in the residue ring modulo M , but for some such moduli we are able
to match the known upper and the new lower bounds. Namely, we obtain the
lower bound Ω(log n) on the CREW PRAM complexity of inversion modulo
an n-bit odd square free M with not ‘too many’ prime divisors, and we
exhibit infinite sequences of M for which this bound matches the upper
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bound O(log n) from [10] on the depth of P -uniform Boolean circuits for
inversion modulo a ‘smooth’ M with only ‘small’ prime divisors; see (4.2)
and (4.3). For example, the bounds coincide for moduli M = p1 · · · ps, where
p1, . . . , ps are any ds/ log se prime numbers between s3 and 2s3.

We apply our method in Section 5 to the following problem posed by Allan
Borodin (see Open Question 7.2 of [10]): given n-bit positive integers m,x, e,
compute the mth bit of xe.

Generally speaking, a parallel lower bound Ω(log n) for a problem with n
inputs is not a big surprise. Our interest in these bounds comes from their
following features:

• some of these questions have been around for over a decade;

• no similar lower bounds are known for the gcd;

• on the common CRCW PRAM, the problems can be solved in constant
time;

• for some types of inputs, our bounds are asymptotically optimal;

• the powerful tools we use from the theory of finite fields might prove
helpful for other problems in this area.

2 Exponential sums

The main tool for our bounds are estimates of exponential sums. For a prime
p and a positive integer z, we write ep(z) = exp(2πiz/p) ∈ C. The following
identity follows from the formula for a geometric sum.

Lemma2.1. For any prime p and any integer a,

∑
0≤u<p

ep (au) =

{
0, if a 6≡ 0 mod p,
p, if a ≡ 0 mod p.

Lemma2.2. and any positive integer H ≤ p, we have

∑
0≤a<p

∣∣∣∣ ∑
0≤x,y<H

ep (a(y − x))
∣∣∣∣ = pH

Proof. We note that

∑
0≤x,y<H

ep (a(y − x)) =
∣∣∣∣ ∑
0≤x<H

ep(ax)
∣∣∣∣2 > 0.
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Thus ∑
0≤a<p

∣∣∣∣ ∑
0≤x,y<H

ep (a(y − x))
∣∣∣∣ =

∑
0≤a<p

∑
0≤x,y<H

ep (a(y − x))

=
∑

0≤x,y<H

∑
0≤a<p

ep (a(y − x)) .

From Lemma 2.1 we see that the last sum is equal to pW , where W is the
number of (x, y) with x ≡ y mod p and 0 ≤ x, y < H. Obviously W = H. ut

In the sequel, we consider several sums over values of rational functions in
residue rings, which may not be defined for all values. We use the symbol

∑∗

to express that the summation is extended over those arguments for which
the rational function is well-defined, i.e., its denominator is relatively prime
to the modulus. We give an explicit definition only in the example of the
following statement, which is essentially the Weil bound, see [18, 23, 28].

Lemma2.3. Let f, g ∈ ZZ[X] be two polynomials of degrees n, m, respec-
tively, and p a prime number such that the rational function f/g is defined
and not constant modulo p. Then∣∣∣∣ ∑

0≤x<p

∗ ep (f(x)/g(x))
∣∣∣∣ =

∣∣∣∣ ∑
0≤x<p

gcd(g(x),p)=1

ep (f(x)/g(x))
∣∣∣∣ ≤ (n+m− 1)p1/2.

Lemma2.4. Let p = be a prime number, f, g ∈ ZZ[X] of degrees n, m, re-
spectively, such that f/g is defined and neither constant nor a linear function
modulo p. Then for any N,H ∈ IN with H ≤ p we have∣∣∣∣ ∑

0≤x,y<H

∗ ep

(
f(N + x− y)

g(N + x− y)

)∣∣∣∣ ≤ (n+m− 1)Hp1/2.

Proof. From Lemma 2.1 we obtain∣∣∣∣ ∑
0≤x,y<H

∗ ep

(
f(N + x− y)

g(N + x− y)

)∣∣∣∣
=

1

p

∣∣∣∣ ∑
0≤u<p

∗ ep (d f(u)/g(u))
∑

0≤a<p

∑
0≤x,y<H

ep (a(u−N − x+ y))
∣∣∣∣

=
1

p

∣∣∣∣ ∑
0≤a<M

ep(−aN)
∑

0≤u<p

∗ ep

(
f(u)

g(u)
+ au

) ∑
0≤x,y<H

ep (a(y − x))
∣∣∣∣

≤ 1

p

∑
0≤a<p

∣∣∣∣ ∑
0≤u<p

∗ ep

(
f(u)

g(u)
+ au

)∣∣∣∣ · ∣∣∣∣ ∑
0≤x,y<H

ep (a(y − x))
∣∣∣∣.

From Lemma 2.3 we see that for each a < p the sum over u can be estimated
as (n+m− 1)p1/2. Applying Lemma 2.2, we obtain the result. ut
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Throughout this paper, log z means the logarithm of z in base 2, ln z means
the natural logarithm, and

Ln z =

{
ln z, if z > 1,
1, if z ≤ 1.

3 PRAM complexity of the least bit of the

inverse modulo a prime number

In this section, we prove a lower bound on the sensitivity of the Boolean
function representing the least bit of the inverse modulo p, for an n-bit prime
p. For x ∈ IN with gcd(x, p) = 1, we recall the definition of invp (x) ∈ IN in
(1.1). Furthermore, for x0, . . . , xn−2 ∈ {0, 1}, we let

num(x0, . . . , xn−2) =
∑

0≤i≤n−2

xi2
i (3.1)

We consider Boolean functions f with n− 1 inputs which satisfy the congru-
ence

f(x0, . . . , xn−2) ≡ invp (num(x0, . . . , xn−2)) mod 2 (3.2)

for all x0, . . . , xn−2 ∈ {0, 1} with (x0, . . . , xn−2) 6= (0, . . . , 0). Thus no condi-
tion is imposed for the value of f(0, . . . , 0).

Finally we recall the sensitivity σ from the introduction.

Theorem3.1. Let p be a sufficiently large n-bit prime. Suppose that a
Boolean function f(XO, . . . , Xn−2) satisfies the congruence (3.2). Then

σ(f) ≥ 1

6
n− 1

3
log n− 1.

Proof. We let k be an integer parameter to be determined later, with 2 ≤
k ≤ n − 3, and show that σ(f) ≥ k for p large enough. For this, we prove
that there is some integer x with 1 ≤ x ≤ 2n−k−1 and

invp (2kx) ≡ 1 mod 2, invp (2kx+ 2i−1) ≡ 0 mod 2 for 1 ≤ i ≤ k,

provided that p is large enough. We note that all these 2kx and 2kx+ 2i are
indeed invertible modulo p.

We put e0 = 0, δ0 = 1, and ei = 2i−1, δi = 0 for 1 ≤ i ≤ k. Then it is
sufficient to show that there exist integers x, u0, . . . , uk with

(2kx+ ei)
−1 ≡ 2ui + δi mod p,

1 ≤ x ≤ 2n−k−1, 0 ≤ ui ≤ (p− 3)/2 for 0 ≤ i ≤ k.

5



Next we put A = 2k, H = 2n−k−2, K = b(p− 3)/4c, and ∆i = 2K + δi
for 0 ≤ i ≤ k. Then it is sufficient to find integers x, y, u0, . . . , uk, v0, . . . , vk
satisfying

(A(H + x− y) + ei)
−1 ≡ 2(ui − vi) + ∆i mod p,

0 ≤ x, y < H, 0 ≤ u0, . . . , uk, v0, . . . , vk < K.
(3.3)

A typical application of character sum estimates to systems of equations
proceeds as follows. One expresses the number of solutions as a sum over
a ∈ ZZp, using Lemma 2.1, then isolates the term corresponding to a =
0, and (hopefully) finds that the remaining sum is less than the isolated
term. Usually, the challenge is to verify the last part. In the task at hand,
Lemma 2.1 expresses the number of solutions of (3.3) as

p−(k+1)
∑

0≤x,y<H

∗ ∑
0≤u0,...,uk,
v0,...,vk<K

·
∑

0≤a0,...,ak<p

ep

 ∑
0≤i≤k

ai
(
(A(H + x− y) + ei)

−1 − 2(ui − vi)−∆i

)
= p−(k+1)

∑
0≤a0,...,ak<p

ep

− ∑
0≤i≤k

ai∆i


·

∑
0≤x,y<H

∗ ep

 ∑
0≤i≤k

ai (A(H + x− y) + ei)
−1


·

∑
0≤u0,...,uk,
v0,...,vk<K

ep

 ∑
0≤i≤k

2ai(vi − ui)


= p−(k+1)(H2K2(k+1) +R),

where the first summand corresponds to a0 = · · · = ak = 0. For other indices
(a0, . . . , ak), the sum over x, y satisfies the conditions of Lemma 2.4, with
n = k and m = k + 1, and thus

|R| ≤ 2kHp1/2
∑

0≤a0,...,ak<p

∣∣∣∣ ∑
0≤u0,...,uk,
v0,...,vk<K

ep

 ∑
0≤i≤k

2ai(vi − ui)

∣∣∣∣
= 2kHp1/2

∏
0≤i≤k

∑
0≤ai<p

∣∣∣∣ ∑
0≤ui,vi<K

ep (ai(vi − ui))
∣∣∣∣

≤ 2kHp1/2(pK)k+1.

We have left out the factors |ep(−ai∆i)|, which equal 1, transformed the
summation index 2ai into ai, and used Lemma 2.2.

It is sufficient to show that H2K2(k+1) is larger than |R|, or that

HKk+1 > 2kpk+3/2.
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Since K ≥ (p− 6)/4, it is sufficient that

2n−k−2 > 2k(
p

p− 6
)k+1p1/24k+1. (3.4)

We now set k = b(n − 3 log n)/6c, so that 6(k + 1) ≤ n ≤ 2n−2 ln 2 <
(p− 6) ln 2. Now (1 + z−1)z < e for real z > 0, and

(
p

p− 6

)k+1

< e6(k+1)/(p−6) < 2.

Furthermore, p1/2 ≤ 2n/2 and 32n/3 < n3/2, and (3.4) follows from

2n/2 > 2n/2 · 32

3
n · 2− 3

2
logn ≥ 64 · n

6
· 2n/2− 3

2
logn ≥ 64k · 23k. ut

From [21] we know that the CREW PRAM complexity of any Boolean func-
tion f is at least 0.5 log(σ(f)/3), and we have the following consequence.

Corollary 3.2. Any CREW PRAM computing the least bit of the inverse
modulo a sufficiently large n-bit prime needs at least 0.5 log n− 3 steps.

4 PRAM complexity of the least bit of the

inverse modulo an odd square free integer

In this section, we prove a lower bound on the PRAM complexity of finding
the least bit of the inverse modulo an odd square free integer.

To avoid complications with gcd computations, we make the following (gen-
erous) definition. Let M be an odd square free n-bit integer, and f a Boolean
function with n inputs. Then f computes the least bit of the inverse modulo
M if and only if

invM (num(x)) ≡ f(x) mod 2

for all x ∈ {0, 1}n−1 with gcd(num(x),M) = 1. Thus no condition is imposed
for integers x ≥ 2n or that have a nontrivial common factor with M .

Theorem4.1. Let M > 2 be an odd square free integer with ω(M) distinct
prime divisors, and f the Boolean function representing the least bit of the
inverse modulo M , as above. Then

σ(f) ≥ 0.5 lnM − ω(M)LnlnM

Lnlnω(M) +O(1)
.
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The proof follows the same way as the proof of Theorem 3.1, with replacement
Lemma 2.3 by its analogue for square free moduli (where the distinct prime
divisors shows up) and a lower bound on the number of values of rational
function which are relatively prime to M .

Our bound takes the form

σ(f) = Ω(n/Lnlnn) (4.1)

for an odd square free n-bit M with ω(M) ≤ β lnM/LnlnM for some con-
stant β < 0.5. We recall that ω(M) ≤ (1 + o(1)) lnM/LnlnM for any M > 1,
and that ω(M) = O(LnlnM) for almost all odd square free numbers M .

We denote by iPRAM(M) and iBC(M) the CREW PRAM complexity and the
Boolean circuit complexity, respectively, of inversion modulo M . We know
from [10, 20] that

iPRAM(M) ≤ iBC(M) = O(n) (4.2)

for any n-bit integer M . The smoothness γ(M) of an integer M is defined as
its largest prime divisor, and M is b-smooth if and only if γ(M) ≤ b. Then

iPRAM(M) ≤ iBC(M) = O(log(nγ(M))). (4.3)

Since we are mainly interested in lower bounds in this paper, we do not
discuss the issue of uniformity.

Corollary 4.2.

iBC(M) ≥ iPRAM(M) ≥ (0.5 + o(1)) log n (4.4)

for any odd square free n-bit integer M with ω(M) ≤ 0.49 lnM/LnlnM .

Theorem4.3. There is an infinite sequence of moduli M such that the
CREW PRAM complexity and the Boolean circuit complexity of computing
the least bit of the inverse modulo M are both Θ(log n), where n is the bit
length of M .

Proof. We show how to construct infinitely many odd square free integers
M with ω(M) ≤ 0.34 lnM/LnlnM , thus satisfying the lower bound (4.4),
and with smoothness γ(M) = O(log3M), thus satisfying the upper bound
O(ln lnM) = O(log n) of [10] on the depth of Boolean circuits for inversion
modulo such M .

For each integer s > 1 we select bs/ ln sc primes between s3 and 2s3, and let
M be the product of these primes. Then, M ≥ s3s/ ln s = exp(3s), and thus
ω(M) ≤ s/ ln s ≤ 0.34 lnM/ ln lnM , provided that s is large enough. ut
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5 Complexity of one bit of an integer power

For nonnegative integers u and m, we let Btm(u) be the mth lower bit of u,
i.e., Btm(u) = um if u =

∑
i≥0 ui2

i with each ui ∈ {0, 1}. If u < 2m, then
Btm(u) = 0.

In this section, we obtain a lower bound on the CREW PRAM complexity
of computing Btm(xe). For small m, this function is simple, for example
Bt0(x

e) = Bt0(x) can be computed in one step. However, we show that for
larger m this is not the case, and the PRAM complexity is Ω(log n) for n-bit
data.

Exponential sums modulo M are easiest to use when M is a prime, as in
Section 3. In Section 4 we had the more difficult case of a square free M ,
and now we have the extreme case M = 2m.

Theorem5.1. Let m and n be positive integers with n ≥ m+m1/2, and let
f be the Boolean function with 2n inputs and

f(x0, . . . , xn−1, e0, . . . , en−1) = Btm−1(x
e),

where x = num(x0, . . . , xn−1) and e = num(e0, . . . , en−1); see (3.1). Then

σ(f) ≥ γm1/2 + o(m),

where γ = 3− 71/2 = 0.3542 . . ..

The proof is based on similar considerations as the proofs of Theorems 3.1
and 4.1 with using the bound of [26] of exponential sums with the denomi-
nator 2m.

Corollary 5.2. Let n ≥ m+m1/2. The CREW PRAM complexity of finding
the mth bit of an n-bit power of an n-bit integer is at least 0.25 logm −
o(logm). In particular, for m = dn/2e it is Ω(log n).

6 Conclusion and open problems

Inversion in arbitrary residue rings can be considered along these lines. There
are two main obstacles for obtaining similar results. Instead of the powerful
Weil estimate of Lemma 2.3, only essentially weaker (and unimprovable)
estimates are available [16, 25, 26]. Also, we need a good explicit estimate,
while the bounds of [16, 25] contain non-specified constants depending on the
degree of the rational function in the exponential sum. The paper [26] deals
with polynomials rather than with rational functions, and its generalization
has not been worked out yet.
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Open Question 6.1. Extend Theorem 4.1 to arbitrary moduli M .

Moduli of the form M = pm, where p is a small prime number, are of special
interest because Hensel’s lifting allows to design efficient parallel algorithms
for them [2, 10, 14]. Theorem 5.1 and its proof demonstrate how to deal
with such moduli and what kind of result should be expected.

Each Boolean function f(X1, . . . , Xn) can be uniquely represented as a mul-
tilinear polynomial of degree n over IF2 of the form

f(X1, . . . , Xn) =
∑

0≤k≤d

∑
1≤i1<...<ik≤r

Ai1...ikXi1 . . . Xik ∈ IF2[X1, . . . , Xn].

We define its weight wt f as the number of nonzero coefficients in this repre-
sentation. Both the weight and the degree can be considered as measures of
complexity of f . In [4, 24], the same method was applied to obtain good lower
bounds on these characteristics of the Boolean function f deciding whether
x is a quadratic residue modulo p. However, for the Boolean functions of this
paper, the same approach produces rather poor results.

Open Question 6.2. Obtain lower bounds on the weight wtB and the de-
gree degB of the Boolean function of Theorem 4.1.

It is well known that the modular inversion problem is closely related to the
GCD-problem.

Open Question 6.3. Obtain a lower bound on the the PRAM complexity of
computing integers u, v such that Mu + Nv = 1 for given relatively prime
integers M ≥ N > 1.

In the previous question we assume that gcd(N,M) = 1 is guaranteed. Oth-
erwise one can easily obtain the lower bound σ(f) ≥ Ω(n) on the sensitivity
of the Boolean function f which on input of two n-bit integers M and N ,
returns 1 if they are relatively prime, and 0 otherwise. Indeed, if M = p is
an n bit integer, then the function returns 0 for N = p and 1 for all other
n bit integers. That is, the PRAM complexity of this Boolean function is at
least 0.5 log n+O(1).

Acknowledgment. This paper was essentially written during a sabbati-
cal visit by the second author to the University of Paderborn, who gratefully
acknowledges its hospitality and excellent working conditions.
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