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Abstract. The key-generation algorithm for the RSA cryptosystem is specified
in several standards, such as PKCS#1, IEEE 1363-2000, FIPS 186-3, ANSI X9.44,
or ISO/IEC 18033-2. All of them substantially differ in their requirements. This
indicates that for computing a “secure” RSA modulus it does not matter how
exactly one generates RSA integers. In this work we show thatthis is indeed the
case to a large extend: First, we give a theoretical framework that will enable us to
easily compute the entropy of the output distribution of theconsidered standards
and show that it is comparatively high. To do so, we compute for each standard
the number of integers they define (up to an error of very smallorder) and dis-
cuss different methods of generating integers of a specific form. Second, we show
that factoring such integers is hard, provided factoring a product of two primes of
similar size is hard.
Keywords: RSA integer, output entropy, reduction. ANSI X9.44, FIPS 186-3,
IEEE 1363-2000, ISO/IEC 18033-2, NESSIE, PKCS#1.

1 Introduction

An RSA integer is an integer that is suitable as a modulus for the RSA cryptosystem as
proposed by Rivest, Shamir & Adleman (1977, 1978):

“You first computen as the product of two primesp andq:

n = p · q.

These primes are very large, ’random’ primes. Although you will maken pub-
lic, the factorsp andq will be effectively hidden from everyone else due to the
enormous difficulty of factoringn.”

Also in earlier literature such as Ellis (1970) or Cocks (1973) one does not find any
further restrictions. In subsequent literature people define RSA integers similarly to
Rivest, Shamir & Adleman, while sometimes additional safety tests are performed.
Real world implementations, however, requireconcrete algorithms that specify in detail
how to generate RSA integers. This has led to a variety of standards, notably the stan-
dards PKCS#1 (Jonsson & Kaliski 2003), ISO 18033-2 (International Organization for
Standards 2006), IEEE 1363-2000 (IEEE working group 2000),ANSI X9.44 (Accred-
ited Standards Committee X9 2007), FIPS 186-3 (InformationTechnology Laboratory
2009), the standard of the RSA foundation (RSA Laboratories2000), the standard set
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by the German Bundesnetzagentur (Wohlmacher 2009), and thestandard resulting from
the European NESSIE project (NESSIE working group 2003). All of those standards
define more or less precisely how to generate RSA integers andall of them have sub-
stantially different requirements. This reflects the intuition that it does not really matter
how one selects the prime factors in detail, the resulting RSA modulus will do its job.
But what is needed to show that this is really the case?

Following Brandt & Damgård (1993) a quality measure of a generator is the entropy
of its output distribution. In abuse of language we will mostof the time talk about the
output entropy of an algorithm. To compute it, we need estimates of the probability
that a certain outcome is produced. This in turn needs a thorough analysis of how one
generates RSA integers of a specific form. If we can show that the outcome of the
algorithm is roughly uniformly distributed, the output entropy is closely related to the
count of RSA integers it can produce. It will turn out that in all reasonable setups this
count is essentially determined by the desired length of theoutput. For primality tests
there are several results in this direction (see for exampleJoye & Paillier 2006) but
we are not aware of any related work analyzing the output entropy of algorithms for
generating RSA integers.

Another requirement for the algorithm is that the output should be ‘hard to factor’.
Since this statement does not even make sense for a single integer, this means that one
has to show that the restrictions on the shape of the integersthe algorithm produces do
not introduce any further possibilities for an attacker. Toprove this, areduction has to
be given that reduces the problem of factoring the output to the problem of factoring a
product of two primes of similar size, see Section 7. Also there it is necessary to have
results on the count of RSA integers of a specific form to make the reduction work. As
for the entropy estimations, we do not know any related work on this.

In the following section we will develop a formal framework that can handle all
possible definitions for RSA integers. After discussing thenecessary number theoretic
tools in Section 3, we give explicit formulæ for the count of such integers which will be
used later for entropy estimations of the various standardsfor RSA integers. In Section 4
we show how our general framework can be instantiated, yielding natural definitions for
several types of RSA integers (as used later in the standards). Section 5 gives a short
overview on generic constructions for fast algorithms thatgenerate such integers almost
uniformly. At this point we will have described all necessary techniques to compute
the output entropy, which we discuss in Section 6. The following section resolves the
second question described above by giving a reduction from factoring special types of
RSA integers to factoring a product of two primes of similar size. We finish by applying
our results to various standards for RSA integers in Section8.

We omitted here most of the number theoretic details. For theproofs of those the-
orems see Loebenberger & Nüsken (2011). Note that for ease ofcomparison, we have
retained the numbering of the extended version.

2 RSA integers in general

If one generates an RSA integer it is necessary to select for each choice of the security
parameter the prime factors from a certain region. This security parameter is typically an



integerk that specifies (roughly) the size of the output. We use a more general definition
by asking for integers from the interval]x/r, x], given areal boundx and a parameterr
(possibly depending onx). Clearly, this can also be used to model the former selection
process by settingx = 2k − 1 andr = 2. Let us in general introduce anotion of RSA
integers with tolerance r as a family

ln y

ln z

ln
x

ln
x

ln
x

r

ln
x

r
(ln

A
)
x

A := 〈Ax〉x∈R>1

of subsets of the positive quadrantR
2
>1, where for everyx ∈ R>1

Ax ⊆
{
(y, z) ∈ R

2
>1

x

r
< yz ≤ x

}
.

The tolerancer shall always be larger than1. We allow here thatr varies (slightly)
with x, which of course includes the case thatr is a constant. Typical values used for
RSA arer = 2 or r = 4 which fix the bit-length of the modulus more or less. We
can — for a fixed choice of parameters — easily visualize any notion of RSA integers
by the corresponding regionAx in the (y, z)-plane. It is favorable to look at these
regions in logarithmic scale. We writey = eυ andz = eζ and denote by(lnA)x the
region in the(υ, ζ)-plane corresponding to the regionAx in the(y, z)-plane, formally
(υ, ζ) ∈ (lnA)x :⇔ (y, z) ∈ Ax. Now anA-integer n of size x — for use as a modulus
in RSA — is a productn = pq of a prime pair(p, q) ∈ Ax ∩ (P× P), whereP denotes
the set of primes. They are counted by the associatedprime pair counting function #A
for the notionA:

#A :
R>1 −→ N,

x 7−→ # {(p, q) ∈ P× P (p, q) ∈ Ax} .
Thus everyA-integern = pq is counted once or twice in#A (x) depending on whether
only (p, q) ∈ Ax or also(q, p) ∈ Ax, respectively. We call a notionsymmetric if for all
choices of the parameters the corresponding area in the(y, z)-plane is symmetric with
respect to the main diagonal, i.e. that(y, z) ∈ Ax implies also(z, y) ∈ Ax. If to the
contrary(y, z) ∈ Ax implies (z, y) /∈ Ax we call the notionantisymmetric. If we are
only interested in RSA integers we can always require symmetry or antisymmetry, yet
many algorithms proceed in an asymmetric way.

Certainly, we will also need restrictions on the shape of thearea we are analyzing:
If one considers any notion of RSA integers and throws out exactly the prime pairs
one would be left with a prime-pair-free region and any approximation for the count of
such a notion based on the area would necessarily have a tremendously large error term.
However, for practical applications it turns out that it is enough to consider regions of a
very specific form. Actually, we will most of the time have regions whose boundary can
be described by graphs of certain smooth functions. In the following, we call notions
having such boundariesmonotone. A more detailed explanation of the restrictions we
have to impose to make the number-theoretic work sound can befound in the extended
version Loebenberger & Nüsken (2011).

For RSA, people usually prefer two prime factors of roughly the same size, where
size is understood as bit length. Accordingly, we call a notion of RSA integers[c1, c2]-
balanced iff additionally for everyx ∈ R>1

Ax ⊆
{
(y, z) ∈ R

2
>1 y, z ∈ [xc1 , xc2 ]

}
,



where0 < c1 ≤ c2 can be thought of as constants or — more generally — as smooth
functions inx defining the amount of allowed divergence subject to the sidecondition
thatxc1 tends to infinity whenx grows. Ifc1 > 1

2 thenAx is empty, so we will usually
assumec1 ≤ 1

2 . In order to prevent trial division from being a successful attacker it

would be sufficient to requirey, z ∈ Ω
(

lnk x
)

for everyk ∈ N. Our stronger require-

ment still seems reasonable and indeed equals the conditionMaurer (1995) required for
secure RSA moduli, as the supposedly most difficult factoring challenges stay within
the range of our attention. As a side-effect this greatly simplifies our approximations
later. The German Bundesnetzagentur (see Wohlmacher 2009)uses a very similar re-
striction in their algorithm catalog. There it is additionally required that the primesp
andq are not too close to each other. We ignore this issue here, since the probability that
two primes arevery close to each other would be tiny if the notion from which(p, q)
was selected is sufficiently large. If necessary, we are ableto modify our notions such
that also this requirement is met.

Often the considered integersn = pq are also subject to further side conditions,
like gcd((p − 1)(q − 1), e) = 1 for some fixed public RSA exponente. Most of the
number theoretic work below can easily be adapted, but for simplicity of exposition we
will often present our results without those further restrictions and just point out when
necessary how to incorporate such additional properties.

As we usually deal with balanced notions the considered regions are somewhat
centered around the main diagonal. We will show in Section 7 that if factoring products
of two primes is hard then it is also hard to factor integers generated from such notions.

3 Toolbox

We will now develop the necessary number theoretic conceptsto obtain formulæ for
the count of RSA integers that will later help us to estimate the output entropy of the
various standards for RSA integers. In related articles, like Decker & Moree (2008) one
finds counts forone particular definition of RSA integers. We believe that in the work
presented here for the first time a sufficiently general theorem is established that allows
to compute the number of RSA integers forall reasonable definitions.

We assume the Riemann hypothesis throughout the entire paper. The main terms
are the same without this assumption, but the error bounds one obtains are then much
weaker. We skip intermediate results here and just summarize the number theoretic
work (to ease later comparison we have retained the numbering of the extended version
Loebenberger & Nüsken 2011). The following lemma covers allthe estimation work.

Lemma 3.6(Two-dimensional prime sum approximation for monotone notions).
Assume that we have a monotone[c1, c2]-balanced notionA of RSA integers with tol-
erancer, where0 < c1 ≤ c2. (The valuesr, c1, c2 are allowed to vary withx.) Then

under the Riemann hypothesis there is a valueã(x) ∈
[

1
4c22

, 1
4c21

]
such that

#A (x) ∈ ã(x) · 4 area(Ax)

ln2 x
+O

(
c−1
1 x

3+c
4

)
,

wherec = max(2c2 − 1, 1− 2c1). �



Note that the omitted proof gives a precise expression forã(x), namely

ã(x) =

∫∫
Ax

1
ln p ln q dp dq

4
∫∫

Ax

1
ln2 x

dp dq
.

It turns out that we can only evaluatẽa(x) numerically in our case and so we tend
to estimate also this term. Then we often obtainã(x) ∈ 1 + o(1). Admittedly, this
mostly eats up the advantage obtained by using the Riemann hypothesis. However, we
accept this because it still leaves the option of going through that difficult evaluation
and obtain a much more precise answer. If we do not use the Riemann hypothesis we

need to replaceO
(
c−1
1 x

3+c
4

)
with O

(
x

lnk x

)
for anyk > 2 of your choice.

As mentioned before, in many standards the selection of the primesp andq is ad-
ditionally subject to the side condition that gcd((p − 1)(q − 1), e) = 1 for some fixed
public exponente of the RSA cryptosystem. To handle these restrictions, we state a
theorem from the extended version

Theorem 3.11. Let e ∈ N>2 be a public RSA exponent andx ∈ R. Then we have for
the numberπe(x) of primesp ≤ x with gcd(p− 1, e) = 1 that

πe(x) ∈
ϕ1(e)

ϕ(e)
· Li(x) +O

(√
x ln x

)
,

where Li(x) =
∫ x

2
1

ln t dt is the integral logarithm,ϕ(e) is Euler’s totient function and

ϕ1(e)

ϕ(e)
=

∏

ℓ|e
ℓ prime

(
1− 1

ℓ− 1

)
. (3.12)

�

This theorem shows that the prime pair approximation in Lemma 3.6 can be easily
adapted to RSA integers whose prime factors satisfy the conditions of Theorem 3.11,
since the density of such primes differs for every fixede just by a constant.

4 Some common definitions for RSA integers

We will now give formal definitions of two specific notions of RSA integers. In partic-
ular, we consider the following example definitions within our framework:

– The simple construction given by just choosing two primes ingiven intervals. This
construction occurs in several standards, like the standard of the RSA founda-
tion (RSA Laboratories 2000), the standard resulting from the European NESSIE
project (NESSIE working group 2003) and the FIPS 186-3 standard (Information
Technology Laboratory 2009). Also open source implementations of OpenSSL
(Cox et al. 2009),GnuPG (Skalaet al. 2009) and the GNU crypto libraryGNU
Crypto (Free Software Foundation 2009) use some variant of this construction.



– An algorithmically inspired construction which allows oneprime being chosen ar-
bitrarily and the second is chosen such that the product is inthe desired interval.
This was for example specified as the IEEE standard 1363 (IEEEworking group
2000), Annex A.16.11. However, we could not find any implementations following
this standard.

4.1 A fixed bound notion

We consider the number of integers smaller than a real positive boundx that have
exactly two prime factorsp andq, both lying in a fixed interval]B,C], in formulæ:

π2
B,C (x) := #

{
n ∈ N

∃p, q ∈ P ∩ ]B,C] :
n = pq ∧ n ≤ x

}
.

To avoid problems with rare prime squares, which are also notinteresting when talking
about RSA integers, we instead count

κ2
B,C (x) := #

{
(p, q) ∈ (P ∩ ]B,C])2 pq ≤ x

}
.

Such functions are treated in Loebenberger & Nüsken (2010) .In the context of RSA
integers we consider the notion

AFB(r,σ) :=

〈{
(y, z) ∈ R

2
>1

√
x

r
< y, z ≤

√
rσx ∧ yz ≤ x

}〉

x∈R>1

with σ ∈ [0, 1]. The parameterσ describes the (relative) distance of the restriction
yz ≤ x to the center of the rectangle in whichy andz are allowed. The next theorem
follows directly from Loebenberger & Nüsken (2010) but we can also derive it from
Lemma 3.6:

Theorem 4.6. We have forln r ∈ o(ln x) under the Riemann hypothesis

#AFB(r,σ) (x) ∈ ã(x)
4x

ln2 x

(
σ ln r + 1− 2

r
1−σ
2

+
1

r

)
+O

(
x

3
4 r

1
4

)

with ã(x) ∈
[(

1− σ ln r
ln x+σ ln r

)2

,
(
1 + ln r

ln x−ln r

)2
]
⊆ 1 + o(1).

�

4.2 An algorithmically inspired notion

A second option to define RSA integers is the following notion: Assume you wish to
generate an RSA integer betweenx

r andx, which has two prime factors of roughly equal
size. Then algorithmically we might first generate the primep and afterward select
the primeq such that the product is in the correct interval. As we will see later, this
procedure does — however — not produce every number with the same probability, see
Section 5. Formally, we consider the notion



AALG(r,σ)(x) :=

〈{
(y, z) ∈ R

2
>1

rσ−1
√
x < y ≤ rσ

√
x ∧ x

ry < z ≤ x
y

x
r < yz ≤ x

}〉

x∈R>1

,

with σ ∈ [0, 1]. The parameterσ describes here the (relative) position of the defining
area of the notion with respect to the diagonal. Writeσ′ := max(σ, 1 − σ). Similar to
the theorem above we obtain

Theorem 4.11. Assumingln r ∈ o(ln x) we have under the Riemann hypothesis

#AALG(r,σ) (x) ∈ ã(x)
4x

ln2 x

(
ln r − ln r

r

)
+O

(
x

3
4 r

1
4

)
,

with ã(x) ∈
[(

1− 2σ′ ln r
ln x+2σ′ ln r

)2

,
(
1 + 2(1+σ) ln r

ln x−2(1+σ) ln r

)2
]
⊆ 1 + o(1). �

As we see both notions open a slightly different view. However the outcome is not
that different, at least the numbers of described RSA integers are quite close to each
other. The proof that this is the case forall reasonable notions can be found in the
extended version Loebenberger & Nüsken (2011).

Current standards and implementations of various crypto packages mostly use the
notionsAFB(4,0),AFB(4,1),AFB(2,0) orAALG(2,1/2). For details see Section 8.

5 Generating RSA integers properly

In this section we analyze how to generate RSA integers properly. It completes the
picture and we found several implementations overlooking this kind of arguments.
We wish that all the algorithms generate integers with the following properties:

– If we fix x we should with overwhelming probability generate integersthat are a
product of a prime pair inAx.

– These integers (not the pairs) should be selected roughly uniformly at random.
– The algorithm should be efficient. In particular, it should need only few primality

tests.

5.1 Rejection sampling

Assume thatA is a[c1, c2]-balanced notion of RSA integers with tolerancer. The easi-
est approach for generating a pair fromA is based on von Neumann’s rejection sampling
method. LetBx := x[c1,c2]×x[c1,c2]. There may be better ways for choosingBx ⊇ Ax,
but we skip this here. We obtain the following straightforward Las Vegas algorithm:



Algorithm 5.2. Generating an RSA integer (Las Vegas version).

Input: A notionA, a boundx ∈ R>1.
Output: An integern = pq with (p, q) ∈ Ax.

1. Repeat 2–4
2. Repeat
3. Select(y, z) at random fromBx ∩ N

2.
4. Until (y, z) ∈ Ax.
5. Until y prime andz prime.
6. p← y, q ← z.
7. Return pq.

The expected repetition count of the inner loop is roughlyarea(Bx)
area(Ax)

. The expected num-

ber of primality tests is aboutarea(Ax)
#A(x) . This is for many notions inO

(
ln2 x

)
. We have

seen implementations (for example the one ofGnuPG) where the inner and outer loop
have been exchanged. This increases the number of primalitytests by the repetition
count of the inner loop. Also easily checkable additional conditions, like gcd((p−1)(q−
1), e) = 1, should be checked before the primality tests to improve theefficiency.

5.2 Inverse transform sampling

Actually we would like to avoid generating out-of-bound pairs completely. To retain
uniform selection, we need to select the primesp non-uniformly with the following
distribution:

Definition 5.4. LetA be a notion of RSA integers with tolerancer. For everyx ∈ R>1

the associatedcumulative distribution functionofAx is defined as

FAx
:
R −→ [0, 1],

y 7−→ area(Ax∩([1,y]×R))
area(Ax)

.

In fact we should use the functionGAx
: R → [0, 1], y 7→ #(Ax∩(([1,y]∩P)×P))

#Ax
, in

order to compute the density but computingGAx
(or its inverse) is tremendously ex-

pensive. Fortunately, by virtue of Lemma 3.6 we know thatFAx
approximatesGAx

for monotone,[c1, c2]-balanced notionsA quite well. So we use the functionFAx
to

capture the distribution properties of a given notion of RSAintegers. As can be seen by
inspection, in practically relevant examples this function is sufficiently easy to handle.
We obtain the following algorithm:

Algorithm 5.5. Generating an RSA integer.

Input: A notionA, a boundx ∈ R>1.
Output: An integern = pq with (p, q) ∈ Ax.

1. Repeat
2. Selecty with distributionFAx

from {y ∈ R ∃z : (y, z) ∈ Ax} ∩ N.
3. Until y prime.



4. p← y.
5. Repeat
6. Selectz uniformly at random from{z ∈ R (p, z) ∈ Ax} ∩N.
7. Until z prime.
8. q ← z.
9. Return pq.

As desired, this algorithm generates any pair(p, q) ∈ Ax ∩ (P× P) with almost the
same probability. In order to generatey with distributionFAx

one can use inverse trans-
form sampling, see for example Knuth (1998). The expected number of primality tests
now is inO (lnx). Of course we have to take into account that for each trialy the in-
verseF−1

Ax
(y) has to be computed — at least approximately —, yet this cost isusually

negligible compared to a primality test.

5.3 Other constructions

There are variants around, where the primes are selected differently: Take an integer
randomly from a suitable interval and increase the result until the first prime is found.
This has the advantage that the amount of randomness needed is considerably lower
and by optimizing the resulting algorithm can also be made much faster. The price one
has to pay is that the produced primes will not be selected uniformly at random: Primes
p for which p − 2 is also prime will be selected with a much lower probability than
randomly selected primes of a given length. As shown in Brandt & Damgård (1993) the
output entropy of such algorithms is still almost maximal and also generators based on
these kind of prime-generators might be used in practice.

5.4 Summary

We have seen that Algorithm 5.2 and Algorithm 5.5 are practical uniform generators
for any symmetric or antisymmetric notion.

Note that Algorithm 5.2 and Algorithm 5.5 may, however, still produce numbers in
a non-uniform fashion: In the last step of both algorithms a product is computed that
corresponds to either one pair or two pairs inAx. To solve this problem we have two
choices: Either we replaceA by its symmetric versionS which we define asSx :={
(y, z) ∈ R

2
>1 (y, z) ∈ Ax ∨ (z, y) ∈ Ax

}
, or by its, say, top halfT given byTx :=

{(y, z) ∈ Sx z ≥ y} before anything else.

6 Output entropy

The entropy of the output distribution is one important quality measure of a genera-
tor. For primality tests several analyses where performed,see for example Brandt &
Damgård (1993) or Joye & Paillier (2006). For generators of RSA integers we are not
aware of any work in this direction.

Let Ax be any monotone notion. Consider a generatorG̺ that produces a pair of
primes(p, q) ∈ Ax with distribution̺. Seen as random variables,G̺ induces two



random variablesP andQ by its first and the second coordinate, respectively. The
entropy of the generatorG̺ is given by

H(G̺) = H(P ×Q) = H(P ) +H (Q P ) ,

whereH denotes the binary entropy andH (Q P ) denotes the conditional entropy. If
̺ is the uniform distributionU we obtain by Lemma 3.6 maximal entropy

H(GU ) = log2(#A (x)) ≈ log2(area(Ax))− log2(ln x) + 1,

with an error of very small order. The algorithms from Section 5, however, return the
productP ·Q. The entropy of this random variable can be estimated as

H(P ·Q) = −
∑

n=pq∈N

(p,q)∈Ax

prob(P ·Q = n) log2(prob(P ·Q = n))

≥ −
∑

(p,q)∈Ax

prob(P ×Q = (p, q)) log2(2 prob(P ×Q = (p, q)))

= H(P ×Q)− 1.

Some of the standards and implementations in Section 8 (likethe standard IEEE
1363-2000 or the implementation ofGNU Crypto) do not generate every possible
outcome with the same probability. All of them have in commonthat the primep is se-
lected uniformly at random and afterwards the primeq is selected uniformly at random
from an appropriate interval. This is a non-uniform selection process since for some
choices ofp there might be less choices forq.

If in general the probability distribution̺ is close to the uniform distribution, say
̺(p, q) ∈ [2−ε, 2ε] 1

#A(x) for some fixedε ∈ R>0, then the entropy of the resulting
generatorG̺ can be estimated as

H(GU )− ε ≤ H(G̺).

7 Complexity theoretic considerations

We are about to reduce factoring products of two comparatively equally sized primes to
the problem of factoring integers generated from a sufficiently large notion. As far as
we know there are no similar reductions in the literature.

We consider finite setsM ⊂ N × N, in our situation we actually have only prime
pairs. The multiplication mapµM is defined onM and merely multiplies, that is,
µM : M → N, (y, z) 7→ y · z. The random variableUM outputs uniformly distrib-
uted values fromM . An attacking algorithmF gets a natural numberµM (UM ) and
attempts to find factors insideM . Its success probability

succF (M) = prob
(

F (µM (UM )) ∈ µ−1
M (µM (UM ))

)
(7.1)

measures its quality in any fixed-size scenario. Integers generated from a notionA are
hard to factor iff for all probabilistic polynomial time machinesF , all s ∈ N, there
exists a valuex0 ∈ R>1 such that for anyx > x0 we have succF (Ax) ≤ ln−s x.



For any polynomialf we define the setRf = {(m,n) ∈ N m ≤ f(n) ∧ n ≤ f(m)}
of f -related positive integer pairs. Denote byP

(m) the set ofm-bit primes. We can now
formulate the basic assumption:

Assumption 7.2(Intractability of factoring).For any unbounded positive polynomialf
integers from thef -related prime pair family(P(m)×P

(n))(m,n)∈Rf
are hard to factor.

This is exactly the definition given by Goldreich (2001). Note that this assumption
implies that factoring in general is hard, and it covers the supposedly hardest factoring
instances. Now we are ready to state that integers from all relevant notions are hard to
factor.

Theorem 7.3. Let ln r ∈ Ω
(
1−2c1
lnℓ x

)
andA be a monotone,[c1, c2]-balanced notion for

RSA integers of tolerancer with large area, namely, for somek and largex we have
areaAx ≥ x

lnk x
. Assume that factoring is difficult in the sense of Assumption 7.2 (or

if only integers from the family of linearly related prime pairs are hard to factor). Then
integers from the notionA are hard to factor. �

Proof. Assume that we have an algorithmF that factors integers generated uniformly
from the notionA. Our goal is to prove that this algorithm also factors polynomially
related prime pairs successfully. In other words: its existence contradicts the assumption
that factoring in the form of Assumption 7.2 is difficult.

By assumption, there is an exponents so that for anyx0 there isx > x0 such
that the assumed algorithmF has success probability succF (Ax) ≥ ln−s x on inputs
from Ax. We are going to prove that for each suchx there exists a pair(m0, n0),
both in the interval[c1 lnx − ln 2, c2 lnx + ln 2], such thatF executed with an input
from imageµPm0 ,Pn0 still has success probability at least ln−(s+k) x. By the interval
restriction,m0 andn0 are polynomially (even linearly) related, namelym0 < 2c2

c1
n0

andn0 < 2c2
c1

m0 for largex. So that contradicts Assumption 7.2.

First, we cover the setAx with small rectangles. LetSm,n := P
(m) × P

(n) and
Ix :=

{
(m,n) ∈ N

2 Sm,n ∩ Ax 6= ∅
}

then

Ax ∩ P
2 ⊆

⊎

(m,n)∈Ix

Sm,n =: Sx. (7.4)

Next we give an upper bound on the number#Sx of prime pairs in the setSx

in terms of the number#A (x) of prime pairs in the original notion: First, since each
rectangleSm,n extends by a factor2 along each axis we overshoot by at most that factor
in each direction, that is, we have forc′1 = c1 − (1 + 2c1)

ln 2
ln x and allx ∈ R>1

Sx ⊂M16r,c′1
4x =

{
(y, z) ∈ R

2 y, z ≥ 1

2
xc1 ∧ x

4r
< yz ≤ 4x

}
.

Providedx is large enough we can guarantee by Theorem 5.2 from the extended version
(similar to Lemma 3.6) that

#Sx ≤ #M16r,c′1 (4x) ≤ 8x

c′21 lnx
.



On the other hand side we apply Lemma 3.6 for the notionAx and use thatAx is large
by assumption. Letc = max(2c2 − 1, 1− 2c1). Then we obtain for largex with some

eA(x) ∈ O
(
x

3+c
4

)
.

#A (x) ≥ area(Ax)

c22 ln2 x
− eA(x) ≥

x

2c22 lnk+2 x
.

Together we obtain

#A (x)

#Sx
≥ c′21

16c22 lnk+1 x
≥ ln−(k+2) x (7.5)

By assumption we have succF (Ax) ≥ ln−s x for infinitely many valuesx. ThusF
on an input fromSx still has large success even if we ignore thatF might be successful
for elements onSx \ Ax,

succF (Sx) ≥ succF (Ax)
#A (x)

#Sx
≥ ln−(k+s+2) x.

Finally choose(m0, n0) ∈ Ix for which the success ofF onSm0,n0 is maximal. Then
succF (Sm0,n0) ≥ succF (Sx). Combining with the previous we obtain that for infinitely
manyx there is a pair(m0, n0) where the success succF (Sm0,n0) of F on inputs from
Sm0,n0 is still larger than inverse polynomial: succF (Sm0,n0) ≥ ln−(k+s+2) x.

For these infinitely many pairs(m0, n0) the success probability of the algorithmF
onSm0,n0 is at least ln−(k+s+2) x contradicting the hypothesis. �

All the specific notions that we have found in the literature fulfill the criterion of
Theorem 7.3. Thus if factoring is difficult in the stated sense then each of them is in-
vulnerable to factoring attacks. Note that the above reduction still works if the primes
p, q are due to the side condition gcd((p − 1)(q − 1), e) = 1 for a fixed integere (see
Theorem 3.11). We suspect that this is also the case ifp andq are strong primes. Yet,
this needs further investigation.

8 Impact on standards and implementations

In order to get an understanding of the common implementations, it is necessary to
consult the main standard on RSA integers, namely the standard PKCS#1 (Jonsson
& Kaliski 2003). However, one cannot findany requirements on the shape of RSA
integers. Interestingly, they even allow more than two factors for an RSA modulus.
Also the standard ISO 18033-2 (International Organizationfor Standards 2006) does
not give any details besides the fact that it requires the RSAinteger to be a product of
two different primes of similar length.



8.1 RSA-OAEP

The RSA Laboratories (2000) describe the following variant:

ln y

ln z

Algorithm 8.1. Generating an RSA number for RSA-OAEP and variants.
Input: A number of bitsk, the public exponente.
Output: A numbern = pq.

1. Pickp from
[⌊
2(k−1)/2

⌋
+ 1,

⌈
2k/2

⌉
− 1

]
∩P such that

gcd(e, p− 1) = 1.
2. Pickq from

[⌊
2(k−1)/2

⌋
+ 1,

⌈
2k/2

⌉
− 1

]
∩P such that

gcd(e, q − 1) = 1.
3. Return pq.

This will produce uniformly at random a number from the interval [2k−1 + 1, 2k − 1]
and no cutting off. The output entropy is thus maximal. So this corresponds to the no-
tion AFB(2,0) generated by Algorithm 5.5. The standard requires an expected number
of k ln 2 primality tests if the gcd condition is checked first. Otherwise the expected
number of primality tests increases toϕ(e)

ϕ1(e)
· k ln 2 (see (3.12)). We will in the follow-

ing always mean by the above notation that the second condition is checked first and
afterwards the number is tested for primality. For the security Theorem 7.3 applies.

8.2 IEEE

IEEE standard 1363-2000, Annex A.16.11 (IEEE working group2000) introduces our
algorithmic proposal:

ln y

ln z

Algorithm 8.2. Generating an RSA number, IEEE 1363-2000.
Input: A number of bitsk, the odd public exponente.
Output: A numbern = pq.

1. Pickp from
[
2⌊k−1

2 ⌋, 2⌊ k+1
2 ⌋ − 1

]
∩ P such that

gcd(e, p− 1) = 1.

2. Pickq from
[⌊

2k−1

p + 1
⌋
,
⌊
2k

p

⌋]
∩ P such that

gcd(e, q − 1) = 1.
3. Return pq.

Since the resulting integers are in the interval[2k−1, 2k − 1] this standard follows
AALG(2,1/2) generated by a corrupted variant of Algorithm 5.5 using an expected num-
ber ofk ln 2 primality tests like the RSA-OAEP standard. The notion it implements is
neither symmetric nor antisymmetric. The selection of the integers isnot done in a uni-
form way, since the number of possibleq for the largest possiblep is roughly half of the
corresponding number for the smallest possiblep. Since the distribution of the outputs
is close to uniform, we can use the techniques from Section 6 to estimate the output en-
tropy to find that the entropy-loss is less than 0.69 bit. The (numerically approximated)
values in Table 8.1 gave an actual entropy-loss of approximately 0.03 bit.



8.3 NIST

We will now analyze the standard FIPS 186-3 Information Technology Laboratory
(2009). In Appendix B.3.1 of the standard one finds the following algorithm:

ln y

ln z

Algorithm 8.3. Generating an RSA number, FIPS186-3.

Input: A number of bitsk, a number of bitsℓ < k, the odd
public exponent216 < e < 2256.

Output: A numbern = pq.

1. Pickp from
[√

22k/2−1, 2k/2 − 1
]
∩ P such that

gcd(e, p− 1) = 1 andp± 1 has a prime factor with at
leastℓ bits.

2. Pickq from
[√

22k/2−1, 2k/2 − 1
]
∩ P such that

gcd(e, p− 1) = 1 andq ± 1 has a prime factor with at
leastℓ bits and|p− q| > 2k/2−100.

3. Return pq.

In the standard it is required that the primesp andq shall be either provable prime or at
least probable primes. The (at leastℓ-bit) prime factors ofp ± 1 andq ± 1 have to be
provable primes. We observe that also in this standard a variant of the notionAFB(2,0)

generated by Algorithm 5.5 is used. The output entropy is thus maximal. However, we
do not have any restriction on the parity ofk, such that the valuek/2 is not necessarily
an integer. Another interesting point is the restriction onthe prime factors ofp±1, q±1.
Our notions cannot directly handle such requirements, but we are confident that this can
be achieved by appropriately modifying the densities in Lemma 3.6.

The standard requires an expected number of slightly more than k ln 2 primality
tests. It is thus slightly less efficient than the RSA-OAEP standard. For the security the
remarks from the end of Section 7 apply.

8.4 ANSI

The ANSI X9.44 standard (Accredited Standards Committee X92007), formerly part of
ANSI X9.31, requires strong primes for an RSA modulus. Unfortunately, we could not
access ANSI X9.44 directly and are therefore referring to ANSI X9.31-1998. Section
4.1.2 of the standard requires that

– p − 1, p + 1, q − 1, q + 1 each should have prime factorsp1, p2, q1, q2 that are
randomly selected primes in the range2100 to 2120,

– p andq shall be the first primes that meet the above, found in an appropriate interval,
starting from a random point,

– p andq shall be different in at least one of their first 100 bits.

The additional restrictions are similar to the ones required by NIST. This procedure will
have an output entropy that is close to maximal (see Section 6).



8.5 OpenSSL

We now turn to implementations: ForOpenSSL (Cox et al. 2009), we refer to the file
rsa_gen.c. Note that in the configuration the routine used for RSA integer genera-
tion can be changed, while the algorithm given below is the standard one.OpenSSH
(de Raadtet al. 2009) uses the same library. Refer to the filersa.c. We have the
following algorithm:

ln y

ln z

Algorithm 8.5. Generating an RSA number inOpenSSL.
Input: A number of bitsk.
Output: A numbern = pq.

1. Pickp from
[
2⌊k−1

2 ⌋, 2⌊ k+1
2 ⌋ − 1

]
∩ P.

2. Pickq from
[
2⌊k−3

2 ⌋, 2⌊k−1
2 ⌋ − 1

]
∩ P.

3. Return pq.

This is nothing but a rejection-sampling method of a notion similar to the fixed-bound
notionAFB(4,0) generated by Algorithm 5.2. The output entropy is thus maximal. The
result the algorithm produces is always in[2k−2, 2k − 1]. It is clear that this notion is
antisymmetric and the factors are on average a factor2 apart of each other. The imple-
mentation runs in an expected number ofk ln 2 primality tests. The public exponente
is afterwards selected such that gcd((p − 1)(q − 1), e) = 1. It is thus slightly more
efficient than the RSA-OAEP standard. For the security Theorem 7.3 applies.

8.6 GnuPG

Also GnuPG (Skalaet al. 2009) uses rejection-sampling of the fixed-bound notion
AFB(2,1) generated by a variant of Algorithm 5.2, implying that the entropy of its output
distribution is maximal.

ln y

ln z

Algorithm 8.7. Generating an RSA number inGnuPG.
Input: A number of bitsk.
Output: A numbern = pq.

1. Repeat 2–3

2. Pickp from
[
2⌊k−1

2 ⌋, 2⌊k+1
2 ⌋ − 1

]
∩ P.

3. Pickq from
[
2⌊ k−1

2 ⌋, 2⌊k+1
2 ⌋ − 1

]
∩ P.

4. Until len(pq) = 2 ⌈k/2⌉
5. Return pq.

The hatched region in the picture above shows the possible outcomes that are discarded.
We refer here to the filersa.c. The algorithm is given in the functiongenerate_
std and produces always numbers with eitherk or k + 1 bits depending on the parity
of k. Note that the generation procedure indeed first selects primes before checking the
validity of the range. This is of course a waste of resources,see Section 5.



Standard
Notion

Entropy for specifick
Remarks

Implementation 768 1024 2048
PKCS#1

Undefined — — — −−−ISO 18033-2
ANSI X9.44
FIPS 186-3 A

FB(2,0) . 747.34 . 1002.51 . 2024.51 strong primes
RSA-OAEP A

FB(2,0)
747.34 1002.51 2024.51 —

IEEE 1363-2000A
ALG(2, 1

2
) 749.33 1004.50 2026.50 non-uniform

GNU Crypto A
FB(2,1) 747.89 1003.06 2025.06 non-uniform

GnuPG A
FB(2,1) 748.52 1003.69 2025.69 —

OpenSSL ∼= A
FB(4,0) 749.89 1005.06 2027.06 —

Table 8.1.Overview of various standards and implementations. The entropies given there are al-
ways above99.89% of the maximal entropy. As explained in the text, the entropyof the standards
is sightly smaller than the values given due to the fixed public exponente. Additionally there is a
small entropy loss for the standard FIPS 186-3 due to the factthat it requires strong primes.

The implementation runs in an expected number of roughly2.589 · (k + 1) ln 2
primality tests. It is thus less efficient than the RSA OAEP standards. Like in the other
so far considered implementations, the public exponente is afterwards selected such
that gcd((p− 1)(q − 1), e) = 1. For the security Theorem 7.3 applies.

8.7 GNU Crypto

TheGNU Crypto library (Free Software Foundation 2009) generates RSA integers
the following way. Refer here in the fileRSAKeyPairGenerator.java to the
functiongenerate.

ln y
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Algorithm 8.8. Generating an RSA number inGNU Crypto.

Input: A number of bitsk.
Output: A numbern = pq.

1. Pickp from
[
2⌊k−1

2 ⌋, 2⌊ k+1
2 ⌋ − 1

]
∩ P.

2. Repeat

3. Pickq from
[
2⌊ k−1

2 ⌋, 2⌊k+1
2 ⌋ − 1

]
.

4. Until len(pq) = k andq ∈ P.
5. Return pq.

The arrow in the picture above points to the results that willoccur with higher prob-
ability. Also here the notionAFB(2,1) is used, but the generated numbers will not be
uniformly distributed, since for a largerp we have much less choices forq. Since the
distribution of the outputs is not close to uniform, we couldonly compute the entropy
for real-world parameter choices numerically (see Table 8.1). For all choices the loss
was less than 0.63 bit. The implementation is as efficient as the RSA-OAEP standard.



9 Conclusion

We have seen that there are various definitions for RSA integers, which result in sub-
stantially differing standards. We have shown that the concrete specification does not
essentially affect the (cryptographic) properties of the generated integers: The entropy
of the output distribution is always almost maximal, generating those integers can be
done efficiently, and the outputs are hard to factor if factoring in general is hard. It
remains open to incorporate strong primes into our model. Also a tight bound for the
entropy of non-uniform selection is missing if the distribution is not close to uniform.

Acknowledgements

This work was funded by the B-IT foundation and the state of North Rhine-Westphalia.

References

1. ACCREDITEDSTANDARDS COMMITTEE X9 (2007). ANSI X9.44-2007: Public Key Cryp-
tography Using Reversible Algorithms for the Financial Services Industry: Transport of
Symmetric Algorithm Keys Using RSA. Technical report, American National Standards
Institute, American Bankers Association.

2. JØRGEN BRANDT & I VAN DAMGÅRD (1993). On Generation of Probable Primes by In-
cremental Search. InAdvances in Cryptology: Proceedings of CRYPTO ’92, Santa Barbara,
CA, ERNEST BRICKELL, editor, volume 740 ofLecture Notes in Computer Science, 358–
370. Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-540-57340-1. ISSN 0302-9743. URL
http://dx.doi.org/10.1007/3-540-48071-4_26.

3. CLIFFORD C. COCKS (1973). A note on ’non-secret encryption’. CESG Memo. URL
http://www.cesg.gov.uk/publications/media/notense.pdf. Last down-
load 12 May 2009.

4. MARK J. COX, RALF ENGELSCHALL, STEPHEN HENSON & B EN LAURIE (2009).
OpenSSL 0.9.8j. Open source implementation. URLhttp://www.openssl.org/.
Refer toopenssl-0.9.8j.tar.gz. Last download 21 April 2009.

5. ANDREAS DECKER& PIETER MOREE(2008). Counting RSA-integers.Results in Mathe-
matics 52, 35–39. URLhttp://dx.doi.org/10.1007/s00025-008-0285-5.

6. JAMES H. ELLIS (1970). The possibility of secure non-secret digital encryp-
tion. URL http://cryptocellar.web.cern.ch/cryptocellar/cesg/
possnse.pdf. Last download 12 May 2009.

7. FREE SOFTWARE FOUNDATION (2009). GNU Crypto. Open source implementation. URL
http://www.gnu.org/software/gnu-crypto/. Refer tognu-crypto-2.0.
1.tar.bz2. Last download 21 April 2009.

8. ODED GOLDREICH (2001). Foundations of Cryptography, volume I: Basic Tools. Cam-
bridge University Press, Cambridge. ISBN 0-521-79172-3.

9. IEEE WORKING GROUP (2000). IEEE 1363-2000: Standard Specifications For Public
Key Cryptography. IEEE standard, IEEE, New York, NY 10017, USa. URL http:
//grouper.ieee.org/groups/1363/P1363/.

10. INFORMATION TECHNOLOGY LABORATORY (2009). FIPS 186-3: Digital Signature Stan-
dard (DSS). Technical report, National Institute of Standards and Technology.



11. INTERNATIONAL ORGANIZATION FOR STANDARDS (2006). ISO/IEC 18033-2, Encryption
algorithms — Part 2: Asymmetric ciphers. Technical report,International Organization for
Standards.

12. JAKOB JONSSON& B URT KALISKI (2003). Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications Version 2.1. URLhttp://tools.ietf.org/
html/rfc3447. RFC 3447.

13. MARC JOYE & PASCAL PAILLIER (2006). Fast Generation of Prime Numbers on Portable
Devices: An Update. InCryptographic Hardware and Embedded Systems, Workshop,
CHES’06, Yokohama, Japan, LOUIS GOUBIN & M ITSURU MATSUI, editors, volume 4249
of Lecture Notes in Computer Science, 160–173. Springer-Verlag, Berlin, Heidelberg.
ISBN 978-3-540-46559-1. ISSN 0302-9743. URLhttp://dx.doi.org/10.1007/
11894063_13.

14. DONALD E. KNUTH (1998). The Art of Computer Programming, vol. 2, Seminumerical
Algorithms. Addison-Wesley, Reading MA, 3rd edition. ISBN 0-201-89684-2. First edition
1969.

15. DANIEL LOEBENBERGER& M ICHAEL NÜSKEN (2010). Coarse-grained integers.e-print
arXiv:1003.2165v1 URL http://arxiv.org/abs/1003.2165.

16. DANIEL LOEBENBERGER& M ICHAEL NÜSKEN (2011). Analyzing standards for RSA in-
tegers – extended version.e-print arXiv:1104.4356v2 URL http://arxiv.org/abs/
1104.4356.

17. UELI M. M AURER (1995). Fast Generation of Prime Numbers and Secure Public-Key Cryp-
tographic Parameters.Journal of Cryptology 8(3), 123–155. URLhttp://dx.doi.
org/10.1007/BF00202269.

18. NESSIEWORKING GROUP (2003). NESSIE D20 - NESSIE security report. Technical
report, NESSIE.

19. JOHN VON NEUMANN (1951). Various techniques used in connection with random digits.
Monte Carlo methods.National Bureau of Standards, Applied Mathematics Series 12, 36–
38.

20. THEO DE RAADT , NIELS PROVOS, MARKUS FRIEDL, BOB BECK, AARON CAMPBELL &
DUG SONG (2009). OpenSSH 2.1.1. Open source implementation. URLhttp://www.
openssh.org/. Refer toopenssh-2.1.1p4.tar.gz. Last download 21 April 2009.

21. RONALD L. RIVEST, ADI SHAMIR & L EONARD M. A DLEMAN (1977). A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems.Technical Report MIT/LCS/TM-
82, Massachusetts Institute of Technology, Laboratory forComputer Science, Cambridge,
Massachusetts.

22. RONALD L. RIVEST, ADI SHAMIR & L EONARD M. A DLEMAN (1978). A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM
21(2), 120–126.

23. RSA LABORATORIES (2000). RSAES-OAEP Encryption Scheme. Algorithm
specification and supporting documentation, RSA Security Inc., Bedford, MA 01730
USA. URL ftp://ftp.rsasecurity.com/pub/rsalabs/rsa_algorithm/
rsa-oaep_spec.pdf.

24. MATTHEW SKALA , M ICHAEL ROTH, NIKLAS HERNAEUS, RÉMI GUYOMARCH &
WERNER KOCH (2009). GnuPG. Open source implementation. URLhttp://www.
gnupg.org/. Refer tognupg-2.0.9.tar.bz2. Last download 21 April 2009.

25. PETRA WOHLMACHER (2009). Bekanntmachung zur elektronischen Signatur nach
dem Signaturgesetz und der Signaturverordnung (Übersichtüber geeignete Algorithmen).
Bundesanzeiger 2009(13), 346–350. ISSN 0344-7634. Preprint athttp://www.
bundesnetzagentur.de/media/archive/14953.pdf.


