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Abstract

It is shown that Gauss periods of a special type give an explicit
polynomial-time computation of elements of exponentially large mul-
tiplicative order in some finite fields. This can be considered as a step
towards solving the celebrated problem of finding primitive roots in
finite fields in polynomial time.
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Introduction

One of the most important unsolved problems in the computational theory
of finite fields is to design a fast algorithm to construct primitive roots in a



finite field I'; of ¢ elements. All known algorithms for this problem work in
two stages:

1. Find a ‘small’ set M C II", guaranteed to contain a primitive root of

IF,.
2. Test all elements of M for primitivity.

In many cases, we have quite good algorithms for the first stage, especially
if one assumes the Extended Riemann Hypothesis (ERH); see Chapter 3
of [21]. Unfortunately, at the current state of the art, the second stage
requires the integer factorization of ¢—1 which is not known to be obtainable
in polynomial time. It is demonstrated in [22] that we can find a primitive
root of IF, in time O(¢'/**%) for any £ > 0. Even the ERH cannot help too
much here.

On the other hand, for many applications, instead of a primitive root just
an element of high multiplicative order is sufficient. Such applications include
but are not limited to cryptography, coding theory, pseudo random number
generation and combinatorial designs. As a specific example we point out
the sparse polynomials interpolation algorithms [1, 24] where instead of a
primitive root just an element of large order can be used (after some simple
adjustments of the other parameters). Also, it is often enough to solve such
a problem for some sufficiently ‘dense’ sequence of fields, rather than for all
fields.

In this paper we design, under these two relaxations of the original prob-
lem, fast deterministic algorithms.

The work was motivated by and can be considered as a continuation
of [3, 4] whose key tool are special Gauss periods over finite fields which
are shown to generate normal bases, see also [2, 5, 6, 8, 15] about various
additional useful properties and applications of Gauss periods. Experimental
results [3, 4, 5] indicate that such periods often produce primitive roots and
thus generate primitive normal bases, or at least have high multiplicative
order.

In Section 2 we concentrate on the following special case of a Gauss period
in IFn. Let r = 2n + 1 be a prime not dividing ¢, and let 3 be a primitive
rth root of unity in IF2n. Then

a:ﬁ‘l_ﬁ_l EFq2n7



where ¢ is the Euler function, is called a Gauss period of type (n,2) over IF,.
It is, in fact, an element of IF,;n. We refer [2, 3,4, 5, 6, 8, 15] for the literature
on this topic. In Section 3 we consider a more general variant of these Gauss
periods.

If we know the minimal polynomial of 3 over IF, (i.e., we have factored
2" — 1 over IF,), that of o can be determined by linear algebra over IF,, in
polynomial time. While a deterministic polynomial time algorithm to factor
polynomials over finite fields is not known, there are many efficient (proba-
bilistic and deterministic, unconditional and ERH-dependent) methods. We
just mention that 2" —1 can be completely factored over IF, with the following
number of arithmetic operations in IF";:

o (rlogq)°™M probabilistically,
o r9MWg'/?]og ¢ deterministically,
o (rlogq)°") deterministically under the ERH.

More precise forms of these assertions and further details can be found in [21],
Section 1.1. In some cases an explicit formula for the minimal polynomial of
a is known [7]. If ¢ is a primitive root modulo the prime r, then the minimal
polynomial of 3 is "=t 4+ ...+ 2 4+ 1. This can be used in the construction
of Theorem 1 below.

In this paper we do not estimate the cost of constructing o (which, as
we mentioned above, is fairly small) but rather concentrate on the cost of
finding n for which the corresponding « is of large period.

Gauss periods of type (n, k) for & > 2 can be defined similarly and are of
great interest as well, but unfortunately at the moment we cannot give any
lower bounds on their multiplicative order. This remains an interesting open
problem.

2 Large-order normal elements

Let A be the set of all integers @ € IN for which Artin’s conjecture holds in
the following form:

1C(a), xo(a) Va > xo(a) mo(x) > x/(C(a) log? ), (1)



where 7,(2) is the number of primes up to x for which a is a primitive root.
It is known that A contains the odd powers of all but at most two prime
numbers [9], and of all prime numbers under the ERH [10]; many other
relevant results can be found in [16]. For any a € IN, clearly a* & A.

Theorem 1. For any prime power ¢ = p* € A and any sufficiently large
integer N there is an integer n = (r — 1)/2 with N < n < M, where M =
3C(q)Nlog N and C(q) is as in (1), such that the Gauss period o = B+~ €
IF,n, where B is a primitive rth root of unity over IF',, generates a normal
basis of IFyn over Iy, and has multiplicative order at least

2(271)1/2—2‘
For any ¢ > 0, such an n can be found with the following number of bit
operations:
o O(C(q)exp[(l+¢) log'/? M log*/*log M) probabilistically,
o O(MP/**2) deterministically,

o O(MS/5%%) deterministically under the ERH.

Proof. Let R be the set of primes r in the interval [2N +1,2M + 1] for which
q is a primitive root. We first estimate # R from below. More precisely, we
show that for N large enough

M

#R>m,2M 4+ 1) —n(2N) > (g o2 (2M)’

(2)

Indeed, assume that N is such that M > max{4, xo(¢)} so that

2M 41 2M
log?(2M +1) ~ log*(2M)

)7

and
3(log(2N) — 3/2)log N > 2log*(6C(q)N log N).
Then,
T (2M + 1) < M < 3N log N 2N

2 T Clq)lo(2M) = log?(6C(q)N log )~ log(2N) — 3/2"

4



We have 0N
> (2N
log (2V) =32 = "2V
by [18], (3.4). Therefore m,(2M +1)—m(2N) > 0.57,(2M 4 1) and (2) follows.
It follows from (2) that 7,(2M 4 1) > m(2N), hence R # (.
For any r € 2N +1,2M + 1], we test whether r € R as follows. First, we
check if r is prime. Then we factor r — 1 and check if ¢ is a primitive root
modulo r by testing if

UV £ 1 mod r

for each prime divisor [ of  — 1. The latter can be done in polynomial time.
Primality testing and finding the integer factorization of r — 1 can be both
done, for any £ > 0, with the following number of bit operations:

o O(exp[(1 + £)log? M log'/*log M]) probabilistically [14],
o O(M'**2) deterministically [20],
o O(M'/5*%) deterministically under the ERH [19].

For a probabilistic algorithm, we select r uniformly at random in the
interval [2N + 1,2M + 1], then the probability of success is at least

#R < m,(2M + 1) — w(2N) < 1
#2N +1,2M +1] ~ 2M ~ 20(q)log*(2M)’

by (2). For a deterministic algorithm we test all numbers r € [2N+41,2M 41].
Now, let r € R and n = (r — 1)/2. Then ¢(r) = 2n. Let 8 € IF2x be a

primitive rth root of unity, and a = 8+ 37! € IF». It generates a normal

basis for IFy» over IF,, see [2, 3, 4, 5, 6, 8, 15]. Let

h:Lrl/ﬂ—l, H={1,.,h}CIF,, S={inda:ac H} CZ,._4,

where we identify IF, with {0,...,» — 1}, and ind « is the index (or discrete
logarithm) of a € IF, in base ¢. Let U, U’ C S be two different subsets of S,

and
U:Z(]S, U/:Z(]S-

seU selU’

We claim that a® # o*'. This implies that we have at least 2#5 = 2" distinct
powers of «, and thus the order of « is at least

2h > 2(277‘)1/2—2‘

5



We may suppose that U N U’ = (). Assume that o* = o*. Then
T | (R R | (CR

seU seU’
= s [l + 0 -5 TLe + 1),
seU seU’
Since 3 is an rth root of unity, we may reduce the exponents modulo r, and
with
E={¢remr:scU}, FE ={¢remr:selU'}CH,

where (¢° rem r) € IN is the positive remainder of ¢° on division by r, and

e:Zt, e’:Zt,

=) teE!
we have EN E' =0, and

0:5_6H<52t‘|‘1> _ﬁ—e' H <62t_|_1>‘

tER teE!

We may assume that ¢’ > ¢, and let

flz) = xc e H <$2t + 1) — H <$2t + 1) e IF,[z].

tER teE!

Then f(3) =0, and
deg f <2/ <2) i=h(h+1)<r—r<r—L

1€H
Since ¢ is primitive modulo r, 8 has degree r — 1 over II'y, and therefore the
polynomial f is zero. If ¢ > e, then f(0) = —1. Thus € = e. But then the
monomial % occurs in f with nonzero coefficient, where ¢ = min(FE U E’).
This contradiction proves the claim. O

We note that under the ERH, from the asymptotic formula for m,(x)
of [10], one can get a slightly better estimate for n, namely apparently one
can take M = cN logloglog q, provided that N > ¢ with some absolute
constants ¢ and C'. Unfortunately C' does not seems to be effectively com-
putable and it is not clear how to use this better bound in order to design
a faster algorithm. On the other hand, all constants occurring in [9] are
effective and thus lead to an effective form of (1) for odd powers of all but
at most two prime numbers.



3 A denser sequence of large-order elements

In the next theorem we eliminate the condition that ¢ belongs to A and
consider a denser sequence of n. The price we pay is losing the property of «
being normal and a weaker lower bound. The work [2] addresses the question
of whether « is normal over IF';; this is not the case unless r is squarefree,
which never happens in our construction.

Theorem 2. There is an absolute constant C' > 0 such that for any prime
power q and any sufficiently large N > 2 there are integers n and r with

N<n=¢p(r)<N4+O(N/log" N),

and such that the Gauss period o = 3+ 71 € W yn, where 3 is a primitive
rth root of unity over Iy, has multiplicative order at least

2cqn1/2—25

where

c, = 10712 (3)
For any ¢ > 0, such n and r can be found with O(log®™® N) bit operations.
Proof. We let p be the characteristic of II', and define

5), ifp=20rp>T,

(3,5),
(l17l2) = (57 7)7 lfp =3,
(3,7), if p=2>5,
Iy 15/8, ifp=2orp>T7,
b, = —{ 35/24, ifp=3,
plhl) | 7 irp=s.

If &y and ky are positive integers, then

Iy = dap(ly'?)-

Let ro be the smallest integer greater than R = ¢, N/l;l5 of the form ry =
[715%, where my,mq are nonnegative integers. Tijdeman’s result [23] on
the distribution of numbers containing only a fixed set of primes in their

factorization implies that

R <rgy SR—I—O(N/logCN)

7



with some absolute constant €' > 0. Thus if we define r = rglily and n =
@(r) =4 r, then N <n < N+ O(N/log® N).

To estimate the cost of finding such rq, we note that ro = 77 < [ R.
Therefore, 0 < m; < K; for 1 = 1,2, where

K= {log(llR)J ‘

10g lZ

To find rg, for each
ki €{0,..., Ky},

we compute ky = [log(RIT*)/logl,], so that
k=t < p < bk,

For each ki, this can be done with O(log'** N) bit operations. From the
K = O(log N) numbers obtained we select the smallest one as ry.
Let ¢ be the order of ¢ modulo r,

b= /2" = torft], S ={s: 0<s<tand 1< (g remr) <A},

where as before (¢° rem r) € IN is the positive remainder of ¢* on division
by r. Let tg be the order of ¢ modulo [1[;. We define ~; as the largest power
of [; which divides ¢ — 1, for 7 = 1,2. We need the following inequalities

NP <q°, 1<ty <lem(ly —1,l,—1) < 12.
Korobov [12], Remark after Lemma 1, shows that
1 Z tol;W1l2—72r > toq—tor Z 12(]_127"

(see also [13], beginning of Section 1). In particular, we see that h is positive
for sufficiently large N. Korobov [12], Lemma 2, implies that

|[#5 —th/r| < o
(see also [13], Fact 2). Thus we have #S5 < th/r 4ty < ¢(2r)~"/% and
2h#S < 2((r)2)M? — tor/t)1(2r) V2 < ¢

Now we recall that the degree of the minimal polynomial of a primitive rth
root of unity 3 over IF, equals ¢. We define o = 3+ 37", Since ¢" =1 mod r,
we have a € IFn.



Let U, U’ C S be two different subsets and

U:ZQS, U/:ZQS-

seU selU’

If we assume that o* = o, then as in the proof of Theorem 1 we define the
sets

E={¢remr:selU}, E ={¢remr:secU'} C{l,... I},

e:Zt, e’:Zt.

tER teE!

and the numbers

If, say, ¢’ > e, then we find that 3 is a root of the non-zero polynomial
flz) = it H <$2t + 1) — H (:L'zt + 1) e IF,[z].
teE teE!

Furthermore, deg f < 2h#S5 < t; thus our assumption is false.
Therefore, we have at least 2#° distinct powers of a. The claim follows
from

thr —to > t(2r)Y% = 2tg — t/r
12(35/48)2¢™12n1% — 25 > 1047202 = 25. O

49

>
>

4 Concluding remarks

The constants in Theorem 2 can be easily refined. We do not do this because
we believe that our subexponential lower bound can be essentially improved,
perhaps up to exp(C'(g)m) with some C'(¢) > 0.

Our method can produce several more results. For example, it can be
shown that if the multiplicative order ¢ modulo r = 2n + 1 with ged(r, q) =
1 is greater than r%/4+% with § > 0, then the construction of Theorem 2
produces an element of order at least

exple(g)n®/ log n).
This is based on another estimate of Korobov [13]

45 =th/r+ O(r'?*logr)

9



(which can be extracted from the proof of Theorem 3 of that paper). Thus h
can be chosen of order #3/%t~'log r, hence #5 ~ r'/2. Then one can consider
subsets of S with at most & = [t/h] ~ t*r=3/2log™" r elements. Accordingly,
the order can be estimated from below by

<i5> > b > ol1+o(1))2r =2 1og™1 v

In particular if r = 2n + 1 is relatively prime to ¢ and ¢ generates a group
of bounded index in the group of units modulo r, the same construction
produces « of order at least

exp(e(q)n*/?/ log n)

(the logarithmic term can possibly be eliminated). This and several other
similar statements which can be obtained within the framework of the method
of this paper show that the class of pairs (¢,r) which generate elements of
large order can be substantially extended.

We also hope that exponentially large lower bounds can be obtained for
almost all primes r = 2n + 1 if one uses the bound of exponential sums
from [11] (instead of Korobov’s estimate [13]) and Pappalardi’s estimates [17]
of the multiplicative orders of a given integer modulo almost all primes.

Finally we note one more interesting question which we believe can be
approached by the method of this paper. Given N > 1, find a small s (say
s = N°W) such that the Gauss period a € IF,n of type (n,2) over IF,,
where n = sV, has exponentially large multiplicative order. That is, instead
of finding elements of large multiplicative order in a field IF,» with n close
to a given N, now we are looking for a such an element in a not too large
extension of a given field I ~.
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