A Simple Derivation for the Frobenius Pseudoprime Test

Daniel Loebenberger
b-it
Universität Bonn
D53113 Bonn
daniel@bit.uni-bonn.de

Abstract

Probabilistic compositeness tests are of great practical importance in cryptography. Besides prominent tests (like the well-known Miller-Rabin test), there are tests that use Lucas-sequences for testing compositeness. One example is the so-called Frobenius test that has a very low error probability. Using a slight modification of the above mentioned Lucas sequences we present a simple derivation for the Frobenius pseudoprime test in the version proposed by Crandall and Pommerance in [CrPo05].

1 Lucas and Frobenius Pseudoprimes

For $f(x)=x^{2}-a x+b \in \mathbb{Z}[x]$ the Lucas sequences are given by

$$
\begin{align*}
U_{j} & :=U_{j}(a, b):=\frac{x^{j}-(a-x)^{j}}{x-(a-x)} \quad(\bmod f(x)) \tag{1}\\
V_{j} & :=V_{j}(a, b):=x^{j}+(a-x)^{j} \quad(\bmod f(x))
\end{align*}
$$

These sequences both satisfy the same recurrence relation

$$
U_{j}=a U_{j-1}-b U_{j-2} ; V_{j}=a V_{j-1}-b V_{j-2} \text { for } j \geq 2
$$

with initial values

$$
U_{0}=0, U_{1}=1 \quad V_{0}=2, \quad V_{1}=a
$$

The following theorem is the basis for a probabilistic prime test, called the Lucas test:
Theorem 1. Let $a, b \in \mathbb{Z} \backslash\{0\}, \Delta:=a^{2}-4 b$ and the sequences $\left(U_{j}\right),\left(V_{j}\right)$ defined as above. If p is prime, with $\operatorname{gcd}(p, 2 a b \Delta)=1$, we have:

$$
\begin{equation*}
U_{p-\left(\frac{\Delta}{p}\right)} \equiv 0 \quad(\bmod p) \tag{2}
\end{equation*}
$$

Proof.
If Δ is a quadratic nonresidue modulo p, then the polynomial $f(x) \in \mathbb{Z}_{p}[x]$ is irreducible over \mathbb{Z}_{p}, which means that $\mathbb{Z}_{p}[x] /(f(x))$ is a field and isomorphic to $\mathbb{F}_{p^{2}}$. The elements of the subfield \mathbb{Z}_{p} are exactly those elements $i+j x \in \mathbb{Z}_{p}[x] /(f(x))$ with $j=0$.
The zeroes of the polynomial $f(x)$ are x and $a-x$, both in $\mathbb{F}_{p^{2}} \backslash \mathbb{Z}_{p}$, and therefore permuted by the Frobenius automorphism. Thus we have

$$
\text { in the case }\left(\frac{\Delta}{p}\right)=-1: \quad\left\{\begin{array}{l}
x^{p} \equiv a-x \quad(\bmod f(x), p) \\
(a-x)^{p} \equiv x \quad(\bmod f(x), p)
\end{array}\right.
$$

which implies $x^{p+1}-(a-x)^{p+1}=x(a-x)-(a-x) x \equiv 0(\bmod f(x), p)$, as claimed.
If, on the other hand, Δ is a quadratic residue modulo p, then $f(x) \bmod p$ has two roots in \mathbb{Z}_{p} and $R:=\mathbb{Z}_{p}[x] /(f(x))$ is isomorphic to the direct product $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. In this case the Frobenius automorphism acts trivially on R and we have:

$$
\text { in the case }\left(\frac{\Delta}{p}\right)=1: \quad\left\{\begin{array}{l}
x^{p} \equiv x \quad(\bmod f(x), p) \\
(a-x)^{p} \equiv a-x \quad(\bmod f(x), p)
\end{array}\right.
$$

Since $\operatorname{gcd}(p, b)=1$ and since $x(a-x) \equiv b(\bmod f(x), p)$, the elements x and $a-x$ are units in R. Therefore we have $x^{p-1}=(a-x)^{p-1}=1$ as desired.

Definition 2. Let $a, b \in \mathbb{Z} \backslash\{0\}$, with $\Delta=a^{2}-4 b$ not a square. A composite integer n, with $\operatorname{gcd}(2 a b \Delta, n)=1$ is called a Lucas pseudoprime with respect to $f(x):=x^{2}-a x+b$, if $\left.U_{n-(} \frac{\Delta}{n}\right) \equiv 0$ $(\bmod n)$

The first Lucas pseudoprime with respect to the Fibonacci-polynomial $x^{2}-x-1$ is $323=17 \cdot 19$.

Grantham proposed a stronger test, the Frobenius test (see [Gra98] and [Gra01]). The definition of the Frobenius pseudoprime is given by

Definition 3. Let $a, b \in \mathbb{Z} \backslash\{0\}$, with $\Delta=a^{2}-4 b$ not a square. A composite integer n, with $\operatorname{gcd}(2 a b \Delta, n)=1$ is called a Frobenius pseudoprime with respect to $f(x):=x^{2}-a x+b$, if

$$
x^{n} \equiv \begin{cases}a-x \quad(\bmod f(x), n) & \text { if }\left(\frac{\Delta}{n}\right)=-1 \\ x \quad(\bmod f(x), n) & \text { if }\left(\frac{\Delta}{n}\right)=1\end{cases}
$$

Next we show that the Frobenius pseudoprime test is at least as strong as the Lucas pseudoprime test:

Theorem 4. Let $f(x):=x^{2}-a x+b$ and $n \in \mathbb{N}$. If n is Frobenius pseudoprime with respect to $f(x)$, then n is also Lucas pseudoprime with respect to $f(x)$.

Before we can prove this theorem we need the following lemma:
Lemma 5. Let $m, n \in \mathbb{N}, f(x), g(x), r(x) \in \mathbb{Z}[x]$. If $f(r(x)) \equiv 0(\bmod f(x), n)$ and $x^{m} \equiv g(x)$ $(\bmod f(x), n)$, then $r(x)^{m} \equiv g(r(x))(\bmod f(x), n)$.

Proof. Clearly $x^{m} \equiv f(x) h(x)+g(x)(\bmod n)$ for $h(x) \in \mathbb{Z}[x]$. Since x is a variable we also have $r(x)^{m} \equiv f(r(x)) h(r(x))+g(r(x))(\bmod n)$. Because we have $f(r(x)) \equiv 0(\bmod f(x), n)$, it follows $r(x)^{m} \equiv g(r(x))(\bmod f(x), n)$

Now the the proof for Theorem 4 is easy:
Proof. Let n be Frobenius pseudoprime with respect to $f(x)$, according to Definition 3.
Assume $\left(\frac{\Delta}{n}\right)=1$. Then $x^{n} \equiv x(\bmod f(x), n)$. Since $\operatorname{gcd}(b, n)=1, x$ modulo $(f(x), n)$ is invertible and we have $x^{n-1} \equiv 1(\bmod f(x), n)$. Since $f(a-x) \equiv 0(\bmod f(x), n)$ Lemma 5 implies the congruence $(a-x)^{n-1} \equiv 1(\bmod f(x), n)$, i.e. $(a-x)^{n} \equiv(a-x)(\bmod f(x), n)$.
On the other hand, if $\left(\frac{\Delta}{n}\right)=-1$, we get from $x^{n} \equiv a-x(\bmod f(x), n)$ and $f(a-x) \equiv 0$ $(\bmod f(x), n)$ directy by Lemma 5 the congruence $(a-x)^{n} \equiv x(\bmod f(x), n)$ as desired.
Thus in both cases n is Lucas pseudoprime with respect to $f(x)$.

The Frobenius property for quadratic polynomials can be expressed using the Lucas sequences $\left(U_{j}\right)$ and $\left(V_{j}\right)$:

Theorem 6. Let $a, b \in \mathbb{N}$, with $\Delta=a^{2}-4 b$ not a square. An integer n, with $\operatorname{gcd}(2 a b \Delta, n)=1$ is Frobenius pseudoprime with respect to $f(x):=x^{2}-a x+b$, if and only if

$$
U_{n-\left(\frac{\Delta}{n}\right)} \equiv 0 \quad(\bmod n) \text { and } V_{n-\left(\frac{\Delta}{n}\right)} \equiv\left\{\begin{array}{lll}
2 b & (\bmod n) & \text { if }\left(\frac{\Delta}{n}\right)=-1 \tag{3}\\
2 & (\bmod n) & \text { if }\left(\frac{\Delta}{n}\right)=1
\end{array}\right.
$$

Proof. From the definitions of the Lucas sequences (1) one easily sees, that

$$
\begin{equation*}
2 x^{j} \equiv V_{j}+(2 x-a) U_{j} \quad(\bmod f(x)) \tag{4}
\end{equation*}
$$

Assume (3). In the case $\left(\frac{\Delta}{n}\right)=-1$ Eqn. (4) implies $x^{n+1} \equiv b(\bmod f(x), n)$ and in the case $\left(\frac{\Delta}{n}\right)=1$ Eqn. (4) gives $x^{n-1} \equiv 1(\bmod f(x), n)$. The latter implies $x^{n} \equiv x(\bmod f(x), n)$, and since $x(a-x) \equiv b(\bmod f(x), n)$ the first leads to $x^{n} \equiv a-x(\bmod f(x), n)$. So n is Frobenius pseudoprime.
On the other hand, if n is Frobenius pseudoprime with respect to $f(x)$, we have $U_{n-\left(\frac{\Delta}{n}\right)} \equiv 0$ $(\bmod n)$ by Theorem 4 . For $j=n-\left(\frac{\Delta}{n}\right)$ Eqn. (4) gives

$$
2 x^{n-\left(\frac{\Delta}{n}\right)} \equiv V_{n-\left(\frac{\Delta}{n}\right)} \quad(\bmod f(x), n)
$$

Assume $\left(\frac{\Delta}{n}\right)=-1$. Then Definition 3 gives $x^{n+1} \equiv(a-x) x \equiv b(\bmod f(x), n)$, i.e. $V_{n+1} \equiv 2 b$ $(\bmod n)$. Finally assume $\left(\frac{\Delta}{n}\right)=1$. Since x is invertible in $\mathbb{Z}_{n}[x] /(f(x))$, it follows $x^{n-1} \equiv 1$ $(\bmod f(x), n)$, i.e. $V_{n-1} \equiv 2(\bmod n)$.

The first Frobenius pseudoprime with respect to the Fibonacci polynomial $x^{2}-x-1$ is 4181 , the nineteenth Fibonacci number, the first with $\left(\frac{5}{n}\right)=-1$ is 5777 . Thus not every Lucas pseudoprime is a Frobenius pseudoprime. We conclude that the Frobenius test is more stringent than the Lucas test.

2 Efficient implementation

Suppose we want to apply the Frobenius test on a given number n. Choose $a, b \in \mathbb{N}$, with $\Delta=a^{2}-4 b$ not a square such that $\operatorname{gcd}(2 a b \Delta, n)=1$.
Since $\operatorname{gcd}(2 \Delta, n)=1$ the number $n-\left(\frac{\Delta}{n}\right)$ is always even, say $n-\left(\frac{\Delta}{n}\right)=2 m, m \in \mathbb{N}$.

Following Williams [Wil98] we define the following modified Lucas sequence

$$
\begin{equation*}
W_{j}:=b^{-j} V_{2 j} \quad(\bmod n) \tag{5}
\end{equation*}
$$

Since $\operatorname{gcd}(b, n)=1$ the sequence $\left(W_{j}\right):=\left(W_{j}\right)_{j \geq 0}$ is well defined and starts with

$$
W_{0} \equiv 2 \quad(\bmod n) \quad \text { and } \quad W_{1} \equiv a^{2} b^{-1}-2 \quad(\bmod n)
$$

The sequence $\left(W_{j}\right)$ can be computed efficiently. In fact, the following two formulas allow the computation of the values $W_{2 j}$ and $W_{2 j+1}$ from W_{j} and $W_{j+1}(j \geq 0)$:

$$
\left\{\begin{array}{l}
W_{2 j} \equiv W_{j}^{2}-2 \quad(\bmod n) \tag{6}\\
W_{2 j+1} \equiv W_{j} W_{j+1}-W_{1} \quad(\bmod n)
\end{array}\right.
$$

We arrive here at the novel, simple derivation for the Frobenius test:
Proof. Let $\delta:=x-(a-x)$, i.e.

$$
\delta^{2} \equiv x^{2}-2 b+(a-x)^{2} \equiv a^{2}-4 b \equiv \Delta \quad(\bmod f(x), n)
$$

Also, (1) has the consequence

$$
V_{j}+\delta U_{j}=2 x^{j} \quad \text { and } \quad V_{j}-\delta U_{j}=2(a-x)^{j}
$$

So we have for arbitrary $j, k \in \mathbb{N}$

$$
\begin{aligned}
& \left(V_{j}+\delta U_{j}\right) \cdot\left(V_{k}+\delta U_{k}\right)=4 x^{j+k}=2\left(V_{j+k}+\delta U_{j+k}\right) \\
& \left(V_{j}-\delta U_{j}\right) \cdot\left(V_{k}-\delta U_{k}\right)=4(a-x)^{j+k}=2\left(V_{j+k}-\delta U_{j+k}\right)
\end{aligned}
$$

Adding these equations yields

$$
\begin{equation*}
2 V_{j+k}=V_{j} V_{k}+\Delta U_{j} U_{k} \tag{7}
\end{equation*}
$$

Backwards reading of the recurrence relation leads to $b^{k} U_{-k}=-U_{k}$ und $b^{k} V_{-k}=V_{k}$. Subsituting this in equation (7) gives

$$
\begin{equation*}
2 b^{k} V_{j-k}=V_{j} V_{k}-\Delta U_{j} U_{k} \tag{8}
\end{equation*}
$$

Putting $k=j$ yields $V_{j}^{2}-\Delta U_{j}^{2}=4 b^{j}$ From (7) we get for $k=j$ the identity $2 V_{2 j}=V_{j}^{2}+\Delta U_{j}^{2}$. Adding the last two equations leads to $V_{2 j}=V_{j}^{2}-2 b^{j}$. Putting $j:=2 j$ the definition (5) gives

$$
\begin{equation*}
W_{2 j} \equiv W_{j}^{2}-2 \quad(\bmod n) \tag{9}
\end{equation*}
$$

To derive a formula for $W_{2 j+1}$, subtract equation (8) from (7) and get $V_{j+k}=V_{j} V_{k}-b^{k} V_{j-k}$ Here we take two adjacent even numbers, i.e. we put $j:=2 j+2$ and $k:=2 j$ and get $V_{4 j+2}=V_{2 j} V_{2 j+2}-b^{2 j} V_{2}$ In terms of the W-sequence (5) this is:

$$
\begin{equation*}
W_{2 j+1} \equiv W_{j} W_{j+1}-W_{1} \quad(\bmod n) \tag{10}
\end{equation*}
$$

To compute for a given index $j \in \mathbb{N}$ the value W_{j} write j in binary, say $j=\left(b_{0} b_{1} \ldots b_{k}\right)_{2}$. Now go through all bits and compute the sequence of pairs $\mathcal{S}_{i}=\{A, B\}(i \geq 0)$

$$
\mathcal{S}_{i}=\{A, B\} \rightarrow \mathcal{S}_{i+1}:=\left\{\begin{array}{lll}
\left\{A^{2}-2, A B-W_{1}\right\} & (\bmod n) & \text { if } b_{i+1}=0 \tag{11}\\
\left\{A B-W_{1}, B^{2}-2\right\} & (\bmod n) & \text { if } b_{i+1}=1
\end{array}\right.
$$

Initialising $\mathcal{S}_{0}:=\left\{W_{0}, W_{1}\right\}$ one gets with the pair \mathcal{S}_{k} exactly the values W_{j} und W_{j+1}. So the sequence $\left(W_{j}\right)$ can be computed in a time $\widetilde{\mathcal{O}}(\log n)$.
The sequence $\left(W_{j}\right)$ shall now be used for the Lucas test. Let n be Lucas pseudoprime. Let $m:=(n-$ $\left.\left(\frac{\Delta}{n}\right)\right) / 2$. Then we get $U_{2 m} \equiv 0(\bmod n)$. Putting $j:=2 m, k:=2$ in formula (7), it follows $2 V_{2 m+2}=$
$V_{2 m} V_{2}+\Delta U_{2 m} U_{2}$ Since $\operatorname{gcd}(b, n)=1$ it follows by (5): $2 W_{m+1} \equiv W_{m} W_{1}+b^{-(m+1)} \Delta U_{2 m} U_{2}$ $(\bmod n)$ Because n is Lucas pseudoprime, we get

$$
2 W_{m+1} \equiv W_{m} W_{1} \quad(\bmod n)
$$

Since $\operatorname{gcd}(a b \Delta, n)=1$ the converse also holds.

To summarize:
Theorem 7. Let n, a, b, Δ, m and the sequence $\left(W_{j}\right)$ defined as above. Then n is Lucas pseudoprime if and only if $2 W_{m+1} \equiv W_{1} W_{m}(\bmod n)$

Let now $n \in \mathbb{N}_{\geq 3}$ be a number, that fullfills the assumptions of Definition 3. Then the Frobenius test can be easily implemented using the sequence $\left(W_{j}\right)$. This sequence can be used for the Frobenius test, since from $\operatorname{gcd}(2 \Delta, n)=1$ follows, that $n-\left(\frac{\Delta}{n}\right)=2 m$ is even. Clearly Theorem 7 can be used, to test if n is Lucas pseudoprime. We need a congruence in terms of the sequence (W_{j}), that is equivalent to the fact

$$
V_{n-\left(\frac{\Delta}{n}\right)} \equiv\left\{\begin{array}{lll}
2 b & (\bmod n) & \text { if }\left(\frac{\Delta}{n}\right)=-1 \\
2 & (\bmod n) & \text { if }\left(\frac{\Delta}{n}\right)=1
\end{array}\right.
$$

Let now n be Frobenius pseudoprime and $m=\left(n-\left(\frac{\Delta}{n}\right)\right) / 2$. Then from the definition of the sequence (W_{j}) we get

$$
W_{m} \equiv 2 b^{-(n-1) / 2} \quad(\bmod n)
$$

Putting $B:=b^{(n-1) / 2}$, it follows

$$
B W_{m} \equiv 2 \quad(\bmod n)
$$

To summarize we get the following theorem:
Theorem 8. Let n, a, b, Δ, m and the sequence $\left(W_{j}\right)$ defined as above. Then n is Frobenius pseudoprime if and only if $2 W_{m+1} \neq W_{1} W_{m}(\bmod n)$ and $B W_{m} \equiv 2(\bmod n)$, where $B=b^{(n-1) / 2}$.

References

[CrPo05] Richard Crandall, Carl Pomerance, Prime Numbers - A Computational Perspective, Springer, 2005^{2}
[Gra98] John Grantham, A probable primetest with high confidence, Journal of Number Theory 72, 32-47, 1998
[Gra01] John Grantham, Frobenius Pseudoprimes, Math.comp. 70, 873-891, 2001
[Wil98] Hugh C. Williams, Édouard Lucas and Primality Testing, Wiley-Interscience, 1998

