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Abstract. Probabilistic compositeness tests are of great practical importance in cryptogra-
phy. Besides prominent tests (like the well-known Miller-Rabin test), there are tests that use
Lucas-sequences for testing compositeness. One example is the so-called Frobenius test that
has a very low error probability. Using a slight modification of the above mentioned Lucas
sequences we present a simple derivation for the Frobenius pseudoprime test in the version

proposed by Crandall and Pommerance in [CrPo05].

1 Lucas and Frobenius Pseudoprimes

For f(x) = 2? — ax + b € Z[x] the Lucas sequences are given by

o —(a—z)
e (moed f@) "

Vi :=Vi(a,b) := 27 + (a—x)’ (mod f(z))

U; :==Uj(a,b) :=

These sequences both satisfy the same recurrence relation
Uj = an—l —ij—Q ) V} = a‘/}_l —bV}_g fOl”j >2

with initial values

U():O, U1:1 V():Q, V1:a

The following theorem is the basis for a probabilistic prime test, called the Lucas test:

Theorem 1. Let a,b € Z\ {0}, A :=a? —4b and the sequences (U;),(V;) defined as above. If p is
prime, with ged(p, 2abA) = 1, we have:
U

p—

=0 (mod p) (2)

—~
S >
~—

Proof.

If A is a quadratic nonresidue modulo p, then the polynomial f(x) € Zp[z] is irreducible over Z,,
which means that Zy[z]/(f(x)) is a field and isomorphic to F,2. The elements of the subfield Z,
are exactly those elements ¢ + jx € Zy[z]/(f(x)) with j = 0.

The zeroes of the polynomial f(x) are x and a — x, both in Fj2 \ Z,, and therefore permuted by

the Frobenius automorphism. Thus we have

2 =a—2x (mod f(z),p)

in the case (%) =—1:
(a—2)P =2 (mod f(x),p)



which implies P! — (a — 2)P™! = 2(a — ) — (a — x)z =0 (mod f(z),p), as claimed.

If, on the other hand, A is a quadratic residue modulo p, then f(z) mod p has two roots in Z,
and R := Zp[z]/(f(x)) is isomorphic to the direct product Z, x Z,. In this case the Frobenius
automorphism acts trivially on R and we have:

2P =z (mod f(z),p)

in the case (é) =1:
P (a—z)=a—=x (mod f(z),p)

Since ged(p, b) = 1 and since z(a — ) = b (mod f(z),p), the elements  and a — x are units in R.

Therefore we have 2P~ = (a — x)P~! = 1 as desired.

Definition 2. Let a,b € Z \ {0}, with A = a® — 4b not a square. A composite integer n, with
ged(2abA, n) = 1 is called a Lucas pseudoprime with respect to f(x) := x? —ax+0b, if U 7(é) =0

(mod n)

The first Lucas pseudoprime with respect to the Fibonacci-polynomial 2 — 2 — 1 is 323 = 17 19.
Grantham proposed a stronger test, the Frobenius test (see [Gra98] and [Gra01l]). The definition
of the Frobenius pseudoprime is given by

Definition 3. Let a,b € Z \ {0}, with A = a® — 4b not a square. A composite integer n, with
ged(2abA,n) = 1 is called a Frobenius pseudoprime with respect to f(x) := 2% — ax + b, if

w_ Ja—z (mod f(2),n) if (%)
z (mod f(z),n)  if (%)

Next we show that the Frobenius pseudoprime test is at least as strong as the Lucas pseudoprime
test:

8
Il
||

Theorem 4. Let f(z) := 22 —ax +b and n € N. If n is Frobenius pseudoprime with respect to

f(z), then n is also Lucas pseudoprime with respect to f(x).
Before we can prove this theorem we need the following lemma:

Lemma 5. Let m,n € N, f(z),g9(x),r(x) € Zlz]. If f(r(z)) =0 (mod f(z),n) and 2™ = g(x)
(mod f(x),n), then r(z)™ = g(r(z)) (mod f(z),n).

Proof. Clearly z™ = f(x)h(x) + g(x) (mod n) for h(x) € Z[z|. Since z is a variable we also have
r(z)™ = f(r(z))h(r(z))+g(r(z)) (mod n). Because we have f(r(xz)) =0 (mod f(z),n), it follows

r(z)™ = g(r(z)) (mod f(z),n)
Now the the proof for Theorem 4 is easy:

Proof. Let n be Frobenius pseudoprime with respect to f(z), according to Definition 3.

Assume (2) = 1. Then 2" = = (mod f(z),n). Since ged(b,n) = 1, z modulo (f(z),n) is invertible
and we have 2" ! = 1 (mod f(z),n). Since f(a —x) = 0 (mod f(x),n) Lemma 5 implies the
congruence (a —z)" ! =1 (mod f(x),n), i.e. (a—z)" = (a — ) (mod f(z),n).

On the other hand, if (%) = —1, we get from 2" = a — = (mod f(z),n) and f(a —z) = 0
(mod f(z),n) directy by Lemma 5 the congruence (a — )" =z (mod f(x),n) as desired.

Thus in both cases n is Lucas pseudoprime with respect to f(x).



The Frobenius property for quadratic polynomials can be expressed using the Lucas sequences
(U;) and (V):

Theorem 6. Let a,b € N, with A = a® — 4b not a square. An integer n, with ged(2abA,n) =1 is

Frobenius pseudoprime with respect to f(x) := x*> — ax + b, if and only if

U aAy=0 (modn)andV 4\ = 2 (modn) ¥ (3)=-1 (3)
(%) =(3) 7 )2 (modn) i (4)=1
Proof. From the definitions of the Lucas sequences (1) one easily sees, that
209 =V; 4+ (22 — a)U; (mod f(z)) (4)
Assume (3). In the case (2) = —1 Eqn. (4) implies 2"*! = b (mod f(z),n) and in the case

(2) = 1 Eqn. (4) gives 2"~! =1 (mod f(z),n). The latter implies 2" = z (mod f(z),n), and
since z(a — z) = b (mod f(x),n) the first leads to 2™ = a — = (mod f(z),n). So n is Frobenius
pseudoprime.

On the other hand, if n is Frobenius pseudoprime with respect to f(z), we have Un_(%) =0

(mod n) by Theorem 4. For j =n — (%) Eqn. (4) gives
A
296"_(3) = Vn—(é) (mod f(z),n)

Assume (2) = —1. Then Definition 3 gives z"*! = (a — z)z = b (mod f(z),n), i.e. Viy1 = 2b
(mod n). Finally assume (2) = 1. Since z is invertible in Z,[z]/(f(z)), it follows 2"~! = 1
(mod f(z),n), i.e. Vo1 =2 (mod n).

The first Frobenius pseudoprime with respect to the Fibonacci polynomial 22 — x — 1 is 4181, the
nineteenth Fibonacci number, the first with (%) = —1is 5777. Thus not every Lucas pseudoprime
is a Frobenius pseudoprime. We conclude that the Frobenius test is more stringent than the Lucas
test.

2 Efficient implementation

Suppose we want to apply the Frobenius test on a given number n. Choose a, b € N, with A = a?—4b
not a square such that ged(2abA,n) = 1.
Since ged(24,n) = 1 the number n — (%) is always even, say n — (%) =2m, m € N.

Following Williams [Wil98] we define the following modified Lucas sequence
W; :==b"7Vy; (mod n) (5)
Since ged(b,n) = 1 the sequence (W;) := (W;),>0 is well defined and starts with

Wo=2 (modn) and W;=a*b"'—-2 (modn)



The sequence (W;) can be computed efficiently. In fact, the following two formulas allow the

computation of the values Wy, and Wajtq from W; and Wy, (5 > 0):

Wo; =W?—2 (mod n)

(6)
W2j+1 = Wjo+1 — W1 (mod TL)

We arrive here at the novel, simple derivation for the Frobenius test:
Proof. Let § :=z — (a — x), i.e.
P=a>-2b+(a—2) =a®>—4b=A (mod f(x),n).
Also, (1) has the consequence
Vi +0U; =227 and V;—6U; =2(a — ).
So we have for arbitrary j, k € N

(Vj + 0U;) - (Vi + 0UR) = 427 = 2(Vjyp, + 6U;18),
(Vj = 0U;) - (Vi = 6UR) = 4(a — 2)7 ™ = 2(Vj g, — 6Uj4 1)

Adding these equations yields

2V]+k :VJVk+AUJUk (7)
Backwards reading of the recurrence relation leads to b*U_i, = —Up und b*V_; = Vj,. Subsitut-
ing this in equation (7) gives

6%V, = V; Vi — AU, Uy (8)

Putting k = j yields V> — AU? = 4b7 From (7) we get for k = j the identity 2Vp; = V> + AUZ.
Adding the last two equations leads to Va; = Vj2 — 20/, Putting j := 25 the definition (5) gives

Wo; =W? =2 (mod n) (9)

To derive a formula for W1, subtract equation (8) from (7) and get V1 = V; Vi —kaj,k Here we
take two adjacent even numbers, i.e. we put j := 2542 and k := 2j and get Vyj12 = VajVaj12—b% Vs
In terms of the W-sequence (5) this is:

W2j+1 = Wjo+1 — W1 (InOd n) (10)

To compute for a given index j € N the value W} write j in binary, say j = (bobi ... bx)2. Now go
through all bits and compute the sequence of pairs S; = {4, B} (i > 0)

A% -2 AB-W d £ by = 0
S = {A7B} N Si+1 — { 1} (HlO n) i 11 (11)
{AB — Wl, B2 — 2} (HlOd TL) lf bi+1 =1

Initialising Sy := {Wo, W1} one gets with the pair S exactly the values W; und W,41. So the
sequence (W;) can be computed in a time O (logn).

The sequence (WW;) shall now be used for the Lucas test. Let n be Lucas pseudoprime. Let m := (n—
(2))/2. Then we get Uzp, = 0 (mod n). Putting j := 2m, k := 2 in formula (7), it follows 2Vap, 42 =



VamVa + AUs,, Uy Since ged(b,n) = 1 it follows by (5): 2Wy1 = W, Wi 4+ b~ (D) AUL,, U,
(mod n) Because n is Lucas pseudoprime, we get

2Wm+1 = WmW1 (HlOd n)

Since ged(abA,n) = 1 the converse also holds.

To summarize:

Theorem 7. Let n,a,b, A,m and the sequence (W;) defined as above. Then n is Lucas pseudo-
prime if and only if 2W, 1 = W1W, (mod n)

Let now n € N>3 be a number, that fullfills the assumptions of Definition 3. Then the Frobenius test
can be easily implemented using the sequence (). This sequence can be used for the Frobenius
test, since from ged(24,n) = 1 follows, that n — (%) = 2m is even. Clearly Theorem 7 can be
used, to test if n is Lucas pseudoprime. We need a congruence in terms of the sequence (W;), that

is equivalent to the fact
2b (mod n) if (£)=-1

n

2 (modn) if(4)=1

n

Do)
Let now n be Frobenius pseudoprime and m = (n — (%)) /2. Then from the definition of the
sequence (WW;) we get

Wy =26~ =D/2 (mod n)

Putting B := b("~1/2_ it follows
BW,, =2 (mod n)

To summarize we get the following theorem:

Theorem 8. Let n,a,b, A,m and the sequence (W;) defined as above. Then n is Frobenius pseu-
doprime if and only if 2W,, 11 # WiW,, (mod n) and BW,, =2 (mod n), where B = b("~1)/2,
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