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Abstract

In 1996, Jakobsson, Sako and Impagliazzo and, on the other hand, Chaum proposed
the notion of designated verifier signature to solve some of the intrinsic problems of
undeniable signatures. The generalization of this concept, suggested by Desmedt at
Crypto’03’s rump session, was formally investigated by Laguillaumie and Vergnaud
at ICICS’04 as multi-designated verifiers signatures. The protection of the signer’s
privacy, as defined in that paper, seems difficult to achieve, and the protocols they
proposed capture this property with an IND-CCA2 encryption of the signature. In
this article, we propose the first multi-designated verifiers signature scheme which
protects the anonymity of signers without encryption. This scheme is designed to
be the extension of their B2DVS one and relies on Boneh et al.’s pairing-based ring
signatures. The security of the new protocol relies, in the random oracle model, on
the difficulty of solving the Diffie-Hellman problem in a bilinear setting.
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1 Introduction

Designated verifier proofs, proposed in 1996 by Jakobsson, Sako and Impagli-
azzo [7] and Chaum [4], were introduced to solve some of the problems inherent
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to undeniable signatures. These proofs can be converted into designated veri-
fier signatures via the Fiat-Shamir heuristic [6]. It appears that they have nu-
merous applications in commercial cryptography, and therefore, at Crypto’03’s
rump session [5], Desmedt raised the problem of generalizing these signatures
in a multi-user setting. In the model he proposed, the signature of a message
is intended to a specific group of users, the designated verifiers, chosen by the
signer, who will be the only ones able to check the validity of the signature.
No one else than these verifiers can be convinced by this signature because
by cooperating, they can also perform the signature by themselves. This new
primitive was formally investigated, under the name of multi-designated veri-
fiers signatures, by the authors in [10] where a generic multi-designated veri-
fiers signature scheme based on discrete-log ring signatures was proposed (for
the definition of ring signatures, see [12]).

As early as 1996, Jakobsson et al. suggested that designated verifier signatures
should provide an additional notion of privacy: given such a signature and two
potential signing public keys, it should be computationally infeasible for an
eavesdropper to determine under which of the two corresponding secret keys
the signature was performed. This property has been formalized by the authors
in [9] and naturally extended to the multi-user setting in [10], where a bi-
designated verifiers signature scheme was also proposed which takes advantage
of Joux’s non-interactive tripartite key exchange [8] to achieve this property.
However, the generic scheme from [10] did not catch the notion of privacy of
signer’s identity without an additional encryption layer.

In this article, we introduce a new efficient multi-designated verifier signature
scheme which is based on Boneh, Gentry, Lynn and Shacham’s ring signa-
tures [2]. Our scheme captures a (slightly weaker) notion of privacy of the
signer’s identity without encrypting the signatures. Although the new pro-
tocol requires more computational power for the signer and has a signature
length proportional to the number of designated verifiers, it is spontaneous
and does not require any prior exchange of secret information between the
designated verifiers. It is therefore perfectly suited to applications in ad hoc
groups.

We note that the intuitive solution consisting in producing n encrypted desig-
nated verifier signatures for each user does not lead to a satisfactory solution
because it does not fit the correctness property: a putative signature must be
accepted by the verifying algorithm using one verifying secret key if and only
if it is accepted using each verifying secret key.
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2 Definitions

2.1 Multi-Designated Verifiers Signatures

In this section, we briefly recall the definition of multi-designated verifiers sig-
natures (MDVS for short). We refer the reader to [10] for a formal definition.
Basically, a multi-designated verifiers signature scheme is composed of the
five following algorithms: a common parameter generator Setup; two key gen-
eration algorithms, SKeyGen for the signer, and VKeyGen for the designated
verifiers; a signing algorithm Sign and a verification algorithm Verify.

These algorithms must satisfy:

(1) the correctness property i.e. a properly formed designated verifiers signa-
ture must be accepted by the verifying algorithm. Moreover, a putative
signature is accepted by the verifying algorithm using one verifying secret
key if and only if it is accepted using each verifying secret key;

(2) the existential unforgeability against a chosen message attack, whose speci-
ficity is that the attacker has access to a verifying oracle since he cannot
verify the validity of a given signature by himself;

(3) the source hiding, which means that it is unconditionally infeasible to
determine, given a pair message/signature, who, from the signer or the
designated verifiers all together, performed this signature;

(4) the privacy of the signer’s identity, as defined in [9]. In a chosen mes-
sage attack, an attacker is not able to determine, given a pair mes-
sage/signature and two potential signers, which one produced the sig-
nature.

We give the definition of a weak variant of the notion of privacy of signer’s
identity from [10]. For the sake of simplicity, the set of designated verifiers
will not change during the random experiments, and the following oracles are
related to this set. H is the random oracle, Σb (b ∈ {0, 1}) is a signing oracle
which takes as input a message m, and outputs a valid MDVS of the message
m under the secret key skAb

and Υ is the verifying oracle, which takes as imput
a message m, a bit string σ and a bit b and outputs 1 if σ is a valid MDVS
with respect to the public key pkAb

. The major difference with the definition
in [10] is that the attacker is not allowed to query the verifying oracle with
any signature on the challenge message. However, he can obtain a signature
on the challenge message from the signing oracles.

Definition 1 (Weak privacy of signer’s identity) Let B be a set of n en-
tities, k and t be integers and ε be a real in [0, 1]. Let MDVS be an n-designated
verifiers signature scheme with security parameter k, and let A be a weak-PSI-
CMA-adversary against MDVS. We consider the following random experiment,
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for r ∈ {0, 1}:

Experiment Exppsi-cma−r
MDVS,A (k)

params
R←− MDVS.Setup(k)

For i = 1, . . . , n do (pkBi
, skBi

)
R←− MDVS.VKeyGen(params)

(pkA0 , skA0)
R←− MDVS.SKeyGen(params)

(pkA1 , skA1)
R←− MDVS.SKeyGen(params)

(m?, I?)← AH,Σ0,Σ1,Υ(find, params, pkB1 , . . . , pkBn , pkA0 , pkA1)

σ? ← MDVS.Sign(params, m?, skAr , pkB)

d← AH,Σ0,Σ1,Υ(guess, params, m?, I?, σ?, pkB1 , . . . , pkBn , pkA0 , pkA1)

Return d

where A has access to the oracles H, Σ0, Σ1 and Υ. We define the advantage
of the adversary A, via

Advpsi−cma
MDVS,A (k) =

∣∣∣Pr
[
Exppsi−cma−1

MDVS,A (k) = 1
]
− Pr

[
Exppsi−cma−0

MDVS,A (k) = 1
]∣∣∣ .

MDVS is said to be (k, t, ε)-weak-PSI-CMA secure, if no adversary A running
in time t has an advantage Advpsi−cma

MDVS,A (k) ≥ ε.

As indicated in Jakobsson et al. and then proved in [9], an encryption of
the signature with an IND-CCA2 encryption scheme ensures the privacy of
the signer’s identity. This means that the designated verifiers have to share a
pair of encryption/decryption keys. This makes the protocol quite inefficient
because it is no longer spontaneous. In [10], the authors proposed an effi-
cient bi-designated verifiers signature scheme (B2DVS) and they obtained the
anonymity of the signer thanks to Joux’s tripartite key agreement [8], without
encrypting the signature.

2.2 Background

Our scheme is based on bilinear maps which were introduced in the cryp-
tographer’s world in 2000 with Joux’s paper [8] (whereas they had appeared
in the cryptanalyst’s’ world earlier with the work of Menezes, Okamoto and
Vanstone [11] in 1991). We give here some definitions about these objects.

Definition 2 (Admissible bilinear map [1]) Let (G, +) and (H,×) be two
groups of the same prime order q and let P be a generator of G. An admissible
bilinear map is a map e : G×G −→ H satisfying the following properties:
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(1) bilinear: e(aQ, bR) = e(Q, R)ab for all (Q, R) ∈ G2 and all (a, b) ∈ Z2;
(2) non-degenerate: e(P, P ) 6= 1;
(3) computable: there exists an efficient algorithm to compute e.

Definition 3 (prime-order-BDH-parameter-generator [1]) A prime-order-
BDH-parameter-generator is a probabilistic algorithm that takes on input a
security parameter k, and outputs a 5-tuple (q, P, G, H, e) satisfying the fol-
lowing conditions: q is a prime with 2k−1 < q < 2k, G and H are groups of
order q, P generates G, and e : G×G −→ H is an admissible bilinear map.

Both the unforgeability and the privacy of the signer’s identity of our scheme
rely on the Computational Diffie-Hellman Assumption, which, roughly speak-
ing, says that given two points aP and bP in a group G of prime order gen-
erated by P , it is computationally infeasible to compute the point abP . We
recall below a formal quantitative definition of CDH:

Definition 4 (CDH) Let Gen be a prime-order-BDH-parameter-generator.
Let D be an adversary that takes on input a 5-tuple (q, P, G, H, e) generated
by Gen, and (X, Y ) ∈ G2 and returns an element of Z ∈ G. We consider the
following random experiments, where k is a security parameter:

Experiment Expcdh
Gen,D(k)

(q, P, G, H, e)
R←− Gen(k)

setup← (q, P, G, H, e)

(x, y)
R←− [[1, q − 1]]2

(X, Y )← (xP, yP )

Z ← D(setup, X, Y )

Return 1 if Z = xyP , 0 otherwise

We define the corresponding success of D in solving the CDH problem via
Succcdh

Gen,D(k) = Pr
[
Expcdh

Gen,D(k) = 1
]
.

Let t ∈ N and ε ∈ [0, 1]. CDH is said to be (k, t, ε)-secure if no adversary D
running in time t is successful with Succcdh

Gen,D(k) ≥ ε.

3 Description of the SMDVS scheme

Let k be a security parameter. We denote by A the signer, and by Bi a desig-
nated verifier, for i ∈ [[1, n]].

5



Let SMDVS be the new strong multi-designated verifiers signature scheme,
which is an extension of B2DVS from [10]. It is based on Boneh et al.’s ring
signature [2]. As in the B2DVS scheme, Boneh et al.’s ring signature gives the
source hiding property which is also a requirement for ring signature, and since
it is “discrete log” based it insures the property for the MDVS scheme itself.
A Diffie-Hellman key distribution is used to compute a point Y during the
signature generation. The important fact is that this key distribution is essen-
tially 2-round, and one of the users has a special role. This user in the MDVS
setting is naturally the signer. The point Y can be seen as an “anonymity”
key. It makes it possible to achieve the privacy of the signer’s identity.

The new scheme SMDVS is described in figure 1.

Setup: Let Gen be a prime-order-BDH-parameter-generator and
(q, P, G, H, e) be the output of Gen(k). Let [{0, 1}∗×Gn+2 −→ G]
be a hash function family, and H be a random member of it.

SKeyGen: it randomly picks an integer a ∈ [[1, q−1]] which is the
secret key of the signer A. Her public key is PA = aP .

VKeyGen: it randomly picks an integer bi ∈ [[1, q − 1]] which is
the secret key of the verifier Bi. His public key is PBi

= biP .

Sign: Given m ∈ {0, 1}∗, A computes the key
PB = PB1 + · · ·+ PBn , she picks at random an integer
r ∈ [[1, q − 1]] and sets YBi

= rPBi
for all i ∈ [[1, n]].

Then, she computes the point Y = rP . She hashes
M = H(m, PA, PB1 , . . . , PBn , Y ), picks at random r′ ∈ [[1, q − 1]]
and computes QA = a−1(M − r′PB) and QB = r′P . The
n + 2-tuple σ = (QA, QB, YB1 , . . . , YBn) is the signature of m.

Verify: Given m ∈ {0, 1}∗ and σ, each Bi retrieves
Y = rP as b−1

i YBi
. He verifies, for j ∈ [[1, n]] \ {i},

that e(PBj
, rP ) = e(YBj

, P ). Then he can compute
M = H(m, PA, PB1 , . . . , PBn , Y ) and checks whether
e(M, P ) = e(QA, PA)e(QB, PB).

Fig. 1. SMDVS: Description

4 Security results

The correctness of SMDVS is obvious, as well as the source hiding property
which naturally comes from the source hiding of the underlying ring signature
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scheme. In the following, we state the security results concerning the unforge-
ability and the privacy of signer’s identity of SMDVS. The proofs are carried
in the random oracle model introduced in [3].

Theorem 1 (Unforgeability of SMDVS) Let Gen be a prime-order-BDH-
parameter-generator and let SMDVS be the associated multi-designated ver-
ifiers signature scheme. For any EF-CMA-adversary A, in the random or-
acle model, against SMDVS, with security parameter k which has success
ε = Succef−cma

SMDVS,A, running time τ , and makes qH, qΣ and qΥ queries to the
random oracle, the signing oracle and the verifying oracle, there exists an ad-
versary D for CDH which has advantage ε′ = Succcdh

Gen,D(k) running in time
τ ′ ∈ N such that 

ε′ ≥
(

1

n
ε− qHqΣ + 1

2k

)2

τ ′ ≤ 2 (τ + (qH + 2qΣ + O(1))TG + qΣTH)

where TG and TH denote the time complexity to evaluate a discrete exponenti-
ation in G and H.

Proof: It is a straightforward adaptation of the proof of unforgeability of
B2DVS from [10]. We briefly sketch the proof in the following.

We consider an EF-CMA-adversary A which outputs an existential forgery
(m?, σ?) with probability ε, within time t. As the attacker can corrupt up
to n − 1 designated verifiers to obtain their secrets, he knows especially the
common key Y and therefore can check the validity of the signature by himself.

Let Rx = xP , Rxy = xyP be two elements in G for (x, y) in [[1, q − 1]]2. We
construct a reduction which computes the point yP from these points. The
CDH problem can be solved by solving two instances of this previous problem
(see [2]).

The reduction picks at random a designated verifier Bi0 and replaces his public
key by αRx−

∑
i6=i0 PBi

where α is a random integer in [[1, q− 1]], and replaces
PA by Rx. The reduction aborts if Bi0 is among the corrupted verifiers.

The random oracle answers to the attacker’s queries by picking at random an
element h ∈ [[1, q − 1]] and outputs hRxy.

To simulate the signing oracle, the reduction picks at random a2 ∈ [[1, q − 1]]
and (l, r) ∈ [[1, q − 1]]2 It sets Y = lP a1 = r − a2α, rRx as the hash value,
and QA = a1P and QB = a2P .

At the end, the attacker produces a forgery (m∗, Q∗
A, Q∗

B, Y ∗
B1

, . . . , Y ∗
Bn

), and
by definition of the existential forgery h∗−1(Q∗

A + αQ∗
B) is equal to yP .
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The bounds on ε′ and τ ′ follows readily (see [10] for details). 2

As our scheme is not strongly unforgeable (as the scheme in [2]), it does not
achieve the strong notion of anonymity introduced in [10]. Indeed, if the at-
tacker computes from the challenge signature, the new one σ′ = (Q′

A, Q′
B, Y ∗

B1
, . . . , Y ∗

Bn
)

with Q′
A = Q∗

A + PB and Q′
B = Q∗

B − PA, then (m∗, σ′, PAb
) will be accepted

by the verifying oracle. Hence, the attacker can determine b with the queries
(m∗, σ′, PA1) and (m∗, σ′, PA0).

Theorem 2 (Weak anonymity of SMDVS) Let Gen be a prime-order-BDH-
parameter-generator and let SMDVS be the associated multi-designated veri-
fiers signature scheme. For any weak-PSI-CMA-adversary A, in the random
oracle model, against SMDVS, with security parameter k which has advantage
ε = Advpsi−cma

SMDVS,A(k), running time τ , and makes qH queries to the random
oracle, qΣ queries to the signing oracles and qΥ queries to the verifying oracle,
there exists an adversary D for CDH which has advantage ε′ = Succcdh

Gen,D(k)
running in time τ ′ ∈ N such that

ε′ ≥
(

ε

2
− qΣ + qΥ

2k

)2

τ ′ ≤ 2τ + 2n(qH + O(1))(qΥ + O(1))TP

where TP denotes the time complexity to evaluate a pairing.

Proof: Let k be a security parameter, and Gen be a prime-order-BDH-
parameter-generator. (q, P, G, H, e) is an output of Gen(k). Let Rx = xP ,
Rxy = xyP be two elements in G for (x, y) in [[1, q − 1]]2. We construct a ma-
chine D̃ which computes the point yP from these points. The CDH problem
can be solved by solving two instances of this previous problem (see [2]).

In the real attack game, n pairs of keys (PBi
, bi) for i ∈ [[1, n]] are produced by

the key generation algorithm for the verifiers, and two pairs of keys (PA0 , a0)
and (PA1 , a1) are produced by the key generation algorithm for the signers. The
weak-PSI-CMA adversary A is fed with the n public keys of the verifiers and
the public keys of the two potential signers. It outputs a message m? at the end
of its find stage. Then a signature is performed by flipping a coin b ∈ {0, 1}
and applying the signing algorithm : σ? = SMDVS.Sign(m?, ab, PB1 , . . . , PBn).
This signature is given to A which outputs a bit b? at the end of the guess

stage. In both stages, the adversary has a permanent access to the random
oracle H, the signing oracles Σ0 and Σ1, and the verifying oracle Υ, with the
restriction mentioned in paragraph 2.1. We denote qH, qΣ0 , qΣ1 and qΥ the
number of queries to the corresponding oracles. We set qΣ = qΣ0 + qΣ1 . To
simulate the environment of the adversary A, D̃ proceeds as follows :

• it picks a0 and a1 in [[1, q − 1]] at random and the signer’s key is defined as
PA0 = a0P and PA1 = a1P ,

8



• it chooses si ∈ [[1, q − 1]] for i ∈ [[1, n]] and replaces each PBi
by siRx,

• the random oracle is simulated by maintaining an H-List in a classical way;
• the signing oracles Σ0 and Σ1 can be perfectly simulated thanks to the

knowledge of a0 and a1;
• to simulate the verifying oracle, once a signature σ = (QA, QB, YB1 , . . . , YBn)

on m is queried along with a bit b to Υ, D̃ browses the H-List looking
for all n + 2-tuples of the form (m, PB1 , . . . , PBn , R) and tests whether
e(R,PB1) = e(YB1 , P ). If such is the case, it verifies, for j ∈ [[2, n]], that
e(R,PBj

) = e(YBj
, P ). Then he can compute M = H(m, PAb

, PB1 , . . . , PBn , R)
and outputs Valid if and only if e(M, P ) = e(QA, PAb

)e(QB, PB).

For the challenge simulation, D̃ picks b ∈ {0, 1} at random,

• it computes Y ?
Bi

= siRxy for i ∈ [[1, n]]
• it picks at random M? ∈ G
• it picks at random r? ∈ [[1, q−1]], computes Q?

B = r?P and Q?
A = a−1

b (M? − r?PB).

The simulated challenger outputs σ? = (Q?
A, Q?

B, Y ?
B1

, . . . , Y ?
Bn

) without updat-
ing the H-List with M?.

Eventually, when the adversary A stops outputting a bit b?, the algorithm D̃
browses the H-List looking for all n+2-tuples of the form (m?, PB1 , . . . , PBn , R)
and tests whether e(R,Rx) = e(Rxy, P ). If such is the case, it outputs this
point R, else it outputs a random element from G. Let τ̃ and ε̃ denote the
running time of D̃ and the success for D̃ to solve the intermediate problem.
Clearly τ̃ is upper-bounded by τ +(qH+O(1))(qΥ+O(1))TP where TP denotes
the time complexity to evaluate a pairing.

The previous simulation is perfectly indistinguishable from the real game un-
less

(1) a valid signature σ = (QA, QB, YB1 , . . . , YBn) on m is queried to Υ during
the simulation whereas (m, PA, PB1 , . . . , PBn , R) was not queried to H
before. This happens with probability at most qΥ2−k.

(2) (m?, PB1 , . . . , PBn , Y ?) where Y ? = yP is queried from H by the signing
oracle, the verifying oracle or the adversary. The first case happens with
probability at most qΣ2−k, and by definition of weak-PSI-CMA security,
the second case cannot occur, otherwise, the verifying query would be
the challenge signature. The probability that (m?, PB1 , . . . , PBn , Y ?) is
queried from H by the adversary, is upper-bounded by ε̃. The challenge
signature gives A no information about b if (m?, PB1 , . . . , PBn , Y ?) is not
queried from H, therefore in this case it succeeds with probability 1/2.
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Thus we get

ε

2
=

∣∣∣∣∣∣Advpsi−cma
SMDVS,A(k) + 1

2
− 1

2

∣∣∣∣∣∣
=

∣∣∣Pr[A succeeds in the real game]− Pr[A succeeds in D̃’s simulation]
∣∣∣

≤ ε̃ +
qΣ + qΥ

2k
, and the theorem follows.

2

5 Conclusion

We designed the first n-designated verifiers signature scheme for an arbitrary
n ∈ N protecting the signer’s anonymity without encrypting the signature.
Its security relies on a very classical assumption (CDH) in the random oracle
model. In pracical applications, the signature length is n + 2 points on an
elliptic curve, and the verification is quite time consuming. However, the sig-
nature generation is efficient. Constructing an MDVS protocol protecting the
signer’s anonymity with constant signature length remains an open problem.
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