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Abstract. The key-generation algorithm for the RSA cryptosystem ec#jed
in several standards, such as PKCS#1, IEEE 1363-2000, Bi&S,JANSI X9.44,
or ISO/IEC 18033-2. All of them substantially differ in theequirements. This
indicates that for computing a “secure” RSA modulus it doet matter how
exactly one generates RSA integers. In this work we showttists indeed the
case to a large extend: First, we give a theoretical framlettnat will enable us to
easily compute the entropy of the output distribution of tbasidered standards
and show that it is comparatively high. To do so, we computeeézh standard
the number of integers they define (up to an error of very sordkr) and dis-
cuss different methods of generating integers of a speoifin fSecond, we show
that factoring such integers is hard, provided factoringoalpct of two primes of
similar size is hard.

Keywords: RSA integer, output entropy, reduction. ANSI 8. FIPS 186-3,
IEEE 1363-2000, ISO/IEC 18033-2, NESSIE, PKCS#1.

1 Introduction

An RSA integer is an integer that is suitable as a modulus for the RSA crygtes as
proposed by Rivest, Shamir & Adleman (1977, 1978):

is understood that all persons copy- each copyright holder, and in particular use them only for noncommercial pur- mission of the copyright holder. (Last update 2017/11/29-18 :21.)

“You first computen as the product of two primgsandgq:
n=p-q.

These primes are very large, random’ primes. Although ydumake n pub-
lic, the factorgp andq will be effectively hidden from everyone else due to the
enormous difficulty of factoring.”

Also in earlier literature such as Ellis (1970) or Cocks (3p@ne does not find any
further restrictions. In subsequent literature peoplendeRSA integers similarly to
Rivest, Shamir & Adleman, while sometimes additional satessts are performed.
Real world implementations, however, requioacrete algorithmsthat specify in detail
how to generate RSA integers. This has led to a variety ofistais, notably the stan-
dards PKCS#1 (Jonsson & Kaliski 2003), ISO 18033-2 (Intéonal Organization for
Standards 2006), IEEE 1363-2000 (IEEE working group 208N)5I X9.44 (Accred-
ited Standards Committee X9 2007), FIPS 186-3 (Informafechnology Laboratory
2009), the standard of the RSA foundation (RSA Laborat@@80), the standard set
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by the German Bundesnetzagentur (Wohlmacher 2009), arstitheard resulting from
the European NESSIE project (NESSIE working group 2003)oAthose standards
define more or less precisely how to generate RSA integersalanéithem have sub-
stantially different requirements. This reflects the itituni that it does not really matter
how one selects the prime factors in detail, the resulting R®dulus will do its job.
But what is needed to show that this is really the case?

Following Brandt & Damgard (1993) a quality measure of a gatue is the entropy
of its output distribution. In abuse of language we will mokthe time talk about the
output entropy of an algorithm. To compute it, we need estimates of the fitiba
that a certain outcome is produced. This in turn needs a tighranalysis of how one
generates RSA integers of a specific form. If we can show tmatoutcome of the
algorithm is roughly uniformly distributed, the output eoqty is closely related to the
count of RSA integers it can produce. It will turn out that Inreaasonable setups this
count is essentially determined by the desired length obtitput. For primality tests
there are several results in this direction (see for exad@e & Paillier 2006) but
we are not aware of any related work analyzing the outpubemgtof algorithms for
generating RSA integers.

Another requirement for the algorithm is that the outputidtide ‘hard to factor’.
Since this statement does not even make sense for a singdgeinthis means that one
has to show that the restrictions on the shape of the intégemlgorithm produces do
not introduce any further possibilities for an attackerprove this, areduction has to
be given that reduces the problem of factoring the outputégroblem of factoring a
product of two primes of similar size, see Section 7. Alsadheis necessary to have
results on the count of RSA integers of a specific form to mhke¢duction work. As
for the entropy estimations, we do not know any related waorkhis.

In the following section we will develop a formal framewotkat can handle all
possible definitions for RSA integers. After discussingrieeessary number theoretic
tools in Section 3, we give explicit formulee for the count o€l integers which will be
used later for entropy estimations of the various standard®SA integers. In Section 4
we show how our general framework can be instantiated, ipigldatural definitions for
several types of RSA integers (as used later in the stand&estion 5 gives a short
overview on generic constructions for fast algorithms geaterate such integers almost
uniformly. At this point we will have described all necesséechniques to compute
the output entropy, which we discuss in Section 6. The fdlgwsection resolves the
second question described above by giving a reduction femtofing special types of
RSA integers to factoring a product of two primes of similaesWe finish by applying
our results to various standards for RSA integers in Se@&ion

We omitted here most of the number theoretic details. Foptbefs of those the-
orems see Loebenberger & Niusken (2011). Note that for easengbarison, we have
retained the numbering of the extended version.

2 RSA integers in general

If one generates an RSA integer it is necessary to selectfdr ehoice of the security
parameter the prime factors from a certain region. Thisr#igqarameter is typically an



integerk that specifies (roughly) the size of the output. We use a memeigl definition
by asking for integers from the intenvlal/r, x], given areal boundz and a parameter
(possibly depending om). Clearly, this can also be used to model the former selectio
process by setting = 2¥ — 1 andr = 2. Let us in general introduceration of RSA
integers with tolerance r as a family
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of subsets of the positive quadrdky ;, where for every: € R~

5 | T
Azg{(y,z)eR>l|;<yz§x}. 6@4)Iny

The tolerance- shall always be larger thah We allow here that varies (sﬁahtﬁ/)
with x, which of course includes the case thds a constant. Typical values used for
RSA arer = 2 or r = 4 which fix the bit-length of the modulus more or less. We
can — for a fixed choice of parameters — easily visualize anipn®f RSA integers
by the corresponding regiod,. in the (y, z)-plane. It is favorable to look at these
regions in logarithmic scale. We write = e¥ andz = ¢ and denote bylin A), the
region in the(v, ¢)-plane corresponding to the regioty. in the (y, z)-plane, formally
(v,¢) € (INA); = (y,2) € A,. Now anA-integer n of sizez — for use as a modulus
in RSA — is a product. = pq of a prime pair(p, q) € A, N (P x P), whereP denotes
the set of primes. They are counted by the associatiedk pair counting function #.A4
for the notionA:
#.A R>1 — N,

= #{(p,q) ePXP|(p,q) € As}.

Thus everyA-integern = pq is counted once or twice i#.A () depending on whether
only (p, q) € A, oralso(q,p) € A,, respectively. We call a notiosymmetric if for all
choices of the parameters the corresponding area ifythg-plane is symmetric with
respect to the main diagonal, i.e. tHagt z) € A, implies also(z,y) € A,. If to the
contrary(y, z) € A, implies(z,y) ¢ A, we call the notiorantisymmetric. If we are
only interested in RSA integers we can always require symnoetantisymmetry, yet
many algorithms proceed in an asymmetric way.

Certainly, we will also need restrictions on the shape ofatea we are analyzing:
If one considers any notion of RSA integers and throws outtixahe prime pairs
one would be left with a prime-pair-free region and any agpnation for the count of
such a notion based on the area would necessarily have artdenny large error term.
However, for practical applications it turns out that it eigh to consider regions of a
very specific form. Actually, we will most of the time have regs whose boundary can
be described by graphs of certain smooth functions. In thevwiog, we call notions
having such boundarigsonotone. A more detailed explanation of the restrictions we
have to impose to make the number-theoretic work sound céouine in the extended
version Loebenberger & Niisken (2011).

For RSA, people usually prefer two prime factors of roughlg same size, where
size is understood as bit length. Accordingly, we call agrotf RSA integerses, ca]-
balanced iff additionally for everyx € R+

A, C {(y,z) €R2>1 |y,z c [xm’xcz]}’



where( < ¢; < ¢ can be thought of as constants or — more generally — as smooth
functions inxz defining the amount of allowed divergence subject to the safelition
thatz“! tends to infinity whern: grows. Ifc; > % then A, is empty, so we will usually
assumez; < % In order to prevent trial division from being a successtiiheker it

would be sufficient to requirg, z € 2 (Ink a:) for everyk € N. Our stronger require-

ment still seems reasonable and indeed equals the conifitiarer (1995) required for
secure RSA moduli, as the supposedly most difficult factpdhallenges stay within
the range of our attention. As a side-effect this greatlypsiies our approximations
later. The German Bundesnetzagentur (see Wohimacher 2889)a very similar re-
striction in their algorithm catalog. There it is additidigaequired that the primeg
andgq are not too close to each other. We ignore this issue hers Hie probability that
two primes arevery close to each other would be tiny if the notion from whiéh, ¢)
was selected is sufficiently large. If necessary, we are tabteodify our notions such
that also this requirement is met.

Often the considered integers= pq are also subject to further side conditions,
like ged((p — 1)(¢ — 1),e) = 1 for some fixed public RSA exponent Most of the
number theoretic work below can easily be adapted, but fopktity of exposition we
will often present our results without those further rettoins and just point out when
necessary how to incorporate such additional properties.

As we usually deal with balanced notions the consideredoregare somewhat
centered around the main diagonal. We will show in SectidraXif factoring products
of two primes is hard then it is also hard to factor integerssgated from such notions.

3 Toolbox

We will now develop the necessary humber theoretic condeptbtain formulese for
the count of RSA integers that will later help us to estimate dutput entropy of the
various standards for RSA integers. In related articles,Mecker & Moree (2008) one
finds counts foone particular definition of RSA integers. We believe that in the work
presented here for the first time a sufficiently general thends established that allows
to compute the number of RSA integers &brreasonable definitions.

We assume the Riemann hypothesis throughout the entire. ppe main terms
are the same without this assumption, but the error bound®btains are then much
weaker. We skip intermediate results here and just summahniz number theoretic
work (to ease later comparison we have retained the nunthefithe extended version
Loebenberger & Nusken 2011). The following lemma coverghallestimation work.

Lemma 3.6(Two-dimensional prime sum approximation for monotonéart).
Assume that we have a monotdne, cz|-balanced notiotd of RSA integers with tol-
erancer, wherel < ¢; < c¢o. (The values:, ¢y, co are allowed to vary with:.) Then

under the Riemann hypothesis there is a valug € {ﬁ, ﬁ] such that
- 4ared A,) _y e
#A(x) €a(:v)-W+(9(cl x ),

wherec = max(2ce — 1,1 — 2¢y). O



Note that the omitted proof gives a precise expression oy, namely

_ Jla m dp dg
A[[, mz dp dg

a(z)

It turns out that we can only evaluai€z) numerically in our case and so we tend
to estimate also this term. Then we often obtaim) € 1 + o(1). Admittedly, this
mostly eats up the advantage obtained by using the Riemagrothmssis. However, we
accept this because it still leaves the option of going thhotlnat difficult evaluation
and obtain a much more precise answer. If we do not use thedriefmypothesis we

need to replac® (cflz%) with O () for anyk > 2 of your choice.

As mentioned before, in many standards the selection ofingegp andgq is ad-
ditionally subject to the side condition that d¢d — 1)(¢ — 1), e) = 1 for some fixed
public exponent of the RSA cryptosystem. To handle these restrictions, ate st
theorem from the extended version

Theorem 3.11. Lete € N5 be a public RSA exponent ande R. Then we have for
the number:.(x) of primesp < x withgcdp — 1,¢) = 1 that

(,01(6)' i(x rlnx
me(x) € 2(0) Li(z) + O (VzInz),

where Liz) = [, 2 dt is the integral logarithmy(e) is Euler’s totient function and

2 Int
p1(e) 11 <1 _ ﬁ) . (3.12)

Le
£ prime

O
This theorem shows that the prime pair approximation in Len31 can be easily
adapted to RSA integers whose prime factors satisfy theitons of Theorem 3.11,
since the density of such primes differs for every fixgdst by a constant.

4 Some common definitions for RSA integers

We will now give formal definitions of two specific notions o5 integers. In partic-
ular, we consider the following example definitions withimr édramework:

— The simple construction given by just choosing two primegiwen intervals. This
construction occurs in several standards, like the stahdhthe RSA founda-
tion (RSA Laboratories 2000), the standard resulting frosmEuropean NESSIE
project (NESSIE working group 2003) and the FIPS 186-3 stesh{information
Technology Laboratory 2009). Also open source implemeériatof OpenSSL
(Cox et al. 2009),GhuPG (Skalaet al. 2009) and the GNU crypto librar@@NU
Cr ypt o (Free Software Foundation 2009) use some variant of thistometion.



— An algorithmically inspired construction which allows opeme being chosen ar-
bitrarily and the second is chosen such that the producttisdrdesired interval.
This was for example specified as the IEEE standard 1363 (Mz&king group
2000), Annex A.16.11. However, we could not find any impletagans following
this standard.

4.1 A fixed bound notion

We consider the number of integers smaller than a real peditbundz that have
exactly two prime factorg andq, both lying in a fixed intervalB, C], in formulee:

Ip,q e PN|]B,C): }

2 o
wByc(x)._#{nEN n=pg An<u

To avoid problems with rare prime squares, which are alsintetesting when talking
about RSA integers, we instead count

kb o (@) = #{(p.9) € @N]B.C)? | pg < a}.

Such functions are treated in Loebenberger & Niisken (20D)he context of RSA

integers we consider the notion
X
\/j< Y,z <Vrox A yz < x}>
r rz€RS

we) = (fere,
with ¢ € [0,1]. The parametes describes the (relative) distance of the restriction
yz < x to the center of the rectangle in whighandz are allowed. The next theorem
follows directly from Loebenberger & Niisken (2010) but wen @so derive it from
Lemma 3.6:

Theorem 4.6. We have fotnr € o(In z) under the Riemann hypothesis

#AB) (1) € ﬁ(x)4TI (alnr +1- % + l) +0 (x%ri)
In“z

roe r

with () € {(1 - m;j;f,nr)g (1+ M'“_T,m)1 C 1+o(1).

4.2 An algorithmically inspired notion

A second option to define RSA integers is the following natidasume you wish to
generate an RSA integer betwegandz, which has two prime factors of roughly equal
size. Then algorithmically we might first generate the primand afterward select
the primeq such that the product is in the correct interval. As we wib $ater, this
procedure does — however — not produce every number withetime probability, see
Section 5. Formally, we consider the notion



ARLB) (1) <{<y,z> €R,

ro iV <y<royz A %<z§%}>
: : )
z€RS 1

x
F<yz<zx

with o € [0, 1]. The parametes describes here the (relative) position of the defining
area of the notion with respect to the diagonal. Wsite= maxc,1 — o). Similar to
the theorem above we obtain

Theorem 4.11. Assumindn r € o(In ) we have under the Riemann hypothesis

4x Inr 3 1
ALG(r,0) = _ Tp1
#A (x)Ea(:v)anx(lnr . )—l—(’)(x r ),

with @(z) € {(1—&%)2,(1+m3§%)2] C 1+ o(1). O
As we see both notions open a slightly different view. Howekie outcome is not
that different, at least the numbers of described RSA integee quite close to each
other. The proof that this is the case falf reasonable notions can be found in the
extended version Loebenberger & Nisken (2011).
Current standards and implementations of various crypt&gges mostly use the
notions APB(4:0) | AFB(4.1) ' AFB(2,0) or AALG(2,1/2) For details see Section 8.

5 Generating RSA integers properly

In this section we analyze how to generate RSA integers pisoge completes the
picture and we found several implementations overlooKigkind of arguments.

We wish that all the algorithms generate integers with tiieiéng properties:

— If we fix  we should with overwhelming probability generate integbet are a
product of a prime pair itd,,..

— These integers (not the pairs) should be selected rouglfiyramy at random.

— The algorithm should be efficient. In particular, it shoukkd only few primality
tests.

5.1 Rejection sampling

Assume thatd is a[c, co]-balanced notion of RSA integers with tolerancd& he easi-
est approach for generating a pair frohis based on von Neumann'’s rejection sampling
method. Let3,, := zl°1-<2] x zler.e2], There may be better ways for choosifig D A.,,

but we skip this here. We obtain the following straightfordiaas Vegas algorithm:



Algorithm 5.2. Generating an RSA integer (Las Vegas version).

Input: A notionA4, a boundr € R ;.
Output: An integen = pq with (p,q) € A,.

1. Repeat 2-4

2 Repeat

3. Select(y, z) at random fron3,, N N2,
4. until (y, z) € A,.
5. Until y prime andz prime.
6. p+y,q z.
7. Return pq.

The expected repetition count of the inner loop is rougg{\}gﬁ%%. The expected num-

ber of primality tests is abo ei*;‘). This is for many notions ii© (In2 :v) We have

seen implementations (for example the on€&oti PG where the inner and outer loop
have been exchanged. This increases the number of priniedity by the repetition
count of the innerloop. Also easily checkable additionalditions, like gcd(p—1)(qg—
1),e) = 1, should be checked before the primality tests to improveffieiency.

5.2 Inverse transform sampling

Actually we would like to avoid generating out-of-boundngatompletely. To retain
uniform selection, we need to select the primpeson-uniformly with the following
distribution:

Definition 5.4. Let A be a notion of RSA integers with tolerance~or everyr € R+,
the associatedumulative distribution functioof A, is defined as

R — [0, 1],
ared A, N([1,y]xR))
ared A;)

Fu, - y —

In fact we should use the functiofis, : R — [0,1], y — ZA ’““““Ay]mp)xp)) in
order to compute the density but computi@ig,, (or its inverse) is tremendously ex-
pensive. Fortunately, by virtue of Lemma 3.6 we know that approximatess 4,
for monotone/c;, cz]-balanced notionst quite well. So we use the functiafi,, to
capture the distribution properties of a given notion of RB#&gers. As can be seen by
inspection, in practically relevant examples this funeti® sufficiently easy to handle.
We obtain the following algorithm:

Algorithm 5.5. Generating an RSA integer.

Input: A notion.A, a boundr € R.;.
Output: An integen = pq with (p,q) € A,.

1. Repeat
2. Selecty with distributionF4, from{y € R|3z: (y,2) € A} NN.
3. Until y prime.



4. p+y.

5. Repeat

6. Select: uniformly at random fror{z € R| (p, z) € A} NN.
7. Until z prime.

8. g+ z.

9. Return pq.

As desired, this algorithm generates any gairg) € A, N (P x P) with almost the
same probability. In order to generatavith distributionF 4, one can use inverse trans-
form sampling, see for example Knuth (1998). The expectedbar of primality tests
now is in O (Inx). Of course we have to take into account that for each grile in-
verseF;Il(y) has to be computed — at least approximately —, yet this castusily
negligible compared to a primality test.

5.3 Other constructions

There are variants around, where the primes are selectiededifly: Take an integer
randomly from a suitable interval and increase the result thre first prime is found.
This has the advantage that the amount of randomness neededsiderably lower
and by optimizing the resulting algorithm can also be mademiaster. The price one
has to pay is that the produced primes will not be selectefdumiy at random: Primes
p for which p — 2 is also prime will be selected with a much lower probabiltiar
randomly selected primes of a given length. As shown in Br&idamgard (1993) the
output entropy of such algorithms is still almost maximad atso generators based on
these kind of prime-generators might be used in practice.

5.4 Summary

We have seen that Algorithm 5.2 and Algorithm 5.5 are prattimiform generators
for any symmetric or antisymmetric notion.

Note that Algorithm 5.2 and Algorithm 5.5 may, however, giiloduce numbers in
a non-uniform fashion: In the last step of both algorithmsadpct is computed that
corresponds to either one pair or two pairs4Ap. To solve this problem we have two
choices: Either we replacd by its symmetric versioils which we define as5, :=
{(y,2) e R2|(y,2) € Az V (2,y) € A}, or by its, say, top half” given by T, :=
{(y,z) € S, | # > y} before anything else.

6 Output entropy

The entropy of the output distribution is one important gyaheasure of a genera-
tor. For primality tests several analyses where perforreed,for example Brandt &
Damgard (1993) or Joye & Paillier (2006). For generators 8ARntegers we are not
aware of any work in this direction.

Let A, be any monotone notion. Consider a generétgithat produces a pair of
primes(p,q) € A, with distribution . Seen as random variables, induces two



random variables? and @ by its first and the second coordinate, respectively. The
entropy of the generatd¥, is given by

H(G,) = H(PxQ)=H(P)+ H(Q|P),

whereH denotes the binary entropy aifi(Q | P) denotes the conditional entropy. If
o is the uniform distributior/ we obtain by Lemma 3.6 maximal entropy

H(Gy) = logy(#A(x)) =~ log,(ared A,)) — log,(Inz) + 1,

with an error of very small order. The algorithms from Sewcty however, return the
productP - Q. The entropy of this random variable can be estimated as

H(P-Q)=—- Y probP-Q =n)log,(prob(P - Q = n))

n=pgeN
(paQ)e-Az

>~ ) prob(P x Q = (p,q))log,(2proP x Q = (p,q)))
(p.a)EAL

=HPxQ)—1.

Some of the standards and implementations in Section 8 tiikestandard IEEE
1363-2000 or the implementation GNU Cr ypt 0) do not generate every possible
outcome with the same probability. All of them have in comntiwat the primep is se-
lected uniformly at random and afterwards the prigms selected uniformly at random
from an appropriate interval. This is a non-uniform selattprocess since for some
choices ofp there might be less choices f@r

If in general the probability distribution is close to the uniform distribution, say
o(p,q) € [2*5,25]#%@) for some fixede € R+, then the entropy of the resulting
generatoli, can be estimated as

H(Gy) —e < H(G,).

7 Complexity theoretic considerations

We are about to reduce factoring products of two compargtagually sized primes to
the problem of factoring integers generated from a suffitjdarge notion. As far as
we know there are no similar reductions in the literature.

We consider finite setd8/ C N x N, in our situation we actually have only prime
pairs. The multiplication map,; is defined onM and merely multiplies, that is,
unm: M — N, (y,z) — y - z. The random variabl&,, outputs uniformly distrib-
uted values fromV/. An attacking algorithm? gets a natural number,, (U,s) and
attempts to find factors insid¥ . Its success probability

suca-(M) = prob( F(uar(Un)) € iy (uar(Unr)) ) (7.1)

measures its quality in any fixed-size scenario. Integensigeed from a notiom are
hard to factor iff for all probabilistic polynomial time machineg, all s € N, there
exists a valuey € R~ such that for any > zo we have sucg(A,) <In"*z.



For any polynomialf we define the seR; = {(m,n) e N|m < f(n) An < f(m)}
of f-related positive integer pairs. DenotelBy*) the set ofm-bit primes. We can now
formulate the basic assumption:

Assumption 7.2(Intractability of factoring). For any unbounded positive polynomjal
integers from thef-related prime pair familyP("™) x P("™),,, .. c . are hard to factor.

This is exactly the definition given by Goldreich (2001). Bldhat this assumption
implies that factoring in general is hard, and it covers thgo®sedly hardest factoring
instances. Now we are ready to state that integers fromlailaet notions are hard to
factor.

Theorem 7.3. Letinr € 2 (%) andA be a monotonéyg;, c2|-balanced notion for
RSA integers of tolerance with large area, namely, for sonkeand largex we have
aread, > . Assume that factoring is difficult in the sense of Assumpta2 (or
if only integers from the family of linearly related primeipmaare hard to factor). Then
integers from the notiod are hard to factor. O

Proof. Assume that we have an algorithiithat factors integers generated uniformly
from the notionA. Our goal is to prove that this algorithm also factors polyiely
related prime pairs successfully. In other words: its exise contradicts the assumption
that factoring in the form of Assumption 7.2 is difficult.

By assumption, there is an exponenso that for anyz, there isz > x¢ such
that the assumed algorithim has success probability syeC4,) > In~* z on inputs
from A,. We are going to prove that for each suetthere exists a paifmg, no),
both in the intervalc; Inz — In2, ¢z Inx + In 2], such thatF' executed with an input
from imageupo pro Still has success probability at least it 2. By the interval
restriction,my andng are polynomially (even linearly) related, namehy < iﬂno

1
andng < %mo for largex. So that contradicts Assumption 7.2.

First, we cover the setl, with small rectangles. LeS,, ,, := P(™) x P(® and
I == {(m,n) € N?| Sy, N A, # 0} then

ANPPC |H Spn =i S (7.4)

(m,n)el,

Next we give an upper bound on the numbgs, of prime pairs in the seb,
in terms of the numbe#t A () of prime pairs in the original notion: First, since each
rectangles,, , extends by a factdr along each axis we overshoot by at most that factor

in each direction, that is, we have fédr=¢; — (1 + 201):2—5 and allz € R+,

S0 C MU = {(.y, 2) e R?

1. T
y,zzgzzrl A E<yz§4x .

Providedr is large enough we can guarantee by Theorem 5.2 from thededesr@rsion
(similar to Lemma 3.6) that

8x
/2 .
cfinz

#S, < HM (4z) <



On the other hand side we apply Lemma 3.6 for the natlgrand use thatd,. is large
by assumption. Let = max(2ce — 1,1 — 2¢1). Then we obtain for large with some

ealr) €O (xgzc).

ared.A;) x
A(z) > =20 P —
#A(r) 2 c3 In? z calw) 2 2c3 InF+2
Together we obtain
#A (2) cf? ~(k+2
#S, = 16¢2In* 1 ¢ 2"+ g (7.5)

By assumption we have sue€A,) > In~* z for infinitely many values:. ThusF
on an input froms;, still has large success even if we ignore thanight be successful
for elements orf, \ A,

#A (z) > In~(k+s+2) 4.

sucG(S;) > sucge(Ay) 75

Finally choos€mg, ng) € I, for which the success df on Sy, ., is maximal. Then
SUCGr (Simg,ne) = SUCG(S;). Combining with the previous we obtain that for infinitely
manyz there is a paifmog, no) where the success syeS,,, »,) of F' on inputs from
Symo.no is still larger than inverse polynomial: SUeS,,, n,) > In~F+5+2) ¢,

For these infinitely many pairsng, no) the success probability of the algorithih
ON Syny e is at least IM*+5+2) 4 contradicting the hypothesis. O

All the specific notions that we have found in the literatuntilf the criterion of
Theorem 7.3. Thus if factoring is difficult in the stated sttsen each of them is in-
vulnerable to factoring attacks. Note that the above reduodtill works if the primes
p, ¢ are due to the side condition gég — 1)(¢ — 1), e) = 1 for a fixed integee (see
Theorem 3.11). We suspect that this is also the cagaifdg are strong primes. Yet,
this needs further investigation.

8 Impact on standards and implementations

In order to get an understanding of the common implememtstii is necessary to
consult the main standard on RSA integers, namely the starfliCS#1 (Jonsson
& Kaliski 2003). However, one cannot finghy requirements on the shape of RSA
integers. Interestingly, they even allow more than twodextfor an RSA modulus.
Also the standard 1ISO 18033-2 (International OrganizafwrStandards 2006) does
not give any details besides the fact that it requires the REger to be a product of
two different primes of similar length.



8.1 RSA-OAEP
The RSA Laboratories (2000) describe the following variant

Algorithm 8.1. Generating an RSA number for RSA-OAEP and variants.

Input: A number of bitg, the public exponer.
Output: A numbern = pq.

1. Pickp from [|2(k=1)/2| + 1, [2¥/2] — 1] NP such that
gcde,p—1) = 1.

2. Pickg from [|2(k=D/2] 41, [2k/2] — 1] NP such that
gcde, g — 1) =1.

3. Return pq.

Inz

Iny

This will produce uniformly at random a number from the int{2¢—1 + 1, 2% — 1]
and no cutting off. The output entropy is thus maximal. Se turresponds to the no-
tion A™B(20) generated by Algorithm 5.5. The standard requires an eggeuimber
of kIn2 primality tests if the gcd condition is checked first. Othisevthe expected
number of primality tests increasesi@% - kIn2 (see (3.12)). We will in the follow-
ing always mean by the above notation that the second condgichecked first and
afterwards the number is tested for primality. For the sécliheorem 7.3 applies.

8.2 IEEE

IEEE standard 1363-2000, Annex A.16.11 (IEEE working graQp0) introduces our
algorithmic proposal:

Algorithm 8.2. Generating an RSA number, IEEE 1363-2000.

Input: A number of bits;, the odd public exponeat
Inz
Output: A numben = pq.

k+1

1. Pickp from {2L%J,2L cull 1} N P such that

gede,p—1)=1.
2. Pickq from Hﬁ% + 1J ) {%H N P such that n
gcdevq_l)zl' Y
3. Return pq.

Since the resulting integers are in the inter{@i—!, 2% — 1] this standard follows
AALG(2:1/2) generated by a corrupted variant of Algorithm 5.5 using greeted num-
ber of k£ In 2 primality tests like the RSA-OAEP standard. The notion iplements is
neither symmetric nor antisymmetric. The selection of tiiegers isiot done in a uni-
form way, since the number of possilgiéor the largest possibleis roughly half of the
corresponding number for the smallest possibl8ince the distribution of the outputs
is close to uniform, we can use the techniques from Sectiore6timate the output en-
tropy to find that the entropy-loss is less than 0.69 bit. Thar(erically approximated)
values in Table 8.1 gave an actual entropy-loss of appraeiyme.03 bit.



8.3 NIST

We will now analyze the standard FIPS 186-3 Information Tedbgy Laboratory
(2009). In Appendix B.3.1 of the standard one finds the folllmpalgorithm:

Algorithm 8.3. Generating an RSA number, FIPS186-3.

Input: A number of bitg:, a number of bit¢ < k, the odd |,
public exponen2!t < e < 2256,
Output: A numben = pq.

1. Pickp from [/22%/2=1 2k/2 — 1] 0 P such that
gcde,p — 1) = 1 andp + 1 has a prime factor with at
least? bits.

2. Pickg from [y/22%/2=1 2k/2 — 1] 0 P such that
gcde,p — 1) = 1 andg + 1 has a prime factor with at
least¢ bits and|p — q| > 2+/2-100,

3. Return pq.

Iny

In the standard it is required that the primesndq shall be either provable prime or at
least probable primes. The (at ledsdhit) prime factors ofp + 1 andq + 1 have to be
provable primes. We observe that also in this standard aneof the notion4™8(2:0)
generated by Algorithm 5.5 is used. The output entropy is thaximal. However, we
do not have any restriction on the parity/afsuch that the valuk/2 is not necessarily
an integer. Another interesting point is the restrictioritenprime factors op+1, ¢+ 1.
Our notions cannot directly handle such requirements, lewang confident that this can
be achieved by appropriately modifying the densities in bren8.6.

The standard requires an expected number of slightly mane Atin 2 primality
tests. It is thus slightly less efficient than the RSA-OAE&hdiard. For the security the
remarks from the end of Section 7 apply.

8.4 ANSI

The ANSI X9.44 standard (Accredited Standards Committe20®), formerly part of
ANSI X9.31, requires strong primes for an RSA modulus. Utnifioately, we could not
access ANSI X9.44 directly and are therefore referring tdSAN9.31-1998. Section
4.1.2 of the standard requires that

-p—1,p+1,q—1, g+ 1 each should have prime factgss, p=, ¢1, ¢z that are
randomly selected primes in the rarj€ to 2120,

— pandg shall be the first primes that meet the above, found in an g@pjate interval,
starting from a random point,

— p andq shall be different in at least one of their first 100 bits.

The additional restrictions are similar to the ones reqlLingNIST. This procedure will
have an output entropy that is close to maximal (see Secjion 6



8.5 OpenSSL

We now turn to implementations: F@penSSL (Cox et al. 2009), we refer to the file
rsa_gen. c. Note that in the configuration the routine used for RSA ietegenera-
tion can be changed, while the algorithm given below is thaedard oneCpenSSH
(de Raadtet al. 2009) uses the same library. Refer to the figa. c. We have the
following algorithm:

Algorithm 8.5. Generating an RSA number@enSSL.

Input: A number of bits:. Inz
Output: A numben = pq.

1. Pickp from [2L%J,2Lk+ ] 1} NP.

2. Pickq from [ﬂ%J,ﬂ%J - 1} NP.
3. Return pq.

Iny

This is nothing but a rejection-sampling method of a notiomilar to the fixed-bound
notion AFB(4.0) generated by Algorithm 5.2. The output entropy is thus maxiffihe
result the algorithm produces is always[2i—2, 2k — 1]. It is clear that this notion is
antisymmetric and the factors are on average a facspart of each other. The imple-
mentation runs in an expected numberkdh 2 primality tests. The public exponeat
is afterwards selected such that ggd— 1)(¢ — 1),e) = 1. It is thus slightly more
efficient than the RSA-OAEP standard. For the security Téwor.3 applies.

8.6 GnuPG

Also GhuPG (Skalaet al. 2009) uses rejection-sampling of the fixed-bound notion
AFB(:1) generated by a variant of Algorithm 5.2, implying that thérepy of its output
distribution is maximal.

Algorithm 8.7. Generating an RSA number @GnuPG,
Input: A number of bits:.

Output: A numben = pq. Inz
1. Repeat 2-3
2. Pickp from [ = ol 1} AP.
3. Pickgfrom { = ol - 1} AP. |
n
4. Until len(pq) = 2 [k/2] Y
5. Return pg.

The hatched region in the picture above shows the possiltemes that are discarded.
We refer here to the filesa. c. The algorithm is given in the functiogener at e_
st d and produces always numbers with eitheor £ + 1 bits depending on the parity
of k. Note that the generation procedure indeed first seleatsegrbefore checking the
validity of the range. This is of course a waste of resourses,Section 5.



Standard Entropy for specifid

implementation| °'°" | 768 1024 204g | Remarks
PKCS#L

ISO 18033-2 | Undefined — — — _

ANSI X9.44

FIPS186-3 | A0 |< 74734 |< 1002.51 |< 2024.51 |strong primes
RSA-OAEP | A9 | 74734 | 1002.51 | 2024.51 —

IEEE 1363-2000 A*©(2:3) | 749.33 | 1004.50 | 2026.50 | non-uniform

G\U Crypto | APB@D | 747.89 | 1003.06 | 2025.06 | non-uniform
GuPG AFBD) 1 74852 | 1003.69 | 2025.69 —
OpenSSL |~ APB4.0)| 749,89 | 1005.06 | 2027.06 —

Table 8.1.0verview of various standards and implementations. Thepigs given there are al-
ways above)9.89% of the maximal entropy. As explained in the text, the entrofhe standards
is sightly smaller than the values given due to the fixed puitponent. Additionally there is a

small entropy loss for the standard FIPS 186-3 due to theliatit requires strong primes.

The implementation runs in an expected number of rougtdg9 - (k + 1)In2
primality tests. It is thus less efficient than the RSA OAE&hdiards. Like in the other
so far considered implementations, the public expondatafterwards selected such
thatged(p — 1)(¢ — 1), e) = 1. For the security Theorem 7.3 applies.

8.7 GNU Crypto

The GNU Cr ypt o library (Free Software Foundation 2009) generates RSAjarse
the following way. Refer here in the filBSAKeyPai r Gener at or . j ava to the
functiongener at e.

Algorithm 8.8. Generating an RSA number®U Cr ypt o.

Input: A number of bitsk. Inz
Output: A numbern = pq.

k+1

1. Pickp from [2L%J,2LTJ — 1} NP.

2. Repeat

3. Pickq from [2“2;1J , ol*3t] 1] n
4. Until len(pg) = k andq € P. Y
5. Return pgq.

The arrow in the picture above points to the results that egtur with higher prob-
ability. Also here the notiopd™:1) is used, but the generated numbers will not be
uniformly distributed, since for a largerwe have much less choices f@rSince the
distribution of the outputs is not close to uniform, we coafdy compute the entropy
for real-world parameter choices numerically (see Tablg. &or all choices the loss
was less than 0.63 bit. The implementation is as efficient@afRSA-OAEP standard.
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Conclusion

We have seen that there are various definitions for RSA indegeéhich result in sub-
stantially differing standards. We have shown that the petecspecification does not
essentially affect the (cryptographic) properties of thaeerated integers: The entropy
of the output distribution is always almost maximal, getiatathose integers can be
done efficiently, and the outputs are hard to factor if fdowpin general is hard. It
remains open to incorporate strong primes into our modeio Al tight bound for the
entropy of non-uniform selection is missing if the disttibm is not close to uniform.
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