A Simple Derivation for the Frobenius Pseudoprime Test

Daniel Loebenberger

b-it Universität Bonn D53113 Bonn daniel@bit.uni-bonn.de

Abstract. Probabilistic compositeness tests are of great practical importance in cryptography. Besides prominent tests (like the well-known Miller-Rabin test), there are tests that use Lucas-sequences for testing compositeness. One example is the so-called Frobenius test that has a very low error probability. Using a slight modification of the above mentioned Lucas sequences we present a simple derivation for the Frobenius pseudoprime test in the version proposed by Crandall and Pommerance in [CrP005].

1 Lucas and Frobenius Pseudoprimes

For $f(x) = x^2 - ax + b \in \mathbb{Z}[x]$ the Lucas sequences are given by

$$U_j := U_j(a, b) := \frac{x^j - (a - x)^j}{x - (a - x)} \pmod{f(x)}$$

$$V_j := V_j(a, b) := x^j + (a - x)^j \pmod{f(x)}$$
(1)

These sequences both satisfy the same recurrence relation

$$U_j = aU_{j-1} - bU_{j-2}$$
; $V_j = aV_{j-1} - bV_{j-2}$ for $j \ge 2$

with initial values

$$U_0 = 0, \ U_1 = 1 \quad V_0 = 2, \ V_1 = a$$

The following theorem is the basis for a probabilistic prime test, called the Lucas test:

Theorem 1. Let $a, b \in \mathbb{Z} \setminus \{0\}$, $\Delta := a^2 - 4b$ and the sequences $(U_j), (V_j)$ defined as above. If p is prime, with $gcd(p, 2ab\Delta) = 1$, we have:

$$U_{p-\left(\frac{\Delta}{p}\right)} \equiv 0 \pmod{p} \tag{2}$$

Proof.

If Δ is a quadratic nonresidue modulo p, then the polynomial $f(x) \in \mathbb{Z}_p[x]$ is irreducible over \mathbb{Z}_p , which means that $\mathbb{Z}_p[x]/(f(x))$ is a field and isomorphic to \mathbb{F}_{p^2} . The elements of the subfield \mathbb{Z}_p are exactly those elements $i + jx \in \mathbb{Z}_p[x]/(f(x))$ with j = 0.

The zeroes of the polynomial f(x) are x and a - x, both in $\mathbb{F}_{p^2} \setminus \mathbb{Z}_p$, and therefore permuted by the Frobenius automorphism. Thus we have

in the case
$$\left(\frac{\Delta}{p}\right) = -1$$
:
$$\begin{cases} x^p \equiv a - x \pmod{f(x), p} \\ (a - x)^p \equiv x \pmod{f(x), p} \end{cases}$$

which implies $x^{p+1} - (a-x)^{p+1} = x(a-x) - (a-x)x \equiv 0 \pmod{f(x)}$, as claimed.

If, on the other hand, Δ is a quadratic residue modulo p, then $f(x) \mod p$ has two roots in \mathbb{Z}_p and $R := \mathbb{Z}_p[x]/(f(x))$ is isomorphic to the direct product $\mathbb{Z}_p \times \mathbb{Z}_p$. In this case the Frobenius automorphism acts trivially on R and we have:

in the case
$$\left(\frac{\Delta}{p}\right) = 1$$
:
$$\begin{cases} x^p \equiv x \pmod{f(x), p} \\ (a-x)^p \equiv a-x \pmod{f(x), p} \end{cases}$$

Since gcd(p, b) = 1 and since $x(a - x) \equiv b \pmod{f(x), p}$, the elements x and a - x are units in R. Therefore we have $x^{p-1} = (a - x)^{p-1} = 1$ as desired.

Definition 2. Let $a, b \in \mathbb{Z} \setminus \{0\}$, with $\Delta = a^2 - 4b$ not a square. A composite integer n, with $gcd(2ab\Delta, n) = 1$ is called a Lucas pseudoprime with respect to $f(x) := x^2 - ax + b$, if $U_{n-\left(\frac{\Delta}{n}\right)} \equiv 0 \pmod{n}$

The first Lucas pseudoprime with respect to the Fibonacci-polynomial $x^2 - x - 1$ is $323 = 17 \cdot 19$.

Grantham proposed a stronger test, the *Frobenius test* (see [Gra98] and [Gra01]). The definition of the *Frobenius pseudoprime* is given by

Definition 3. Let $a, b \in \mathbb{Z} \setminus \{0\}$, with $\Delta = a^2 - 4b$ not a square. A composite integer n, with $gcd(2ab\Delta, n) = 1$ is called a Frobenius pseudoprime with respect to $f(x) := x^2 - ax + b$, if

$$x^{n} \equiv \begin{cases} a - x \pmod{f(x), n} & \text{if } \left(\frac{\Delta}{n}\right) = -1\\ x \pmod{f(x), n} & \text{if } \left(\frac{\Delta}{n}\right) = 1 \end{cases}$$

Next we show that the Frobenius pseudoprime test is at least as strong as the Lucas pseudoprime test:

Theorem 4. Let $f(x) := x^2 - ax + b$ and $n \in \mathbb{N}$. If n is Frobenius pseudoprime with respect to f(x), then n is also Lucas pseudoprime with respect to f(x).

Before we can prove this theorem we need the following lemma:

Lemma 5. Let $m, n \in \mathbb{N}$, $f(x), g(x), r(x) \in \mathbb{Z}[x]$. If $f(r(x)) \equiv 0 \pmod{f(x), n}$ and $x^m \equiv g(x) \pmod{f(x), n}$, then $r(x)^m \equiv g(r(x)) \pmod{f(x), n}$.

Proof. Clearly $x^m \equiv f(x)h(x) + g(x) \pmod{n}$ for $h(x) \in \mathbb{Z}[x]$. Since x is a variable we also have $r(x)^m \equiv f(r(x))h(r(x)) + g(r(x)) \pmod{n}$. Because we have $f(r(x)) \equiv 0 \pmod{f(x), n}$, it follows $r(x)^m \equiv g(r(x)) \pmod{f(x), n}$

Now the proof for Theorem 4 is easy:

Proof. Let n be Frobenius pseudoprime with respect to f(x), according to Definition 3.

Assume $\left(\frac{\Delta}{n}\right) = 1$. Then $x^n \equiv x \pmod{f(x), n}$. Since $\gcd(b, n) = 1, x \mod (f(x), n)$ is invertible and we have $x^{n-1} \equiv 1 \pmod{f(x), n}$. Since $f(a - x) \equiv 0 \pmod{f(x), n}$ Lemma 5 implies the congruence $(a - x)^{n-1} \equiv 1 \pmod{f(x), n}$, i.e. $(a - x)^n \equiv (a - x) \pmod{f(x), n}$.

On the other hand, if $\left(\frac{\Delta}{n}\right) = -1$, we get from $x^n \equiv a - x \pmod{f(x), n}$ and $f(a - x) \equiv 0 \pmod{f(x), n}$ directly by Lemma 5 the congruence $(a - x)^n \equiv x \pmod{f(x), n}$ as desired. Thus in both cases n is Lucas pseudoprime with respect to f(x). The Frobenius property for quadratic polynomials can be expressed using the Lucas sequences (U_j) and (V_j) :

Theorem 6. Let $a, b \in \mathbb{N}$, with $\Delta = a^2 - 4b$ not a square. An integer n, with $gcd(2ab\Delta, n) = 1$ is Frobenius pseudoprime with respect to $f(x) := x^2 - ax + b$, if and only if

$$U_{n-\left(\frac{\Delta}{n}\right)} \equiv 0 \pmod{n} \text{ and } V_{n-\left(\frac{\Delta}{n}\right)} \equiv \begin{cases} 2b \pmod{n} & \text{if } \left(\frac{\Delta}{n}\right) = -1\\ 2 \pmod{n} & \text{if } \left(\frac{\Delta}{n}\right) = 1 \end{cases}$$
(3)

Proof. From the definitions of the Lucas sequences (1) one easily sees, that

$$2x^{j} \equiv V_{j} + (2x - a)U_{j} \pmod{f(x)}$$

$$\tag{4}$$

Assume (3). In the case $\left(\frac{\Delta}{n}\right) = -1$ Eqn. (4) implies $x^{n+1} \equiv b \pmod{f(x), n}$ and in the case $\left(\frac{\Delta}{n}\right) = 1$ Eqn. (4) gives $x^{n-1} \equiv 1 \pmod{f(x), n}$. The latter implies $x^n \equiv x \pmod{f(x), n}$, and since $x(a-x) \equiv b \pmod{f(x), n}$ the first leads to $x^n \equiv a - x \pmod{f(x), n}$. So *n* is Frobenius pseudoprime.

On the other hand, if n is Frobenius pseudoprime with respect to f(x), we have $U_{n-\left(\frac{\Delta}{n}\right)} \equiv 0 \pmod{n}$ by Theorem 4. For $j = n - \left(\frac{\Delta}{n}\right)$ Eqn. (4) gives

$$2x^{n-\left(\frac{\Delta}{n}\right)} \equiv V_{n-\left(\frac{\Delta}{n}\right)} \pmod{f(x), n}$$

Assume $\left(\frac{\Delta}{n}\right) = -1$. Then Definition 3 gives $x^{n+1} \equiv (a-x)x \equiv b \pmod{f(x), n}$, i.e. $V_{n+1} \equiv 2b \pmod{n}$. (mod n). Finally assume $\left(\frac{\Delta}{n}\right) = 1$. Since x is invertible in $\mathbb{Z}_n[x]/(f(x))$, it follows $x^{n-1} \equiv 1 \pmod{f(x), n}$, i.e. $V_{n-1} \equiv 2 \pmod{n}$.

The first Frobenius pseudoprime with respect to the Fibonacci polynomial $x^2 - x - 1$ is 4181, the nineteenth Fibonacci number, the first with $\left(\frac{5}{n}\right) = -1$ is 5777. Thus not every Lucas pseudoprime is a Frobenius pseudoprime. We conclude that the Frobenius test is more stringent than the Lucas test.

2 Efficient implementation

Suppose we want to apply the Frobenius test on a given number n. Choose $a, b \in \mathbb{N}$, with $\Delta = a^2 - 4b$ not a square such that $gcd(2ab\Delta, n) = 1$. Since $gcd(2\Delta, n) = 1$ the number $n - \left(\frac{\Delta}{n}\right)$ is always even, say $n - \left(\frac{\Delta}{n}\right) = 2m, m \in \mathbb{N}$.

Following Williams [Wil98] we define the following modified Lucas sequence

$$W_j := b^{-j} V_{2j} \pmod{n} \tag{5}$$

Since gcd(b, n) = 1 the sequence $(W_j) := (W_j)_{j \ge 0}$ is well defined and starts with

 $W_0 \equiv 2 \pmod{n}$ and $W_1 \equiv a^2 b^{-1} - 2 \pmod{n}$

The sequence (W_j) can be computed efficiently. In fact, the following two formulas allow the computation of the values W_{2j} and W_{2j+1} from W_j and W_{j+1} $(j \ge 0)$:

$$\begin{cases} W_{2j} \equiv W_j^2 - 2 \pmod{n} \\ W_{2j+1} \equiv W_j W_{j+1} - W_1 \pmod{n} \end{cases}$$
(6)

We arrive here at the novel, simple derivation for the Frobenius test:

Proof. Let $\delta := x - (a - x)$, i.e.

$$\delta^2 \equiv x^2 - 2b + (a - x)^2 \equiv a^2 - 4b \equiv \Delta \pmod{f(x), n}.$$

Also, (1) has the consequence

$$V_j + \delta U_j = 2x^j$$
 and $V_j - \delta U_j = 2(a-x)^j$

So we have for arbitrary $j, k \in \mathbb{N}$

$$(V_j + \delta U_j) \cdot (V_k + \delta U_k) = 4x^{j+k} = 2(V_{j+k} + \delta U_{j+k}),$$

$$(V_j - \delta U_j) \cdot (V_k - \delta U_k) = 4(a - x)^{j+k} = 2(V_{j+k} - \delta U_{j+k})$$

Adding these equations yields

$$2V_{j+k} = V_j V_k + \Delta U_j U_k. \tag{7}$$

Backwards reading of the recurrence relation leads to $b^k U_{-k} = -U_k$ und $b^k V_{-k} = V_k$. Substituting this in equation (7) gives

$$2b^k V_{j-k} = V_j V_k - \Delta U_j U_k \tag{8}$$

Putting k = j yields $V_j^2 - \Delta U_j^2 = 4b^j$ From (7) we get for k = j the identity $2V_{2j} = V_j^2 + \Delta U_j^2$. Adding the last two equations leads to $V_{2j} = V_j^2 - 2b^j$. Putting j := 2j the definition (5) gives

$$W_{2j} \equiv W_j^2 - 2 \pmod{n} \tag{9}$$

To derive a formula for W_{2j+1} , subtract equation (8) from (7) and get $V_{j+k} = V_j V_k - b^k V_{j-k}$ Here we take two adjacent even numbers, i.e. we put j := 2j+2 and k := 2j and get $V_{4j+2} = V_{2j}V_{2j+2} - b^{2j}V_2$ In terms of the W-sequence (5) this is:

$$W_{2j+1} \equiv W_j W_{j+1} - W_1 \pmod{n}$$
(10)

To compute for a given index $j \in \mathbb{N}$ the value W_j write j in binary, say $j = (b_0 b_1 \dots b_k)_2$. Now go through all bits and compute the sequence of pairs $S_i = \{A, B\}$ $(i \ge 0)$

$$S_i = \{A, B\} \to S_{i+1} := \begin{cases} \{A^2 - 2, AB - W_1\} \pmod{n} & \text{if } b_{i+1} = 0\\ \{AB - W_1, B^2 - 2\} \pmod{n} & \text{if } b_{i+1} = 1 \end{cases}$$
(11)

Initialising $S_0 := \{W_0, W_1\}$ one gets with the pair S_k exactly the values W_j und W_{j+1} . So the sequence (W_j) can be computed in a time $\widetilde{\mathcal{O}}(\log n)$.

The sequence (W_j) shall now be used for the Lucas test. Let n be Lucas pseudoprime. Let $m := (n - (\frac{\Delta}{n}))/2$. Then we get $U_{2m} \equiv 0 \pmod{n}$. Putting j := 2m, k := 2 in formula (7), it follows $2V_{2m+2} = 0$

 $V_{2m}V_2 + \Delta U_{2m}U_2$ Since gcd(b,n) = 1 it follows by (5): $2W_{m+1} \equiv W_mW_1 + b^{-(m+1)}\Delta U_{2m}U_2$ (mod n) Because n is Lucas pseudoprime, we get

$$2W_{m+1} \equiv W_m W_1 \pmod{n}$$

Since $gcd(ab\Delta, n) = 1$ the converse also holds.

To summarize:

Theorem 7. Let n, a, b, Δ, m and the sequence (W_j) defined as above. Then n is Lucas pseudoprime if and only if $2W_{m+1} \equiv W_1W_m \pmod{n}$

Let now $n \in \mathbb{N}_{\geq 3}$ be a number, that fulfills the assumptions of Definition 3. Then the Frobenius test can be easily implemented using the sequence (W_j) . This sequence can be used for the Frobenius test, since from $gcd(2\Delta, n) = 1$ follows, that $n - (\frac{\Delta}{n}) = 2m$ is even. Clearly Theorem 7 can be used, to test if n is Lucas pseudoprime. We need a congruence in terms of the sequence (W_j) , that is equivalent to the fact

$$V_{n-\left(\frac{\Delta}{n}\right)} \equiv \begin{cases} 2b \pmod{n} & \text{if } \left(\frac{\Delta}{n}\right) = -1\\ 2 \pmod{n} & \text{if } \left(\frac{\Delta}{n}\right) = 1 \end{cases}$$

Let now n be Frobenius pseudoprime and $m = (n - (\frac{\Delta}{n}))/2$. Then from the definition of the sequence (W_j) we get

$$W_m \equiv 2b^{-(n-1)/2} \pmod{n}$$

Putting $B := b^{(n-1)/2}$, it follows

$$BW_m \equiv 2 \pmod{n}$$

To summarize we get the following theorem:

Theorem 8. Let n, a, b, Δ, m and the sequence (W_j) defined as above. Then n is Frobenius pseudoprime if and only if $2W_{m+1} \neq W_1W_m \pmod{n}$ and $BW_m \equiv 2 \pmod{n}$, where $B = b^{(n-1)/2}$.

References

- $[{\rm CrPo05}]$ Richard Crandall, Carl Pomerance, Prime Numbers A Computational Perspective, Springer, 2005^2
- [Gra98] John Grantham, A probable primetest with high confidence, Journal of Number Theory 72, 32-47, 1998

[Gra01] John Grantham, Frobenius Pseudoprimes, Math.comp. 70, 873-891, 2001

[Wil98] Hugh C. Williams, Édouard Lucas and Primality Testing, Wiley-Interscience, 1998