
Optimization strategies for hardware-based

cofactorization

Daniel Loebenberger and Jens Putzka

1 b-it
D-53113 Bonn

daniel@bit.uni-bonn.de

http://www.b-it-center.de
2 MPI für Mathematik

D-53111 Bonn
putzka@mpim-bonn.mpg.de

http://www.mpim-bonn.mpg.de

Abstract. We use the specific structure of the inputs to the cofactoriza-
tion step in the general number field sieve (GNFS) in order to optimize
the runtime for the cofactorization step on a hardware cluster. An op-
timal distribution of bitlength-specific ECM modules is proposed and
compared to existing ones. With our optimizations we obtain a speedup
between 17% and 33% of the cofactorization step of the GNFS when
compared to the runtime of an unoptimized cluster.
Keywords. General Number Field Sieve (GNFS), Elliptic Curve Method
(ECM), hardware cluster, cofactorization step

1 Introduction

Factoring natural numbers using the elliptic curve method (ECM) is based on the
seminal work of Hendrik Lenstra (Lenstra 1987), which is a natural adaption of
Pollard’s (p − 1)-method (Pollard 1974) to elliptic curves. In recent implemen-
tations of the general number field sieve (GNFS), the ECM is used to factor
intermediate sieving results (this is the so called cofactorization step). For ex-
ample in the record factorization of Franke & Kleinjung (2005) the sieving step
produced intermediate numbers of length up to 128 bits. Adapting this to the
factorization problem of the number RSA-768 (RSA Laboratories 2007) results
in the task of factoring roughly 2 · 1012 numbers of length up to 140 bit using
the ECM.

Since cofactorization is a costly part of the GNFS, it is natural to think about
highly specialized hardware realizations of this step, to improve the performance
of the GNFS considerably. In particular, since the task consists of many very
similar steps, a realization as a hardware cluster is suitable. On such a cluster
one has many computational units running in parallel that are able to pro-
cess inputs up to a certain bitlength. The question remains how many of those
bitlength-specific modules should be implemented, regardless of the concrete im-
plementation of the corresponding ECM modules. A straightforward approach

D
A

N
IE

L
L

O
E

B
E

N
B

E
R

G
E

R
&

JE
N

S
P

U
T

Z
K

A
(2

00
9)

.
O

pt
im

iz
at

io
n

st
ra

te
gi

es
fo

rh
ar

dw
ar

e-
ba

se
d

co
fa

ct
or

iz
at

io
n.

In
Se

le
ct

ed
A

re
as

in
C

ry
pt

og
ra

ph
y,

M
.J

.J
A

C
O

B
S

O
N

,
V

.R
IJ

M
E

N
&

R
.S

A
FA

V
I-

N
A

IN
I,

ed
ito

rs
,v

ol
um

e
58

67
of

Le
ct

ur
e

N
ot

es
in

C
om

pu
te

r
Sc

ie
nc

e,
17

0–
18

1.
B

er
lin

,H
ei

de
lb

er
g.

U
R

L
h
t
t
p
s
:
/
/
d
x
.
d
o
i
.
o
r
g
/
1
0
.
1
0
0
7
/
9
7
8
-
3
-
6
4
2
-
0
5
4
4
5
-
7
1
1
.

T
hi

sd
oc

um
en

ti
sp

ro
vi

de
d

as
a

m
ea

ns
to

en
su

re
tim

el
y

di
ss

em
in

at
io

n
of

sc
ho

la
rl

y
an

d
te

ch
ni

ca
lw

or
k

on
a

no
n-

co
m

m
er

ci
al

ba
si

s.
C

op
yr

ig
ht

an
d

al
lr

ig
ht

s
th

er
ei

n
ar

e
m

ai
nt

ai
ne

d
by

th
e

au
th

or
s

or
by

ot
he

rc
op

yr
ig

ht
ho

ld
er

s,
no

tw
ith

st
an

di
ng

th
at

th
es

e
w

or
ks

ar
e

po
st

ed
he

re
el

ec
tr

on
ic

al
ly

.I
ti

s
un

de
rs

to
od

th
at

al
lp

er
so

ns
co

py
-

in
g

an
y

of
th

es
e

do
cu

m
en

ts
w

ill
ad

he
re

to
th

e
te

rm
s

an
d

co
ns

tr
ai

nt
s

in
vo

ke
d

by
ea

ch
co

py
ri

gh
t

ho
ld

er
,a

nd
in

pa
rt

ic
ul

ar
us

e
th

em
on

ly
fo

r
no

nc
om

m
er

ci
al

pu
r-

po
se

s.
T

he
se

w
or

ks
m

ay
no

tb
e

po
st

ed
el

se
w

he
re

w
ith

ou
tt

he
ex

pl
ic

it
w

ri
tte

n
pe

r-
m

is
si

on
of

th
e

co
py

ri
gh

th
ol

de
r.

(L
as

tu
pd

at
e

20
17

/1
1/

29
-1

8
:2

1.
)

would be to construct only modules capable of factoring inputs of any size from
the GNFS. It is clear, however, that this approach is a great waste of logical re-
sources and that a detailed study of the bitlength-structure of the inputs to the
cofactorization step results in much better performance than the näıve approach.
Furthermore we quantify the gain we achieve using our optimized construction
and generalize our result to arbitrary clusters.

2 The General Number Field Sieve

In this section we give a brief overview of the GNFS in the version which was
used by Franke et al. in their record factorization of RSA-640. The GNFS is
asymptotically the best known factorization algorithm for large integers. For
a more detailed explanation, see for example Lenstra & Lenstra (1993). In this
section we will always consider pairs of object, which are indexed by the variable
i ∈ {1, 2}.

Polynomial selection: Find good polynomials Fi(X, Y) (see Kleinjung (2006)).

Sieving: Choose two bounds Li and two bounds Bi. The task is to find many
coprime pairs of integers (a, b) with b > 0 such that both Fi(a, b) are Li-
smooth. This means that Fi(a, b) decomposes into prime factors smaller than
Li. These pairs (a, b) are called relations. In general it is more than enough
to find π(L1)+π(L2) relations. In practice, however, one takes usually some
more. We can write for each pair (a, b)

Fi(a, b) = Ri(a, b)Si(a, b)

where Ri(a, b) is Bi-rough, i.e. has no factor < Bi and Si(a, b) is Bi-smooth.
Sieve: Approximation of logRi(a, b). This can be done using a lattice sieve

(Franke & Kleinjung 2006).
Find candidates: Take (R1(a, b), R2(a, b)) for pairs (a, b) if the approxi-

mately computed logRi(a, b) are below a given bound. These pairs are
called candidates. Remove the remaining ones.

Trial Division: For all candidates find the Si(a, b) (using trial divisions)
and calculate the Ri(a, b).

Remove candidate: If Ri(a, b) > Li do a fast compositeness test and re-
move the candidate if Ri(a, b) is pseudoprime.

Apply strategy: One can precompute a list with pairs of bitlengths which
have the property that integers of that size can be factorized in the next
step with high probability. For example pairs where both Ri(a, b) are
large in some sense can be removed (Kleinjung 2004).

Cofactorization: Find the factors of Ri(a, b) using ECM or MPQS (see for
example Cohen (1997)). In our case this should be done using a hardware
cluster which uses ECM to find the factors.

Simplification: The relations define a sparse matrix. One now uses some ele-
mentary column/row transformations to reduce the size.

Linear algebra: Solve the resulting system of linear equations.

Computing square roots: To be able to find the factor one needs to calculate
a square root in a number field.

3 Modelling the Cluster System

Our goal is a model of a hardware cluster (e.g. a COPACOBANA, see Kumar
et al. (2006), using Virtex4 XC4VSX35 FPGAs). In our specific example the
cluster has 16 slots, each containing 8 FPGAs (in the following called chips).
Each chip can run several ECM-processes in parallel depending on the size of the
corresponding ECM-module. We assume that each chip can only be filled with
ECM modules of a particular size. This requirement is from a theoretical point
of view unnecessary, but for the concrete realization we have in mind we actually
have to require this, since the device controlling all the chips is in our case not
able to perform otherwise. Of course modules constructed for a given bitlength
can also factor shorter integers. If one wants to factor a number using the cluster,
the number is forwarded to a module suitable for its bitlength. The corresponding
module then attempts to find a nontrivial factor of the input number. If this
succeeds after a certain number of trials (each being a separate run of the ECM
with a different elliptic curve), the factor is sent back to the controlling host
computer, otherwise the number is discarded. If the factor that is sent back or
the remaining cofactor is still composite, another factoring attempt is made. We
assume for our estimates that the effort for these additional factorizations is
negligible when compared to the first factorization attempt.

The first question we have to answer is the following: From an engineering
point of view it is unrealistic to build arbitrary sized ECM modules. What is the
smallest bitlength g ∈ N for which such a construction is practical? We call this
g the granularity of the implementation. Of course one cannot give a general
answer to this question. The answer heavily depends on the type of the chips
one is using and the concrete implementation one has in mind. In our example,
we will have g = 17 due to the design of the Virtex4 XC4VSX35 FPGAs.

Another question is: How can we get rid of modules for which the numbers
of integers having that bitlength is very small? In other words if for a particular
bitlength there are only very few numbers to factor, it would be better to factor
such numbers using modules capable of factoring larger integers. This would
ensure that we would not waste any resources on the cluster, resulting in a
better runtime of the cofactorization step.

We describe now the model of the cluster: Let N denote the number of chips
on the cluster, e.g. N = 128 in our concrete example, and let D denote the set
of inputs to the cofactorization step with M := #D. For d ∈ D let len(d) denote
the bitlength of the number d, i.e. len(d) := ⌊log2(d)⌋ + 1. Each of the input

numbers can be handled by specific modules suitable for their bitlength. The
size for which the modules are designed is always a multiple of g. We denote by
ni the number of parallel ECM modules for an integer having i · g bits and by ci

the average runtime of such an integer on the corresponding chips. We are now
going to model the classes the numbers may fall into. In general, if we are given
an interval I := [x, y] with x, y ∈ N and x ≤ y, a partition of I is a sequence
C := (C0, C1, . . . , Ck) ∈ N

k for some k ∈ N, with x = C0 < C1 < · · · < Ck = y.
We call k the size of the partition C. The interval (Ci−1, Ci] is called the i-th
subinterval of C. If now C1 and C2 are partitions of I, we say that C2 is a
refinement of C1 if for any 0 ≤ i ≤ k there is some j, such that C1

i = C2
j . In

other words that means that we have subdivided the subintervals of C1 into
smaller pieces without changing already existing cuts and we write C1 � C2.
Conversely, C1 is called a coarsening of C2. For our purposes we only consider
partitions C of the interval I = [x, y] where x := ⌊min(len(d) | d ∈ D)⌋g and
y := ⌈max(len(d) | d ∈ D)⌉g, where the notation ⌊.⌋g (⌈.⌉g) means that the
rounding is done down to (up to) the next multiple of g. Additionally we require
that for any 0 ≤ i < #C the number Ci is a multiple of g. We will call such
partitions g-partitions of the intervall induced by D. In particular the finest
partition we will consider is the g-partition Cf := (x, x + g, x + 2g, . . . , y) and
the possible partitions we may have at the end are always coarsenings of Cf .

For the following, fix a data set D and define K := #Cf − 1 = (y − x)/g.
Now given any C � Cf of size k, let ai(C) ∈ N be the number of occurrences in
the i-th subinterval of C, i.e. ai(C) := # {d ∈ D | len(d) ∈ (Ci−1, Ci]}. For later
use we define the input distribution

α(C) :=

(

a1(C)

M
, . . . ,

ak(C)

M

)

∈ R
k.

If we consider the ith subinterval of C the average cost of factoring such a number
is cCi/g. The space used for such a module is roughly 1/nCi/g. Thus the area-time
product for class i is given by

ϑi(C) :=
cCi/g

nCi/g
.

A layout of the cluster is given by an ordered partition ℓ ⊢k N of the N chips
into k summands, one for each class. Thus we have

ℓ ⊢k N :⇐⇒ ℓ = (ℓ1, . . . , ℓk) ∈ {1, . . . , N}k ∧
∑

1≤i≤k

ℓi = N,

with ℓi > 0, implying N ≥ k. That means we assume that the number of chips
is always greater than the number of classes, which is also reasonable. Note that
we have indeed two different notions of partitions here: First a partition of an
interval and second an additive ordered partition of a natural number. This could
of course be unified, but for our work it is preferable to have these two different
notions, since for the former notion we emphasize on the variable number of
subintervals while for the latter we assume a fixed number of summands.

Write C|j for the restriction of C on its first j subintervals. The minimal runtime
for C|j is given by

µC(N, j) := min
ℓ ⊢jN

max
1≤i≤j

ϑi(C|j) · ai(C|j)

ℓi
(1)

The value µC(N, j) is indeed a time measurement, since ci is given in seconds,
ni has unit 1/ chip and ℓi has unit chip. We will use the following convention: If
we write µC(N) we actually mean µC(N, #C − 1). Further we define

τ(N) := min
C�Cf

µC(N) (2)

Equation (1) and (2) actually depend on the data set D and we write µD,C(N, j)
and τD(N), respectively, if there is more than one data set under consideration.
In the following we will show how one can compute µCf (N) efficiently, namely
with O(N · K) arithmetic operations. Note that the imprecision of considering
arithmetic operations only is in our case not a problem, since the size of the
numbers is bounded from above by a constant.

We can compute Equation (1) easily using Bellman’s dynamic programming.
To do so, we need to handle two things:

1. The solutions for the boundaries have to be computed (i.e. for the case
j = 1):

µC(N, 1) =
ϑ1(C|1) · a1(C|1)

N
(3)

2. We need a recursion formula for µC(N, j). Assume we know µC(N ′, j−1) for
all N ′ < N . Then we have

µC(N, j) = min
N ′<N

max

(

µC(N ′, j − 1),
ϑj(C|j) · aj(C|j)

N − N ′

)

(4)

The function µC(N, j) can thus be computed with O(N ·j) arithmetic operations.
Let us now compute the function τ(N). The total number of classes C � Cf is

2K/4. Since K will be small in all our examples of the GNFS, a straightforward
algorithm would just compute µC(N) for all C � Cf and select the classes with
minimal runtime. Employing such an algorithm for the computation of τ(N) will
use O(NK2K) arithmetic operations.

We will now describe a greedy approach which will find in many cases the
optimal classes using only O(K) evaluations of the function µC(N) for various
C � Cf , i.e. compute τ(N) with O(N · K2) arithmetic operations: Let C :=
[C0, C1, . . . , Ck] be any partition of the interval I = [x, y].

For p ∈ [1, K − 1] denote by C(p) the refinement of C at position g · p. Our
algorithm will work as follows: Starting from the partition (x, y), we successively
refine (x, y) until the optimal partition is found. In particular if we are given in
step r a partition C, we compute µC(p)(N) for all p and take in the next round
the partition C(p) with the smallest runtime µC(p)(N). If there are two positions
p1, p2 with the same minimal runtime, we select one of the partitions randomly

for the next step. This approach is indeed greedy, since we take in every round
the best subdivision. The algorithm terminates if for all p the value µC(p)(N)
is not strictly smaller than µC(N). In this case the partition C is returned.
Observe that this algorithm will in general not find the optimal classes, since
we cannot guarantee that the algorithms terminates in a local minimum. In our
experiments, however, this heuristic indeed computed τ(N) in all our examples.

In order to measure the advantage of our optimization, we compare the esti-
mated runtime of the cluster using our construction with the runtime of a näıvely
constructed cluster, i.e. a cluster only containing bitlength-specific modules for
numbers having y bits. On such a cluster the runtime for a data set D of M
numbers is bounded from below by the following expression:

σ−
D(N) :=

1

N · nK

∑

1≤i≤K

ciai (5)

and bounded from above by

σ+
D(N) :=

McK

NnK
(6)

with K := #Cf − 1 as above. The first estimate is a bit optimistic since the
runtime of a module does not only depend on the input but also on the arithmetic
built into the module. Further the second estimate is too pessimistic, since a
module running on smaller input numbers will also run faster on average.
We use the functions

γ−
D(N) :=

σ−
D(N) − τD(N)

σ−
D(N)

and

γ+
D(N) :=

σ+
D(N) − τD(N)

σ+
D(N)

as lower and upper bounds, respectively, to measure the runtime gain we achieve
with our optimized cluster. This expression is exactly the runtime gain achieved
by the optimization (having runtime τD(N)) in contrast to the näıvely con-
structed cluster (having runtime between σ−

D(N) and σ+
D(N)).

4 Concrete statistical analyses

We will now perform a rigorous statistical analysis of six concrete runs of the
GNFS up to the cofactorizations step for the number RSA-768 using Franke and
Kleinjung’s implementation, and study the function τ(N) for these particular
inputs: Each data set D consists of many (2 · 108)-rough composite numbers of
bitlength between 58 and 160, each D being a specific output of the sieving step
of the GNFS for different choices of a polynomial pair and the sieving region
of the lattice siever. Following von zur Gathen et al. (2007), we estimate the
number of parallel ECM modules and the runtime on the Virtex4 XC4VSX35

FPGAs according to Table 1 and 2, respectively. In the implementation that was
used only modules for 17i bit integers were build. Note that such a module will
also be capable of factoring samller integers.

Table 1. Number of parallel ECM-modules per chip depending on the bitlength

Bitlength 17i 17 34 51 68 85 102 119 136 153 170
Processes ni 32 26 22 18 15 12 10 9 8 7

Let us have a look at the distribution α(Cf) of the input data for the various

Table 2. Average runtime of the ECM on a Virtex4 XC4VSX35 FPGA

Bitlength 17i 17 34 51 68 85

Cost ci (in µs) 491.49125 673.9225 856.35375 1038.785 1221.21625

Bitlength 17i 102 119 136 153 170

Cost ci (in µs) 1403.6475 1586.07875 1768.51 1950.94125 2133.3725

data sets (see Table 3). Note the low standard deviation of the corresponding
entries. In Figure 1 a histogram as well as the distribution on the classes Cf is

Table 3. Relative frequencies of the input data

Bitlength 0 − 68 69 − 85 86 − 102 103 − 119 120 − 136 137 − 153

D1 0.0015 0.0553 0.4540 0.0886 0.2826 0.1181
D2 0.0007 0.0547 0.4493 0.0889 0.2823 0.1241
D3 0.0008 0.0540 0.4533 0.0881 0.2836 0.1203
D4 0.0009 0.0567 0.4440 0.0874 0.2902 0.1209
D5 0.0011 0.0518 0.4306 0.0875 0.2992 0.1299
D6 0.0009 0.0461 0.4340 0.0834 0.3031 0.1326

Mean 0.0010 0.0531 0.4442 0.0873 0.2902 0.1243
Stdev. 0.0003 0.0038 0.0099 0.0020 0.0091 0.0058

given for data set D1.
We now employ our model to find an optimal layout for the cluster and

compute the runtime gain we achieved with our optimization. Let the notation be
as in Section 3. In the case of the COPACOBANA we will have N = 8 ·16 = 128.
There are 351306039 ordered partitions of the number 128 in not more than 6
parts. The total number of layouts of the cluster, including the choice of the
classes is in our example 402858941.

After having computed the function τD(128) for all data sets D we obtain
for every set an optimal layout (consisting of the interval partition C and the

Fig. 1. Left: Histogram of data set D1. Right: Distribution onto specific modules.

50 60 70 80 90 100 110 120 130 140 150
0

1000

2000

3000

4000

bit
50 60 70 80 90 100 110 120 130 140 150

0

10000

20000

30000

40000

bit

distribution of chips ℓ). If we take the result of the optimization for data set D1,
for example, we will have 47 modules for integers of up to 102 bit, 58 for integers
up to 136 bit and 23 for the remaining integers (up to 153 bit). The size of the
first class is in this case 102 bit, the size of the second one 34 bit and of the third
class 17 bit. The results are summarized in Table 4 and 5.

Table 4. Optimal partitions for the data sets D1, D2 and D3

D1 D2 D3

50 60 70 80 90 100 110 120 130 140 150
0

10000

20000

30000

40000

50000

bit
50 60 70 80 90 100 110 120 130 140 150

0

10000

20000

30000

bit
50 60 70 80 90 100 110 120 130 140 150

0

10000

20000

30000

40000

50000

bit

(Ci+1 − Ci)/g (3,2,1) (1,2,2,1) (3,1,1,1)

ℓ (47, 58, 23) (1, 46, 57, 24) (48, 11, 45, 24)

τD (µs) 124966.936 96137.13955 126309.5441

#D 98322 75013 99488

τD/#D 1.271 1.2816 1.2696

In order to measure the advantage of our optimization, we use the estimates
from Section 3. We have here at maximum 153 bit numbers and use the values
in the tables above. The result of our optimization is shown in Table 6.

5 Generalizations to an arbitrary number of clusters

Fix one data set D. In this section we analyze the behaviour of the function
γ−(N) for N → ∞.

In practice a growing N would mean that we employ not only one COPA-
COBANA, but a whole collection of these, running simultaneously, and optimize
over the whole set of chips. We will now show that the runtime gain achieved by
this collection of clusters converges to roughly 21% when compared to a collec-
tion of näıvely constructed clusters. It is clear that the actual gain however will
strongly depend on the input data D.

Table 5. Optimal partitions for the data sets D4, D5 and D6

D4 D5 D6

50 60 70 80 90 100 110 120 130 140 150
0

10000

20000

30000

40000

bit
50 60 70 80 90 100 110 120 130 140 150

0

2000

4000

6000

8000

10000

12000

14000

bit
50 60 70 80 90 100 110 120 130 140 150

0

5000

10000

15000

20000

bit

(Ci+1 − Ci)/g (3,1,1,1) (3,1,1,1) (3,2,1)

ℓ (47, 11, 46, 24) (45, 11, 47, 25) (44, 59, 25)

τD (µs) 113592.0763 37653.16612 65015.11716

#D 90141 29719 50273

τD/#D 1.2602 1.267 1.2932

Table 6. Performance gain for data set D1 (in percent) of the optimized cluster

D1 D2 D3 D4 D5 D6

γ−

D
17.47 16.97 17.66 18.38 18.4 16.88

γ+

D
33.29 32.73 33.36 33.86 33.5 32.12

Now let’s say we are going to build m clusters and we wish to optimize the
number of bitlength specific ECM modules as above. The formulae in Section
3 are still valid, except that we will have N = 128m chips in a collection of m
clusters instead of N = 128 as above.

We wish to compute limN→∞ γ±(N). To do so, we first need to compute τ(N)
for N → ∞. Unfortunately, the dynamic programming approach used above is
only useful if we consider fixed N , but does not tell us anything about the limit.
In Figure 2 the value of γ−(N) is plotted for the case of m ∈ {1, . . . , 100} clusters
using data set D1. Note that this observation follows also our intuition, since with
an increasing number of clusters one cannot expect more runtime gain.

Fig. 2. Lower bound on the runtime gain for an increasing number m of clusters

0 10 20 30 40 50 60 70 80 90 100
17

18

19

20

m

Assume we are given classes C � Cf . Set k := #C − 1. In order to be able to
compute the limit, we look at the problem of computing µC(N) over the reals,

i.e. we will have ℓ ∈ R
k. With this simplifications it is clear that the expression

max
1≤i≤k

ϑi(C) · ai(C)

ℓi

is minimal if and only if

ϑi(C) · ai(C)

ℓi
=

ϑj(C) · aj(C)

ℓj
for all i, j ∈ {1, . . . , k}

Write ϑ′
i(C) := ϑi(C) · ai(C). We end up in solving the following system of equa-

tions:

ℓ1 + · · · + ℓk = N

ϑ′
1(C) · ℓ2 = ϑ′

2(C) · ℓ1

...
...

ϑ′
1(C) · ℓk = ϑ′

k(C) · ℓ1

This system of k equations is linear in the k unknowns ℓ1, . . . , ℓk, having the
solution

ℓi =
ϑ′

i(C)N

ϑ′
1(C) + · · · + ϑ′

k(C)

We could have used this approach also for our computation of µC(n) in Section 3.
There we would have computed the approximate partition of N (being a vector
of reals) and would then have rounded the results appropriately. To find the
minimum we would have then to round 2k times resulting in an algorithm that
would have used O(k · 2k) arithmetic operations, which is of course preferable if
k is small compared to N . Back to our question of computing the limit we have

lim
N→∞

µC(N) = lim
N→∞

1

N

∑

1≤i<#C

ϑ′
i(C) and lim

n→∞
τ(N) = min

C�Cf
lim

N→∞
µC(N).

Furthermore

lim
N→∞

σ−(N) = lim
N→∞

1

N · nK

∑

1≤i≤K

ai · ci and lim
N→∞

σ+(N) = lim
N→∞

McK

NnK

Together

lim
N→∞

γ−(N) = min
C�Cf

1 −
nK

∑

1≤i<#C ϑ′
i(C)

∑

1≤i≤K ci · ai

and

lim
N→∞

γ+(N) = min
C�Cf

1 −
nK

∑

1≤i<#C ϑ′
i(C)

McK
.

Table 7 shows the results for our six test sets. We observe again that the corre-
sponding values for the different data sets are very similar. Thus it seems that
only the distribution of the inputs is crucial for the outcome of the optimization.

Table 7. Bounds on the limit of the runtime gain (in percent) for the various data sets

D1 D2 D3 D4 D5 D6

limN→∞ γ−

D
20.81 20.58 20.70 20.56 20.00 19.81

limN→∞ γ+

D
35.99 35.66 35.82 35.63 34.80 34.51

6 Conclusion

We have described a mathematical model of a hardware cluster like the COPA-
COBANA. Using this model we were able to compute the optimal distribution
of bitlength specific modules on such a cluster efficiently, independent of which
concrete ECM implementation was used. For our optimization it is necessary
to have an estimate of the expected input distribution. This is in the case of
the GNFS a nontrivial question (given some fixed parameter set), but it seems
that the outputs of the GNFS always follow a certain distribution. To study this
distribution in general is a challenging task and requires a deep understanding
of the number theoretical properties of the inputs for the cofactorization step.
Results in this direction are reserved for a forthcoming publication. The methods
that were used are standard and were well studied in the 1960th and the 1970th.
Nonetheless our optimization gives a speedup between 17% and 33% for the
cofactorization step of the GNFS. As far as we know such a mathematical opti-
mization was never done before for a hardware cluster like the COPACOBANA.
Additionally our results are applicable for any scalable problem, when one wants
to implement it efficiently on a dedicated hardware cluster.

7 Acknowledgements

Both authors were funded by the b-it foundation, the state of Northrhine-
Westfalia and the German Federal Office for Information Security (BSI). The
second author was additionally funded by the MPI and the Hausdorff-Center for
Mathematics in Bonn. We want to express our thanks to Thorsten Kleinjung for
helpful discussions on the output of the sieving step. Additional thanks go to
Jérémie Detrey.

References

1. Richard Bellman (1957). Dynamic Programming. Princeton University Text.

2. Henry Cohen (1997). A course in computational algebraic number theory.
Springer-Verlag, Berlin.

3. Jens Franke & Thorsten Kleinjung (2005). RSA 640. URL http://www.

crypto-world.com/announcements/rsa640.txt.

4. Jens Franke & Thorsten Kleinjung (2006). Continued Fractions and Lat-
tice Sieving. unpublished URL http://www.math.uni-bonn.de/people/thor/

confrac.ps.

5. Joachim von zur Gathen, Tim Güneysu, Anton Kargl, Daniel Loeben-

berger, Christof Paar & Jens Putzka (2007). Faktorisierung großer Zahlen:
Hardware für Elliptische Kurven Faktorisierung. Technical report, HGI Bochum,
b-it Bonn & Siemens AG München.

6. Thorsten Kleinjung (2004). Cofactorisation Strategies for the Number Field
Sieve and an Estimate for the Sieving Step for Factoring 1024-bit Integers. unpub-
lished URL http://www.math.uni-bonn.de/people/thor/cof.ps.

7. Thorsten Kleinjung (2006). On Polynomial Selection for the General Number
Field Sieve. Mathematics of Computation 75(256), 2037–2047. URL http://dx.

doi.org/10.1090/S0025-5718-06-01870-9.
8. Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer & Manfred

Schimmler (2006). Breaking Ciphers with COPACOBANA - A Cost-Optimized
Parallel Code Breaker. In Cryptographic Hardware and Embedded Systems (CHES
2006), Louis Goubin & Mitsuru Matsui, editors, volume 4249 of Lecture Notes
in Computer Science, 101–118. URL http://dx.doi.org/10.1007/11894063_9.

9. Arjen K. Lenstra & Hendrik W. Lenstra, Jr. (editors) (1993). The devel-
opment of the number field sieve, number 1554 in Lecture Notes in Mathematics.
Springer-Verlag, Berlin.

10. Hendrik W. Lenstra, Jr. (1987). Factoring integers with elliptic curves. Annals
of Mathematics 126, 649–673.

11. John M. Pollard (1974). Theorems on factorization and primality testing. Pro-
ceedings of the Cambridge Philosophical Society 76, 521–528.

12. RSA Laboratories (2007). The RSA Challenge Numbers.

