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Abstract

It is shown that Gauss periods of a special type give an explicit

polynomial�time computation of elements of exponentially large mul�

tiplicative order in some �nite �elds� This can be considered as a step

towards solving the celebrated problem of �nding primitive roots in

�nite �elds in polynomial time�

Keywords� Finite Fields� Algorithms� Primitive Roots� Normal Bases� Artin�s
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� Introduction

One of the most important unsolved problems in the computational theory
of �nite �elds is to design a fast algorithm to construct primitive roots in a
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�nite �eld IFq of q elements� All known algorithms for this problem work in
two stages�

�� Find a �small� set M � IFq guaranteed to contain a primitive root of
IFq�

�� Test all elements of M for primitivity�

In many cases� we have quite good algorithms for the �rst stage� especially
if one assumes the Extended Riemann Hypothesis 	ERH
� see Chapter �
of ���� Unfortunately� at the current state of the art� the second stage
requires the integer factorization of q�� which is not known to be obtainable
in polynomial time� It is demonstrated in ��� that we can �nd a primitive
root of IFq in time O	q�����
 for any � � �� Even the ERH cannot help too
much here�

On the other hand� for many applications� instead of a primitive root just
an element of high multiplicative order is su�cient� Such applications include
but are not limited to cryptography� coding theory� pseudo random number
generation and combinatorial designs� As a speci�c example we point out
the sparse polynomials interpolation algorithms �� ��� where instead of a
primitive root just an element of large order can be used 	after some simple
adjustments of the other parameters
� Also� it is often enough to solve such
a problem for some su�ciently �dense� sequence of �elds� rather than for all
�elds�

In this paper we design� under these two relaxations of the original prob�
lem� fast deterministic algorithms�

The work was motivated by and can be considered as a continuation
of �� �� whose key tool are special Gauss periods over �nite �elds which
are shown to generate normal bases� see also �� �� �� �� ��� about various
additional useful properties and applications of Gauss periods� Experimental
results �� �� �� indicate that such periods often produce primitive roots and
thus generate primitive normal bases� or at least have high multiplicative
order�

In Section � we concentrate on the following special case of a Gauss period
in IFqn � Let r � �n � � be a prime not dividing q� and let � be a primitive
rth root of unity in IFq�n� Then

� � � � ��� � IFq�n �

�



where � is the Euler function� is called a Gauss period of type 	n� �
 over IFq�
It is� in fact� an element of IFqn� We refer �� �� �� �� �� �� ��� for the literature
on this topic� In Section � we consider a more general variant of these Gauss
periods�

If we know the minimal polynomial of � over IFq 	i�e�� we have factored
xr � � over IFq
� that of � can be determined by linear algebra over IFq� in
polynomial time� While a deterministic polynomial time algorithm to factor
polynomials over �nite �elds is not known� there are many e�cient 	proba�
bilistic and deterministic� unconditional and ERH�dependent
 methods� We
just mention that xr�� can be completely factored over IFq with the following
number of arithmetic operations in IFq�

� 	r log q
O��� probabilistically�

� rO���q��� log q deterministically�

� 	r log q
O��� deterministically under the ERH�

More precise forms of these assertions and further details can be found in ����
Section ���� In some cases an explicit formula for the minimal polynomial of
� is known ��� If q is a primitive root modulo the prime r� then the minimal
polynomial of � is xr�� � � � �� x� �� This can be used in the construction
of Theorem � below�

In this paper we do not estimate the cost of constructing � 	which� as
we mentioned above� is fairly small
 but rather concentrate on the cost of
�nding n for which the corresponding � is of large period�

Gauss periods of type 	n� k
 for k � � can be de�ned similarly and are of
great interest as well� but unfortunately at the moment we cannot give any
lower bounds on their multiplicative order� This remains an interesting open
problem�

� Large�order normal elements

Let A be the set of all integers a � IN for which Artin�s conjecture holds in
the following form�

�C	a
� x�	a
 �x � x�	a
 	a	x
 � x
	C	a
 log� x
� 	�


�



where 	a	x
 is the number of primes up to x for which a is a primitive root�
It is known that A contains the odd powers of all but at most two prime
numbers ��� and of all prime numbers under the ERH ���� many other
relevant results can be found in ���� For any a � IN� clearly a� 	� A�

Theorem�� For any prime power q � pk � A and any su�ciently large
integer N there is an integer n � 	r � �

� with N 
 n 
 M � where M �
�C	q
N logN and C	q
 is as in ���� such that the Gauss period � � ����� �
IFqn� where � is a primitive rth root of unity over IFq� generates a normal
basis of IFqn over IFq and has multiplicative order at least

���n�
���

���

For any � � �� such an n can be found with the following number of bit
operations�

� O	C	q
 exp	� � �
 log���M log��� logM �
 probabilistically�

� O	M�����
 deterministically�

� O	M	����
 deterministically under the ERH	

Proof	 Let R be the set of primes r in the interval �N��� �M ��� for which
q is a primitive root� We �rst estimate �R from below� More precisely� we
show that for N large enough

�R � 	q	�M � �
 � 		�N
 �
M

C	q
 log�	�M

� 	�


Indeed� assume that N is such that M � maxf�� x�	q
g so that

�M � �

log�	�M � �

� �M

log�	�M


�

and
�	log	�N
� �
�
logN � � log�	�C	q
N logN
�

Then�

	q	�M � �


�
� M

C	q
 log�	�M

� �N logN

log�	�C	q
N logN

�

�N

log	�N
 � �
�
�

�



We have
�N

log 	�N
 � �
�
� 		�N


by ���� 	���
� Therefore 	q	�M��
�		�N
 � ���	q	�M��
 and 	�
 follows�
It follows from 	�
 that 	q	�M � �
 � 		�N
� hence R 	� ��
For any r � �N ��� �M ���� we test whether r � R as follows� First� we

check if r is prime� Then we factor r � � and check if q is a primitive root
modulo r by testing if

q�r����l 	� � mod r

for each prime divisor l of r� �� The latter can be done in polynomial time�
Primality testing and �nding the integer factorization of r � � can be both
done� for any � � �� with the following number of bit operations�

� O	exp	� � �
 log���M log��� logM �
 probabilistically ����

� O	M�����
 deterministically ����

� O	M�����
 deterministically under the ERH ����

For a probabilistic algorithm� we select r uniformly at random in the
interval �N � �� �M � ��� then the probability of success is at least

�R

��N � �� �M � ��
� 	q	�M � �
� 		�N


�M
� �

�C	q
 log�	�M

�

by 	�
� For a deterministic algorithmwe test all numbers r � �N��� �M����
Now� let r � R and n � 	r � �

�� Then �	r
 � �n� Let � � IFq�n be a

primitive rth root of unity� and � � � � ��� � IFqn� It generates a normal
basis for IFqn over IFq� see �� �� �� �� �� �� ���� Let

h � br���c � �� H � f�� ���� hg � IFr� S � find a � a � Hg � ZZr���

where we identify IFr with f�� � � � � r � �g� and ind a is the index 	or discrete
logarithm
 of a � IFr in base q� Let U�U � � S be two di�erent subsets of S�
and

u �
X
s�U

qs� u� �
X
s�U �

qs�

We claim that �u 	� �u
�

� This implies that we have at least �
S � �h distinct
powers of �� and thus the order of � is at least

�h � ���n�
������

�



We may suppose that U  U � � �� Assume that �u � �u
�

� Then

� � �u � �u
�

�
Y
s�U

	� � ���
q
s �

Y
s�U �

	� � ���
q
s

� ��u
Y
s�U

	��qs � �
 � ��u
�
Y
s�U �

	��qs � �
�

Since � is an rth root of unity� we may reduce the exponents modulo r� and
with

E � fqs rem r � s � Ug� E� � fqs rem r � s � U �g � H�

where 	qs rem r
 � IN is the positive remainder of qs on division by r� and

e �
X
t�E

t� e� �
X
t�E�

t�

we have E  E� � �� and
� � ��e

Y
t�E

�
��t � �

�� ��e
�
Y
t�E�

�
��t� �

�
�

We may assume that e� � e� and let

f	x
 � xe
��e
Y
t�E

�
x�t � �

� �Y
t�E�

�
x�t � �

� � IFqx��

Then f	�
 � �� and

deg f 
 �e� 
 �
X
i�H

i � h	h� �
 
 r �p
r � r � ��

Since q is primitive modulo r� � has degree r � � over IFq� and therefore the
polynomial f is zero� If e� � e� then f	�
 � ��� Thus e� � e� But then the
monomial x�t occurs in f with nonzero coe�cient� where t � min	E � E�
�
This contradiction proves the claim� ut

We note that under the ERH� from the asymptotic formula for 	q	x

of ���� one can get a slightly better estimate for n� namely apparently one
can take M � cN log log log q� provided that N � qC with some absolute
constants c and C� Unfortunately C does not seems to be e�ectively com�
putable and it is not clear how to use this better bound in order to design
a faster algorithm� On the other hand� all constants occurring in �� are
e�ective and thus lead to an e�ective form of 	�
 for odd powers of all but
at most two prime numbers�

�



� A denser sequence of large�order elements

In the next theorem we eliminate the condition that q belongs to A and
consider a denser sequence of n� The price we pay is losing the property of �
being normal and a weaker lower bound� The work �� addresses the question
of whether � is normal over IFq� this is not the case unless r is squarefree�
which never happens in our construction�

Theorem�� There is an absolute constant C � � such that for any prime
power q and any su�ciently large N � � there are integers n and r with

N 
 n � � 	r
 
 N �O	N
 logC N
�

and such that the Gauss period � � � � ��� � IFqn� where � is a primitive
rth root of unity over IFq� has multiplicative order at least

�cqn
���

���

where
cq � ��q���� 	�


For any � � �� such n and r can be found with O	log���N
 bit operations	

Proof	 We let p be the characteristic of IFq and de�ne

	l�� l�
 �

��
�

	�� �
� if p � � or p � ��
	�� �
� if p � ��
	�� �
� if p � ��

�q �
l�l�

�	l�l�

�

��
�

��
�� if p � � or p � ��
��
��� if p � ��
�
�� if p � ��

�

If k� and k� are positive integers� then

lk�� l
k�
� � �q�	l

k�
� l

k�
� 
�

Let r� be the smallest integer greater than R � �qN
l�l� of the form r� �
lm�

� lm�

� � where m��m� are nonnegative integers� Tijdeman�s result ��� on
the distribution of numbers containing only a �xed set of primes in their
factorization implies that

R 
 r� 
 R �O	N
 logC N


�



with some absolute constant C � �� Thus if we de�ne r � r�l�l� and n �
�	r
 � ���

q r� then N 
 n 
 N �O	N
 logC N
�
To estimate the cost of �nding such r�� we note that r� � lm�

� lm�

� 
 l�R�
Therefore� � 
 mi 
 Ki for i � �� �� where

Ki �

�
log	l�R


log li

�
�

To �nd r�� for each
k� � f�� � � � �K�g�

we compute k� � dlog	Rl�k�� 

 log l�e� so that

lk�� l
k���
� 
 R 
 lk�� l

k�
� �

For each k�� this can be done with O	log���N
 bit operations� From the
K� � O	logN
 numbers obtained we select the smallest one as r��

Let t be the order of q modulo r�

h �
	
	r
�
��� � t�r
t



� S � fs� � 
 s � t and � 
 	qs rem r
 
 hg�

where as before 	qs rem r
 � IN is the positive remainder of qs on division
by r� Let t� be the order of q modulo l�l�� We de�ne i as the largest power
of li which divides qt� � �� for i � �� �� We need the following inequalities

l��� l
��
� � qt�� � 
 t� 
 lcm	l� � �� l� � �
 
 ���

Korobov ���� Remark after Lemma �� shows that

t � t�l
���
� l���� r � t�q

�t�r � ��q���r

	see also ���� beginning of Section �
� In particular� we see that h is positive
for su�ciently large N � Korobov ���� Lemma �� implies that

j�S � th
rj 
 t�

	see also ���� Fact �
� Thus we have �S 
 th
r � t� 
 t	�r
���� and

�h�S 
 �		r
�
��� � t�r
t
�t	�r
���� � t�

Now we recall that the degree of the minimal polynomial of a primitive rth
root of unity � over IFq equals t� We de�ne � � ������ Since qn � � mod r�
we have � � IFqn�

�



Let U�U � � S be two di�erent subsets and

u �
X
s�U

qs� u� �
X
s�U �

qs�

If we assume that �u � �u
�

� then as in the proof of Theorem � we de�ne the
sets

E � fqs rem r � s � Ug� E� � fqs rem r � s � U �g � f�� � � � � hg�
and the numbers

e �
X
t�E

t� e� �
X
t�E�

t�

If� say� e� � e� then we �nd that � is a root of the non�zero polynomial

f	x
 � xe
�
�e
Y
t�E

�
x�t � �

� �Y
t�E�

�
x�t � �

� � IFqx��

Furthermore� deg f 
 �h�S � t� thus our assumption is false�
Therefore� we have at least �
S distinct powers of �� The claim follows

from

�S � th
r � t� � t	�r
���� � �t� � t
r

� ��	��
��
���q���n��� � �� � ��q���n��� � ��� ut

� Concluding remarks

The constants in Theorem � can be easily re�ned� We do not do this because
we believe that our subexponential lower bound can be essentially improved�
perhaps up to exp	C	q
m
 with some C	q
 � ��

Our method can produce several more results� For example� it can be
shown that if the multiplicative order q modulo r � �n � � with gcd	r� q
 �
� is greater than r����� with � � �� then the construction of Theorem �
produces an element of order at least

exp	c	q
n��
 log n
�

This is based on another estimate of Korobov ���

�S � th
r �O	r��� log r


�



	which can be extracted from the proof of Theorem � of that paper
� Thus h
can be chosen of order r���t�� log r� hence �S � r���� Then one can consider
subsets of S with at most k � bt
hc � t�r���� log�� r elements� Accordingly�
the order can be estimated from below by

�
�S

k

�
� �k � �	��o���
t

�r���� log�� r

In particular if r � �n � � is relatively prime to q and q generates a group
of bounded index in the group of units modulo r� the same construction
produces � of order at least

exp	c	q
n���
 log n


	the logarithmic term can possibly be eliminated
� This and several other
similar statements which can be obtained within the framework of the method
of this paper show that the class of pairs 	q� r
 which generate elements of
large order can be substantially extended�

We also hope that exponentially large lower bounds can be obtained for
almost all primes r � �n � � if one uses the bound of exponential sums
from ��� 	instead of Korobov�s estimate ���
 and Pappalardi�s estimates ���
of the multiplicative orders of a given integer modulo almost all primes�

Finally we note one more interesting question which we believe can be
approached by the method of this paper� Given N � �� �nd a small s 	say
s � NO���
 such that the Gauss period � � IFqn of type 	n� �
 over IFq�
where n � sN � has exponentially large multiplicative order� That is� instead
of �nding elements of large multiplicative order in a �eld IFqn with n close
to a given N � now we are looking for a such an element in a not too large
extension of a given �eld IFqN �
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