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Abstract. Probabilistic compositeness tests are of great practical importance in cryptogra-

phy. Besides prominent tests (like the well-known Miller-Rabin test), there are tests that use

Lucas-sequences for testing compositeness. One example is the so-called Frobenius test that

has a very low error probability. Using a slight modification of the above mentioned Lucas

sequences we present a simple derivation for the Frobenius pseudoprime test in the version

proposed by Crandall and Pommerance in [CrPo05].

1 Lucas and Frobenius Pseudoprimes

For f(x) = x2 − ax + b ∈ Z[x] the Lucas sequences are given by

Uj := Uj(a, b) :=
xj − (a − x)j

x − (a − x)
(mod f(x))

Vj := Vj(a, b) := xj + (a − x)j (mod f(x))
(1)

These sequences both satisfy the same recurrence relation

Uj = aUj−1 − bUj−2 ; Vj = aVj−1 − bVj−2 for j ≥ 2

with initial values

U0 = 0, U1 = 1 V0 = 2, V1 = a

The following theorem is the basis for a probabilistic prime test, called the Lucas test:

Theorem 1. Let a, b ∈ Z \ {0}, ∆ := a2 − 4b and the sequences (Uj), (Vj) defined as above. If p is

prime, with gcd(p, 2ab∆) = 1, we have:

U
p−

(
∆
p

) ≡ 0 (mod p) (2)

Proof.

If ∆ is a quadratic nonresidue modulo p, then the polynomial f(x) ∈ Zp[x] is irreducible over Zp,

which means that Zp[x]/(f(x)) is a field and isomorphic to Fp2 . The elements of the subfield Zp

are exactly those elements i + jx ∈ Zp[x]/(f(x)) with j = 0.

The zeroes of the polynomial f(x) are x and a − x, both in Fp2 \ Zp, and therefore permuted by

the Frobenius automorphism. Thus we have

in the case
(

∆
p

)
= −1 :





xp ≡ a − x (mod f(x), p)

(a − x)p ≡ x (mod f(x), p)
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which implies xp+1 − (a − x)p+1 = x(a − x) − (a − x)x ≡ 0 (mod f(x), p), as claimed.

If, on the other hand, ∆ is a quadratic residue modulo p, then f(x) mod p has two roots in Zp

and R := Zp[x]/(f(x)) is isomorphic to the direct product Zp × Zp. In this case the Frobenius

automorphism acts trivially on R and we have:

in the case
(

∆
p

)
= 1 :





xp ≡ x (mod f(x), p)

(a − x)p ≡ a − x (mod f(x), p)

Since gcd(p, b) = 1 and since x(a− x) ≡ b (mod f(x), p), the elements x and a− x are units in R.

Therefore we have xp−1 = (a − x)p−1 = 1 as desired.

Definition 2. Let a, b ∈ Z \ {0}, with ∆ = a2 − 4b not a square. A composite integer n, with

gcd(2ab∆, n) = 1 is called a Lucas pseudoprime with respect to f(x) := x2−ax+b, if U
n−

(
∆
n

) ≡ 0

(mod n)

The first Lucas pseudoprime with respect to the Fibonacci-polynomial x2 − x− 1 is 323 = 17 · 19.

Grantham proposed a stronger test, the Frobenius test (see [Gra98] and [Gra01]). The definition

of the Frobenius pseudoprime is given by

Definition 3. Let a, b ∈ Z \ {0}, with ∆ = a2 − 4b not a square. A composite integer n, with

gcd(2ab∆, n) = 1 is called a Frobenius pseudoprime with respect to f(x) := x2 − ax + b, if

xn ≡





a − x (mod f(x), n) if

(
∆
n

)
= −1

x (mod f(x), n) if
(

∆
n

)
= 1

Next we show that the Frobenius pseudoprime test is at least as strong as the Lucas pseudoprime

test:

Theorem 4. Let f(x) := x2 − ax + b and n ∈ N. If n is Frobenius pseudoprime with respect to

f(x), then n is also Lucas pseudoprime with respect to f(x).

Before we can prove this theorem we need the following lemma:

Lemma 5. Let m, n ∈ N, f(x), g(x), r(x) ∈ Z[x]. If f(r(x)) ≡ 0 (mod f(x), n) and xm ≡ g(x)

(mod f(x), n), then r(x)m ≡ g(r(x)) (mod f(x), n).

Proof. Clearly xm ≡ f(x)h(x) + g(x) (mod n) for h(x) ∈ Z[x]. Since x is a variable we also have

r(x)m ≡ f(r(x))h(r(x))+ g(r(x)) (mod n). Because we have f(r(x)) ≡ 0 (mod f(x), n), it follows

r(x)m ≡ g(r(x)) (mod f(x), n)

Now the the proof for Theorem 4 is easy:

Proof. Let n be Frobenius pseudoprime with respect to f(x), according to Definition 3.

Assume
(

∆
n

)
= 1. Then xn ≡ x (mod f(x), n). Since gcd(b, n) = 1, x modulo (f(x), n) is invertible

and we have xn−1 ≡ 1 (mod f(x), n). Since f(a − x) ≡ 0 (mod f(x), n) Lemma 5 implies the

congruence (a − x)n−1 ≡ 1 (mod f(x), n), i.e. (a − x)n ≡ (a − x) (mod f(x), n).

On the other hand, if
(

∆
n

)
= −1, we get from xn ≡ a − x (mod f(x), n) and f(a − x) ≡ 0

(mod f(x), n) directy by Lemma 5 the congruence (a − x)n ≡ x (mod f(x), n) as desired.

Thus in both cases n is Lucas pseudoprime with respect to f(x).



The Frobenius property for quadratic polynomials can be expressed using the Lucas sequences

(Uj) and (Vj):

Theorem 6. Let a, b ∈ N, with ∆ = a2 − 4b not a square. An integer n, with gcd(2ab∆, n) = 1 is

Frobenius pseudoprime with respect to f(x) := x2 − ax + b, if and only if

U
n−

(
∆
n

) ≡ 0 (mod n) and V
n−

(
∆
n

) ≡





2b (mod n) if
(

∆
n

)
= −1

2 (mod n) if
(

∆
n

)
= 1

(3)

Proof. From the definitions of the Lucas sequences (1) one easily sees, that

2xj ≡ Vj + (2x − a)Uj (mod f(x)) (4)

Assume (3). In the case
(

∆
n

)
= −1 Eqn. (4) implies xn+1 ≡ b (mod f(x), n) and in the case(

∆
n

)
= 1 Eqn. (4) gives xn−1 ≡ 1 (mod f(x), n). The latter implies xn ≡ x (mod f(x), n), and

since x(a − x) ≡ b (mod f(x), n) the first leads to xn ≡ a − x (mod f(x), n). So n is Frobenius

pseudoprime.

On the other hand, if n is Frobenius pseudoprime with respect to f(x), we have U
n−

(
∆
n

) ≡ 0

(mod n) by Theorem 4. For j = n −
(

∆
n

)
Eqn. (4) gives

2xn−
(

∆
n

)
≡ V

n−
(

∆
n

) (mod f(x), n)

Assume
(

∆
n

)
= −1. Then Definition 3 gives xn+1 ≡ (a − x)x ≡ b (mod f(x), n), i.e. Vn+1 ≡ 2b

(mod n). Finally assume
(

∆
n

)
= 1. Since x is invertible in Zn[x]/(f(x)), it follows xn−1 ≡ 1

(mod f(x), n), i.e. Vn−1 ≡ 2 (mod n).

The first Frobenius pseudoprime with respect to the Fibonacci polynomial x2 − x − 1 is 4181, the

nineteenth Fibonacci number, the first with
(

5
n

)
= −1 is 5777. Thus not every Lucas pseudoprime

is a Frobenius pseudoprime. We conclude that the Frobenius test is more stringent than the Lucas

test.

2 Efficient implementation

Suppose we want to apply the Frobenius test on a given number n. Choose a, b ∈ N, with ∆ = a2−4b

not a square such that gcd(2ab∆, n) = 1.

Since gcd(2∆, n) = 1 the number n −
(

∆
n

)
is always even, say n −

(
∆
n

)
= 2m, m ∈ N.

Following Williams [Wil98] we define the following modified Lucas sequence

Wj := b−jV2j (mod n) (5)

Since gcd(b, n) = 1 the sequence (Wj) := (Wj)j≥0 is well defined and starts with

W0 ≡ 2 (mod n) and W1 ≡ a2b−1 − 2 (mod n)



The sequence (Wj) can be computed efficiently. In fact, the following two formulas allow the

computation of the values W2j and W2j+1 from Wj and Wj+1 (j ≥ 0):





W2j ≡ W 2

j − 2 (mod n)

W2j+1 ≡ WjWj+1 − W1 (mod n)
(6)

We arrive here at the novel, simple derivation for the Frobenius test:

Proof. Let δ := x − (a − x), i.e.

δ2 ≡ x2 − 2b + (a − x)2 ≡ a2 − 4b ≡ ∆ (mod f(x), n).

Also, (1) has the consequence

Vj + δUj = 2xj and Vj − δUj = 2(a − x)j .

So we have for arbitrary j, k ∈ N

(Vj + δUj) · (Vk + δUk) = 4xj+k = 2(Vj+k + δUj+k),

(Vj − δUj) · (Vk − δUk) = 4(a − x)j+k = 2(Vj+k − δUj+k).

Adding these equations yields

2Vj+k = VjVk + ∆UjUk. (7)

Backwards reading of the recurrence relation leads to bkU−k = −Uk und bkV−k = Vk. Subsitut-

ing this in equation (7) gives

2bkVj−k = VjVk − ∆UjUk (8)

Putting k = j yields V 2
j − ∆U2

j = 4bj From (7) we get for k = j the identity 2V2j = V 2
j + ∆U2

j .

Adding the last two equations leads to V2j = V 2
j − 2bj. Putting j := 2j the definition (5) gives

W2j ≡ W 2
j − 2 (mod n) (9)

To derive a formula for W2j+1, subtract equation (8) from (7) and get Vj+k = VjVk−bkVj−k Here we

take two adjacent even numbers, i.e. we put j := 2j+2 and k := 2j and get V4j+2 = V2jV2j+2−b2jV2

In terms of the W -sequence (5) this is:

W2j+1 ≡ WjWj+1 − W1 (mod n) (10)

To compute for a given index j ∈ N the value Wj write j in binary, say j = (b0b1 . . . bk)2. Now go

through all bits and compute the sequence of pairs Si = {A, B} (i ≥ 0)

Si = {A, B} → Si+1 :=





{A2 − 2, AB − W1} (mod n) if bi+1 = 0

{AB − W1, B
2 − 2} (mod n) if bi+1 = 1

(11)

Initialising S0 := {W0, W1} one gets with the pair Sk exactly the values Wj und Wj+1. So the

sequence (Wj) can be computed in a time Õ (log n).

The sequence (Wj) shall now be used for the Lucas test. Let n be Lucas pseudoprime. Let m := (n−(
∆
n

)
)/2. Then we get U2m ≡ 0 (mod n). Putting j := 2m, k := 2 in formula (7), it follows 2V2m+2 =



V2mV2 + ∆U2mU2 Since gcd(b, n) = 1 it follows by (5): 2Wm+1 ≡ WmW1 + b−(m+1)∆U2mU2

(mod n) Because n is Lucas pseudoprime, we get

2Wm+1 ≡ WmW1 (mod n)

Since gcd(ab∆, n) = 1 the converse also holds.

To summarize:

Theorem 7. Let n, a, b, ∆, m and the sequence (Wj) defined as above. Then n is Lucas pseudo-

prime if and only if 2Wm+1 ≡ W1Wm (mod n)

Let now n ∈ N≥3 be a number, that fullfills the assumptions of Definition 3. Then the Frobenius test

can be easily implemented using the sequence (Wj). This sequence can be used for the Frobenius

test, since from gcd(2∆, n) = 1 follows, that n −
(

∆
n

)
= 2m is even. Clearly Theorem 7 can be

used, to test if n is Lucas pseudoprime. We need a congruence in terms of the sequence (Wj), that

is equivalent to the fact

V
n−

(
∆
n

) ≡





2b (mod n) if
(

∆
n

)
= −1

2 (mod n) if
(

∆
n

)
= 1

Let now n be Frobenius pseudoprime and m = (n −
(

∆
n

)
)/2. Then from the definition of the

sequence (Wj) we get

Wm ≡ 2b−(n−1)/2 (mod n)

Putting B := b(n−1)/2, it follows

BWm ≡ 2 (mod n)

To summarize we get the following theorem:

Theorem 8. Let n, a, b, ∆, m and the sequence (Wj) defined as above. Then n is Frobenius pseu-

doprime if and only if 2Wm+1 6= W1Wm (mod n) and BWm ≡ 2 (mod n), where B = b(n−1)/2.
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