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1. Introduction

This thesis deals with ezponentiation in finite fields Fy» . In particular, it discusses
how exponentiation can benefit from parallel computing. Evaluation of a power of
an element in Iy is of general interest. Currently most important, it is the basic
arithmetic operation behind some cryptographic primitives. The security of some
primitives is based e.g. on the discrete logarithm problem, see Section 2.2. The
fields used in cryptography have to be large enough, so that arithmetic perfor-
mance improvements are called for. Cryptography should not affect significantly
the performance of the original application. Therefore it has to be fast, and it
is desirable to speed up the basic arithmetic behind cryptography. This includes
the efficient calculation of powers of elements in F,..

The progress on exponentiation throughout the last decade has brought up
special properties of the field representation into the foreground. Computer scien-
tists and engineers may consider the field representation as a choice of a particular
data structure for the elements of a finite field. For mathematicians, it is a place
to bring the rich properties of different representations of a finite field into play.

The two most common choices for a basis representation of F;» are polynomial
bases and normal bases. Both have distinctive advantages and disadvantages in
view of efficient arithmetics. The research of the last decade led to the fact that
the first are currently associated with fast sequential arithmetic, whereas the
latter are good for parallelizing exponentiation.

The question of attempting a synthesis of both representations lays at hand.
A natural starting point is a characterization of the different properties of all
possible bases with respect to parallel exponentiation. An exponentiation can
be regarded as a sequence of multiplications and evaluations of the Frobenius
automorphism. Polynomial bases offer a data structure that supports fast mul-
tiplication in F,». Normal bases yield zero cost for computing the Frobenius
automorphism.

The work in hand considers these questions deeply. Its main conclusions are:

1. The ratio ¢ between the cost for evaluating the Frobenius automorphism
and the cost for a multiplication determines the benefit which can be taken
from parallelizing exponentiation in a given basis representation. We prove
lower and upper bounds on parallel exponentiation with respect to this
ratio.

2. Generalized Gaufl periods were suggested in a discussion that started with
optimal normal bases. The latter one are prime Gaufl periods of type 1
or 2. Gao et al. (2000) showed that prime Gaufl periods can unite fast
polynomial multiplication and zero-cost Frobenius. These prime Gauf} pe-
riods were conceptually generalized by Feisel et al. (1999), motivated by
the expectation to find larger classes of finite fields with good arithmetic
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properties. The present work proves that general Gaufl periods indeed en-
able fast multiplication and a zero-cost Frobenius for the expected classes
of finite fields.

Of course, this thesis is not the first work which evaluates arithmetic in finite
fields on the background of cryptography. The thesis of Wassermann (1993)
presented arithmetic for different basis representations in sequential. Geiselmann
(1994) developed a hardware implementation for exponentiation in finite fields.
The aim of this thesis is to bring parallel computing and general Gaufl periods
into play.

As a first step we present a parallel algorithm for exponentiation. Exponen-
tiation is related to the model of addition chains, see Knuth (1998). We use the
more detailed concept of weighted addition chains with scalar, which have been
described in von zur Gathen & Nocker (2000) (Section 4.1). For this model, we
also prove a lower bound for the cost of parallel exponentiation (Result 4.17), see
Naocker (2000). Both the algorithm and the lower bound fill the gap between two
results of Kung (1976) and von zur Gathen (1991), which are special cases. This
is the first corner stone of our work. It points the way to suitable data struc-
tures for efficient parallel exponentiation. The ratio ¢ mentioned above serves
as the criterion to decide which data structure to use. We determine this ratio
for polynomial bases with selected moduli such as general and sparse irreducible
polynomials in Section 5.2.

Arbitrary normal bases are discussed in Section 6. They show a high potential
speed-up but poor performance. For normal bases, we reduce the computation
of the inverse in Fj. to the calculation of a short(est) addition chain for n — 1,
see also von zur Gathen & Nocker (1999). Section 6.5 generalizes ideas of Wang
et al. (1985), Itoh & Tsujii (1988b), and others that are related to this topic. Our
new Algorithm 6.27 computes the inverse in Fy» in parallel. For a normal basis
representation in Fy» this algorithm uses only 2 processors. It also has optimal
depth.

As the second corner stone of our work we utilize both fast polynomial multi-
plication and normal bases for general Gauf periods. As mentioned before, this
type of normal elements has been introduced by Feisel et al. (1999). We shortly
review the basics in Section 7. We achieve our new results in two steps. First in
Section 8, we generalize an idea of Gao et al. (2000) to use polynomial multiplica-
tion for prime power Gauf periods, see Result 8.1. The underlying Algorithm 8.24
enables us to extend an algorithm of Wassermann (1993) on the computation of
the multiplication matriz. We derive this matrix for prime power Gaufl periods
by following his idea.

In our second step in Section 9, we introduce decomposable Gaufl periods as
a helpful tool to emphasize the connection between the factorization of Gauf
periods and the decomposition of the underlying finite field. A similar idea, but
with different aims, may be found in Gao (2001). For such normal elements,
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multiplication can be easily reduced to the case of prime power Gaufl periods,
see Result 9.1. With the help of this tool, we deduce an efficiently computable
criterion whether normal Gauf} periods exists for a presented Fn.

Determining the parallel potential of a given data structure and revealing
normal general Gaufl periods as a suitable basis representation are the two main
results of this thesis. As a final step we develop a scalable parallel version of
Brauer’s exponentiation algorithm in Section 10. It takes into account the re-
strictions of existing parallel computers such as a limited number of processors
and communication delay. Finally, our implementations confirms the validity of
our theoretically obtained results.

I wish to thank all people that have supported me during the preparation of
this thesis. For inspiring discussions, I thank all collegues of the research group
Algorithmische Mathematik and the participants of the Oberseminar Algorith-
mische Mathematik. My special thanks to Uwe Nagel for his comments on my
view of Gaufl periods. Many thanks to Thilo Pruschke for his careful reading.
Last but not least, I want to thank my supervisor Prof. Joachim von zur Gathen
for introducing me to the fascinating field of computer algebra, for his advice,
and for the years in his research group at the Universitat Paderborn.
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2. Background

We compile some information which are the background of this work. Beside
some basic facts about algebraic structures that we use frequently (Section 2.1),
we describe some cryptographic protocols that heavily profit from fast exponenti-
ation (Section 2.2). We include in Section 2.3 some information on the hardware
and software we used for the experiments. These experiments are documented
throughout the text. A reader familiar with these topics may skip this section.

2.1. Algebraic structures. We sketch the definitions and basic facts of the
algebraic structures that are used in this work. For details and proofs we refer to
the books of Jacobson (1974) and Lidl & Niederreiter (1983).

DEFINITION 2.1. (i) A monoid or semi-group is a non-empty set G with a
binary operation -: G x G — G satisfying:
o Associativity: VA,B,C € G: (A-B)-C=A-(B-C),
o Identity: dE €e GVA € G: A-E=F-A=A.

(ii)) A group is a monoid satisfying:
o Inverse: VA€ GIA 1 €eG: A- A '=A"1. A=F.
A group G is called Abelian or commutative if
o Commutativity: VA, Be€ G: A-B= B - A.

Our basic group is the commutative group (Z), -) of (multiplicative) units modulo
r € N>3. A non-empty subset Y C G is a subgroup of (G,-) if U together with
the operation - is also a group. A group is finite if #G € N>;. The basic relation
between the orders of & and G was given by Lagrange; see Jacobson (1974),
Theorem 1.5, for a proof.

LAGRANGE’S THEOREM 2.2. The order #U of a subgroup U of a finite group G
is a divisor of the order of G.

As a direct consequence we have the following result which is often dedicated to
Fermat. In fact, he has discussed the case (Z,-) where p € N> is a prime.

FERMAT’S LITTLE THEOREM 2.3. Let G be a finite group. Then A#9 = 1 for
all A e g.

For an element A € G and a subgroup U of G we define AU = {A-U: U € U} to
be the (right) coset of U. A subset {A;, ..., Ay} of afinite group G generates the
subgroup {A;, -+ A;,: 1 <ji,...,5e <n} =(A1,...,A,) of G. A finite group G
is cyclic if there exists an element G € G—which is called primitive—such that

(G)=4g.
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DEFINITION 2.4. A ring is a set R # () with two binary operations +: R X R —
R and -: R x R — R satisfying:

o (R,+) is a commutative group with identity 0,
o (R,-) is a monoid with identity 1,

o Distributive law: VA, B,C € R: A-(B+C) = A-B+A-C and (A+B)-C =
A-C+B-C.

Our basic example for a ring is (Z5, +, ). A ring homomorphism from a ring R
to a ring R’ is a map ¢ such that ¢(R; + Rs) = ¢(R1) + ¢(Ry), ¢(R1 - Ry) =
©(Ry) - ¢(Ry) for all Ry, Ry € R, and furthermore ¢(1) = 1. If ¢ is surjective
then it is called an epimorphism. A bijective ¢ is an isomorphism. If R = R’
then the isomorphism is also called automorphism.

DEFINITION 2.5. A finite field F is a finite ring satisfying:

o (F\{0},-) is a commutative group.

Fact 2.6 (Lidl & Niederreiter 1983, Theorem 2.2 and Theorem 2.5). The order
of any finite field is a prime power q¢ € N>o. Given any prime power g, there exists
up to isomorphism exactly one finite field of order q.

We denote this finite field of order ¢ by F,. If ¢ = p° for a prime p then the field
F, has characteristic char(F,) = p. The field T, is the prime (sub)field of F,.

Fact 2.7 (Lidl & Niederreiter 1983, Theorem 2.8). In the field F,, the multi-
plicative group F* =T, \ {0} is cyclic.

Let ¢" be a prime power for n € N>;. Then F, is a subfield of Fgn. We may

regard F,» as an I, -vector space of dimension [F,»: F,| = n with basis B =
(g, - .. ,0p—1). Thus any element of F, can be written as a uniquely determined
linear combination of the elements of B over Fy, i.e. Fpn = {3 ., Aici: A; €
F,}.

The map

0: Fpn — Fpn with 0(A) = A?

is an isomorphism. It is called the Frobenius automorphism and satisfies (see Lidl
& Niederreiter (1983), p. 53)

o(A+B) = o(A)+o0(B) and,
(2.8) 0(A-B) = o(A)-o(B) forall A,B¢€Fy, and
o(A) = A if and only if A € F,.

The Galois group Gal(Fy /F,) is the set of all field automorphisms o’ of F» that
fix F, element-wise.
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Fact 2.9 (Bosch 1993, Section 3.9). The Galois group Gal(F,» /IF,) has order n
and is cyclic. It is generated by the Frobenius automorphism o: Fgn — Fyn with
o(A) = AL

See also Lidl & Niederreiter (1983), Theorem 2.21, and Jacobson (1974), Sec-
tion 4.13, for proofs.

2.2. Cryptographic background. We have already mentioned the connec-
tion between exponentiation and cryptography. We shortly summarize some pro-
tocols over finite fields that make use of exponentiation. We refer to the book of
Stinson (1995) for detailed presentations.

Public key cryptography. Cryptography, i.e. the art of hiding information
to eavesdroppers and other people but the dedicated receiver, has a long history
from its ancient roots up to our time. Classical cryptography uses a prearranged
secret piece of information K called the key, which is not only used to encrypt
a message but which also allows the receiver to decrypt the encoded message
easily. This is also called a symmetric cryptosystem. Modern telecommunication,
in particular the fast-growing Internet and electronic commerce, call for security
that is based on practicable cryptography which dispense with such a prearranged
secret K. Diffie & Hellman (1976) presented the idea of public key cryptography
to meet this demand. In a public key cryptosystem encryption and decryption
are governed by distinct keys, a public key K. for encryption and a private key
K, for decryption. Computing the private key K, from the public one K, has to
be computationally infeasible®.

Diffie-Hellman key exchange. The core arithmetic operation for the key ex-
change protocol dedicated to Diffie & Hellman (1976) is exponentiation in a finite
field F,. Originally, the authors have restricted their description to prime fields
with ¢ a large prime, but it can easily be adapted to all finite fields F» with
n € Nsq, or to other multiplicative groups G for which the discrete logarithm
problem is difficult to solve; see e.g. Menezes et al. (1993), Section 6, for a dis-
cussion of the discrete logarithm problem.

DEFINITION 2.10. Let G be a group and A, G be elements of G such that A €
(G). The task to find an integer x € 7 such that G® = A is called the discrete
logarithm problem.

! Diffie & Hellman “call a task computationally infeasible if its cost as measured by either
the amount of memory used or the runtime is finite but impossible large.”, Diffie & Hellman
(1976), p. 646.
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ProTocoL 2.11. Diffie-Hellman key exchange.

Public: A prime power ¢" € N>, and a primitive element G' € Fy..
Goal: Agreement upon a common secret key K € I, using an insecure channel®.

1. Alice chooses an integer k4 € {1,...,¢" — 1} at random. She computes
A= G* € Fpn by exponentiation.
2. Bob chooses an integer kg € {1,...,¢" — 1} at random. He computes B =

G*s € F,n by exponentiation.
3. Alice and Bob exchange A and B via the insecure channel.
Alice computes K = B4 € F,u by exponentiation.
5. Bob computes K = AF? € Fn by exponentiation.

=

Obviously, the security of this protocol is based on the fact that for an eavesdrop-
per Eve it is computationally infeasible to get K from the transmitted elements
A, B € Fy» and the public element G € Fgn. If Eve could solve the discrete loga-
rithm problem in F;» then she can get k4 from A and thus K = B*4, performing
Alice’s last step of the protocol. It is still an open question whether breaking the
Diffie-Hellman key exchange is as hard as solving the discrete logarithm problem,
but see Maurer & Wolf (1999).

ElGamal’s public key system. Diffie & Hellman (1976) proposed their sys-
tem for key distribution only. The generated key can then be used to establish
an arbitrary symmetric cryptosystem. ElGamal (1985) developed a public key
cryptosystem that is based on the idea of Protocol 2.11.

ProTocoL 2.12. ElGamal public key system.

Public: A prime power ¢" € N>, and a primitive element G € Fy..
Goal: Secure transmission of a message M € F;» between two parties.

1. Bob chooses an integer kg € {1,...,¢" — 1} at random. He computes Kg =
G*s € Fyn by exponentiation and publishes Kp as his public key.
2. Alice chooses an integer k£ € {1,...,¢" — 1} at random. She computes

K = K% € Fn and Ky = G* € Fyn by exzponentiation.

3. Alice encrypts the message M € . by computing C' = M - K. She sends
(C,K4) to Bob.

4. Bob first computes K = Kle € F,n by exponentiation. He subsequently
performs the division C'/K to get M.

Again, solving the discrete logarithm problem would break this cryptosystem.
2An insecure channel marks that all information exchanged between Alice and Bob are

assumed to be public. We do not deal with the more complicated property that the exchanged
data may also be manipulated by a third person during the transmission.
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Authentication. The (assumed) difficulty of solving the discrete logarithm
problem in finite fields can also be applied to authenticate a login in a multiuser
system without really storing the passwords, see the remark in McCurley (1990).
Assume that a primitive element G' € F,;» is given in advance. Without loss of
generality, we assume that the password m is an integer in {1,...,¢" —1}. Then
the system computes M = G™ € Fp» by exponentiation and stores M instead
of m. Recovering the password from M is just solving the discrete logarithm
problem. Now every time a user logs in with password m’ € {1,...,¢" — 1} the
system computes G™ € Fgn by exponentiation and compares the result with M.
There is no need to store the password itself.

All the described cryptographic applications are additional computation if
we share a user’s point of view. Thus, it is a crucial task to speed up these
applications. This can be done by speeding up exponentiation in the finite field
Fgn.

Security of the discrete logarithm. The intention of this work is to discuss
some aspects of those arithmetic which is used in cryptographic applications.
Therefore, we do not discuss security in the following chapters but we are inter-
ested in algorithms. All examples and test series are chosen with the intention to
illustrate arithmetic properties. Nevertheless, we shortly cite some facts to give a
feeling what security may mean with respect to the discrete logarithm problem.

Starting with the paper of Odlyzko (1985), there are several surveys on the dis-
crete logarithm problem, e.g. McCurley (1990), van Oorshot (1992), and Odlyzko
(1994, 2000). The discrete logarithm problem for Fy. can be solved in sub-
exponential time with

exp ((c + 0(1))n'/?1og?? n)

where ¢ € Ry is a positive constant. The corresponding algorithm follows the
approach of the so-called indez calculus method®. Reports on implementations
propagate that cryptography based on the discrete logarithm problem is now
insecure for Fon with n = 127 (see Blake et al. (1984), Coppersmith & Davenport
(1985)), and with n € {227,313,401} (see Gordon & McCurley (1992)). Gordon
& McCurley (1992) also report on experiments that show that discrete logarithms
in IF2503 and ]F2521 are feasible4.

An algorithmic approach of Pohlig & Hellman (1978) restricts the recom-
mended finite fields F» to those whose order #F;. = ¢" —1 has at least one large
prime factor. We summarize our short survey on the cryptographic background
using Odlyzko’s words: “The lesson to be drawn from these algorithms is that

3For an introduction on the index calculus method see e.g. Menezes et al. (1993), Section 6.6.

4«“We believe that 521 should now be possible to complete, albeit with the consumption of
massive amounts of computing time. Discrete logarithms in GF(2%%3) still seem to be out of
reach.”, Gordon & McCurley (1992), p. 322.
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to have a secure public key cryptosystem, one needs to choose the field [F;n |
carefully.”®

2.3. Environment of the experiments. One goal of this work is to discuss
parallel exponentiation from a practical point of view. Thus, we implemented
our main algorithmic ideas in software and will present times and experimental
comparisons throughout the text.

All experiments were performed on the Siemens hpcLine® computer, or PSC2
for short, at the Paderborn Center for Parallel Computing (PC?). This machine
is a cluster system with 96 nodes and 192 processors. Each node contains 2
Pentium II processors rated at 450 MHz, and has 512 MByte of local memory.
The operating system is RedHat 6.2 Linux. The nodes are connected to the
network via Dolphin PCI/SCI interfaces. We use a communication called ScaMPI
which has a rate of 83 MBytes/s and 8 us latency. The network itself consists of
a mesh of 12 times 6 nodes.

We have used the software library PUB to include parallel computation in
our C++-code. PUB supports parallel computation on computer networks and
massive-parallel machines. It supports implementations that follow the ideas
of the BSP-model invented by Valiant (1990), see Section 10.1. We have used
version 7 of the PUB library which has been developed by the group of Professor
Meyer auf der Heide at the University of Paderborn.”

50dlyzko (1994), p. 270.

6The cited facts and more details on this machine are available via http://www.upb.de/
pc2/services/systems/psc/main.html.

"Source code and manuals are available via http://www.uni-paderborn.de/~pub/. Many
special thanks to Ingo Rieping and Olaf Bonorden for their support on PUB.
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3. Sequential exponentiation and addition chains

We start with recalling some classical sequential algorithms for exponentiation.
They serve as an initial step for parallelization. In the first part (Section 3.1),
we relate exponentiation to addition chains. Addition chains can be regarded as
a model of computation: the element 1 is initially given, and new elements can
be computed by adding two already calculated predecessors. The additions are
related to multiplication in the original exponentiation algorithm. Some obser-
vations have inspired us to extend the model by a second operation: Doubling a
point on an elliptic curve is different from adding two distinct points. Computing
the Frobenius automorphism in a finite field can often be done much faster than
by successive multiplication. To model this, we add multiplication of an element
by a scalar ¢ € N>, as a new operation for addition chains. These g-addition
chains will become our basic model throughout this work. We adjoin different
weights to both types of steps to be in touch with the underlying multiplicative
group. The measure of the efficiency of an algorithm for powering is the length
of the corresponding weighted addition chain with scalar.

We reformulate and analyze Brauer’s idea to produce good, i.e. short, ad-
dition chains in Section 3.2. Next, we consider an algorithm of Brickell et al.
(1993); Yao (1976) described a similar algorithm for the computation of addition
chains for sets. We describe both versions of this algorithm in Section 3.3 and
give upper bounds on the length of the corresponding g-addition chains. In the
final part of this section (Section 3.4), we compare all discussed addition chain
algorithms. These experiments show that different types of steps gain advan-
tage for sequential exponentiation. In particular, Brauer’s algorithm beats the
competitors surprisingly clear in our model for certain weights.

3.1. Exponentiation and g-addition chains.

The exponentiation problem. Let G be a monoid. One may think of G as
the multiplicative monoid in a ring R or the multiplicative group IF;n of the finite
field with ¢" elements. Let A be an element of G and e € N5;. Raising the basis
A to the exponent e is then the calculation of

A=A..-Aeg.

e times

In what follows we often assume G to be a finite group. In this case we have
A#9 =1 in G by Fermat’s Little Theorem 2.3, and we may restrict the exponent
tobe 0 < e < #G. We define A°=1¢G.
Since G is associative the exponents are additive, that is for e, f € N>; we
have
At — A... A= (A---A)-(A---A):Ae-Af
— —_—

——
e+f e f
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and we can abstract from the concrete basis A and even from the given set G by
identifying a multiplication of the form A®- A/ in G with the addition e + f of
the two exponents e and f. This idea leads to a sequence of (positive) integers.
Such a sequence contains 1, which represents the element A. All other included
elements are the sum of two (not necessarily distinct) integers that appear in
the sequence. Therefore, we reduce the exponentiation problem to the theory of
addition chains®.

Original addition chains. The standard survey on original addition chains
can be found in the book of Knuth (1998), Section 4.6.3. Other overviews are
given e.g. by von zur Gathen & Néocker (1997) and Gordon (1998). An addition

chain 7 is a sequence of integers ay, ... ,ar with ag = 1 and ay = e, and for all
1 <7 < L there exist 0 < j,k <4 such that a; = a; + a;. Such an addition chain
is said to compute e € N>, if e € {ao,...,ar}. This definition does not specify

the concrete predecessors to compute an a;.

ExAMPLE 3.1. The sequence 1,2,3,5,6,11 is an addition chain computing e =
11. We can generate this sequence by computing 1,2 =1+1,3 =2+1,5 = 3+2,
6=5+1,11 =6+ 5. Alternatively one may get 6 as 6 = 3 + 3 which does not
touch the sequence of integers 1,2,3,5,6,11. O

This example shows that an addition chain is not uniquely determined by the
sequence of exponents. Thus, we prefer the following definition taken from von zur
Gathen & Nocker (1999) which does not restrict to the semantics but also includes
the syntax.

DEFINITION 3.2 (Addition chains). An addition chain v is a sequence of pairs of
non-negative integers (j(1), k(1)),..., (4(L), k(L)) such that 0 < k(i) < j(i) < i
for 1 <i < L. We define the semantics S(y) = {aq,... ,ar} by

ap = 1 and
a; = Gj) + QA (4) for all 1 <3< L.

We say that v computes e € N>; if e € S(7).

We may resort the sequence and remove pairs (j(i'), k(i')) for which exists an
index i # 7' such that a; = a;. By doing so we may always assume 1 = aq < a1 <
... < ag. Then there is a bijection from v onto S(v) x S(7v) by (j(¢), k(7)) —
(a(), ar@y)- We call R(v) = {(ajq), ar)), - - - 5 (@), arw)) } the set of rules of .
For better reading, we frequently describe 7 in terms of S(7y) and R(7).

8 Addition chains (the original term is the German word Additionsketten) first appeared in
Aufgabe 253 by Scholz (1937).
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ExAMPLE 3.1 CONTINUED. The second way to compute the sequence 1,2, 3,5,
6,11 in the example above is described by the addition chain v = ((0,0), (1,0),
(2,1),(2,2),(4,3)): We have ap = 1 by definition, and get the semantics by
successively inserting the given pairs as indices of the summands a;;y and ay):

CL1=CLO+CLO:1+1:2, a2:a1+a0:2+1:3,
a3:a2+a1:3+2:5, a4:a2+a2:3+3:6,
CL5=CL4+CL3:6+5:11.

The semantics is thus S(v) = {1, 2, 3,5,6,11} and the addition chain v computes
e.g. e = 11. The set of rules can be seen directly from each equation given above:

Ry) ={(1,1),(2,1),(3,2),(3,3), (6,9)}. O

An element of S(y) may also be called a node since a natural step is to
illustrate addition chains by connected directed graphs®. The set of nodes is just
S(7). Each rule (a;g), ars)) € R(7y) with a; = aji) + ak) represents two edges
(aj(), a;) and (ak(y, a;). We assume these edges to be different even if a;;) = ag).
The case j(i) = k() is also called a doubling.

ExXAMPLE 3.1 CcONTINUED. The following is a graph of the addition chain v =
((0,0), (1,0),(2,1),(2,2), (4,3)) described above. The addition chain has length
L = 5. In fact, there exists no shorter (original) addition chain for e = 11.

| i |
@:@ﬁ%@ﬁ@ (&Dﬁ@

The integer L = #8 —1 is called the (sequential) length ¢5(7y) of . Furthermore,
we define the minimal length ¢5(e) for e € N>; as

(3.3) l5(e) = min{ls(y): v computes e}.

If k(5) =i —1for 1 < i < L then 7 is called a star addition chain. In this case
the graph of v has a path from ag to ar, of length L. We define

(3.4) 05(e) = min{/ls(y): 7 is a star addition chain which computes e}.

Let v and § be two addition chains. The union ¢ = yUJ is given by S(¢) =
S(y) US(6) and R(g) = R(y) UR(4). This gives lo(e) < £a(7y) + £2(d), and
S(e) contains max{ar(y,br(s)}. We will also use the concatenation ¢ =y ® 6 of
two addition chains. This is given by S(¢) = S(v) U {ar(y) - bi: b; € S(9)} and
R(e) = R(v) U{(arey) - by aney) - bieiy): (06> brpy) € R(0)}. In this case, we
have l5(¢) = £5(7y) + £2(6) and S(e) contains ar(y) - bis)-

9Gee e.g. Knuth (1998), p. 480-481.
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ExXAMPLE 3.5. Let 7 be an addition chains given by S(y) = {1,2,4,5} and
R(v) =4{(1,1),(2,2),(4,1)}. A second addition chain ¢ is described by the sets
S6) = {1,2,3,6} and R(6) = {(1,1),(2,1),(3,3)}. The union addition chain
g1 =~y UJ of v and J is defined by
S(e1) =8S(v)US(0) ={1,2,4,5}U{1,2,3,6} = {1,2,3,4,5,6} and
R(e1) = R(7) UR(S) ={(1,1),(2,2), (4, 1)} U{(1,1),(2,1),(3,3)}
={(1,1),(2,1),(2,2),(4,1),(3,3) }-

The concatenation €5 = y®J extends the set of computed elements; the semantics
of the resulting addition chain is

8(52) = {1: 2a4,5} U {5 : 17 o - 275 : 3: - 6} = {17 2:4a 5, 10, 15: 30}
The set of rules to generate the semantics S(es) is given by
R(52) = {(L 1)a (25 2): (45 1)} U {(5 -1,5- 1)a (5 2,9- 1): (5 3,5 3)}
={(1,1),(2,2),(4,1),(5,5), (10,5), (15,15)},

and &, is an addition chain for e = 5 -6 = 30. O

Weighted addition chains with scalar. The special case of exponentiation in
a finite field F,» motivated von zur Gathen (1991) to extend the former definition.
Sometimes the Frobenius automorphism in Fy» can be computed faster than by
successive multiplications. To profit from this fact, we introduce a second type
of operation for addition chains, see von zur Gathen & Nocker (2000).

DEFINITION 3.6 (Weighted addition chains with scalar). Let q be a positive in-
teger, q > 2.

(i) An addition chain with scalar g, or g-addition chain for short, +y is a sequence
of pairs of integers (j(1),k(1)),...,(j(1), k(1)) such that 0 < k(i) < j(i) < 1,

or k(i) = —q and 0 < j(i) < ¢ for 1 < ¢ < [|. We define the semantics
S(v) ={ao, ... ,ai} by

a = 1 and

a; = Gj() + 770 Ifk(’l) 7é —q, and

a; = q-aq if k(i) = —q.

We call a pair (j(i), —q) a g-step and a pair (j(i), k(7)) with k(i) # —q a
non-g-step.

ii) A weight (co, ca) for «y is an element in Nsg X Ns;. A ¢-step is said to have
g Q Y > >
cost cq, the cost cy is assigned to a non-g-step.'”

10This generalizes the notion of von zur Gathen (1991), where only cg = 0 was considered.
He assumed “[ ... ] that computing a gth power is for free.”, von zur Gathen (1991), p. 360.
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Similar to original addition chains, we assume 1 = ay < a; < --- < @ and
describe 7 in terms of S(v) and R(y) = {(aqu), aku): 1 < @ < LE(E) # —q} U
{(ajiy, —q): 1 < i <1 Ek(i) = —q}. We set £(y) = #S(7y) — 1 and

(3.7) ¢,(e) = min{¢,(7y): v computes e}.

Furthermore, let Q(y) be the number of ¢g-steps in v and A(y) be the number of
non-g-steps. Then the weighted length L(7) is defined by

L(y) = cq - Q(7) +ca- A(v)-

EXAMPLE 3.1 CONTINUED. In the finite field F3» the Frobenius automorphism
raises an element to its third power. Thus, we can model this using a 3-addition
chain. Here a 3-step stands for the Frobenius automorphism, a non-3-step for a
multiplication. The exponent e = 11 has ternary representation (11)3 = (102).
The 3-addition chain v = ((0,0), (0, —3), (2, —3), (3, 1)) with weight (3, 3) has the
following graph

OCNORORT

The graph of v modifies as follows if we attach the weight (2, 3), i.e. we assume
that the Frobenius automorphism can be computed faster than a multiplication

byc:g.
_3.@3 2, 3
7 e@ W L=3-442-Q=10 o

A compiler for ¢-addition chains. We finally remark that a given g-addition
chain v computing e € N>; can be easily translated into an algorithm to evaluate
a power A° in a monoid G.

L=3-A+43-Q=12

ALGORITHM 3.8. Exponentiation with ¢g-addition chains.

Input: A monoid G, an element A € G, a scalar ¢ € N5, an exponent e € N>,
and a g-addition chain v = ((j(1),k(1)),-.., (4(1), k(l))) computing e.
Output: The power A€ in G.

1. If e =0 then return 1.

2. For1 <3<l do 34

3. If the pair (a;(), ak)) is a non-g-step such that k(i) # —q¢ then compute
A% A% A%
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4. Else Compute A% < (A%®)9.
5. Return A°.

Since we are mainly interested in exponentiation in the finite field F;» , we set our
basic cost measure to be the number of arithmetic operations in F,. A weight
(cg,ca) can be read as follows: cg is the number of operations in F, to compute a
g-th power in [F;» , and c4 is the number of arithmetic operations in IF, to calculate
a product of two (arbitrary) elements of F,». The number of operations to raise
an element in Fy» to a given power e € N> follows directly with Algorithm 3.8.

REMARK 3.9. Let Fyn be the finite field with ¢" elements. Let cq and cy4, respec-
tively, be the number of operations in F, to raise an element in Fy» to the g-th
power, and to multiply two elements in Fyn, respectively. Let v be a g-addition
chain with weight (cg, ca) computing erem (¢" —1). Then an element in Fjn can
be raised to the e-th power in sequential with

L(y) = cq- Q) +ca- A(7)
operations in .

3.2. The algorithm of Brauer. We adapt an algorithm for original addi-
tion chains described by Brauer (1939) to our extended model. This algorithmic
approach—also known as the m-ary method, see e.g. Knuth (1998), p. 464, and
Gordon (1998), Section 2.2—gives an upper bound on the (sequential) exponenti-
ation problem. In the case of finite fields F;» , Brauer’s idea leads to the following
statement.

COROLLARY 3.10 (Brauer 1939). Let F» be the finite field with ¢" elements,
s > ﬁ, and cg and c4 be the respective numbers of operations in F, to
evaluate a g-th power, and to multiply two elements, respectively. Then a power

of an element in Fy» can be computed with at most

n n
co-|n—1+ +c4- 14 o(1
© ( logg n) 4 log, n ( )
operations in I,.

Representation and Hamming weight. Let ¢ > 2 and m be positive inte-
gers. At the core of Brauer’s algorithm is the ¢™-ary representation of the expo-
nent e € Ny;. The g-ary representation of e is defined as (e); = (ex—1,- .. ,¢€)
such that e = Y g, €;¢" with ¢; € {0,...,¢—1} for 0 <7 < XA and ex_; > 1.
We call A = A\j(e) = [log, e] + 1 the length of the q-ary representation of e. The
integers e; are also called the digits of the g-ary representation.
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REMARK 3.11. The g-ary representation of an integer e € N>, is uniquely de-
termined.

Furthermore, we set wq(e) = Y (., €, the sum of digits of e with respect to g,
and v (e) = #{0 < i < A: ¢; # 0} for (€), = (ea—1,---. ,€0) the g-ary Hamming
weight of e. For ¢ = 2 we have 15(e) = ws(e) for all e € N>;.

Brauer’s idea. Brauer worked on original addition chains which are connected
to the binary representation of the exponent e. He suggested to group m > 1
digits of the 2-ary representation of the exponent e, which is just a change to
the 2™-ary representation of e. This reduces the number of non-2-steps in the
main stage but needs precomputation. The parameter m may be used to tune
the tradeoff between both stages. We give a modified version for all scalars
g > 2 which follows Brauer’s main ideas. The following algorithm computes a
g-addition chain.

ALGORITHM 3.12. Brauer ¢g-addition chain.

Input: An exponent e € N>y, a scalar ¢ € N>, and a parameter m € N5;.
Output: A g-addition chain v computing e.

1. Set A = A\ym(e) and let e;, 0 <4 < A, be the digits of (e);m = (ex—1,--- ,€0)-
2. Set £ ={ex_1,---,€0} and determine a g-addition chain 4’ with & C S(v').
3. Set vy =+"and €\_; = ex_1.

4. For 7 from A — 2 down to 0 do 5-6

5. For 1< j <mdoadd node €, ¢’ and rule (¢},,¢’~", —q) to .

6. Set e} = e} ,q™ +e;. If e; # 0 then add node €} and rule (ej ,¢™, e;) to 7.
7. Return 7.

We illustrate this algorithm by an example.

ExAMPLE 3.13. Let e = 47 be an exponent. We choose ¢ = 2 and m = 1 in
Algorithm 3.12 and generate the corresponding 2-addition chain of weight (1,2)
for (47)2 = (101111). Since £ = {1} no precomputation is necessary in step 2;
we set 7' the empty addition chain with S(v') = {1} and R(¢') = 0.
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LeMMA 3.14. The algorithm works as specified. It computes a q-addition chain
v for e with

QM) = m-(Agm(e) —1)+Q(Y) many g-steps, and
A(y) = ygm(e) =14+ A() non-q-steps

where ' is a g-addition chain that computes all digits of (&)gm.

PROOF. We show correctness by proving the following invariant:

el = Z e; (¢™)~" € S(v) after lap i of steps 4-6.

(2
i<j<A

Before the loop, we have ¢}, ; = ex_1 € S(7) since v = 7 and ey_; € S(7/) in
step 3. Thus, we can suppose that the invariant holds before lap 0 <7 < A — 1.
The induction hypothesis gives e}, ; = Y., 1<, €;(¢™) ") € S(7). The nodes
€1 --- €1 - ¢™ are added successively to S(v) in step 5. If e; = 0 then
e; = e;,,q™ is already in S(v) and the invariant holds. Else, ¢; is a new element
of 8(7) in step 6, and we have € = €} ,¢™ + €& = Y, ;5 (g™ I 4
ei(q™)" = ic;x€i(g™) " After the loop is completed, the algorithm returns
7. This g-addition chain computes e) = 3. iex€i(@™) 70 = e as claimed.

The number of steps can be seen as follows. In each lap of the loop, m many
g-steps are added to . In step 6 a further non-¢-step is added if and only if
e; # 0. Thus, we have a total of > .., ,m = m - (A;m(e) — 1) many g¢-steps
and #{0 <i <\ —2:¢ # 0} = yym(e) — 1 non-g-steps since ey_; # 0. Adding
the steps of 4" proves the claim. O

The special case m = 1 and ¢ = 2 chosen in Example 3.13 is well-known as
the binary addition chain or the binary method, see Knuth (1962)''. Applied
to exponentiation, it is also called repeated squaring. As illustrated above, the
precomputation is not necessary since all digits are in {0,1}, and 1 is given by
initialization. Thus, no further elements have to be stored. The binary addition
chain is a star addition chain. Since it is somehow the basic addition chain, we
state its properties.

COROLLARY 3.15. Let e € N>; be an exponent. The binary addition chain vy
gives the upper bound

ly(e) < l5(e) = Aa(e) — 1 +va(e) — 1 < 2|log, e].

Choosing the tuning parameter. In Algorithm 3.12, we can tune the trade-
off between precomputation (step 2) and the main stage (steps 4-6) with the help
of the parameter m. We give an example before we discuss the details.

1 “One method [ ... ] which one might call the Binary Method [ ... ].”, Knuth (1962), p. 598.
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ExAMPLE 3.13 CONTINUED. Let e = 47 be an exponent. We choose ¢ = 2 and
m = 2 in Algorithm 3.12, respectively. This generates a shorter 2-addition chain
of weight (1, 2) for (47),2 = (233) than the one with m = 1 given above. In step 2
the set £ = {1, 2, 3} has to be precomputed. We insert the addition chain ' with
R(Y') = ((1,1),(2,1)) in this example.

precomputation m=2: L=cg-5+cqa-3=11

Thus, the length is 2 units, i.e. the cost for one non-doubling or two doublings,
shorter than for the binary addition chain with weight (1,2) where m = 1 is
fixed. O

Now we focus on the general case. The g-addition chain ~; defined by S(v}) =
{1,2,...,¢" =1} and R(¥]) = {(a,1): 1 < a < ¢"™ — 1} satisfies the specification
of the precomputation. We refer to this chain as linear addition chain. It contains
only non-g-steps, i.e. A(y]) = ¢™—2 and Q(v]) = 0. But we can often do slightly
better by substituting the non-g-steps for multiples of ¢ by ¢-steps, as remarked
by Stinson (1990)!? and von zur Gathen (1992)!3. This idea gives a g-addition
chain v} with S(v4) = S(v}), but R(v4) = {(a —1,1): 2 < a < ¢"and a #
0 mod q}U{(%, —q): 1< a< g™ and a =0 mod ¢g}. This second ¢g-addition chain
has Q(14) = |22 | = g1 — 1 many g-steps and only A(y}) = g™ — 2 — Q(13) =
¢™(1— ;) — 1 non-g-steps.

We want to choose a suitable parameter m > 1 to obtain the lowest weighted
length L(7y). Observe that for all e € N>q, we have

log, e 1
Aqm(e)=UogqmeJJrlz{ % J+1=L logge] +1

log, g™ m

< %logqe%— 1< % (llog,e] +1) +1 = %)\q(e) + 1.
Furthermore, we use another helpful function. Define W: Ryq — Rby W(z) = w
with w the solution of the equation w - exp(w) = z. This function is called
Lambert’s W function, following Corless et al. (1993)!%. The problem to find an
m that minimizes the length of a Brauer g-addition chain can be reduced to an
equation of this type.

12 Algorithm compute-small-powers in Stinson (1990), p. 713.

18« ... ] we compute all z? [ ... ] with ¢ < d < ¢", d Z Omod g, [ ... ] the ones with
d = 0 mod ¢ can be computed free of charge.”, von zur Gathen (1992), p. 82.

M« .. ] we proposed to call this Lambert’s W function, because Lambert set the first
problem which required W for its solution, and because Euler attributed the series with which
he solved the problem to Lambert.”, Corless et al. (1993), p. 12.
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THEOREM 3.16. Let q and e be positive integers with ¢ > 2. Then there exists
a Brauer g-addition chain vy of weight (cg, ca) for e of length at most

Ing A ¢ —q 1 qglngq 1\?
LN <ea —22 (1L 1 . = A1/ (=
() < ea 2 w (+c—|—q—1 2w T +c+q—1 2w

where ¢ = 72, and A = \y(e) and w = W (%,/Wlnq).

PROOF. We assume Q(7) = ¢" ' — 1 and A(y') = ¢™ - (1 — ;) — 1 in Algo-
rithm 3.12 step 2. We have vgn(e) < Ay(e), and we substitute Agm (€) by A +1
with A = A\,(e) > 1. This gives an upper bound on the length of the g-addition
chain v with weight (cg, ca):

1
Ly) < cQ-<m-(EA+1—1)+qm1—1)
1 m m—1
+ea | =A+1-14¢"—q¢q -1
m

1 1 -1
q m q
c qg-—1

1
= ca- (qm- (—-I——) +—)\+c/\—(c+1)>
q q m
where ¢ = z—i > 0. For simplicity, we set u = i{;l > (. We define the function
1
L:Rsy = Rby L(m)=u-¢"+—=A+cA—(c+1).
= m
This is a continuous and differentiable function with

1
L'(m)=wu-lng-¢™ — W)\'

To find the extrema, we have to solve uIngq-¢™ — #A = 0. We can alternatively
solve uIngq-m?-exp(mIng) — A = 0. Observe that m > 1 and ¢ > 2, which gives

Ing-m?exp(mIng) = =
u
A
& \/lnq-erxp(mlnq)z\/;

R L Do) = 1 A0
2nqm exp2nqm—2 o

_1 :
We set M = 51ng-m. The equation

1 /A-Ing
M-exp(M)zé "
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has the solution M = W (% ,\.1;1(1) > 0. Therefore, the only possible extrema

is
2 1 /a1
m=—- W]/ = nay.
Inq 2 U

Observe that L(m)" = uln®q - ¢™ + #)\ > 0 for all m > 1, and we have indeed
a minimum. We substitute m by [m] and set w = W (%\/ A'Z”). Inserting the

solution in (3.17) gives

L(y) < ea-(f2a+ 02 ghet - 1)

(3.18) R
+cq - (% qm“—i—/\—l).

We have ¢?*/"¢ = exp(2w), and by definition W (z)-exp(W (z)) = =, which gives

1 gMlng
— 2 _
exp(?w) = exp(w) = 4—11)20—i—q7—1
Inserting this in (3.18) and sorting the terms proves the claim. O

In the literature one finds another choice for m which avoids Lambert’s W
function. For original addition chains with ¢ = 2 and ¢g = ¢4 = 1, Gordon
(1998) suggests m = log,log, e — 2log,log,log, e. A slightly different choice for m
has been given for the original case by Brauer (1939). We prove Corollary 3.10
applying the first choice.

PRrOOF (of Corollary 3.10). In the finite field Fyn, we have A¢ = A¢ with ¢/ =
erem (¢" —1) due to Fermat’s Little Theorem 2.3. Thus, we assume the exponent
e to be less than q", i e. A\g(e ) <n. We choose m = Llogq n—2 logqlogq n|+ 1 >1

and set ¢ = CA FN ln2 -
n (3.17):
L(V) < cqQ - (n — 14 qLIqu n—2log,log, n]+1 1)
. q
_ q —_ 1 n
—+ . [log, n—2log,log, n]+1 n »
ca (q q llog, n — 2log,log, n| +1
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IN

c (g—1) A il teg n—1+—
A\ login  log,n — 2log,log, n 9 log2 n

n g—1 log, n n
= c¢y- . + +eg-|n—1+—
log,n \log,n log,n — 2log,log,n log; n

n 14 2log,log, n L 4= 1
fr— c . .
A log, n log,n — 2log log,n  log,n

n
+cg-|n—1+
9 ( logz n)

2log,log, n

. . -1 .
But we have lim,,_,, log, n—2Tog o5, 7 0 and also lim,,_, 1oqg7 = 0 and the claim

follows. O
We finally remark that an analogous choice m = |[Aa(e) — 21log, Ao(e) | + 1 results

in the following upper bound on the length of the shortest (original) addition
chain for e € N>3:

(3.19) fa(e) < Mole) + %

Erdoés (1960) proved that this upper bound is the best possible. In fact, he proved
the following result.

(14 0(1)).

Fact 3.20 (Erdés 1960). For almost all e € N>q (i.e. for all e expect a sequence
of density 0)

Knuth (1998), p. 470, conjectured that ¢5(e) > A2(e) +logy wo(e) is a lower bound
that holds for all e € N>;. The best proven lower bound is due to Schonhage
(1975), and this estimate is very close to the conjecture; he showed /y(e) >
log, e + log, we(e) — 2.13.

Brauer for star addition chains. In the last paragraph of Section 3.2 we
focus on the special case ¢ = 2 and star addition chains. Obviously, the binary
addition chain is a star addition chain, while Brauer addition chains do not
always have this property, as shown in Example 3.21. But Brauer’s idea can be
modified to generate star addition chains in the case ¢ = 2. In fact, only one
doubling has to be substituted by a non-doubling.

EXAMPLE 3.21. Let m = 2 and e = 47 with (e),> = (233) as before. The graph
of this Brauer (original) addition chain for 47 is drawn below'. Obviously, it is
no star addition chain.

15We do not label the edges in the case of original addition chains.
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(D)@

m=2:L=28

We can alternatively substitute the doubling that generates 2e,_; (here: 2-2 = 4)
by a non-doubling since 2e) ; < 2- (2™ — 1). Furthermore, we precompute the
set £ ={1,...,2™ — 1} by the linear addition chain.

(OO~~~ W=e=1)—1)

m=2:L=8 ¢

This algorithmic idea has already been described by Knuth (1998) in his proof
of a result of Brauer (1939). The modified algorithm generates a star addition
chain for given positive integers m and e of length

L(y) <m-(A(e) — 1) + vom(e) + 2™ — 3.

This is the same estimate as in Lemma 3.14 when the digits of e are precomputed
by a linear addition chain. The only modification is the exchange of doubling
steps by non-doubling steps.

COROLLARY 3.22 (Knuth 1998, Section 4.6.3, Theorem D). For a positive inte-
ger e there is a star addition chain v computing e in length at most

) < 1) < o) + 28

(1+0(1)).
Thus, both ¢y(e) and ¢3(e) show the same asymptotic behavior for e — oc.
Obviously, f2(e) < ¢3(e) for all e € N5;. But equality does not always hold.
Knuth (1998) reports on calculations!® that show that e = 12509 is the smallest
counter-example. Hansen (1959), Satz 1 showed that the difference £5(e) — ¢5(e)
can become arbitrary large for suitable exponents.

We will use star addition chains which are shorter than the binary addition
chain in Section 6.5. They will be useful to decrease the time to compute the
inverse of an element in Fy. .

16 “Extensive computer calculations have shown that n = 12509 is the smallest value with
I(n) < I*(n).”, Knuth (1998), p. 477. [Here I(n) and I*(n) are our £2(n) and £5(n), respectively.]
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3.3. Addition chains for sets. Up to now we have used a ¢-addition chain
7" in Algorithm 3.12 step 2 which contains all possible non-zero digits {1, 2, ...,
g™ —1} of the ¢"-ary representation (e),~. But we only have to find a g-addition
chain that computes the set £ = {eg,...,ex_1} of all non-zero digits of (e),m.
This idea and respective experiments on it can already be found in Bos & Coster
(1990)'7. A g-addition chain y computes a finite set £ C Ny; if £ C S(v).
Yao (1976) presented a construction to generate an original addition chain that
computes £ C N>;. Brickell et al. (1993) used a similar approach to generate an
addition chain for a single exponent e € N>;. We refer to such a chain as BGMW
addition chain. We present their ideas but extend them to weighted g¢-addition
chains.

BGMW addition chains. Algorithm 3.12 computes and stores the digits
€o,--. ,ex—1 of the ¢™-ary representation of a given exponent e in the precom-
putation stage. The idea of Brickell et al. (1993) is to precompute all positions
(g™)° ..., (g™ " of (e)ym in place of all digits. These elements are used to
calculate e by grouping them according to the digits eg, ... ,ex_1:

(3.23) e — Z ei(q™) = Z Z ¢

0<i<A 0<j<gm \ 0<i<A
€;>]

EXAMPLE 3.24. For the exponent e = 47 and the scalar ¢ = 2 we choose the
parameter m = 2. Then the BGMW addition chain with weight (1, 2) for (47), =
(10/11]11) is given by the graph:

precomputation m=2: L=cqg-4+cy-4=12

ALGORITHM 3.25. BGMW addition chain.

Input: An exponent e € N>y, a scalar ¢ € N>o, and a parameter m € N>;.
Output: A g-addition chain v for e.

1. Set A = Aym(e) and let (e)gm = (ex—1,...,€) be the ¢™-ary representation
of e. Set v the empty addition chain with S() = {1}.
2. For1<i< Ado

174Of course, it is more efficient to use an addition sequence producing only the needed
numbers.”, Bos & Coster (1990), p. 403.
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3. For 1 < j < m do add node ¢*="™+7 and rule (g¢=V"+t0-1 —q) to 7.

4. Set a =0 and b = 0.

5. For j from ¢™ — 1 down to 1 do 68

6. For all e; = 7 do

7. Set a + a+ ¢™. If a ¢ S() then add node a and rule (a — g™, ¢™)
to 7.

8. Set b« b+ a. If b & S(v) then add node b and rule (b — a,a) to 7.

9. Return 7.

LEMMA 3.26. The algorithm computes a g-addition chain for e with

Q(y) = m-(Agm(e) —1) many g-steps, and
A(y) < vgm(e)+¢™ —3 non-g-steps

and all g-steps and no non-q-steps are performed in the precomputation stage.

ProoF. Correctness follows with (3.23). All g-steps are performed in steps 2—
3. There are Q(y) = (A — 1) - m many g¢-steps. The main stage (steps 4-8)
contains only non-g-steps. In the worst case, the outer loop adds a node to vy
in each turn except the first one since b is initially 0. This yields ¢™ — 1 — 1
non-g-steps. For the inner loop we have >, ;. (#{0 < i < Are; = j}) =
#{0 < i< A:e; #0} = vym(e) non-g-steps. Since we have a = 0 before entering
the loop, this number can be decreased by 1. Thus, we count a total of at most
A(y) < ¢™ — 2+ ygm(e) — 1 non-g-steps as claimed. O

The precomputed multiples of ¢ do only depend on the number of digits in
(e)ym but not on the specific digits. Therefore, we need to execute the precom-
putation stage only once if we want to compute a g-addition chain for a finite
set £ = {eW,... e} C N5y with ¢ > 1. Originally, Yao (1976) has used this
observation as key argument of his proof. It is the basic idea of the following
corollary.

COROLLARY 3.27 (Yao 1976). Let £ = {eM),... e be a finite set of positive
integers and e = max&. There is a g-addition chain y with weight (cg,ca)
computing & with length at most

o)
L(y) < cq-Mle) +ea- > % (1+0(1)).

1<i<t 08¢

PrROOF.  We have )\, (e®) < A\ (e) for all 1 <4 < ¢. Thus, the precomputation
stage for e = max & covers all elements which are necessary in the main stage to
calculate all € € €. Since m - (Agm(e) — 1) < Ay(e), the number of g-steps may
be assumed to be independent of the tuning parameter m.
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For an element ¢’ € £, we have ygn(€)—1 < Agm(€')—1 < LN with X' = ),(¢).
This gives a total sum of at most %/\’ + ¢™ — 2 non-¢-steps when performing
steps 4-8 in Algorithm 3.25 for ¢’. We choose the tuning parameter m for each
element of &£ separately. If bé\Tl,\' < 1, we set m = 1. Otherwise, let m =

q
|log, \' — 2log,log, A'| + 1. Then there are

N + quogq X —log,log, N [+1 9
|log, \' — log,log, \'| +1
N N

+ [ —

log, ' — log,log, X' ' * " logZ
N 2log log, X N
_ . Bl08 X0 ) Ny o)),

log, X log, N — 2log,log, A"~ log, ' log, X'

many non-g-steps. Summing up the number of non-g-steps for all elements in £
proves the claim. O

For a finite field F;», we can assume 0 < e < ¢" and A,(e) < n by Fermat’s Little
Theorem 2.3. Choosing m = |log, n — 2log,log,n| + 1 in Algorithm 3.25 gives
the following upper bound on exponentiation in finite fields.'®

COROLLARY 3.28 (Brickell et al. 1993). Let F,» be the finite field with ¢" ele-
ments, logLQn > 1, and cg € N5¢ and ¢4 € N5; be the number of operations in
2 > >

F, to calculate a q-th power, and to multiply two elements, respectively. Then a
power of an element in Fyn can be computed with at most

cg-n+ca- (14 0(1))

log, n
operations in I, .

Therefore, applying Algorithm 3.25 as the precomputation stage in Algo-
rithm 3.12 might reduce the number of steps to evaluate a given power. In fact,
if the computation of a (suitable) power of ¢ is (much) faster than the succes-
sively calculation by g¢-steps, this strategy may be more powerful than one of
the above algorithms. An example for this had been given by Gao et al. (2000),
Algorithm 2.3.

3.4. Experiments. As a first step stone of our experiments, we implemented
both Algorithm 3.12 (for binary addition chain and Brauer addition chain) and
Algorithm 3.25 (BGMW addition chain) for ¢ = 2 in C++. We also implemented a
class in C++ to handle exponents in an object-oriented fashion. The addition chain
algorithms possess an interface to specify the underlying group. The arithmetic

18Tn Brickell et al. (1993), p. 206, one can find a similar estimate for exponents of fixed size.
This is the case for finite fields.
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of the group includes the two basic operations multiplication (non-doubling) and
squarings (doublings). For the first experiments we do not specify the group.
Here, we only have counted the number of doublings and non-doublings of the
different addition chain algorithms. We use the normalized weighted length
L(y)/ca = A(y) + ¢ - Q(y) for a weight (cg,ca) and ¢ = i—‘j as our measure
for quality; the shorter a 2-addition chain, the better.

One can find an extensive comparison between five different addition chain
algorithms, including the three addition chains which are subject of our experi-
ments, in von zur Gathen & Nécker (1997, 2000). In what follows, we discuss the
influence of different weights (cq, c4) on the different addition chains. In von zur
Gathen & Nocker (1997), the weight was fixed, and the test series for the addition
chain algorithm differed by their Hamming weight v5(e). The binary length of
the exponents was restricted to A2(e) € {160,512,1024}.

We selected 50 values n = 2007 with 1 < ¢ < 50 for our experiments. For each
value of n, we chose 10000 exponents at random with binary length Ay(e) = n. For
each exponent, we generated the binary addition chain, the Brauer addition chain,
and the BGMW addition chain for five different sets of weights, see Tables A.1—
A5 in Appendix A. For each n of this 15 test series, we determined the average
number of doublings (A) and non-doublings (@) for all 10000 trials. Furthermore,
we computed the normalized length L = A + ¢ - Q with ¢ = z—j for each n and
weight (cg,ca) to facilitate comparison.

We chose five different sets of weight: original addition chains are given by
weight (1,1) (see Figure 3.1 and Table A.1); 2-addition chains with free doublings
are modeled by weight (0,1) (see Figure 3.3 and Table A.5). The remaining
three series were inspired by constructions of the finite field Fy» using different
polynomial basis representations. For one series documented in Figure 3.2 and
Table A.2, we have a weight close to (2, 3), see the results of Section 5.2.1. For the
two other series the weight decreases for increasing n; the quotient ¢ = z—i starts
approximately at % and is close to 0 for n &~ 10000, see Table A.3 and Table A.4,
respectively. This is the situation that we will discussed in Section 5.2.2 and
Section 5.2.3, respectively.

For Brauer addition chains and BGMW addition chains we had to select a
tuning parameter m. We chose that m which generates the minimal average
normalized length L over all 10000 trials for fixed n and c¢. Our experiments
validate the theoretical results of Theorem 3.16 on m (see column 6 of Tables A.1-
A.5). In particular, the optimal tuning parameter m for Brauer addition chains
depends not only on n but is also influenced by the ratio ¢ = i—i!

The experiments showed the worst performance for the binary addition chain,
independent from the binary length n and c. This meets our theoretic estimates.
The speed-up between the binary addition chain and the other two chains depends
on the weight. For both the Brauer and the BGMW addition chain the speed-up
is roughly 1.3 if cg = c4 = 1, see Table A.1, columns 10 and 15. The best speed-
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Original addition chains: weight (1,1)
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weighted length a.c. vs. length of exponent
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binary length of exponent
[ binary —— BGMW % ]

Figure 3.1: Comparison between three different addition chain algorithms for
original addition chains: binary addition chain (4), Brauer addition chain (x),
and BGMW addition chain (). The figure shows the quotient between the
weighted length L = c4 - A 4 co - @ and the binary length of the exponent
Ao(e) = n multiplied with c4. On the z-axis the binary length of the exponent is
marked, the quotient is given on the y-axis.

up in the experiment was achieved for cg = 0. Then Brauer addition chains had
a normalized length which is only 27% of the length of the binary addition chain
for n = 9998, see Table A.5, column 10.

Our experiments as documented in Figure 3.1 are also in agreement with the
theory for original addition chains if we compare Brauer and BGMW addition
chains. Here, both algorithms generated 2-addition chains of nearly the same
normalized length L, see also Table A.1, columns 9 and 14. Corollary 3.10 and
Lemma 3.26 give the same estimates in this case. But Figure 3.3 shows a signifi-
cant difference between both methods if cg = 0. The average length of a Brauer
addition chain for n = 9998 is about 10% shorter than that of the BGMW addi-
tion chain. Nevertheless, this coincides with the theoretical results if we compare
the bound given in Lemma 3.14 to that in Lemma 3.26. We have

cg-(m-Agm(€) =1)+¢™ " =1) +ca- (vgm(e) +¢" —¢™ ' —2)
for a Brauer g-addition chain versus
CQ . (m . ()\qm(e) — 1)) + CA . (qu(e) +qm _ 3)

for a BGMW g-addition chain. Thus, the latter has ¢™ ' — 1 less g-steps, but
the number of non-g-steps increases by the same order. We conclude that Brauer
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Addition chains: c=2/3
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Figure 3.2: The same experiment as illustrated in Figure 3.1 but for weight
roughly (2,3). This situation is given for a polynomial basis representation of
Fy» with arbitrary modulus and division by remainder via Newton inversion, see
Section 5.2.1.

2-addition chains with free doublings: weight (0,1)
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Figure 3.3: The same experiment as illustrated in Figure 3.1 but for weight (0, 1),
i.e. doublings are free.



Data structures for parallel exponentiation 33

g-addition chain have the advantage of generating a shorter overall ¢g-addition
chain if ¢g is less than c4. Our experiments validated this effect for weighted
2-addition chains.

Therefore, we will chose Brauer 2-addition chains to generate the sequential
exponentiation algorithm since it always computes shorter addition chains if ¢ <
c4. In the experiments described in the subsequent sections, we connect the
implementation of Algorithm 3.12 with different routines for multiplications and
squaring via the interface mentioned above.
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4. Parallel exponentiation

How fast can we evaluate a power in parallel if the number of processors is not a
bottleneck? Surprisingly, we have found more than one answer in the literature.
The answer given by Kung (1976) and Borodin & Munro (1975) holds for a model
of unitary cost. Using our language their result is applicable to original addition
chains. A model of addition chains with free scalar has been described by von zur
Gathen (1991)". He allows g-steps without cost for a fixed scalar ¢ € N>, i.e.
cg = 0, and assumes that non-g-steps have unitary cost c4 = 1. Both models are
covered by our approach of weighted g-addition chains.

This section presents the first main result of our work. We have already
identified the weight (cg, ca) to be a helpful tool for the construction of sequential
g-addition chains. In this section the ratio ¢ = 2—3 determines how successful a ¢-
addition chain can be computed in parallel. We first develop a parallel algorithm
for g-addition chains that depends on c¢. The starting point is an algorithm of
Borodin & Munro (1975) (Section 4.1). In the second part of this section, we
generalize an idea of Kung (1976) to give a lower bound on the depth of a weighted
g-addition chain for an exponent e € N>;. This bound also depends on c. The
main tool is a so-called scaling for (e), with respect to c. It depends not only on
e but also on the scalar ¢ € N>, and the quotient ¢ = Z—i € Q> (Section 4.2).
Our results, both the algorithmic approach and the lower bound, close a gap by
connecting works of Kung (1976) and Borodin & Munro (1975) with a result of
von zur Gathen (1991) on parallel exponentiation. Our new approach points to ¢
as an indicator on the potential speed-up which can be achieved for a given data
structure (Section 4.3).

4.1. An algorithm for parallel exponentiation. In the first part of this
section we answer the question by giving an algorithm (and thus an upper bound)
for parallel exponentiation in our model of weighted g-addition chains. Adding
the result of von zur Gathen (1991), Theorem 4.3, for weight (0, 1) the algorithm
gives the following upper bound on the number of operations in F,,.

COROLLARY 4.1. Let Fyn be the finite field with ¢" elements, and cg and ca
be the number of operations in ¥, to evaluate a qth power, and to multiply two
elements, respectively. Then a power of an element of Fgn can be computed in
parallel with at most

(i) cg-(n—1)4ca- ([logy(¢ —1)] + 1) operations in F, if cg > c4 > 1. This
can be performed with q processors.

19¢A very simple type of arithmetic circuit consists just of multiplications and gth powers [
... ]. This type of circuits corresponds to addition chains [ ... ]. Free gth powers in the circuit
correspond to free multiplications by q in the addition chain. These chains [ ... ] will be our
model for the remainder of the paper.”, von zur Gathen (1991), p. 371-372.
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(ii) co- (n—1)+cy- ([logQ(q -D]+1+ [log2 (min {n, k—g-‘ })-‘) operations

in ¥, ifcy > cg > 1. This can be performed with ¢ — 1 4+ min { [z—g-‘ N0
Processors.

iii) c4 - ([logy(q — 1) | + [logyn|) operations in F, if c4 > 1 and cg = 0. This
2 2 q Q
can be performed with | 3n(q — 1))] processors.

4.1.1. The depth of an addition chain with scalar. In this section we
assume that the number of available processors is not a priori bounded. Borodin
& Munro (1975) called this unbounded parallelism. We use the parallel random
access machine (PRAM) as our basic model for parallel computation. The PRAM
is a shared memory model with P € N;; processors, see Figure 4.1. The P

[main control progrann |

Processors: 0 1 e P-1

common global random-access memory

Figure 4.1: The scheme of a PRAM, see Gibbons & Rytter (1988), Figure 1.1.

processors are subscripted from 0 to P —1. They work synchronously and execute
the same program. Each of them may work on different data. The instructions of
the program can depend on the processor label. The processors communicate via
the shared memory. We assume that any number of processors can simultaneously
read the same data, but no two processors may write at the same time into the
same memory location. For a detailed introduction on this model of parallel
computing we refer to Gibbons & Rytter (1988), Section 1.1. The PRAM leads to
the following rule for the parallel computation of addition chains: All previously
calculated nodes of a g-addition chain may be used by any of the processors
without further cost. In particular, two or more of them may simultaneously
access to the same already calculated node. Thus, it is of no importance which
processor has computed the predecessors of a node. This is the common idea of
shared memory which neglects communication cost.
Let v be a g-addition chain with weight (cq, ca). We set

0 ifa=1,
dg@ (@) = cq+dy ™ (afq) if (a/g,~q) € R(3).
ca + max{d (), d @ (a — o)} if (a',a—a') € R(Y)
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since we assume that each node is computed only once, and due to the shared
memory it is available by all processors. We define the depth 0, .,)(7) of a
g-addition chain vy with weight (cg,c4) as

Segen) (1) = max{df@4)(a): a € S(7)}.

The minimal depth for an exponent e € N>, depends on the scalar ¢ € N>, and
on the weight (cg, ca):

— . O(egen)(7): v is a g-addition chain with
(42) dq(eqen(e) = mln{ weight (cg, ca) that computes e ’

We say that a g-addition chain v with weight (cg, c4) can be computed in parallel
(in depth &(y.c.)(v)) with P € N1 processors if

P> max  #{dy (c.en)(a) =1t a € S(v)}.

B OStSJ(CQ <A) (7)

4.1.2. Basic algorithms. We start with original addition chains, i.e. ¢ = 2
and c¢g = c4 = 1. The basic algorithm was given by Borodin & Munro (1975),
Chapter 6, and it is illustrated in Figure 4.2. Chiou (1993) described the same
algorithm for a parallel implementation of the RSA-cryptosystem?°.

ALGORITHM 4.3. Parallel exponentiation in case of unitary cost.

Input: An exponent e € N>; with binary representation (e), = (ex_1,... ,€p).
Output: An (original) addition chain vy computing e.

1. Set v the empty addition chain with S() = {1}.

2. For all processors 0 < p < P = 2 in parallel do 3-5

3. For 1 < i < [logye] do 4-5

4 If p=0and i < X\y(e) then add node 2¢ and rule (27!, 2¢71) to .

5 If p=1and Y ;. ;€;2" > 27" then add node ) ,_,_; ¢;2’ and rule
(D 0<jcior €27,281) to 7.

. Return 7.

(o))

THEOREM 4.4 (Borodin & Munro 1975, Lemma 6.1.1). Let e € N>; be an ex-
ponent. Then there is an addition chain vy computing e in depth

d2,1,1)(€) < 01,1)(7) = [logye] .
The addition chain can be performed with 2 processors.

20The security of the RSA-cryptosystem is not based on the discrete logarithm problem but
on the difficulty to factor large integers. It has been developed by Rivest et al. (1978). Their
idea introduced a second family of public key cryptosystems.
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-~ doublings
processor 0 (1D—{(2)—(4)—(8)—16—32

S S A

. _ __ __ __ non-doublings

Figure 4.2: An illustration of Algorithm 4.3 for the exponent (47)s = (101111).

PROOF. The termination of the algorithm and the number of processors are
clear. We prove partial correctness by showing that the following invariant holds
for steps 3-5: After lap 1 < i < Xo(e) the nodes 2¢ and > o<j<i e;27 if non-zero
are in S(v). By induction on i: Before the first lap of the loop, the invariant
holds since 2° = 1 is in S(7) for the empty addition chain y and )7, €;27 = 0.
Thus, suppose the invariant holds for s — 1. Since 27! € S(v), processor 0 adds
the node 2¢ to S(v). If > o<j<i ;27 < 271 then processor 1 has to add no new
node in step 5. Therefore, we assume 20§j<i e;2 > 21, By the induction
hypothesis both Y7 ., ;€;2 and 2" are in S(y). But Y g ;e;27 > 27" if
and only if e;_; = 1, and hence, > o<j<i e;27 is added to S(7).

If e = 2*2()~1 then processor 0 computes the node e in lap i = A\y(e) — 1 =
[log, e]. If e is not a power of 2 then processor 1 adds 2*2(€)~1 2 0<j<ra(e)—1 e;j2
to S(7y) in the final lap since [log, e] = A2(e) in this case. -

Both processors perform at most one non-g-step in each lap. This proves the
claimed depth. 0

Adding a suitable number of processors, the algorithm can be used to compute
an addition chain v in parallel for a set & = {e!),... e®} C N5; in depth
[log, €] where e = max&. While processor 0 successively performs all powers
20 ... 2llosze] a5 hefore, processor p € {1,...,t} collects and sums up the in-
termediate results of processor 0 along the binary representation of e®. This is
illustrated in the left part of Figure 4.3.

COROLLARY 4.5. Let t € Ny; and & = {eM,... e} C N5, be a set of inte-
gers with e = max . Then there is an addition chain v computing £ in depth
da,1y(77) = [logy e] using t + 1 processors.

If we compute all integers £ = {1,...,q— 1} for ¢ > 3 we can use the processors
more sparingly than for an arbitrary set, see the right part of Figure 4.3. In lap
1 < < [logy(q —1)], one can show by induction that exactly 2~ processors are
enough to compute all nodes 2°='+1,... ;2% in lap 7. The final lap i = [log,(¢—1)]
adds only the nodes 2= D1-1 11 41 using g—1—2/10820¢- D11 processors.
Hence a total of P = 2MM982(¢-11-1 processors is sufficient to compute all elements
in€&={1,...,¢—1}.



38  Michael Nocker
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Figure 4.3: Original addition chains computing sets in parallel. The left addition
chain illustrates Corollary 4.5 for the set £ = {5,6,7}. The right one is due to
Corollary 4.6 for £ = {1,2,...,7}.

COROLLARY 4.6. Let ¢ € N>3. An addition chain for the set £ = {1,... ,¢—1}
can be computed in parallel in depth [log,(q — 1)] using at most 2°&2(a=D1-1 <
q — 1 processors.

We now consider the general case ¢ > 2 and cg > c4 > 1. For this situation the
same algorithmic idea can be used to parallelize a ¢g-addition chain with weight
(cg,ca). Then Algorithm 4.3 generalizes as follows: We first compute the set of
digits of the g-ary representation of the exponent e in parallel using at most g —1
processors. After this precomputation we perform a main stage on g processors
along the g-ary representation of e. All but one processor compute ¢-th powers
to attach the right power of ¢ to each digit e;, 0 < i < Aj(e). The remaining
processor collects these intermediate results e;¢* and multiplies them.

ALGORITHM 4.7. Parallel exponentiation for cg > c4 > 1.
Input: A scalar ¢ € N>p, and an exponent e € N>; with g-ary representation

(e)g = (ex-1,--- ,€0).
Output: A g-addition chain v computing e.

1. Compute an addition chain v for & = {eg,... ,ex_1} C {1,...,¢—1}.

2. For all processors 0 < p < P = ¢ in parallel do 3-5

3. For 1 <i < [log,(e)] do 4-5

4 If p<g—1and {i < j < Afe): e = p+ 1} # 0 then add node
(p+1)¢' and rule ((p+1)¢"~", —q) to 7.

5. If p=g—1and >, ej¢’ >ei1¢' " then add node Y, _; e;¢’ and
rule (3 o1 €9’ €im1g’ ') to 7.
6. Return 7.

THEOREM 4.8. Let e € N>1 be an exponent, ¢ € N>, be a scalar, and (cg, ca)
be a weight with cg > c4 > 1. Then there is a g-addition chain vy with weight
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Figure 4.4: The graph of a 4-addition chain with weight (2,1) computing 47 due
to Algorithm 4.7.

cg,C4) computing e in depth
Q

Ogeqien)(€) < O(eqrea) (V) < ca ([logy(q —1)] +1) +cq - (Ag(e) —1).
This g-addition chain v can be performed with q processors.

ProOF. The proof of correctness is similar to the one given for Theorem 4.4.
The invariant here is as follows: After lap 1 < i < ),(e) the nodes e;q’ for
i < j < Agle) and Yo i e;¢7 if non-zero are in S(7). The estimate on the
depth follows by adding the depth [log,(¢ — 1)] to compute & C {1,... ,¢— 1}
according to Corollary 4.6 and the depth of steps 3-5. But all processors perform
either a ¢-step or a non-¢-step or no step in each lap of the loop. By assumption
we have cg > ¢4 which gives cg - (A;(e) —1). A final non-¢-step may be added if
Aq(€e) = [log,(e)] and the claimed depth follows. O

4.1.3. Parallelizing the non-¢-steps. We might also apply Algorithm 4.7 to
the case ca4 > cg > 1. Then the depth is no longer dominated by the g¢-steps
in Algorithm 4.7 step 4. Now the non-¢-steps—which are performed in step 5
by a single processor—become the bottleneck. To decrease the total depth, we
therefore want to parallelize Algorithm 4.7 step 5. We suppose in this subsection
that the elements of the set £ = {eg,...,ex 1} are given at depth 0, i.e. the
precomputation has already been done. While a single processor computes a
single non-g-step, at most [g—g] new intermediate results e;¢’ are ready for further
use. But only one of these results is sufficient to keep a single processor working.
The other [z—g] —1 intermediate results can be take from the stack by [g—;‘} —1 other
processors. Since we concentrate only on the non-g-steps within the main stage
now, we label the involved processors by 0 < p < P' = [z—;‘] here?!. Our idea is

thus to distribute the \,(e) many intermediate results e;¢’, 0 < j < \,(e), equally

21 Additionally, there are ¢ — 1 processors calculating the g-steps in parallel.
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g-steps ]
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‘ i« i« <

proc. ¢+ Inon-g-steps -——— ———l) ——=osl)—

‘ O elements of D, D elements of D; . elements of D, ‘

Figure 4.5: An illustration of the distribution of the non-g-steps for ¢4 = 5 and
cg = 2. We can identify [5] = 3 sets of nodes such that each processor can
perform a non-g-step before the next node is attached to this processor. All
drawn edges have weight c4 = 5. We label only those nodes that are calculated
by precomputation and g-th powers. Note e; denotes e;q¢’.

to the P’ processors. Since cg - [i—;‘] > c4, each processor can complete a non-q-

step before the next intermediate result e;¢’ is attached to this processor. Our
idea is illustrated in Figure 4.5. Summing up the results of these P’ processors
is a different task which we will discuss in the next paragraph. Formalizing this
idea, we define a partition on the set of indices {0,1,...,A\;(e) — 1} by

(4.9) D,={0<j<N(e): j=pmod P'} for 0<p< P = ’VEA-‘
Q

Then each processor computes the intermediate result

Ep:ZejquorO§p<P'

J€Dp
in depth at most c4 + cg - (Ay(€) — 1). More precisely, we have the following:

ProrosiTION 4.10. Let e be an exponent, e > 1, q be a scalar greater than
1, and (cq,ca) be a weight such that c4 > cg > 1. Let the set of digits £ =
{eo,... ,ex_1} be given, and D, for 0 < p < P' = [g—g] be defined as in (4.9).
Then the sum E, =
depth at most

jep, €54’ for an 0 < p < P' can be computed in parallel in

ca-Dp+cq- ([(Agle) = 1)/P'] - P'+ A})
where

O ifXN(e)=p< P , _f p+1 ifp < (AN(e) —1)rem P’
By = { 1 else, and &, = 0 else.
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g-steps |

11331”00- 02 @ e10 @ no more q-steps to compute
0q—

proc. ¢ — 1 3 «O M P
I I e | \

proc. ¢ +1 | =. | =. ‘
|non-g-steps _________ non-g-steps
main stage collection

Figure 4.6: An illustration of the collection for c4 = 5 and ¢g = 2. Only edges
with weight c4 are drawn. We have an addition along a tree with at most 3
leaves. This step is attached to the main branch-step, see Figure 4.5. It sums up
the single results of the sets Dy, Dy, and D,.

PrOOF. Since ¢g - [i—g] > ¢4, we can compute a non-¢g-step while the next

intermediate result e;q¢’ is calculated. Thus, the sum E, = Zjer e;jq¢’ can be
computed in depth at most cg - max D, + c4. The final non-g-step is done if and
only if #D, > 2, i.e. Aj(e) > P'+p for 0 < p < P'. It remains to determine
max D, for each 0 < p < P'. By construction we have [%J elements equally
distributed between the sets Dy,...,Dp. The set D,, 0 < p < P', has one
further element if and only if (A;(e) — 1) — P'- L%J > p as claimed. O

4.1.4. Collecting the results. At most P’ parts of the exponent are com-
puted in parallel. These intermediate results Ey, ..., Ep_1 have to be summed
up in a subsequent stage. The most common method uses a binary tree with
| P'/2| processors in parallel. Our task is a little bit more complicated, because
not all leave nodes E, = Zier eiq’ for 0 < p < P’ may be available at depth 0.
Proposition 4.10 states that if a summand is computed at depth d, its successor
might be available not before depth d + cg. We discuss the scheme illustrated in
Figure 4.6

PROPOSITION 4.11. Let (cg,ca) be a weight and P’ be a positive integer such
that cx > co - P' > 0. Let Ey,...,Ep_; be non-negative integers. If E, is
available in depth cq - p for 0 < p < P’ then ZO<p<P’ E, can be computed in
depth at most

ca-A+ecg- (2 —1-2-(24-P)

where A = [log, P'].

PrROOF.  We prove, by induction on the number of leaves P’ € N5, the follow-
ing claim: If Ey, ..., Epr_; are available in depth dy < --- < dp/_1, respectively,
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with |dp 1 — dy| < ¢4 then the sum ZO<p<P’ E, can be computed in depth at
most ¢4 - A+ dya_1_p4_pry with A = [log, P].

The proposition follows then with d, = p - cg.

For P' = 1 there is no computation. Since A = [log, 1] = 0 and 2° —1—-2(2°—
1) = 0, the claim is true in this case. Thus suppose the induction hypothesis is
valid for 1 < P < P'.

If P' is even, we can perform a first computation EZ’, = E5, + Eyp41 in depth

dy = dopy1 +cafor 0 <p< Ly By the induction hypothesis, Zo<p<g EI’) =
= 2

2
> o<p<p Ep can be computed in depth CA'AI+d;Af_1_2(2AI_%') with A" = [log, %’]
But dl = Cq + d2(2AI_1_2(2AI_%’))+1 = cq + d2A_1_2(2A_P1) for A =

24’ _1-2(24' - 2')
[log, P'] = A’ + 1. The claim is true in this case.

Now, suppose P’ is odd. We again compute a first addition step by E,,, =
Eop+Esyqfor0 <p< % in depth d), | = do(p 1) 1+ca. Furthermore, set £y =
Ep_y and dj = d}. We have d| > dp/_ since |dp_1 — dy| < ca, by assumption;
hence dy < -+ < dipryqy/p and |dipr,1y/p — do| < ca. Thesum Y o pry) 0 Ep =

ZOSP<P' E, can be computed in depth A’ - c4 + dIQA'—l—Q(QA'—(P’—H)/Q) with A’ =
P41

[log, =5=1, by the induction hypothesis . Since P’ > 3 is odd, we have A’ =
—1+ [logy(P'+1)] = [logy P'] =1 =A—1,and dyy | you (prpyyy = Ca+

d2(2A’7172(2A’7(P’—|—1)/2))71 =cCys+ d2A_1_2(2A_PI) as claimed. |

We summarize the above and describe the complete algorithm giving a weighted
g-addition chain for an exponent e in the case c4 > cg > 1.

ALGORITHM 4.12. Parallel exponentiation for c4 > cg > 1.
Input: A scalar ¢ € N>o, an exponent e € N>, with g-ary representation (e), =
(ex—1,.-- ;€p), and a weight (cq,ca) with c4 > cg > 1.
Output: A g-addition chain v computing e.
1. Compute an addition chain v for £ = {eg,... ,ex_1} C {1,...,¢—1}.
2. Set Py=¢g—1 and P; = min{ [g—g],)\q(e)}.
3. For all processors 0 < p < P = Py + P in parallel do 4-16
4. For 1 < < [log, e] do 5-6

5. If 0 <p< Pyand {i <j < \fe): e =p+ 1} # 0 then add node
(p+1)¢* and rule ((p +1)¢" ", —q) to 7.
6. If o <p< Py+P andi—1¢€ Dy p and ZO<j<i ejq’ > e;_1¢" ! then
add node Zogj<i,jei>,,_p0 e;¢’ and rule (20§j<i71,j69p_p0 ejq’ e 1q"t)
to 7.
7 If p > Py then
8 Set P'= Py and E, =3, ej¢’ for 0 <p < P'.
9. For 1 <i < [log, P1| do 10-16
10 If P'is even then
11. Set P' « L.
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12. If p < P’ then add node Ey, + Ey,;; and rule (Ejy,, Egpi1) to 7.
Set E, <= Eop + Eop11.

13. Else

14. Set P’ + £,

15. If p < P'—1 then add node Ejy, + Ey,.1 and rule (Es,, Fopi1)
to v. Set Epiq < Fop + Fopi.

16. If p= P — 1 then set Ey < Fopr_;.

17. Return 7.

THEOREM 4.13. Let e be an exponent, e > 1, q be a scalar greater than 1, and
(cg,ca) be a weight with c4 > cg > 1. Then there exists a g-addition chain vy
with weight (cq,ca) computing e in depth at most

5qa(CQaCA)(€) < 5(6@@1)(7) <cg- ()‘q(e) —-1)

Y- ([1og2(q —D]+1+ [log2 min { K_ﬂ ,Aq(e)H) .

The g-addition chain can be performed on at most ¢ — 1 + min{ [2—31,/\,1(6)}
Processors.

Proor. Algorithm 4.12 is just Algorithm 4.7 with additional steps 9-16. These
additional steps implement Proposition 4.11. Therefore correctness follows.
The estimate on the depth can be derived as follows:

o Step 1 can be computed in depth [log,(¢ — 1)] on at most ¢ — 1 processors
according to Corollary 4.6.

o Steps 4-6 can be performed in depth at most cg - (A\,(€) —1)+c4 by Proposi-
tion 4.10: ey_1¢*" is computed in depth cg-(\,(€)—1), and there might be a
subsequent non-g-step. The number of processors is P’ = min{ [z—;‘] ,Aq(e)}-
If there are less than [E—;‘] digits in (e),, we can restrict to P' = \,(e) pro-
cessors and distribute each digit e,¢” to processor p for 0 < p < P'.

o Proposition 4.11 yields that Ey,..., Ep._1 can be computed in depth c4 -
[logy P'] +cq - (28271 —1 —2(2M°e2P'1 _ P')) with at most P’ processors.

The computation of steps 9—-16 can be started on the same processors that execute
steps 4-6 after the first intermediate result F), is available. This is given in depth
at most ca + cg - (Aj(e) — 1 — (P' — 1)) since the last processor completes its
calculation in depth at most cg - (A;(e) — 1). Thus, we have the following upper
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depth 0 1 2 3 4 3 6 7 8 9

Loy Lo L ldpleg)y——2
2 2 X
proc 1 ‘ 2 \;—:@ 2 Q1) 2 6‘@
2 Y
proc 2 2 ———(0) 2 42 2

Figure 4.7: Illustration of Algorithm 4.12 for ¢ = 2, weight (1,2) and exponent
(63), = (111111).

bound on the depth:

ca- [logy(q = 1)[ +ca+cq-(Ag(e) =1) —cq- (P'—1)
+ca - ([log, P + cq - (21082 Pl_1_9. (2Moe2 I P'))
< ca- ([logy(g — 1)1+ 1+ [logy P'T) + cq - (Agle) — 1)
+eg- (28 Pl — 14 2P — P 41)
< ca- ([logy(g — 1)1+ 1+ [logy P']) 4 cq - (Agle) — 1). O

4.1.5. Free scalar. The only case not covered neither by Theorem 4.8 nor
by Theorem 4.13 is the case cg = 0. Let wy(e) be the sum of digits of the g-ary
representation of e, i.e. wy(e) = D (.., €, and let 0 < i(0) < - -+ <i(wy(e) —1) <
(¢—1)-A4(e) be a sequence of integers such that Yo, ) ¢'® = e. Then ¢'®) is
available in depth 0 for all 0 < p < wy(e) and Zogp<wq(e) ¢'® = e can be computed
in depth at most [log,(w,(e))] by Proposition 4.11. Thus, in the case cg = 0, we
can omit the precomputation of the digits eg,... ,ex_1 and the separation into
branches. The resulting algorithm was described by von zur Gathen (1991).

ALGORITHM 4.14. Parallel exponentiation with free scalar.

Input: An exponent e € N>; and a scalar ¢ € Ns,.
Output: A g-addition chain v with weight (0, 1) computing e.

1. Set v the empty addition chain with S(y) = {1}.
Set P = w,(e) and A = A\,(e) and let 0 <4(0) <i(1) < .- <i(P—1) < A be
a sequence of integers such that >, _p q'® =e.
For all processors 0 < p < P in parallel do 4-6
Set E, = ¢'®).
For 1 < i < [log, w,(e)] do
If 2° divides p and p + 2'~' < P then set E, < E, + E,, 01 and add
node E, and rule (E, — Ej 9i-1, E, 9i-1) to 7.
7. Return 7.

N

o Otk W
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depth proc. 0 proc. 1 proc. 3
0 0
1 1
2
3

Figure 4.8: The graph of a 2-addition chain with free doublings computing 47
due to Algorithm 4.14.

FAcT 4.15 (von zur Gathen 1991, Theorem 4.3). Let e be an exponent, e > 1,
and q be a scalar greater than 1. Then there is a g-addition chain ~y of weight
(0,1) computing e such that

0g,(0,1)(€) < 00,1)(7) = [logy wy(e)]

using [W‘IT(e)J Processors.

It remains to derive Corollary 4.1 from the results above.

PRrROOF (of Corollary 4.1). For exponentiation in Fyn, we suppose 0 < e < ¢"
by Fermat’s Little Theorem 2.3, i.e. Aj(e) = [log,(e)] +1 < [log,(¢" —1)| +1 <
n. Furthermore, the sum of digits wg(e) = Y gc;cn€i < Dpcicad — 1 = (g —
1)A\,(e) is bounded by (¢ — 1)n. The case cg > ca > 1 (part (i)) follows with
Theorem 4.8, and Theorem 4.13 covers the case c4 > cg > 1 (part (ii)). Part (iii)
is Corollary 4.24 with respect to Fyn. O

4.2. A lower bound for parallel exponentiation. We again consider the
question: How fast can we evaluate a power in parallel? Now we prove a lower
bound for our model of weighted g-addition chains extending the presentation in
Nocker (2000). For this bound, the following number will be useful.

NOTATION 4.16. Let g be a scalar greater than 1, and (cq,ca) be a weight. For

an exponent e € N>y with g-ary representation (e), = (ex—1,... ,eg) we set
[lge = D e(2°)
0<i<A

and call [e], . the scaling of (e), with respect to ¢ = z—‘j.
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Informally spoken, the scaling [e], . is generated by substituting ¢ by 2° in e =
D o<i<a e;q¢'. It will turn out below that this scaling is a measure of difficulty on
the parallel computation of a g-addition chain with weight (cg,c4) for e. It is
our key to prove a new lower bound for parallel exponentiation in the model of
weighted ¢-addition chains.

RESULT 4.17. Let e be an exponent, e > 1, q be a scalar greater than 1, and
(cg,ca) be a weight with 0 < ¢ = 2 < logyq. Set @ = N\j(e) —1 and A =
[log,lelqc — @ - ¢]. Any g-addition chain y with weight (cg, ca) computing e has
depth at least

5 >cog-Q+ca-(A-1) ifA>1, and
wleaen(€)) > c0 . 0 if A=0.

Some illustrations. Before we will prove this new lower bound on parallel
weighted g-addition chains, we illustrate the formulas. We start with the scaling
of (e), for special values of c.

EXAMPLE 4.18. Let ¢ be an integer greater than 1.
(i) For ¢g =0, i.e. ¢ =0, the scaling of (e), is given by
elgo= Y €)' = D ei=w,e).
0<i<A 0<i<A

Thus, if ¢ = 0 then the scaling of (e), is just the sum of digits w,(e). We
have wy(e) < (g—1)- Ay(e), i.e. the scaling is logarithmically bounded by e.

(ii) For cg = c4 -log, q, i.e. ¢ =log, g, the scaling of (e), is just e, since

e = X a0 = Y e

0<i<A 0<i<A Vi

For 0 < ¢ < log, ¢ we have not found a similar easy description of [e],.. But we
can bound it with regard to (2¢)*~! since

L@ <ern- (29 <felge= Y (2

0<i<A
. c\i . (26))\_1
5 e 055 < =mtgso £ 3 B2
0<i<A
2° - 1 (g—1)-2° _
< —1)- (261 . (96)A -1
< -1 (g 0P - ) < U e

The number (2)*"! is the scaling of the integer e = ¢*!. It can be computed

with A — 1 many ¢-steps in depth cg - (A —1). In Section 4.1, all exponents with
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Aq(e) digits used A;(e) — 1 many g¢-steps and “some additional non-g-steps”. Due
to this observation, we distinguish in Result 4.17 between \;(e) — 1 many g-steps
on the one hand, and non-g¢-steps on the other hand. Since

A = logylelge — c- Q] = [logy Y ei(2°)" —logy(29)*™"]
0<i<A
= [log, > ex-1-4(29)7"]
0<i<A

and e)_; - (2°)° = ex_1 > 1, we have A = 0 if and only if e is a power of q. Thus,
the order of A is related to the non-zero digits of e.

ExAMPLE 4.18 CONTINUED. For the two special cases discussed above the result
reads as follows:

(i) For ¢ =0, we have

A = [logylelgo — 0- Q] = [logy wy(e)]-

Moreover, the atomic unit is one non-g-step with cost c4. Thus, for A > 0
we can substitute dq0.c,)(€) > ca - (A — 1) by dg0,ea) > €4 A = ca -

[log w,(e) -

(ii) For ¢ = log, ¢, the minimal number of additional non-g-steps is at most

A = ﬂOgQ[e]q,long - ()\q(e) - 1) . 10g2 q-|

1
g ()
2

log, e
< ’710g2€ —logy g - (10§2q - 1)-‘ = [log, q].
2

For ¢ = 2 we have A + @ = [log,e| and the bound can be written as
52,(1,1)(6) > [log, e]. 0

The two special cases discussed in Example 4.18 can already be found in the
literature. We will show below that our general result meets both the lower
bound for original addition chains given by Kung (1976), Theorem 4.1, and for
addition chains with free scalar by von zur Gathen (1991), Theorem 4.3.%> For
0 < ¢ < log, ¢, we have not found a closed form for A depending on ¢, ¢ and e.
But as above, we can bound the maximal value for A by [log,(g—1)]+[log, 32 |-

2Both von zur Gathen (1991) and Kung (1976) proved their bounds in models which are
more general than addition chains. In Theorem 4.1, von zur Gathen (1991) gave another
version for arithmetic circuits allowing +, —, - and free ¢g-th powers. Kung (1976) formulated
his Theorem 4.1 for rational expressions over a field F considering only addition, multiplication
and division of two elements in F(x).
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REMARK 4.19. The lower bound given in Result 4.17 is not always sharp for
0 < ¢ < logyq. For g = 2 and the weight (1,2), i.e. ¢ = %, the lower bound on
the exponent (63), = (111111) is

baip(e) >1-(6-1)+2-(2-1) =7,

since @ = \(63) —1 =6 —1 =5 and A = [logy(1+v2  +271 + (2v2) ! +
471 + (4v/2)71)] = [log,(14 + 7v/2) — log, 8] =5 — 3 = 2.

Algorithm 4.12 computes a parallel 2-addition chain with weight (1,2) in
depth 9, see Figure 4.7. This depth is indeed minimal as we have shown by
computations. The table below lists all exponents up to 64 and the depth of a
shortest parallel addition chain for these exponents.

depth computed exponents
01
12
214
313,8
415,6, 16
517,09, 10, 11, 12, 32
6|13, 14, 17, 18, 19, 20, 21, 22, 24, 64
7 | 15, 23, 25, 26, 27, 28, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 48
8 | 29, 30, 31, 45, 46, 49, 50, 51, 52, 53, 54, 56
9 | 47, 55, 57, 58, 59, 60, 61, 62, 63

4.2.1. The basic idea. Original addition chains are a good way to introduce
our idea. In this case, we can restrict to non-g-steps and may assume, without loss
of generality, that c4 = 1. Let 7 be an addition chain with S(y) = {1,2,... ,e}
for an e € N>1. Then we can sort all exponents ¢’ € S(y) by their minimal depth
assuming suitable rules as illustrated in Figure 4.9. This motivates the following
fact which is a growth argument on the exponents.

FAacT 4.20 (Kung 1976). Performing only non-q-steps with unit cost ca = 1, all
exponents e € N> that can be computed in depth d € N> are less or equal 24,

ProoOF. The proof is by induction on the depth d € Ns;. For d = 0 the
only possible exponent is ag = 1. Hence, in this case the claim is true, and we
suppose that the assumption is true for 0 < d’ < d. Let a; be computed in
depth at most d. If a; is already computed in depth d’ there is nothing to prove.
Therefore, we can assume a; to be computed in depth exactly d. Then there
are a;(;), ars) € N>o with a; = a;@) + ari). Both aj;) and ag;) are computed in
depth at most d — 1. By the induction hypothesis, we have a;), ays) < 29-1 and
therefore a; = a;i;) + app) < 24=1 4 241 — 24 This completes the proof. O
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Figure 4.9: A linear addition chain computing {1,...,12} in parallel. All nodes
have minimal depth.

The remark contains a lower bound on the depth of any original addition chain 7
that computes an exponent e € N>; in parallel. There is a unique d € N>¢ such
that 2971 < e <24 ie. d— 1 < logye < d or just d = [log, e]. This conclusion
leads to Theorem 4.1 in Kung (1976) for original addition chains.

COROLLARY 4.21 (Kung 1976). Let e be an exponent, e > 1. Any addition
chain v computing e has depth at least

d2,1,1)(e) > [logye].
This bound meets the upper bound in Theorem 4.4, therefore it is optimal.

4.2.2. An extension to weighted addition chains. We want to investigate
our model of weighted g-addition chains. We now have to consider two different
types of steps: non-g-steps with cost c4 € N>; and g¢-steps with cost cg € Nxg.
Since a g-step can be substituted by non-g¢-steps, we can suppose without loss of
generality that 0 < cg < c4 - log, ¢ by Algorithm 4.3. Observe that

feo-Q@+ca-A: QA€ N0} C {ged(cq,ca) - d: d € Nyo}.

Thus any algorithm performing only ¢g-steps and non-¢-steps has depth a multiple
of ged(cg, ca). Substituting the original weight by (gc d(ig,c,;)’ o d(ig’CA)) preserves
the relation ¢ = 2—3. The original depth is then the actual depth times ged(cg, ca)-
Thus without loss of generality, we confine ourselves to the case ged(cg, ca) = 1.
Each level of depth is then labeled by d = cg - @ +c4 - A for d € N>o. This is the
depth in which at most A € N>y non-g-steps and () € N>¢ many g-steps can be

computed. Therefore Fact 4.20 extends to the following statement.
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THEOREM 4.22. Let q be a scalar greater than 1, and (cq,ca) be a weight with
ged(cg,ca) = 1l and 0 < ¢ = z—j < log, q. Only performing non-q-steps with
cost ¢4 and g-steps with cost cg, all exponents e € N>, that can be computed in
depth d € N5 satisfy

[elge = ) e(29) <29/

0<i<A
where ey, ... ,e,_1 are the digits of the q-ary representation of e.
For cq = 0, we have ¢ = 2 = 0 and [e]g0 = Dgcicn €i(2°)" = Docicn @i-

This is the sum of digits wq(e)Aof (e)g- Since ged(0,c4) = c4, We can rewrite
Theorem 4.22 for the special case of free scalars.

PROPOSITION 4.23 (von zur Gathen 1991). If the only used operations are non-
g-steps with cost cy = 1 and free g-steps then all exponents e € N>, that can be
computed in depth d € Nsg, satisfy w,(e) < 2%,

Proor. Note that for e, f € N>; we have

wla- &) = wyle) and
wele+f) < wyle) +we(f) <2 max{wy(e),w,(f)}-

We prove the claim by induction on d € N5¢. All exponents that can be computed
in depth d = 0 are computed without non-g-steps. Hence, only powers of ¢ are
possible which have got Hamming weight 1 < 2°. Now, we assume that the
induction hypothesis holds for depth 0 < d’ < d and let a; be computed in depth
at most d. If a; is already calculated at a lower level than d, there is nothing to
prove. Thus, we suppose that a; is indeed computed at level d. If a; is divisible
by ¢, we focus on 2 with m = max{m' € Ns;: ¢" divides q;} instead of a;.
The m subsequent ¢-steps can be done without cost. Therefore, we can assume
the last step to be a non-g-step. For d > 1, there are a;(;), ar) € N>1 such that
a; = a;(;)+agi)- Both aj;y and ag ;) are calculated in depth at most d—cy = d—1.
By the induction hypothesis, we have wy(a;()), wq(ari) < 247, and therefore,
wq(a;) < welaj) + wqlare)) < 2471 + 2971 =24 O

Again, Proposition 4.23 contains a lower bound which was originally stated by
von zur Gathen (1991), Theorem 4.3.

COROLLARY 4.24 (von zur Gathen 1991). Let e be an exponent, e > 1, and q be
a scalar greater than 1. Any g-addition chain ~y with weight (0,1) that computes
e has depth at least

0,(0,1) (€) = [logy wy(e)]-

This is also the upper bound by Fact 4.15. Therefore, it is optimal. Now, we
return to the case cg > 0 and give a proof of Theorem 4.22.
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PROOF (Theorem 4.22). For ¢g = 0, we refer to Proposition 4.23. We prove
the remaining case ¢ = Z—‘Z > 0 by induction on d € N>y. For d = 0, the only
computable exponent is ap = 1. But [1],. =1-(29° =1 < 2° and the claim is
true for d = 0. Now, we suppose that the claim is also true for 0 < d' < d. Let
e be an exponent computed at depth at most d. If e is calculated in depth less
than d then there is nothing to prove. Thus, let e be computed in depth exactly

d. Then the final step is either a g-step or a non-g-step.

o Case: e is computed by a final g-step
Then, we have a rule (g, —q), and f = ¢ has been calculated in depth at
most d — cg. By the induction hypothesis, we know that [f],. < 2(¢-c@)/ea.
We observe that (e); = (fa-1,--. , fo,0) which gives

[eloe = Y @@)'=0+ > fia(2) =2°[fla
0<i<g(e) 1<i< g (e)
< 2€¢ . 2d/CA*CQ/CA — 9¢. 2d/cAfc — 2d/cA

and proves the claim.

o Case: e is computed by a final non-q-step
There are f, g € N>, such that e = f+g and both summands are computed
in depth at most d — c4. Without loss of generality we suppose that A =
A(f) > Ag(g). Weset g; = 0 for \j(g9) < j < Ag(f) in the g-ary representa-
tion of g, and define the carries ug = 0 and u;1 = |(fi+9:+wi)/q] € {0,1}
for 0 <7 < A. Then e; = f; + g + u; — quspq for 0 < i < X and ey, = c,.
This gives

lelge = D &) =ur(@)+ Y (fi + 0 + s — quig:)(2°)'

0<i<A 0<i<A
= DAY+ Y0 a9 = ) wile—29(29)"!
0<i<A 0<i<A 1<i<A
= [f]q,c + [g]q,c - Z Ui(q - 26) (26)%1
1<i<A

<9. 2(d—cA)/cA — 2d/cA’

by the induction hypothesis, since ¢ = z—i < log,q, i.e. ¢ > 2¢. This
completes the proof for the second case. 0

As for the two special cases discussed above, a lower bound on weighted g-addition
chains is covered by Theorem 4.22. This bound is already claimed in Result 4.17.
We are now ready to give the proof.
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PROOF (of Result 4.17). For an exponent e € N>; with g-ary representation
(€)g = (ea-1,--- ,€0), We set

@ = A—1and
A = [logyle]ge— Q- c]
0<5<A 0<j<A

where ¢ = 2—3. Let d = cg - Q + ca - A. Obviously, we have

9d/ca — 9cQQ/ca , 9caAfca (299 .24 = (299 . ollogs X< x €i(2°) 791

2 ()0 B ()0 3 20
0<j<A

= Z e (29 = [e]g,-

0<j<A
If A>1, then
pli-en)fer _ 9ea@fen . geati-D/es _ (9)Q . 2185 Toger s 2V~ -1
< (299 - 208 Do sV = N (29 = [e],,
0<j<A

and thus, any ¢g-addition chain with weight (cg, c4) computing e has depth more
thand—ca=cg-Q+ca-(A-1)if A>1. If A=0 and cgQ > 0 then we have

Qd/CA — 2CQQ/CA . 20 — (26)62 — (QC)A*I
<@V S Y 62 = [
0<j<A
Thus any g¢-addition chain with weight (cg,ca) € N>; x N>; computing e has
depth at least d = cg - Q if A =0. O
Any g-addition chain has depth at least this lower bound plus 1 if A > 1. There-
fore, for c4 = cg = 1, we have to compute at least
d=1-Q+1-A=X—-1+ [logyle]s; — Q- 1]
= |log, e] + [log, Z ej(zl)j_()‘_l)]
0<j<A

steps in parallel. If e = 227! then A = 0 and d5,1,1)(e) > [logye] = Aa(e) — 1 =
[logy e]. Otherwise A = 1, which yields 05 (1,1)(e) > [log, e]+1 = Xa(e) = [log, €]
as already stated in Corollary 4.21. If ¢g = 0 and c4 = 1 then we have

dg,0,1)(€) > 0-Q + 1A= [logyle]go] = [log, Z ej] = [logywy(e)]

0<5<A
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if A > 1. The formula also holds for A = 0, and therefore Corollary 4.24 can be
derived from Result 4.17. This shows that Result 4.17 covers both the optimal
bound by Kung (1976) for original addition chains, and the one by von zur Gathen
(1991) for addition chains with free scalar.

4.3. Consequence to parallel exponentiation. We have shown that both
the upper and the lower bound depend on the quotient ¢ = z—i, i.e. the ratio
between the cost for a g-step and for a non-g-step. Both statements—the algo-
rithmic approach of Corollary 4.1 and the lower bound in Result 4.17—identify
the cost cg - (A;(€) — 1) to be the bottleneck. We compare upper and lower bound
in more detail now, and we want to extract consequences to parallel exponen-
tiation. Both bounds are identical for original addition chains and g¢-addition
chains with free scalar. Therefore, our estimate on the possible speed-up is given
by optimal bounds. To illustrate the case 0 < ¢ < 1 for 2-addition chains, we
have done some experiments on the remaining three sets of weight that have been

introduced in Section 3.4.

Original addition chains. The optimal original addition chain that computes
an exponent e € N>, in parallel has depth exactly d;(11)(e) = [logy e]. An (often
too generous) upper bound on a sequential addition chain for e is given by the
binary addition chain; Corollary 3.15 states ¢y(e) < Ao(e) +1v2(e) —2 < 2[log, €.
Thus, the maximal speed-up is limited by

l5(e) < Ao(e) + vo(e) — 2

G2,1,1)(€) ~ [log, ]
_ |log, e]+1+1—2 _ logye 1 ife = 2)\2(6)_1
A (e)“f?(a 1052(2) ’
<T(@:1+)\2(8) S? else.

Since we expect v5(e) to be roughly f)Xs(e) on average, the expected speed-up
compared to the binary addition chain is only % If we compare the optimal
depth of the parallel addition chain to Brauer addition chains, then we have an
even more disappointing result. We have /3(e) € Aa(e) + O(log’\;/(\?(e)) by (3.19),
and therefore

lim 7& (€)

—1.
e 0y (1,1) (€)

Thus, no benefit can be taken from parallelism.

Free scalar. For g-addition chains with weight c4 - (0, 1) the situation changes.
Algorithm 4.14—which is the algorithm described by von zur Gathen (1991)—
takes advantage of free g-steps; Corollary 4.24 states an optimal depth of d, (1) =
[log, wy(e)] for an exponent e € N>y and a scalar ¢ € Ns,. Other authors, e.g.
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Agnew et al. (1988) and Stinson (1990), have also discussed algorithmic ideas
for parallel exponentiation. They restrict to Fo» and the special case of free
squarings. In the case when a free scalar can be assumed, we hope for a better
speed-up. For a finite field Fyn , we have wq(e) < D 2;cn (o) (q 1) < (¢—1)-n. By

Corollary 3.10, any power of an element of IF,» can be computed in O(W)
multiplications in F;» whenever raising to a g-th power is free. Compared to this

sequential algorithm, we have depth at most &, ,1y(€) < [logy(q — 1) +logy n].

) ))), and a high potential for massive

Thus, we expect a speed-up of O(W

parallelism.

The remaining case. It remains to discuss 2-addition chains with weight
(cg,ca) such that 0 < ¢ < 1. The upper bound of Theorem 4.13 does not
match the lower bound of Result 4.17 in this case. We have done some calcula-
tions on those three sets of weights of Section 3.4 where c is neither 0 nor 1 to
show that both estimates are nevertheless close to each other.

The goal of these calculations is two-fold. On the one hand, the values should
reflect the quality of Algorithm 4.12 compared to the lower bound. On the other
hand, we give concrete estimates on the maximal possible speed-ups for these
three sets of weights. These three sets are the same sets as in Section 3.4. They
are inspired by different constructions of the finite field Fon using a polynomial
basis representation, see Section 5.2. We label the set with weights roughly (2, 3)
by Arbitrary; see Table A.6. The two other sets have decreasing weights; the set
Sparse is stated in Table A.7, the set Sedimentary in Table A.8.

First, we discuss the quality of Algorithm 4.12. The estimates on the depth
are given for the worst case in column 8 of Tables A.6—-A.8. In the worst case,
all digits of the binary representation of the exponent e are non-zero. Thus
€= ocicn 1 -2t =2"—1 for a n-bit exponent. Column 9 shows the difference®®
between this upper bound and the lower bound on e = 2" — 1. It is 1 for set
Arbitrary with weight (2,3), and at most 2 for the two other sets Sparse and
Sedimentary®*. This gap does not depend on the binary length n of the exponent
nor on the choice of ¢ = z—Q. Thus, the depth of Algorithm 4.12 is close to the
optimal depth in the worst case. This is also true for all other n-bit exponents
2" 1 < e < 2" Column 5 lists the lower bound for the best case e = 2" !. This
bound is sharp since 2° ! can be computed with n—1 many doublings. The lower
bound for all other n-bit exponents is in the interval bounded by 2"~ and 2" — 1.
For the set Arbitrary the gap between both numbers (column 7) is only 1. In the
two other cases, the size of the interval seems to depend logarithmically on the
reciprocal value of ¢. The maximal gap between the lower bound for an exponent
2"l < e < 2" and depth of Algorithm 4.12 is given in column 9. This validates

23Tables A.6-A.8 list the normalized depth L/c4 for all entries.
24Gince the lengths are normalized, 1 stands for the depth in which one non-g-step with cost
ca can be computed.
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that our algorithmic approach is close to be optimal for the three sets. We have

Expected speedup for different sets of weights
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; ¥
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Figure 4.10: Comparison of Algorithm 4.12 for three out of the five sets of weights
introduced in Section 3.4. We give the depth relative to the average length of
the binary addition chain. Thus this figure gives the expected speed-up of the
parallel algorithm related to the repeated squaring algorithm for an arbitrary
exponent.

computed the speed-up of Algorithm 4.12 relative to the average length of the
binary addition chain, i.e. the normalized length L/csy = 3(n —1) + ¢+ (n — 1).
This average length (column 4 of Tables A.6-A.8) meets the average number of
steps given by the experiment of Section 3.4. The quotient of the average length
to the depth of Algorithm 4.12 can be interpreted as the expected speed-up if we
choose a n-bit exponent at random. Figure 4.10 shows that we cannot expect a
high speed-up for a fixed weight with ¢ ~ % The reason is that addition chains
with weight (2,3) are close to original addition chains. The predicted speed-up
is roughly 1.75 (see Table A.6, column 10), compared to 1.5 for original addition
chains. Algorithm 4.12 can be executed on 3 processors in parallel for the set
Arbitrary.

For the sets Sparse and Sedimentary, the situation is different. The speed-up
increases from 1.98 for n = 209 up to 17.40 for n = 9998 for Sparse. This is caused
by decreasing values for c. For the set Sedimentary the speed-up is at least 1.84 for
n = 209 and at most 14.14 for n = 9998. The graph of the speed-up is illustrated
in Figure 4.10. The fluctuations are caused by the non-monotonous decrease of
¢, see column 3 of Tables A.7-A.8. Algorithm 4.12 can be performed on at most
35 and 28 processors for Sparse and Sedimentary, respectively. The calculations
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predict that exponentiation benefits from parallel computing for these sets of
weights.

Provisional conclusions. The above discussion suggests to use the quotient
c= z—j as the main parameter to choose a good data structure for parallel expo-
nentiation.

From now on, we will work in the finite field F». Beside multiplications,
which are related to non-g-steps, we focus on the Frobenius automorphism to
evaluate the g-th power for different basis representations. The Frobenius auto-
morphism originally has motivated the introduction of ¢-steps. We aim to find a
data structure for parallel exponentiation which beats sequential exponentiation
significantly.
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5. Polynomial bases

Our main perspective is a data structure that supports parallel exponentiation
in a finite field F;n. Up to now we have discussed exponentiation in the model
of weighted addition chains with scalar. In Section 4 we have characterized a
suitable data structure for exponentiation by the ratio ¢ = z—i. Now we apply
the previous results on parallel exponentiation to certain basis representations of
finite fields. In this section we start with the polynomial basis representation of
Fgn. We investigate how different moduli influence the performance of the basic
arithmetic operations. Most of the material covered here can be found in von zur
Gathen & Nocker (2000).

This section is organized as follows: In Section 5.1 we give an outline on
polynomial multiplication as the basic operation for this basis representation. It
can be skipped if the reader is familiar with fast polynomial multiplication. The
arithmetic in F,[z]/(f) is presented in Section 5.2. In conformity with weighted
g-addition chains we focus on multiplications, i.e. non-¢-steps, and the computa-
tion of the Frobenius automorphism, i.e. g-steps. We contrast an arbitrary choice
of the modulus f (Section 5.2.1) with two different types of sparse moduli. Be-
side trinomials and pentanomials (Section 5.2.2)—which are the preferred moduli
in the recently passed IEEE Standard Specifications for Public-Key Cryptogra-
phy?*—we analyze sedimentary polynomials (Section 5.2.3) as modulus. The
latter one were suggested by Coppersmith (1984). Each subsection includes re-
ports on experiments on the arithmetic in Fo». We have chosen extensions over
the binary field for our experiments; these are of special practical interest, see also
IEEE (2000). The conclusions on parallel exponentiation are given in Section 5.3;
a sparse modulus offers significant improvements compared to an arbitrary mod-
ulus when representing the finite field by a polynomial basis. For completeness
the closing Section 5.4 summarizes the basic facts on division in a polynomial
basis representation of Fgn.

5.1. Polynomial arithmetic. The standard way to represent (and imple-
ment) the finite field F,» with ¢™ elements is by a polynomial basis representation.

Fact 5.1 (Lidl & Niederreiter 1983, Theorem 1.61). For a f € F,[z], the resi-
due ring F,[z]/(f) is a field if and only if f is irreducible over F,.

There always exists an irreducible polynomial f over I, of degree n € N>;. Then
F,[z]/(f) is a field with ¢™ elements. It may be regarded as a vector space over F,
with basis B = ((1 mod f), (x mod f),..., ("' mod f)). We call such a basis a

25 “The reduction of polynomials modulo p(t) is particularly efficient if p(¢) has a small number
of terms. [ ... ] Thus, it is a common practice to choose a trinomial for the field polynomial,
provided that one exists. If an irreducible trinomial of degree m does not exist, then the next
best polynomials are the pentanomials [ ... |.”, IEEE (2000), A.3.4, p. 80.
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polynomial basis of Fyn over F,. An element A € F,[z]/(f) is given by a F,-linear
combination A =Y . A;z' mod f with Ag,... A, 1 € F,. We may identify
an element A € Fy[z]/(f) with the polynomial g = )" _, . giz" € Fy[z] of degree
at most n — 1, where g; = A; for all 0 < ¢ < n. This polynomial is called the
canonical representative.

Thus, we can perform arithmetic in F,[z]/(f) by doing polynomial arithmetic
in Fy[z]. Addition of the canonical representatives g = > ., , 9« and h =
> o<icn hit" € Fylz] can be done with at most n additions in F,. The resulting
polynomial v = Y, (¢g; + h;)2" has degree less than n, i.e. v is the canonical
representative. Multiplication of two polynomials of degree at most n—1 yields a
product polynomial of degree at most 2(n—1). Since we want to use the canonical
representative, a final reduction modulo f has to be performed whenever an
arbitrary representative has degree at least deg f = n. We will see below that
this reduction is the crucial point for fast exponentiation in a polynomial basis
representation. But first we look at some algorithms for polynomial multiplication
since fast polynomial multiplication is at the core of fast polynomial arithmetic.
Algorithms for division, inversion and many other basic arithmetic tasks can be
reformulated to profit from fast multiplication. The book of von zur Gathen &
Gerhard (1999) illustrates this deep relation in an impressing way. We refer to
Section 8 of their book for all details that are omitted in the following sketch.

We call a function M: Nyg — Rso a multiplication time*® for F,[z] if two
polynomials in F,[z] of degree less than n can be multiplied using at most M(n)
operations in [F,.

The classical multiplication algorithm. Let g and A be polynomials over
F, with g = Y, 02" and h = Y, hix'. The classical multiplication
algorithm computes the coefficients ug, ... , Upim—o of the product u = g - h by
straightforward computation:

e (2 )

0<i<(n—1)+ 0<i<m 0<i<n

- > (Z gj - hi_j> z’

0<i<(n—1)+(m—1) \j€Z;

where Z; = {0 < 7 <m: 0 <i—j < n}istheset of indices for the i-th coefficient.
The product can be computed with at most m - n multiplications and at most
(m—1) - (n— 1) additions in F,.

26This is taken from Definition 8.26 in von zur Gathen & Gerhard (1999).
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REMARK 5.2. Two polynomials of degree m — 1 and n — 1, respectively, can be
multiplied with m - n multiplications and (m — 1) - (n — 1) additions in F,. Thus,
we have

M(n) < 2n> —2n+1 € O(n?).

Karatsuba’s algorithm. Now let both polynomials g and h be of degree less
than n € N>;. We may rewrite the classical multiplication algorithm by applying
a divide-and-conquer strategy. We write

g=Giz™ + Gy and h=H;z™ + H,
with G1, Go, Hy, Hy € Fy[z] of degree less than m = [§]. Then

(5.3) g-h = (Giz™+ Gy) - (Hi2™ + Hp)
) = (G1-H)z*™ + (G1 - Hy + Gy - Hy) 2™ + Gy - Hy,.
Karatsuba used a trick—which is originally described for large integer multi-
plication in Karatsuba & Ofman (1963)—to reduce the number of polynomial
multiplication in (5.3) from 4 to 3. He observed that

(54) Gl 'H0+G0'H1 - (G1+Go) ‘ (H1+H0) —G1 'H1 —Go'Ho.
By (5.3), this leads to the following algorithm.

ALGORITHM 5.5. Karatsuba’s multiplication algorithm.

Input: Two polynomials g, h € F,[z] of degree less than n € Nx;.
Output: The product polynomial v = g - h € F,[z].

1. If n =1 then compute u <— g -h in F,.

2. Else

3. Let m = [%] and write ¢ = G12™ + Gy and h = Hiz™ + H, with
Gy, G1, Hy, H, € F,[z] of degree less than m.

4. Call the algorithm recursively to compute Uy < G- Hy and Us < G- H;

and U; (G1 + G()) : (H1 + HO)

5. Set u = Uyz®™ + U, and compute U; + U; — Uy — U,.
6. Compute u < u + U;z™.
7. Return u.

LEMMA 5.6. The algorithm computes the product of two polynomials in F,[z]
of degree less than 2%, where k € N>, with at most 9 - (2%)1°623 — 8. 2% operations
in [f,.
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PrOOF. Correctness of Algorithm 5.5 follows directly by (5.3) and (5.4). We
prove the bound T'(2%) < 9 - (2F)l823 — 8. 2% on the operations in F, for the
multiplication of two polynomials of degree less than 2* by induction on k € N>o.
For k = 0 we have T'(2°) = 1 = 9-(2°)1%623 — 8. 20 multiplication in step 1. Thus,
we suppose that the claim is true for 0 < £’ < k. Since m = [%] = 2F1 we
have 2-2%~! additions in F, and three recursive calls of input size 2¥~! in step 4.
The latter counts for 3T(2¥~!) operations in F,. Since degU < 2 - 2571 = 2m,
only the computation of U; causes operations in I, in step 5; we count at most
2 - 2F additions of coefficients. Finally, step 6 causes 2* further additions in F,.
Summing up, we have T'(2%) < 3T (2¥7!) 4+ 4 - 2¥. By the induction hypothesis,
this is just

T(2") <3-(9- (2" ")lee? —g.2"1) 4 4.2F=3.9.31 —3.4.2F + 4. 2%
=9.-3F—2.4.2F = 9. (2k)le23 _g. 9k

as claimed. O

COROLLARY 5.7. Two polynomials in I, [z] of degree less than n € N>y can be
multiplied with at most

M(n) < 27n'°82% — 8n € O(n™™)
operations in .

PROOF. This follows directly from Lemma, 5.6 using the fact that n < 2% < 2n
for k = [log, n]. O

Nearly linear multiplication algorithms. The (asymptotic) fastest multi-
plication algorithm known so far uses the Fast Fourier Transformation. It would
exceed the scope of this work to sketch the main ideas of this fast multiplication
algorithm. Therefore, we refer to the book of von zur Gathen & Gerhard (1999).
The basics, including the Discrete Fourier Transformation, are explained in their
Section 8.2. The application to polynomial multiplication are investigated in
the subsequent Section 8.3. Originally, Schénhage & Strassen (1971) presented
the algorithm for integer multiplication. Schénhage (1977) gave the extension
to polynomial multiplication over fields of characteristic 2. We cite the version
given in von zur Gathen & Gerhard (1999), Theorem 8.23, but we restrict to
polynomials over a finite field F,.

FAcT 5.8 (Schénhage & Strassen 1971, Schénhage 1977). Two univariate poly-
nomials with coefficient in I, of degree less than n in can be multiplied using at
most

M(n) € O(nlognloglogn)

operations in F,.
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This is nearly linear in n. To emphasize this, one may use the soft-Oh-notation
O™, see von zur Gathen & Gerhard (1999), Section 25.7. It swallows the log-
factors such that M(n) € O~ (n) which is also referred to as being softly linear.

Cantor (1989) described another algorithm which computes the product with
only O~(n) operations in IF,. His original work had been restricted to the mul-
tiplication of two polynomials over a prime field; von zur Gathen & Gerhard
(1996) gave a detailed analysis in the general case. They also discussed in detail
simplifications for polynomial multiplication over the binary field F, in Section 3
of the more extended technical report. Indeed, Jiirgen Gerhard has implemented
this algorithm in the software library BIPOLAR, see von zur Gathen & Gerhard
(1996), Section 7 and von zur Gathen & Gerhard (1999), Section 9.7 for descrip-
tions. We cite their estimate on the cost; a detailed proof can be found in their
technical report.

FACT 5.9 (von zur Gathen & Gerhard 1996, Theorem 2.9). Two polynomials in
F,n [x] with product of degree less than n, where ¢ < n < ¢™, can be multiplied
using less than O((51,)* - nlog®n) operations in Fyn .

As described in the technical report related to von zur Gathen & Gerhard (1996),
we can apply this method to multiply two polynomials g and h over the field I,
with deg(g-h) < n as follows. We first choose an extension field Fym = TF,[z]/(u)
with v irreducible of degree degu = m such that n < 7 - ¢™. We rewrite
the factors g and A as polynomials of the form g = > _, .. Giz™* and h =

D o<i<n’ H;z™" with m' = [2] and n' = [%]. Here degG; and deg H; are less
than m' for all 0 < i < n/, and G; and H; may be regarded as elements in Fym.
The coefficients of the product polynomial of g and h over F,» have degree less
than m. By construction, the coefficients of the product polynomial g - & in F,
can be uniquely determined from the product polynomial in Fm[z]. Applying
classical multiplication and division with remainder to perform the arithmetic in

Fyn gives the following estimate.

FAcT 5.10 (von zur Gathen & Gerhard 1996). Two polynomials of degree less
than n € Ny in F,[z] can be multiplied with at most

2
q3 -nlog®n)

M(n) < O(log p

operations in I, providing that ¢ < n.

5.2. Computing the canonical representative. We now consider the prob-
lem of computing the canonical representative v = grem f of an element B =
(9 mod f) in the field F,[z]/(f). By definition the canonical representative v
satisfies degv < deg f = n.
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5.2.1. Arbitrary modulus. We start with the case where the modulus f =
"+ Y gcicn Jit" € Fylz] is an arbitrary monic irreducible polynomial. For given
positive integers n and ¢g—with ¢ a prime power—such an irreducible polyno-
mial can be constructed within an expected number of O(n? log® n loglog n - log q)
operations in F,, see Ben-Or (1981), Theorem 3. The main task is to compute
the canonical representative v = grem f of an element B = (g mod f) € Fyn.
The basic algorithm for this is division with remainder; it computes the two
uniquely determined polynomials u,v € F,[z| for f,g € F,[z] with f # 0 such
that g = u - f + v and v is either 0 or degv < deg f = n. Algorithm 5.19 is a
slightly modified version.

Fact 5.11. Division with remainder of a polynomial g of degree m > n by a
monic polynomial f of degree n can be done with at most 2n(m—n+1) € O(mn)
operations in F,.

The product of two canonical representatives in F,[z]/(f) has degree at most
2(n — 1). Multiplying two elements in F,[z]/(f) and determing the canonical
representative of this product can thus be done with M(n) + O(n?) € O(n?)
operations in [F,. But we can improve on the number of operations.

Division with remainder using Newton iteration. We want to profit
from fast polynomial multiplication when computing the canonical representa-
tive. This can be done using the idea of reversals. The following is along von zur
Gathen & Gerhard (1999), Section 9.1; see also Section 8.3 in Aho et al. (1974).
We define the reversal rev,,(g) of a polynomial g = ;<. 9ix" € Fy[z] by

1 .
revy(g) = z™g (5> = ) gnia,

0<i<m

that is, we revert the order of the coefficients of g. Then the equation ¢ = u- f+v
with deg f = n and deg g = m > n can be written as

revp(g) = 2™-g <1> = 2™ - (uf +v) (1)

X

= xmin U <l> . mn . f (l) _|_ xmfn_kl . xnfl ) (1)
X X X

= revy n(u) -rev,(f) + 2™ " rev, 1 (v)

We get ride of the reversal of v by computing this equation modulo 2™ "*!, i.e.

(5.12) rev,,(9) = revy, (u) - rev, (f) mod 2™ "t
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Since f has degree n, the absolute coefficient of rev, (f) is not zero. Thus, rev,(f)
is invertible modulo z™~"*!. Then

(5.13) rev,, n(u) = revy,(g) - rev,(f) ' mod 2™ "t
and we have u = rev,_,(revy,_n(u)) and v = g —u - f. We get the following
algorithm where we suppose the inverse rev,(f) ' mod ™ ™*! as an input.

ALGORITHM 5.14. Fast division with remainder.

Input: Polynomials f € F,[z] of degree n and g € F,[z] of degree m > n,
respectively, and the inverse of the reversal of f modulo 2™ "1,

Output: Uniquely determined u,v € F,[z] such that g = u- f +v with degv < n.

1. Compute w < revy,(g) - l“evn(fy1 rem ™ "t

2. Set u = rev, ,(w).
3. Compute v <—g—u- f.
4. Return v and v.

LEMMA 5.15. Algorithm 5.14 performs division with remainder of a polynomial
g of degree m > n by a polynomial f of degree n with at most M(m) + M(n) +n
operations in F, if rev,(f)~! mod 2™ "*! is given.

PROOF. Correctness of Algorithm 5.14 follows by (5.12) and (5.13). For the
estimate on the costs we observe that degrev,(f) ! mod 2™ "*! has degree at
most m — n. The multiplication in step 1 is therefore a multiplication of two
polynomials of degree less than m with costs M(m). In step 3, the algorithm only
has to compute the lower degree part of ¢ — u - f, since degv < n. This can be
done with M(n) + n operations in F,. O

With the Extended Euclidean Algorithm 5.29 we can compute rev,(f)~' mod
™ "1 using O(mn) operations. A faster algorithm is presented in von zur Ga-
then & Gerhard (1999), Theorem 9.4. They use Newton iteration which computes
the inverse of a polynomial modulo ™ ™*! in at most 3M(m—n+1)+m—n+1 €
O(M(m — n + 1)) operations in F,.

Field arithmetic. It remains to conclude the costs for multiplication, i.e. ¢4,
and for computing the Frobenius automorphism, i.e. cg, in F,[z]/(f) if we use
the idea of reversals to calculate the canonical representatives.

COROLLARY 5.16. Let Fj» be given by a polynomial basis representation with
monic irreducible modulus f = z" + Y ..., fix" € Fylz]. Furthermore, let
rev,,(f)~! mod z"~! be given. Then two elements can be multiplied with at most
3M(n) + n operations in IF,. An element can be raised to the g-th power with at
most (3M(n) + n) - l2(q) operations in F,, where {5(q) < 2|log, ¢| is the minimal
length of an (original) addition chain for q.
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PrOOF.  The costs for the multiplication of two elements of F,[x]/(f) is a direct
consequence of Lemma 5.15; the product of two representatives has degree m <
2(n — 1). A g-th power can be computed by applying an addition chain for g of
minimal length ¢5(¢). Each of the ¢5(q) steps is a multiplication modulo f. O

In the special case ¢ = 2, we can compute ¢> = (Y jcicm 57> = D ocicm GiT>
without operations in Fy since the Frobenius automorphism is a linear map due
to (2.8). Thus, only the reduction modulo f causes operations in F,.

COROLLARY 5.17. Let Fyn be represented by Fy[x]/(f), and let rev,(f)~" mod
" ! be given. Then two elements in Fy» can be multiplied with 3M(n) + n
operations in Fy. Squaring can be done with 2M(n) + n operations in .

The reduction uses about 2M(n)+n operations of the total number of operations.
Hence, at most 2/3 of the computation time for multiplication and almost all time
for squaring is spent for the reduction modulo f.

Experiments. We did the following experiments with arbitrary modulus f =
2" + Y ocicn Jiz' € Falz]. The test series Arbitrary consists of 50 values for
the extension degree n € N>; with n ~ 200 -4 for 1 < ¢ < 50, see also Ta-
ble A.9, column 1. For all 50 test values n we computed an arbitrary irreducible
polynomial f of degree deg f = n over the binary field F, using the subroutine
randIrrpoly1?” of BIPOLAR.

We precomputed and stored rev,(f)~! mod z"~! for each f; the documented
times do not include the times of this precomputation. For each n of test se-
ries Arbitrary we ran 10000 trials for both multiplication and squaring modulo
f using BIPOLAR'’s basic arithmetic methods as described in von zur Gathen &
Gerhard (1999), Section 9.7. The times for both multiplication and squaring are
approximated by the average of the 10000 trials. For multiplication, we generated
two polynomials of degree less than n at random for each trial. The time for one
trial includes the multiplication of the two polynomials and the subsequent re-
duction modulo the irreducible polynomial f. For n < 4000 BIPOLAR performs
reduction by classical division with remainder. For larger values of n, reduction
via Newton iteration becomes faster. Therefore, the library computes the canon-
ical representative according to Algorithm 5.14 for n > 4000. Squaring is done
by expanding a randomly chosen polynomial. This causes no operations in Fy.
As for multiplication, the times include only this expansion and the subsequent
reduction.

Corollary 5.17 states that we can expect an asymptotic ratio of % between
squaring and multiplication time in Fon. Figure 5.1 exactly shows this ratio for
degrees n > 4000, see the blue line which is connected to the right y-axis. The

2TThis subroutine computes a random irreducible polynomial of input degree n by trying to

factor successively randomly chosen polynomials. The basic algorithm is the distinct degree
factorization; see von zur Gathen & Gerhard (1999) for an introduction on factorization.
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Figure 5.1: Times for multiplication (+) and squaring (<) for the test series
Arbitrary. The times are the average of 10000 trials. Here Fs. is given by a
polynomial basis representation due to Fy[z|/(f) with f € Fy[z] an arbitrary
irreducible polynomial. The times are marked on the left y-axis. The scale of the
right y-axis relates to the quotient (x) between both times.

wobbling line for test points n < 4000 appears because BIPOLAR uses Karat-
suba multiplication for n > 500 but sticks to classical division with remainder
which is faster in this range. The times for multiplication and squaring agree
not only by the ratio but also if we compare them to one single polynomial mul-
tiplication of two random polynomials of degree less than n. Columns 3 and 5
of Table A.9 show the times relative to the times for one single polynomial mul-
tiplication. These so-called normalized times are close to 3 and 2, respectively,
as predicted by Corollary 5.17. Therefore, this data structure—polynomial ba-
sis representation with general modulus—is a candidate with poor speed-up for
parallel exponentiation.

5.2.2. Sparse polynomials. By the above, the crucial point for arithmetic in
F,[z]/(f) with an arbitrary chosen modulus f is the reduction step. To circum-
vent, this bottleneck, we now analyze irreducible polynomials which support the
reduction, see also the remark in Ben-Or (1981)?8. Some authors, e.g. Schroeppel

284Tn order to make residue computation mod g(x) easier one looks for special types of
irreducible polynomials such as g(z) = 2™ + z + a, a € Z),.”, Ben-Or (1981), p. 395. [g(z) is f
in our notation.]
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et al. (1995a)?° and De Win et al. (1996)3°, suggested to speed up arithmetic
by choosing a special kind of a sparse irreducible polynomial f as modulus, in
particular a trinomial. A sparse polynomial f, in the usual sense, is a polynomial
of the form

f= Z fiz® € F,[z]

1<i<t

with coefficients fi,..., f; € F, and integers 0 < e; < ey < ... < e = deg f such
that t < deg f = n. We suppose that f is monic, i.e. f; = 1.

EXAMPLE 5.18. (i) A binomial has only 2 non-zero coefficients and is of type
f = x™ 4+ fiz®. For all irreducible binomials we have e; = 0. The only
irreducible binomial over F, is  + 1 since otherwise 2™ 4 1 is divisible by
x+ 1 for n € N>y

(ii) A sparse polynomial with exactly 3 non-zero coefficients is called a trino-
mial. An irreducible trinomial over I, has the form f = 2" +2*+1 € F,[z]
with 0 <k < n.

(iii) We call a polynomial f = 2" + fax® + f32° + fo2°* + fiz°* € F,[z] with 5
non-zero coefficients a pentanomial.

(iv) A sparse polynomial of the form f = 2" + h € F,[z] with s = degh < n
is called sedimentary. Here all non-zero coefficients but the leading one are
at the bottom of f, and s = degh >t — 2. O

To define Fy» by a sparse irreducible polynomial, the following numbers are
helpful. Let ¢ be a prime power and n a positive integer, set

. _ there exists a sparse irreducible polynomial in

7q(n) = min {t € Noo: IF, [z] of degree n with ¢ non-zero coefficients nd

,(n) = min {s = degh € N> : 2" + h € F[z] is irreducible} .

Obviously, 7,(n) —2 < 6,(n) since sedimentary polynomials are a special kind
of sparse polynomials. For all pairs ¢ and n there exists an irreducible monic
polynomial f in F,[z] of degree n, and both 7,(n) and 6,(n) are well-defined with
0,(n) <n-—1.

29“The irreducible trinomial T'(u) has a structure that makes it a pleasant choice for repre-
senting the field.”, Schroeppel et al. (1995a), p. 4.

30 “We will show that the reduction operation can be speeded up even further if an irreducible
trinomial is used [ ... ].”, De Win et al. (1996), Section 3.
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Division with remainder for sparse polynomials. As already mentioned,
we hope for a substantial speed-up if we use sparse polynomials as modulus. This
expected improvement is caused by two observations. For all sparse polynomials,
the number of non-zero coefficients in f is much less than the degree n of f.
For sedimentary polynomials, the gap A = n —¢;_1 — 1 = n — s — 1 between
the leading coefficient and the second non-zero coefficient is large. We adapt the
division with remainder to both special cases. For practical terms, we can take
advantage of modern word-oriented processors with 32 or even 64 bit per word,
because the enclosed zeros support word-wise computation. This is often much
faster than the bit-wise computation.

The following is a tailor-made version of the well-known division with remain-
der to make the most of a sparse divisor.

ALGORITHM 5.19. Division with remainder for sparse polynomials.

Input: n € N>q, a polynomial g € F,[z] of degree m, an integer ¢ > 2, positive
integers 0 < e; < ey < ... < e =n, and coefficients fi,..., f; € F, with
fe=1.

Output: Uniquely determined polynomials u and v in F,[z] such that g = u -

(3 1cicy fix%) + v with degv < n.

1. Set j=m—mnand v=g¢gand u=0.
2. While 7 > 0 do 3-7

3. Set A = min{n —e;_1 — 1,5} > 0. Comment: the maximal number of
coefficients in v which can be handled at once is A + 1.
4. Set w =3 cica Untjit'. Comment: the top-degree part of u is also the

top-degree part of v.

Compute v < v —w -« (3, fiz®) x4
Set v+ v — w2 and u + u + w2,
Set j « j — (A +1).

. Return (u,v).

X N oo

LEMMA 5.20. The algorithm performs division with remainder of a polynomial
g € Fy[z] of degree m > n by f = 2™ + ., fix® € Fy[z] in at most 2(t —
1)(m — n + 1) operations in F,. N

ProOOF. To prove correctness as well as the bound on the number of operations,
we formulate and show the following invariant for f =), .., fiz® for the loop
in the steps 2-7: o

g=u-f+v and degv<n+j and 2/t divides u.

Before the first lap of the loop, we have v = 0 and v = g and j = m —n in step 3.
Then, u-f+v=0-f+¢g=gand degv = degg =m =n + j and 27! divides
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u = 0. Thus, we suppose that the invariant is true for a fixed j before a new lap.
Let v’ and v' be the polynomials after step 7. Then we have

u'f 4o (u+wrd ) f 4+ (v —wr" A —w - Z fixizi—2)
1<i<t
= (uf +v) +wa? ™ (f = (" + Y fix®))

1<i<t

=g+wi™™.0=y.

By step 7 we have j' = j — (A + 1), i.e. the decremented value of the counter
j. The polynomial w has degree at most A, and thus v/ = u — w - 2772 is
divisible by min{z/*!, z1=2} = gi+1=(A+1) = 23+ gince j — A < j + 1. The first
A + 1 coeflicients of v are subtracted to get v', hence degv' < degv — (A +1) <
n+j—(A+1) =n+j'. The invariant holds, and Algorithm 5.19 is correct:
After the loop, we have uf +v = g and degv < n+ (—1) < n.

For the costs we remark that w in step 4 can be extracted from v without
operations in [F,. The invariant also shows that the manipulation in step 6 is
without any operations in F,. In step 5, we can successively compute w- fiz¢+9=4
using A + 1 scalar multiplications and further A + 1 additions for all 1 <7 < ¢.
Thus, one lap causes 2(A+1)(t — 1) operations in F,. We have a total of S € N>,
laps withm —n+1-S5-(A+1) <0<m—-n+1—(S—1)(A+1), that is
S = [Z‘:Tﬁ:l] For S—1 laps, we have 2(A+1)(t—1) = 2(n—e;_1)(t—1) operations
in IF, for each lap. For the final, lap we have A =m —n— (S —1)(n—e;_1), and
we count 2- (m —n — (S —1)(n —e;_1) + 1)(t — 1) operations in F, in Step 5.
This yields a total of

(S—=1)-2(n—e)t—1)+2(m—n—(S—1)(n—e_1) +1)(t— 1)
= (S=1)-2(n—e 1)t—1)+2(m—n+1)(t—1)
—2(S=1)(n—e1)(t—1)
= 2m-n+1)(t—1)

operations as claimed. Il

Field arithmetic. As for arbitrary modulus we summarize the previous results
with respect to arithmetic in Fy» if the finite field is defined by a sparse irreducible
polynomial.

COROLLARY 5.21. Let t = 7,(n) and Fyn be given by a polynomial basis repre-
sentation with sparse modulus f = ™ + ), _,_, fix®. Then two elements can
be multiplied with at most M(n) + 2(t — 1)(n — 1) operations in F,. An ele-
ment can be raised to the g-th power with at most 2(q — 1)(t — 1)(n — 1) or
M(n)la(q) 4+ 2(t — 1)(n — 1)¢5(q) operations in F,, where ¢5(q) < 2|log,(q)] is the

minimal length for an (original) addition chain for q.
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PRrROOF. The bounds are a direct consequence of Lemma 5.20 because the
product of two canonical representatives of elements in F,[z]/(f) has degree
m < 2(n —1). A g-th power of a polynomial over F, can be calculated without
field operations. The result has degree m < ¢ - (n — 1) and has to be reduced,
which gives the first bound. One may alternatively apply an addition chain for ¢
of minimal length /5(q), and we get the second bound. O

For ¢ = 2 we have /5(2) = 1, and thus a square can be calculated with at most
2(t—1)(n—1) operations in Fy». The arithmetic suggested by the IEEE Standard
1363 gives in the following bounds.

COROLLARY 5.22. Let Fon = Fy[z]/(f) be defined by an irreducible trinomial
or pentanomial, respectively. Then two elements in Fo» can be multiplied in at
most

M(n) +4n — 4 operations if f is a trinomial, and
M(n) + 8n — 8 operations if f is a pentanomial.

Squaring can be done with 4n — 4 and 8n — 8 operations in Fy, respectively.

Experiments. We ran a test series Sparse with irreducible trinomials and pen-
tanomials in Fy[z] for the same 50 values of n as in test series Arbitrary. In
26 cases there exist irreducible trinomials of the required degree. For all other
values of n an irreducible pentanomial is used as modulus. Again, we used
BIPOLAR’s irreducibility test but adapted it to irreducible trinomials. In the
subsequent paragraph, we explain the basic algorithmic ideas in the subroutine
findIrrTrinom of BIPOLAR.

For the arithmetic we extended BIPOLAR implementing two versions of Al-
gorithm 5.19: one for trinomials (subroutine t3_remainder) and one for gen-
eral sparse modulus (subroutine sparse_remainder®'). We supplemented BiPo-
LAR’s division routine precremainder by a switch to make sure that division by
a sparse modulus works according to Algorithm 5.19.

We repeated both the trials for multiplication and for squaring 10000 times.
The only difference to the test series Arbitrary is that the reduction is now by
the sparse irreducible polynomials of the test series Sparse. The times which are
the average of all trials are given in Table A.10; they are illustrated in Figure 5.2.
Theory and experiment both show that the times for multiplication in Fy. are
now close to times for a polynomial multiplication, see column 4 of Table A.10.
Squaring is as fast as expected, see the green line in Figure 5.2. The relation
<2 shows the decrease that we have expected for M(n'*%). We observe that a
single multiplication is nearly 3 times as fast as in the case of arbitrary modulus.
Thus, we gain both faster arithmetic and a better speed-up when we use a sparse
modulus to represent Fy» instead of an arbitrary one.

31The version for general sparse modulus was gratefully implemented by Sandor Eckar.
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Figure 5.2: Times for multiplication (+) and squaring (<) for the test series
Sparse. The times are the average of 10000 trials. Here Fy» is given by a poly-
nomial basis representation due to Fy[z]/(f) with f € Fy[x] an irreducible poly-
nomial with at most ¢ = 5 non-zero coefficients. The times are marked on the
left y-axis. The scale of the right y-axis relates to the quotient (x) between both
times.

Finding irreducible sparse polynomials. As discussed above, constructing
a finite field F,» = F,[z]/(f) by an irreducible trinomial f = 2™+ fox®*+ f; € F,[z]
supports efficient arithmetic in F». We have already cited some remarks of Ben-
Or (1981), Schroeppel et al. (1995a), and De Win et al. (1996). For completeness,
we sketch the ideas we used to find an irreducible trinomial 2" + z* + 1 over F,.
We follow Zierler & Brillhart (1968, 1969) in our approach to find irreducible
trinomials. A similar idea is suggested in IEEE (2000), A.8.2 and A.8.5.

An obvious idea is to test all trinomials 2" +z* + 1 € Fy[z], for given n € N>y
and 1 < k < n, successively for irreducibility until an irreducible one appears—or
all candidates are proven to be reducible.

Ree (1971) considers trinomials of type 2" + z + a € F,[z], where n € N>,
and ¢ is a prime not dividing 2n(n — 1). In his Theorem 1 he proved that there
are roughly £ irreducible trinomials of this type in F,[z]. Wassermann (1993),
Satz 4.4.2, generalized this result to monic trinomials 2™+ for + fi € F,[z], where
f1 € F is fixed, ¢ is a prime power and char(F,) does not divide 2n(n — 1).

Ben-Or (1981) gave an algorithm to decide whether a polynomial f € F,[z] is
irreducible or not, using at most O(nM(n)log(ng)) operations in F,; see von zur
Gathen & Gerhard (1999), Section 14.9, for a detailed presentation. Thus, we
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can find an irreducible trinomial 2" +z*+1 € Fy[z] with at most O(n?M(n) logn)
operations in Fy. Motivated by the results of Ree (1971) and Wassermann (1993)
on special trinomial cited above and our experimental observations, we assume
that randomly chosen trinomials factor like arbitrary polynomials. Then we could
expect a total of only O(nM(n)log®n) operations in F, to find an irreducible
trinomial over Iy of degree n, if one exists.

We can speed up our searching by restricting the number of trinomials ™ +
zF + 1 € Fy[x] that have to be tested for irreducibility by Ben-Or’s algorithm.
The following fact is useful.

Fact 5.23 (Golomb 1967). The polynomial f € F,[z] is irreducible if and only
if its reversal rev,,(f) € F,[z| is irreducible.??

Therefore, we can restrict to the case 1 < k < [ %] to check for the existence of a
trinomial of degree n € N>,. Furthermore we can use a sieve by Swan (1962).

FAcT 5.24 (Swan 1962, Corollary 5). Let n > k > 0 be integers. Assume ex-
actly one of n and k is odd. Then z™ + z* + 1 € Fy[x] has an even number of
factors (and hence is reducible) in the following cases:

(i) n is even, k is odd, n # 2k and ”7’“ =0 or1mod4, or
(ii) n is odd, k is even, k does not divide 2n, and n = +3 mod 8, or
(iii) n is odd, k is even, k divides 2n, and n = £+1 mod 8.

In all other cases " + x¥ + 1 has an odd number of factors over Fs.

If n and k£ are both odd, we can also apply Swan’s result as he already mentioned
himself?3. In practice, Fact 5.24 speeds up the search for irreducible trinomi-
als over Iy significantly. Using this strategy, we found an irreducible trinomial
for given 2 < n < 10000 in 5146 cases using BIPOLAR’s factorization routine
findIrrTrinom. The division by the tested trinomial has been computed with
the subroutine t3_remainder. For the remaining 4852 field extensions Fy» there
exist no irreducible trinomials, but there are irreducible pentanomials. Thus, we
conjecture that m(n) < 5 for all n € Nx,.

324Since the transformation f(z) — z"f(1/x) changes any polynomial of degree n into its
'reverse’, [ ... | and does the same for each of its factors, it is sufficient to list only those
trinomials with a < [n/2].”, Golomb (1967), p. 90-91.

33«“The case where n and k are both odd can be reduced to the case k even by considering
z™ + 2" ¥ 4+ 1 which has the same number of irreducible factors as " + z* + 1.”, Swan (1962),
p. 1106.
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5.2.3. Sedimentary polynomials. Another type of sparse polynomials rele-
vant to fast arithmetic in F,[z]/(f) are sedimentary polynomials f = 2" + h with
s = degh < n. These are special types of sparse polynomials with s < ¢ 4 2.
Heuristically, one might hope that 6,(n) = min{degh: z"+h € F,[z] irreducible}
is roughly log, n since there are about n polynomials with degree up to log, n,
and a fraction of about 1/n of all polynomials of fixed degree n is irreducible®*
in F,[z]. Similar ideas were expressed by Coppersmith (1984)% and Gordon &
McCurley (1992)36. Indeed, we found irreducible polynomials f = z" + h with
s =degh < [logyn]|+1 < n for all tested n in order to construct the finite fields
of the test series Sedimentary. The experiments of Gao & Panario (1997)37 and
Gao et al. (1999)% checked 6;(n) < 3 + logyn for n < 2000. Our experiments
showed 02(n) < 3 + [log, n| for n < 8142.

Arithmetic for sedimentary modulus. Obviously, we can rewrite the results
for sparse polynomials in the case of sedimentary polynomials using ¢ < s + 2.
But we may also profit from the fact that n — e; | = n — s is large. Then in
Algorithm 5.19 step 5, we may multiply the two polynomials w and h = f — 2"
directly, performing a fast algorithm for multiplication in F,[z].

LEMMA 5.25. Let f,g € F,[z] be two polynomials with degg = m > n and

f = 2" + h sedimentary such that 0 < s = degh < ”T_l Division with remainder

of g by f can be performed with at most ("= + 1) M(s+ 1) +2(m—n+1)+s
operations in F,.

ProoF. We can compute division with remainder using Algorithm 5.19 with
minimal modifications. Since we want to profit from the sequence of zeros between
z™ and h, the new step 3 is now:

3’. Set A = min{s, j}.

34Precise bounds can be found in Lidl & Niederreiter (1983), Exercises 3.26 and 3.27: The
number Ny (n) of irreducible monic polynomials in Fy[z] of degree n is bounded by %q” -
a (@7 =1) < Ny(n) < (1/n)(d" ~ ).

35%Choose a primitive polynomial P(z) of degree n, such that P(z) = 2™ + Q(z), where the
degree of Q(z) is smaller than n?/3. (This should be possible; heuristically, for a given n, we
expect the best possible Q(z) to have degree about log, n.)”, Coppersmith (1984), p. 590.

36« ... ]it is convenient that we construct our finite field GF(2") as GF(2)[z]/(f(z)), where
f is an irreducible polynomial of the form z™ + f;(z), with f; of small degree. [ ... ] a search
that we made confirms this since it is possible to find an f; of degree at most 11 for all n up to
600, and it is usually possible to find one of degree at most 7.”, Gordon & McCurley (1992),
p- 313.

37 «Experimental results show that such polynomial f exists for n < 1000 taking degg <
2 +log, n.”, Gao & Panario (1997), p. 358. [The g is our h.]

38 “We also did experiments on the existence of irreducible polynomials of the form 2" +g(z) €
F, [z] with deg g(z) = logn 4+ O(1). For ¢ = 2 and n < 2000, it turns out that such irreducible
polynomials always exist with deg g(z) < logn + 3.”, Gao et al. (1999), p. 49. [The g is our h.]
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By assumption, s < "T_l which gives n — s — 1 > s. Hence, the chosen A is at
most the one of the original algorithm. Obviously, this does not interfere with
the correctness.

In step 5, we can then perform fast polynomial multiplication on the two
polynomials w of degree A < s and h = f — 2" = >, ., fiz® of degree (at
most) s. This can be done with M(s + 1) operations in F,. We count at most
s+ 14 A further additions in F, to perform v —w - h - I A,

A lap of Algorithm 5.19 step 2—-7 decreases the degree of v by A + 1. There
are S = mS_T"f’l} many laps. Analogous to the proof of Lemma 5.20, we have to
distinguish between S — 1 laps with A = s and a final lap with A = m —n —
(S —1)(s+1). Each of the S laps contains one multiplication w - h with at most

M(s + 1) operations in IF,. Hence, the total costs are
SMis+1)+(S-1)2s+1)+s+14+m—-n—(S-1)(s+1)

= S-Mis+1)+(S—=1)-s+m—-n+1+s
< SM(s+1)+2-(m—n+1)+s.

; — [m=n+l —n+1
Here we have inserted S =[] < Bt + 1. O

Field arithmetic. For arithmetic in Fjn, we have m < 2(n—1) and m—n+1 <
n — 1. The next two corollaries follow directly from this and Lemma 5.25.

COROLLARY 5.26. Let Fj» be given by a polynomial basis representation with
sedimentary modulus f = z"™ + h such that degh = s < (n — 1)/2. Then two
elements can be multiplied with at most M(n) + (’S‘Tf +1)M(s+1)+2(n—1)+s
operations in F,. An element can be raised to the g-th power with at most

M(n)a(q) + (25 + 1) M(s + 1) +2(n = 1) + 5) bo(q) or (SEE1 1 1) M(s +

1) +2(¢ —1)(n—1) + s operations in I, where {5(q) is the minimal length for an
(original) addition chain for q with fy(q) < 2|log, q].

COROLLARY 5.27. Let Fon be given by Fy[z]/(f) where f is an irreducible sedi-
mentary polynomial f = 2™ 4+ h of degh € O(log,n). Then two elements in Fon
can be multiplied with at most

n

M(n) 4+ O(

1 M(logn)) € M(n) + O(nloglogn - logloglogn),
ogn
squaring can be done with O(ﬁM (logn)) € O(nloglogn-logloglog n) operations
in FQ .

Experiments. We took a third test series Sedimentary for a polynomial basis
representation of Fyn. This test series consists of irreducible sedimentary poly-
nomials f = 2™ + h € Fy[z] of the same degrees n as in Arbitrary. We chose the
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degree of the sediment as small as possible; the degree of A is given in Table A.11,
column 2. Indeed, all sediments h have degree at most log, n + 2. The version
of Algorithm 5.19 for sedimentary polynomials was implemented and added to
BIPOLAR as subroutine s_remainder by Olaf Miiller. Again a switch makes sure
that division modulo a sedimentary polynomial is done by this new subroutine
whenever routine precremainder is called for a sedimentary polynomial. The
experiment itself is just a repetition of the previously described for Arbitrary and
Sparse. We only exchanged the division routine by the tailor-made one for sedi-
mentary polynomials. The times are documented in Figure 5.3 and Table A.11.

Polynomial basis with sedimentary modulus f=x"n+h

10 1

9 -

8 -4 0.8

/ c
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degree of field extension over GF(2)

[ multiplication (c A) —+— c Qlc A -—x-]

Figure 5.3: Times for multiplication (+) and squaring (<) for the test series
Sedimentary. The times are the average of 10000 trials. Here Fy» is given by
a polynomial basis representation due to Fy[z]/(f) with f = 2™ + h € Fy[z] an
irreducible polynomial of degh < [logyn]| + 1. The times are marked on the
left y-axis. The scale of the right y-axis relates to the quotient (x) between both
times.

As for Sparse, we observe that the reduction is now very cheap. Multiplication is
dominated by the cost for multiplying two canonical representatives, and squar-
ing decreases if we compare it to multiplication, see Table A.11, columns 4 and
7. This is in conformity with the theoretical results of Corollary 5.27. Generally
speaking, the results for sparse and for sedimentary irreducible polynomials are
close to each other in theory as well as by experiment. Thus, we expect a similar
behavior of both data structures.

5.3. Exponentiation in a polynomial basis representation. We summa-
rize the findings on arithmetic in F;» if the field is represented by a polynomial
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basis, i.e. F,[z]/(f). In particular, it remains to apply these facts to (parallel)
exponentiation. For all three different kind of moduli described above we give a
table with three columns showing the results for classical arithmetic (Remark 5.2)
with M(n) = O(n?), Karatsuba’s multiplication algorithm (Corollary 5.7) with
M(n) = O(n'"), and the fastest known FFT-based multiplication (Fact 5.8) with
M(n) = O(nlogn - loglogn). We restrict to the case ¢ = 2.

Polynomial basis representation: arbitrary modulus
classical Karatsuba FFT

arithmetic

multiplication (c4) | 4n? —4n+1 O(n'*) | O(nlogn - loglogn)

squaring (cg) 2n? —2n +1 O(n**) | O(nlogn -loglogn)
c=2 x5 ~ 2 ~ 2
exponentiation

sequential 2n® + O(I:gsn) O(n**) | O(n?*logn - loglogn)

parallel 2n + O(n?logn) | O(n?*%) | O(n%logn - loglogn)

Table 5.4: Bounds on exponentiation in Fy» given by a polynomial basis repre-
sentation with arbitrary modulus.

For arbitrary modulus the result is disappointing, see Table 5.4. Independent
of the chosen multiplication algorithm, exponentiation shows no real impact by
parallel computing. The asymptotic bounds of Corollary 3.10 for sequential and
Corollary 4.1 for parallel exponentiation do not differ. We conclude with the
help of this bounds that a polynomial basis representation, with the modulus
f € Fy[z] taken as an arbitrary chosen irreducible polynomial, is not a good data
structure for parallel exponentiation in Fyn.

For sparse modulus the situation is much better, see Table 5.5. For clas-
sical multiplication the bounds on exponentiation drops from O(%) to soft-
quadratic. If multiplication becomes faster the speed-up using parallel comput-
ing decreases. But the asymptotic bounds are quadratic in this case. Thus, we
can expect clearly better results using a sparse instead of an arbitrary irreducible
polynomial f to construct Fon.

The bounds for a sedimentary irreducible polynomial f = 2" + h € Fy[x] are
displayed in Table 5.6. The entries are slightly higher than those in Table 5.5
for sparse moduli. The reason is that the asymptotic bound for squaring for
sedimentary modulus is only soft-linear, while it is linear for sparse modulus. If
we restrict to a polynomial basis representation of Fy., our choice would be a
sparse irreducible trinomial or pentanomial.

5.4. Division in a polynomial basis representation. We have not inte-
grated subtraction as a basic operation in our model of ¢g-addition chains. A
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Polynomial basis representation: sparse modulus (72(n) < 5)
classical Karatsuba FFT
arithmetic
mult. (ca) 2n® +6n—17 O(nt?) O(nlogn - loglogn)
squaring (cq) 8n — 8 8n — 8 8n — 8
€= o) O () O (iogmriogiogz)
exponentiation
sequential O(lgf;n) O(ﬁf;: ) O(n?loglogn)
2n?log, n 8n? 8n?
parallel +0(n?) +0(n'*logn) | +O(nlog’n - loglogn)

Table 5.5: Bounds on exponentiation in Fy» given by a polynomial basis repre-
sentation with sparse modulus.

Polynomial basis representation: sedimentary modulus (62(n) € O(logn))
classical Karatsuba FFT
arithmetic
multiplication (c4) | 2n? + O(nlogn) O(n'"%) O(nL(n))
squaring (cq) O(nlogn) O(nlog®* n) O(nLn)
== O(%%) | O((=En)?) | o(Pdaen)
exponentiation
sequential O(I:;n) 0(1"(?;:) O(n%L(logn))
parallel O(n?logn) O(n?log”* n) | O(n*L(logn))

Table 5.6: Bounds on exponentiation in Fy» given by a polynomial basis repre-
sentation with sedimentary modulus. Here L(n) = logn - loglogn.

subtraction step would correspond to a division in Fj». Nevertheless, we shortly
sketch the algorithm to perform division in F,[z]/(f).

Let A € Fj = Fp \ {0} be a field element. As above we assume f to be an
irreducible polynomial over I, and all elements to be represented by polynomials
over [, of degree less than n = deg f. Let g be the canonical representative of A.
We can substitute division by A by multiplication with the inverse A™* € Fn.
The canonical representative h of A™! satisfies g- h = 1 mod f. We can solve
the following linear Diophantine equation for g and f to get a representative for
A~ Find u, h € F,[z] such that

frut+g-h=1

The Extended Euclidean Algorithm. The common way to compute u and
h in F,[z]—or to prove that such polynomials do not exist—uses the Eztended
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FEuclidean Algorithm. The book of von zur Gathen & Gerhard (1999) gives an
extensive presentation of this algorithm. We only collect a few facts from their
book and adapt them to invert elements in Fn.

Actually, the Extended Euclidean Algorithm computes the greatest common
divisor of two elements in a ring R whenever division with remainder is available
in R. Such a ring is also called an Fuclidean domain.

DEFINITION 5.28. Let R be a ring and A, B,C' € R. Then C is the greatest
common divisor (or ged for short) of A and B if C divides both A and B, and C
is also divisible by all common divisors of A and B.

This definition does not ensure uniqueness. To get an unique gecd in the case
R =T, [z], we impose the gcd to be monic, i.e. the leading coefficient is supposed
to be 1. We give the algorithm in the case R = F,[z].

EXTENDED EUCLIDEAN ALGORITHM 5.29.

Input: Polynomials f, g € F,[z] with deg f =n > m = degg.
Output: Polynomials d, u, h € F,[z] such that d = ged(f,g) =u-f+h-g.

1. Set ap = f, a1 =9g,ug=1,u; =0, v9 =0, and v; = 1.

2. Set i = 1.

3. While a; # 0 do 4-6

4. Compute w; and a;4; such that a;—y = w; - a; + a;41 by division with
remainder.

0. Compute Ujy1 < U1 — Wy - Uy and Vig1 < Vi1 — W; - V5.

6. Set 7 1+ 1.

7. Set £ =1 — 1 and Return ay, ug, vg.

Fact 5.30 (von zur Gathen & Gerhard 1999, Theorem 3.11). Let f,g € TF,[z]
be polynomials of degree n = deg f and m = deg g, respectively. The Extended
FEuclidean Algorithm 5.29 computes d,s,t € F,[z] such that d = ged(f,g) =
s- f+t-g with at most O(nm) operations in F,.

If an element A € Fyn is nonzero in F,[z]/(f) then the canonical representative
g € F,[z] of A is invertible modulo f. Then gcd(f,¢g) = 1 and the Extended
Euclidean Algorithm 5.29 computes a representative h of A~! with O(n?) oper-
ations in F,. In fact, A has degree less than deg f = n. Thus, it is the canonical
representative of AL,

COROLLARY 5.31. Let the elements of Fyn be given by a polynomial basis rep-

resentation. Then the inverse of an element A € Fj. can be computed with at

most O(n?) operations in F,.
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Fast Euclidean Algorithm. Moenck (1973) has described a faster compu-
tation of the ged in Euclidean domains. His algorithm is based on a divide-
and-conquer strategy and generalizes a result of Schonhage (1971) for the fast
computation of the ged of two integers. We omit a description of the algorithm
and refer to Section 11 in the book of von zur Gathen & Gerhard (1999) instead.
Here we only cite the result.

Fact 5.32 (von zur Gathen & Gerhard 1999, Corollary 11.8). Let Fyn be repre-
sented by a polynomial basis. Then the inverse of an element A € F. can be
computed with at most

O(M(n)logn) € O(nlog® nloglogn)

operations in F,.

In Section 8.2, we will compare inversion via the Extended Euclidean Algorithm
with an approach which is based on fast exponentiation.
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6. Normal bases

A normal bases for Fy» offers the free evaluation of the Frobenius automorphism.
This fact raised interest in (hardware-based) implementations of modern public
key cryptosystems; see e.g. Agnew et al. (1991), Agnew et al. (1993), and IEEE
(2000). In this section we collect the main ideas of (matrix-based) arithmetic
for arbitrary normal bases®®. In agreement with our model of weighted addition
chains with scalar, we give a sketch on multiplication and exponentiation. More-
over, we apply both sequential and parallel exponentiation to the computation
of the inverse of an element in Fy» if it is represented by a normal basis.

The section is organized as follows: After a very short sketch of some basics
on normal elements in Section 6.1, we turn to multiplication. We discuss the
standard algorithm due to Omura & Massey (1986), and give an example on the
construction of the multiplication matriz in Section 6.2 for arbitrary normal bases.
The subsequent Section 6.3 describes optimal normal bases as introduced by
Mullin et al. (1989). We apply them to exponentiation in Section 6.4. The matrix-
based multiplication will appear to be the bottleneck for fast exponentiation in
the normal basis representation.

In the closing Section 6.5, we apply exponentiation to the computation of the
inverse in F;». This subsection mainly presents results that can also be found
in von zur Gathen & Nocker (1999). Our algorithmic approach generalizes an
idea of Itoh & Tsujii (1988b). This speeds up the times of sequential inversion as
shown by experiment. Moreover, we derive a new parallel algorithm for inversion
in Fg» using the same idea. This parallel algorithm has optimal depth for ¢ = 2
and is close to optimal for ¢ > 3, and the number of processors depends only on

q.

6.1. Basics. The Galois group Gal(F, /IF,) of the extension field of degree n
of I, is cyclic and the Frobenius automorphism

[ ]Fqn — ]Fqn Wlth O'(A) = Aq

is its canonical generator, see Fact 2.9. For an element A € Fy» the set of elements
{o"(A): 0 < h < n} is the set of conjugates of A with respect to F,.

DEFINITION 6.1. A basis of Fn as a vector space of F, of the form N =
(av,...,a%" ") consisting of the conjugates of a suitable element o € Fyp with
respect to Iy, is called a normal basis of Fy» over F,. The element « is then
called normal (or free) in Fyn over F,.

39This is in contrast to the subsequent sections where we will study a special type of normal
elements.
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NORMAL BASIS THEOREM 6.2. There exists a normal basis of Fy» over .

This result was first proven by Hensel (1888). For different types of proofs we
refer to the books of Jungnickel (1993), Theorem 3.1.1, and Lidl & Niederreiter
(1983), Theorem 2.35.

Normal basis representation of Fn. Let N = (o,... ,aq"_l) be a nor-
mal basis of Fj». Then an element A =), . Apa? in F;» can be uniquely
written as (ordered) linear combination of the basis elements with coefficients
Ao, ..., A1 in F,. We call this the normal basis representation of Fpn with
respect to N. Addition of two elements in this basis representation is just
coefficient-wise

A + B = Z Ahaqh —+ Z Bhaqh = Z (Ah —+ Bh)thh

0<h<n 0<h<n 0<h<n

and can be computed with n operations in [F,.

Computing the Frobenius automorphism. Another property of the nor-
mal basis representation attracts attention of the experts who work on fast cryp-
tosystems: computing the ¢g-th power of an element is quite easy and fast in both
hardware and software since

Al = O'(A) = O'( Z AhCYqh) = Z AhO'(quh) = Z Ah,laqh

0<h<n 0<h<n 0<h<n

where we set A_; = A, _1. Thus, calculating the ¢g-th power is just a cyclic shift
of coefficients and can be done without any operations in F,. Our experiments
in Section 6.3 support our assumption that raising to the g-th power is indeed
free. For hardware implementations, this arithmetic operation is realized by a
(straightforward) shift register (Figure 6.1). We observe that the normal basis

F{AO|A1|A2|A3|A4|A5|A6}—‘ ~ | AglAdA1]AoJA5A4]A45)

squaring

Figure 6.1: Illustration how to square in a normal basis representation of Fy7 over
F, using a shift register.

representation is a data structure with cg = 0. Thus, exponentiation can well be
parallelized according to Section 4.3.
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6.2. The multiplication matrix. The crucial point in (software-based) nor-
mal basis arithmetic is multiplication.

Let C =Y ycpen Cha?" be the product of two elements A and B in Fy. with
respect to A'. We define the n x n-matrix Txr = (¢ 4)o<i,n<n With entries in F, by

(6.3) of = Z tiyhaqh for 0 <i < n.

0<h<n

The matrix is called the multiplication matriz of N'. A straightforward compu-
tation gives for 0 < j <n

¢ .7 = ¢ = PPN
(6.4) ot -at = (a a) = (ZO§h<n bijn )
Rt R
- T — PP
= Zogh<n Li—j,nC = ZO§h<n ti—jh—jot

Thus, multiplication in the normal basis representation of F,» due to N is com-
pletely determined by T)s. The coefficients Cy, ... ,C,_; of the product C' = A-B
are given due to

(65) Ch - Z Az . B] . ti*j,h*j

0<i,j<n

by comparison of coefficients:

ST PP N PSP

0<h<n 0<i<n 0<5<n 0<2,5j<n
(6.4) h
=" Y Ai-Bj-| D tignaf
0<i,j<n 0<h<n
h
= .. B S . q
= E ( E Az B] tz_],h_]>a .
0<h<n \0<i,j<n

Obviously, the number of multiplications in F, to compute the product of two
elements depends on the number dj of non-zero entries in 7).

FAcT 6.6. Let dy = #{(i,h) € {0,...,n — 1}?: t;, # 0} be the density*® of
Ty. The product of two elements given by a normal basis representation with
respect to N' can be computed with at most 2nd, multiplications (and at most
(dar — 1) - n additions) in F,.

10Ash et al. (1989), p. 192, call this “the complexity of multiplication with respect to the
basis” N.
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Computation of the multiplication matrix. A common way to compute
the multiplication matrix T with respect to a normal basis N = (@, ... ,a4" ")
is to consider the (irreducible) minimal polynomial f € F,[z] of «; see also
Jungnickel (1993), Example 3.2.3*1. Then all products o - a for 0 < i < n
are computed in the polynomial basis representation of F;» given by the basis
B=(l,a,a? ...,a" ") with a = (x mod f).

We illustrate this by an example which is described in the patent of Omura
& Massey (1986), columns 9-10.

EXAMPLE 6.7. (i) Let a be a root of the irreducible polynomial f = 7+ 2%+
1 € Fy[z]. Then

a = (z mod f) o =@+ 2%+ 2+ 2° + 2 mod f)
o = (2* mod f) o =@+ 2+ 22+ 2+ 1 mod f)
o = (z* mod f) o = (¢ + 2 + 1 mod f)
o = (2% + z + 1 mod f).

Hence,

Z Ahaqh

0<h<T

= (A3 + A% + (Ag + A5)z® + (Ay + Ay + A5 + Ag)2?
+(A4 + A6)$3 + (A1 + A5)$2 + (A() + A3 + A4 + A5).Z'
+(A3 -+ A5 + A6) -1 II’lOd f

To check that f is irreducible, we have to check (with Gaussian elimination)
that the right-hand side is zero if and only if Ay = --- = Ag = 0, i.e. the
roots of f are indeed linearly independent.

(ii) The computation of the products o' - o for 0 < i < 7 in F,[z]/(f) gives

a-a=(z° mod f) o -a=("+2*+2°+1mod f)

o’ - a = (2° mod f) o o= (2% +2° + 2° + 22 + 2 mod f)
o - a = (z° mod f) o® -a = (2% + 2 + x mod f)
o a=(2%+2>+2+1mod f).

410One way to find a normal element and its minimal polynomial at the same time is as follows.
One starts with an irreducible polynomial of degree n and checks whether its roots are linearly
independent. If an irreducible polynomial f with linearly independent roots is found then the
root a of f is normal in Fy» and f is its minimal polynomial over I, .
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(iii) We can perform Gaussian elimination on the following matrix to write
these 7 products as linear combinations of the conjugates of a. For o =
> o<jer Aji? mod f the entry (j + 1,4+ 1) in the left part of the matrix
is A;;. The column 8 + ¢ of the right part contains the coefficients of the
polynomial representation of a? - a.

0001011/0001100
1001110/0001011
0100010/1001110
0000101/01000T10
0010111000010 1
0000110001011 1
\0 0011000007101 0)

The output is then (E7|7") with E; the 7 x 7-identity matrix and

0100101
1101010
0000011

={0111001
0110011
0100100

\0010001)

(iv) The multiplication matrix Ty is the transposed matrix of 7". Entry (j,1)
in T" contains Bj_1 such that o - =Y ; Bjia”. Then

4 5
a-a=a’ o ca=a? +a

5 4 3 5 4 2
a=ar 4>+ +at+a o ca=a? +a% +a°
2 6 4 3 6 6 4 3 2
o ca=a +0% +a? a ca=ar 402 +a¥ +a? +a

3
o ca=a’+a”.

Usually, the multiplication matrix T, is computed once and then stored. All
other multiplications of elements of F,» —given by a normal basis representation

due to N = (q, . .. ,oﬂn*l)—can be done without knowing the minimal polyno-
mial f of a. 0
REMARK 6.8. Let N = (q, ... ,aqnfl) be a normal basis of F,n over F,, and let

f € F,[z] be the minimal polynomial of «. The multiplication matrix Ty can be
computed with at most n — 1 many ¢-th powers (to compute ot for1<h< n)
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and n multiplications (to compute o2 - a for 0 < i < n) in F,[z]/(f) and a
Gaussian elimination*? on a n X 2n-matrix over F,. This yields a total of at most

(3M(n) +n)ly(q) - (n — 1) + (3M(n) +n) - n + O(n?)
€ O(n® +n*logn - loglogn - log q)

operations in [, using the results on a polynomial basis representation with
arbitrary modulus as in Corollary 5.16.

Hardware-based implementation. Omura & Massey (1986) hold a patent
on a hardware-based implementation of the matrix-based multiplication algo-
rithm described above. Wang et al. (1985) report on a chip compiled according
to this patent and some improvements. Onyszchuk et al. (1988) have got another
patent on hardware-based normal basis multiplication. The architecture and the
algorithms of the latter one are described on its cryptographic background by
Rosati (1989) and Agnew et al. (1991), respectively. See Geiselmann (1994),
Section 3.1.1, for a comparative discussion on both implementations.

The so-called Massey-Omura multiplier hardwires a multiplication matrix
Ty = (ti,n)o<ih<n. The entries of Ty are given by a permutation of the en-
tries of the multiplication matrix T)s such that ¢;, = ¢, for 0 < i,h < n.
Then the coefficients Cy, ... , C,,_1 of the product C' = A - B are given by

5 ot (5 ae) (5 o)

0<h<n 0<i<n 0<j<n
qh — qh
= E E AZ - B] - ti*j,h*j o = E E Ai*h . ti,j . ijh (67N
0<h<n \0<i,j<n 0<h<n \0<i,j<n

The matrix can be hardwired. Only the coefficients Aq,...,A,_1 and By, ...,
B,,_1 have to be shifted with respect to h. This can easily be done by two shift
registers. The corresponding algorithm is also suggested in IEEE (2000), A.3.8.

EXAMPLE 6.7 CONTINUED. The schematic Massey-Omura multiplier for N/ =
(a,...,a" ") with a a root of f = 27 4+ 2% + 1 € Fy[z] is described in the
following figures:*?

12 A Gaussian elimination on a n x 2n-matrix with entries in F, can be performed with O(n?)
operations in [, see von zur Gathen & Gerhard (1999), Section 25.5

43We omit the connection between the AND-gates and the XOR-gates. Two of each AND-
gates are combined with one XOR-gate.
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Following Wang et al. (1985) and Beth et al. (1991), a Massey-Omura multiplier
for a normal basis N in Fan over Fy can be realized with 2n registers (O), dy
AND gates (®) and dy — 1 XOR gates ().

6.3. Optimal normal bases. By Fact 6.6, the density dy of a normal basis
is the crucial parameter for both software- and hardware-implemented multipli-
cation. Beth et al. (1991) report on empirical examinations** which showed an
average value for d of % -n?. This is quadratic in the degree n.

A lower bound. In this paragraph, we follow Mullin et al. (1989). They have
proven a sharp lower bound on dx which is only linear in n.
A useful tool is the trace. The trace map Trg,, /5, : Fgn — Fgn is defined by

(6.9) Trg,, m, (A) = Y A7

0<i<n

for each A € Fjn. We often write Tryn/q short for Try,, /5,. For all A € Fyn, we
have

q
Trqn/q(A)q: (Z Aqi) = Z AT Z AT 4 AT

0<i<n 0<i<n 1<i<n
A
=A+ ) AT = Y AT =Trg(A)
1<i<n 0<i<n

using A7 = A in F,» according to Fermat’s Little Theorem 2.3. Thus, the
element Tryn /q(A) is an element in F, for all A € F» by (2.8).

44«An average value of % -n? for Cy is found from empirical examinations. This is the
obvious result of modeling with random matrices as well.”, Beth et al. (1991), p. 174 [the Cn
is our dy].
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FacT 6.10 (Mullin et al. 1989, Theorem 2.1). Let N' be a normal basis in Fyn
over IF, with density dy. Then dy > 2n — 1.

PROOF. The proof is taken from Menezes et al. (1993): Let o be a normal
element in Fn and N = (o, ... ,aq"_l) the corresponding basis over F,. The
trace A = Trgn /(@) = Y ocicn o of a over F, is an element in F,. Let Ty =
(tin)o<ih<n be the multiplication matrix of A”. Then

A-a = Trgjla)-a= Z(aqi-a)

0<i<n
0<i<n 0<h<n 0<h<n \0<i<n
and comparison of coefficients proves
A ifh=0,
(6.11) Z Lin _{ 0 else.

Because N/ = (aqi * 0)o<i<n is also a normal basis of Fgn over F,, the matrix Ty
is invertible. Hence, there has to be at least one non-zero element in each row of
Ty. With respect to (6.11), there are at least two non-zero elements in the i-th
row for 1 <7 < n. In row 7 = 0, there is at least one non-zero entry. Summing
up, we have dy > 2(n—1) + 1. O

Following Mullin et al. (1989), we call a normal basis N optimal when dy =
2n — 1. This lower bound is sharp! Mullin et al. (1989) constructed two different
sets of normal bases with optimal density. In there early paper, they restrict their
construction to Fyn. Fact 6.13 below is proven in Menezes et al. (1993). It gives
a construction of optimal normal bases with the help of primitive roots of unity
in Fon.

DEFINITION 6.12. Let r be a positive integers and q be a prime power such that
ged(r,q) = 1. An element ¢ in an extension field of F, is called a primitive r-th
root of unity if (" =1 and (* # 1 for0 < s <.

Since (" — 1 = 0, we have 2" — 1 € F,[z] a multiple of the minimal polynomial
p € Fylz] of ¢, i.e. ¢ € Fyr. We recall some notation: We write (ay, ... ,a;) C Z)
for the smallest subgroup of Z,* containing all elements a4, . .. , a.

FAcCT 6.13 (Menezes et al. 1993, Theorems 5.2 and 5.3). Let n € N>;.

(i) Let n+1 be prime and q be a prime power generating Z,, . |, i.e. (q) = Z,,, ;.

Let ¢ be a primitive (n+ 1)-th root of unity in an extension field of F, and
a=C(. Then N = (a, ... ,aqn_l) is an optimal normal basis of Fjn over T,.
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(ii) Let 2n+ 1 be a prime. If either (2) = Zs, ., or (2,{1,—1}) = Z;nJlrl' Then
a = ( + (! generates an optimal normal basis N' = (a,... ,a? ) of Fyn
over Fy, where ( is a primitive (2n + 1)-th root of unity.

These constructions describe all optimal normal bases! Gao & Lenstra (1992)
proved this somehow surprising result. Unfortunately, this is bad news for fast
arithmetic in Fy». Optimal normal bases do not exist for all finite fields Fy» over
F,. The bold figures in Table 6.1 show the percentage of all extension fields over
small prime fields of degree less than 10000 for which an optimal normal basis
exist.

Normal bases with low density. Ash et al. (1989) have generalized the idea
of Fact 6.13 to construct what they call low complexity normal bases for Fan;
these normal bases are called Gaussian normal bases in IEEE (2000). A further
generalization for Fy» has been given by Wassermann (1990), Satz 1, and Beth
et al. (1991), Theorem 5.

FACT 6.14 (Beth et al. 1991, Theorem 5). Let k and n be positive integers, and
q a prime power such that nk + 1 is a prime not dividing ¢, and let JC be the
uniquely determined subgroup of order k in Z;;Hl. If (¢, K) = Z;fkﬂ and if ¢ is
a primitive (nk 4 1)-th root of unity in Fgnr. Then a =) ., ¢* is normal in Fy»
and N = (a,...,09" ") is a normal basis in Fn .

FacT 6.15 (Beth et al. 1991, Theorem 6). The density of a normal basis N as
in Fact 6.14 is bounded by dy < n(k + 1) — k.

This construction cannot be done for all finite fields. We give some empirical
values on the distribution of those normal bases in Table 6.1. The theoretical
result was proven by Wassermann (1993).

FACT 6.16 (Wassermann 1993, Satz 3.3.4). Let p be a prime, e and n be positive
integers, and q = p°®. There is a k € Ny, such that a normal basis can be
constructed as in Fact 6.14 if and only if ¢ and n satisfy

2p fn, ifp=1mod4,
ged(e,n) =1 and 4p }n, if p=2,3 mod 4.
Experiments. We recall the 50 finite fields F,» which are subject of the three
test series for polynomial basis representation. Each of these fields has an optimal
normal basis over F,. We fixed the corresponding normal basis with parameters
(n, k) over Fy, where k € {1, 2}, and collected them in a fourth test series Normal.
We computed the multiplication matrix for each normal basis using an al-
gorithm of Wassermann (1990). We will describe a generalized version of this
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Existence of normal bases constructed due to
Fact 6.14 with given parameter k € N>,

E O\ g 2 3 5 7 ] 11 | 13 | 17 | 19
k=1 470 | 4.76 | 4.92 | 4.65 | 4.43 | 4.57 | 4.50 | 4.72
k<2 17.07 | 18.40 | 17.62 | 17.37 | 17.14 [ 17.11 | 16.89 | 17.26

k <logyn || 63.34|66.63 | 65.45 | 69.66 | 69.89 | 69.63 | 69.78 | 69.77
k<+/n 86.86 | 91.02 | 89.34 | 95.75 | 96.98 | 95.32 | 96.19 | 97.77
k < oo 87.51 | 91.67 | 90.01 | 96.43 | 97.73 | 96.16 | 97.06 | 98.69
theo. 87.51 | 91.67 | 90.01 | 96.43 | 97.73 | 96.16 | 97.06 | 98.69

Table 6.1: Percentage of field extensions F;» over F, with 2 < n < 10000 for
which there is a normal basis as constructed in Fact 6.14 over IF,. The parameter
q is given in the top row; e.g. the figures for [Fy are in the second column. The
rows show the distribution if the value £ € N>; is also limited. We have confined
our experiments for r = nk + 1 by r < 1000000. Bold figures are the percentage
of optimal normal bases for given gq. The last row labeled theo. quantifies the
result of Fact 6.16.

algorithm in Section 8.3. The multiplication matrix is sparse for optimal normal
bases. We have stored a non-zero entry ¢; ;, of this sparse matrix by its indices.
An element A € F,» was represented by an array of bits collected in machine
words of 32 bits each. Each bit is a coefficient A; in the linear combination
Y o<icn Aie® of A. Our experiment consisted of 1000 trials for multiplication
as well as for squaring in Fsn given by the normal basis N = (o, 0?,...,a2" ).
For each trial we chose elements of Fy» at random. Squaring was realized by a
cyclic shift on the bits which is supported for words by the processor. The times
are documented in Table A.12; they are illustrated in Figure 6.2. These times
support the assumption of the theoretical estimates that squaring is free. For
multiplication, our experiments show the predicted quadratic running time with
respect to the degree of the field extension n. But the comparison with polyno-
mial multiplication is worse than expected. Also the running times for £ = 1 and
k = 2 differ by a factor of nearly g which contradicts with Fact 6.6 since we have
dy = 2n — 1 for both cases. The problem occurs, because the implementation
of the multiplication routine is software-based but bit-oriented. Each operation
beneath the word level of a processor is expensive. And the sparseness of the
multiplication matrix forces the program to jump between bit locations. This is
expensive. The difference between k£ = 1 and k = 2 illustrates this. For £k = 1, the
matrix 7T has one row for which each entry is non-zero. All other rows have ex-
actly one non-zero entry. We have implemented a word-level oriented subroutine
for this particular row. For & = 2, all rows have exactly 2 non-zero entries. Thus,
an analogous shortcut cannot be done. Our experiment show that software-based
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Arithmetic in GF(2"n) using a normal basis and matrix-based multiplication
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*
4500 . 7550
*
* E

4000 * * ¥ x 500
* %]

4 450
2 3500 | * L S
< * + @
3 x X « . . 400 g
§ 3000 * ‘o X T . E
z * « x ¥y x{350 2
< 2500 | * % + =
© * * ’ * {300 E
= * ¥ + o
£ 2000 « x . S
5 * * . : {250 2
a * + o
O 1500 | * * + 5
JF x Lt Lt {200 2

1000 | x¥ ) N '
N 4 150
* N 4
500 |, * PR 4 100
++ +
0 A A . . . L L 1 1 50
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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multiplication  +

one matrix multiplication in relation to one polynomial multiplication *

Figure 6.2: Times for multiplication (+) and squaring (<) for the test series
Normal. The times are the average of 1000 trials. Here Fyn is given by a normal
basis representation with respect to an optimal normal basis N = (o, ... ,a*" ).
The times are marked on the left y-axis. The scale of the right y-axis relates to the
quotient (%) between the time for one matrix-based multiplication in the chosen
normal basis, and the time for one polynomial multiplication of two polynomials
of degree at most n — 1 over ;.

arithmetic for a normal basis representation using the multiplication matrix is
too slow.

6.4. Exponentiation in a normal basis representation. As for polyno-
mial bases, we summarize the facts focusing on parallel exponentiation. Here
multiplication is matrix-based multiplication. The significance of optimal normal
bases in the above references makes us to distinguish between arbitrary, low den-
sity, and optimal normal bases. As for polynomials, we restrict ourselves to finite
fields Fon. While arbitrary normal bases exist for all finite fields, the two other
types of normal elements do not always exist, as documented in Table 6.1. As re-
marked above, the multiplication is slow compared to polynomial multiplication.
If we use an optimal instead of an arbitrary normal basis then the bound drops
from cubic to quadratic. Nevertheless, this is slower than exponentiation using a
sparse irreducible modulus f and Karatsuba’s algorithm, see Tables 5.5 and 5.6.
The experiments underline this disadvantage of matrix-based multiplication for
a normal basis representation.

Table 6.3 shows the high possible speed-up when computing exponentiation



90  Michael Nocker

Normal basis representation: multiplication matrix
arbitrary low density optimal
arithmetic
mult. (ca) < 2nd 2(k + 1)n? — 2kn 4n? — 2n
squaring (cq) 0 0 0
c= z—‘j 0 0 0
exponentiation
- 4 3 3
sequential 2ien(L+o(1) [ 20k + 1) (L4 0(1)) | 452 (1 + o(1))
parallel < 2n3flogyn] | <2(k+1)n?[logyn] | < 4n?[log,n|

Table 6.3: Bounds on exponentiation in F,» given by a normal basis representa-
tion with matrix-based multiplication.

in parallel. This is caused by free squarings. Parallel computing decreases the
total running time for exponentiation by nearly one order of magnitude compared
to sequential exponentiation. Nevertheless, the best bound on parallel exponen-
tiation is only O(n?logn). Table 5.5 shows the same asymptotic estimates for a
polynomial basis representation of Fy» with sparse modulus and classical multi-
plication. The fastest polynomial multiplication algorithm gives a bound of only
O(n?) for this data structure. Thus, a normal basis representation is beaten by a
special polynomial basis representation. The reason for this is that matrix-based
multiplication is too slow. Therefore, we discuss in the subsequent Sections 7-9
how to substitute these multiplication algorithm by faster ones for a special type
of normal bases, namely the Gaufl periods.

6.5. Division in a normal basis representation. In a normal basis repre-
sentation of Fy» division by an element B € IF;(" is usually computed by multiplica-
tion with the inverse B~! € .. The inverse can be calculated by exponentiation
since

n—1

B ?2=pB?" .B'=1.B'=pRB"!

by Fermat’s Little Theorem 2.3. Setting e = % for n € N5, and ¢ > 2, the
exponent € = ¢" — 2 is just

1
ﬁ-(q—l)ﬁ(q—?) =e-(¢—1Dg+(¢—2).
For ¢ = 2, this collapses to ¢/ = 2" —2 = 2. (2”71 — 1) with e = 2"7! — 1. The

exponent e has the ¢g-ary representation

(e)g=1(1,...,1

n—1

(6.17) € =q"—-2=
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which is composed of n — 1 many ones. An exponent of this special type is called
a repunit, see Beiler (1966)%5. This observation is our key to prove the following
bound on division.

REsSuLT 6.18. Let N' be a normal basis of F» over F,, and suppose that the
elements are given in a normal basis representation due to N'. Then division by
an element can be computed with at most

2ndy - ((logy(n — 1) +logy(g — 1)) - (1 4 0(1)) + 3)
operations in F,. If N is optimal then division can be computed with at most
(4n* = 2n) - ((logy(n — 1) +logy(q — 1)) - (1 + o(1)) + 3)
operations in I, .

We mainly follow von zur Gathen & Nocker (1999) To prove this result. Our
algorithm works for all ¢ € N>y. In the special binary case, i.e. ¢ = 2, this
general approach covers results of Wang et al. (1985), Itoh & Tsujii (1988b),
Asano et al. (1989), and Xu (1990) as we will show in Example 6.25.

We solve the exponentiation problem B?" =2 by computing a g-addition chain
for the exponent ¢’ = ¢" — 2. The first step is a reduction to repunits which are
integers with g-ary representation (1,...,1).

LEMMA 6.19. Let q and n be positive integers, q greater than 1, and € be a
o, o . o . _ qn71,1

g-addition chain with weight (cq,ca) computing e = .1 - Purthermore, when-

ever q > 2, we choose v a q-addition chain of weight (cg, ca) for g—2. Then there

is a g-addition chain vy of weight (cq, ca) for e’ = ¢ — 2 of (sequential) length at

most

L(v) = { ca-(Ale) +A(W) +2) +co- (Qe) + Q) +1) ifg>2, and
ca-Ale) +cq - (Qe) +1) if g = 2.

ProOF. We have ¢" —2 =¢e-(¢q—1)-qg+ (¢ —2) by (6.17). If ¢ = 2 then
2" —2 = 2-e and 7y is just € supplemented by a last doubling (e, —¢) as claimed by
the formula. For g > 2, let ¢’ be a g-addition chain with S(¢') = S(¥)U{q¢—1}
and R(¢') = R(¢) U{(¢ — 2,1)}. Construct the g-addition chain v < ¢' ® ¢
by concatenation. It computes (¢ — 1) - e with A(¢') + A(e) non-¢g-steps and
Q(Y'") + Q(e) many ¢-steps. Adding a g-step includes the node e(q — 1) - ¢ in this
chain. Finally, the non-g-step (e- (¢ —1) - ¢,q — 2) is added to the chain ~ for €.
Substituting A(¢') by A(y) + 1 and Q(¢') by Q(¢)) completes the proof. O

4547 .. ] and for convenience the author has used the term ’repunit number’ (repeated unit)

to represent mono-digit numbers consisting solely of the digit 1.”, Beiler (1966), p. 83.
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Addition chains with scalar for repunits Of course, one may compute a
g-addition chain for a repunit e = q L with ¢,m € N>, by the algorithms given
in Section 3. The resulting addition chaln has at least m — 1 many ¢-steps and
1O;”m(l + 0(1)) non-g-steps. But this can be improved by exploiting the special
structure of (e),. The following equation is our key to get a short chain for e:

L. L1 ) ,0)+ 1)

(620) mo-+mi1 ; i
ZO§i<(m2+m1) q (Zo<z<m2 ) e +ZO§z<m1 C]

This equation points a way to compose two ¢g-addition chains for the repunits e, =
qm:1 and e; = £-— to get a chain for the repunit % The observation
that this equation only depends on m, and mo reduces the problem to find a
g-addition chain for e = q;n_—11 to that of getting an (original) addition chain for

m € Nzl‘

ALGORITHM 6.21. g¢-addition chain for repunits.

Input: Integers ¢ > 2 and m > 2, and an (original) addition chain p for m with

S(p) = {ao,-..,ar} and R(p) = {(a;n 1) k(1 1))s - - - 5 (@), Gr(ry) }-

Output: A g-addition chain £ computing e = £ 711.

1. Set ¢ the empty addition chain with S(¢) = {1}.
2. For1 <i< L do 3-5

3. For 1 < h < ay) do

4

i@ _gh . gHi@th_gh
If &= =" is not in S(¢) then add the node ©— == and the rule

1

s
gIiD-1 ph-1
(L d"', —q) toe.
Qs tag s Qs Q.
g% TG 1 IO -1 ap gk -1
5. Add the node . and the rule (7(171 g0, ) to e.
6. Return ¢.

LEMMA 6.22. Algorithm 6.21 computes a q-addition chain for e = —qqf with
A(e) = L(p) non-g-steps and Q(e) < ZogigL(u) k(i) many g-steps.

PROOF We prove correctness by induction on i. For ¢ = 0, we have gy = 1 and

qq —1 = 1. This node is in the empty addition chain that is initialized in step 1.

Thus, we suppose that all nodes qq%f for 0 < i’ < i are in € before lap 7. Then

%) Tk . . .
the node £ )qj( '~1 is computed in steps 3-5 according to (6.20). Because we

have a; = a;(;) + ax(), correctness follows. For each 1 <7 < L, a single non-g-step
is added to ¢ in steps 3-4. In lap 1 <4 < L at most ay(;) many g-steps are added.
We sum up to get the claimed number of steps. O
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For (original) star addition chains with ¢ = 2 the above algorithm was already
described by Brauer (1939). For a star addition chain p we have j(i) = i — 1,
and therefore,

Z Qi) = Z (az' - aj(z')) = Z (ai - az'—l)

1<i<L(p) 1<i<L(p) 1<i<L(p)

= r(u) — o = ar) — 1.

COROLLARY 6.23. Let q be an integer greater than 1, and p be a star addition
chain for a positive integer m. Then there is a g-addition chain ¢ for e = L—1

qg—1
with A(e) = L(p) non-g-steps and Q(¢) = m — 1 many g-steps.

In the view of Lemma 6.19, this gives the following result.

THEOREM 6.24. Let B be an element in lF‘;n The inverse B~ can be computed
with at most

ca-(l(n—1)+l(g—2)+2)+cg-(n—1) if¢ > 2, and
ca-l3(n—1)+cg-(n—1) if g =2.

operations in I,.

A normal basis N has weight (cg, ca) = (0, 2ndy) by Fact 6.6, and dy = 2n — 1

when A is optimal. Furthermore, £5(n —1) <log,(n—1) + %(1 +o(1))

by Algorithm 3.12, and #5(q — 2) < log,(q — 2) + %(1 +0(1)) for ¢ > 2
by (3.19). We substitute the division by multiplication by the inverse. Hence,
we have to add one further multiplication to the operations above. Then with

Theorem 6.24, these bounds prove Result 6.18.

ExXAMPLE 6.25. We focus on ¢ = 2. Let B be an element in I, given in a normal
basis representation. By choosing specific addition chains u for m = n — 1 as
input of Algorithm 6.21, we get the following versions that were already discussed
in the literature.

o Wang et al. (1985), Section IV, suggested to choose the linear addition
chain p with S(p) = {1,2,...,n — 1}.* Then the inverse of B can be
computed with n — 1 multiplications in Fon.

o Xu (1990) described inversion in Fy» using the following addition chain*’
v for n — 1: Choose a parameter m' € {1,...n — 1}. First, compute the
**Indeed, they integrated the final squaring and compute 2 - 3o, ;2" as the i-th element

of their chain.
47Xu (1990) also computed the addition chain for 2" — 2, integrating the final squaring.
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linear addition chain for m' with S(vy) = {1,2,...,m'}, and set m; =

n—1—([23+]—1)-m' < m'. In a second step add the nodes m; +m’-j and

the rules (m; +m'(j —1),m') for 1 < j < [%}] to y. For m' ~ /%(n — 1)

m’ 3

the resulting addition chain causes O(y/n) operations in Fon.

o Ttoh & Tsujii (1988b), Theorem 2, analyzed the variant when the binary
addition chain p is an input. This gives o(n —1) = 1+ wa(n —1) = 1 <
2X2(n — 1) — 2 < 2|log,(n — 1) | multiplications in Fyn. A recursive version
of this idea is described in Itoh & Tsujii (1988a).

o In another paper, Asano et al. (1989), Theorem 1, used the addition chain
generated by the factor method*® which also gives O(log(n — 1)) multipli-
cations. O

NOTE 6.26. As a direct consequence of Corollary 6.23 we have the estimate for
q = 2 on star addition chains

G(2™ — 1) < £5(2™ — 1) < £5(m) +m — 1.

This bound was first proven by Brauer (1939). Scholz (1937)*, Aufgabe 253, has
made a more general conjecture which is known as the (still unproven) Scholz-
Brauer conjecture:

Parallel computation of the inverse. Our general approach to translate
an (original) addition chain for m into a ¢-addition chain of weight (cg,c4) for

e = % works also for parallel addition chains. Let p be a parallel 2-addition
chain of weight (1,1) for m generated by Algorithm 4.3. Then p has optimal
depth [log, m] and can be run with 2 processors. The derived parallel algorithm

for e is the following one.

ALGORITHM 6.27. Computing the inverse in parallel.
Input: A scalar ¢ > 2 and an exponent m > 1 with binary representation (m), =

(m,\_l,... ,mo). .
Output: A parallel g-addition chain € computing e = £—*

g1 -

1. Set ¢ the empty addition chain with S(¢) = {1}.
2. For all processors 0 < p < P = 2 in parallel do 3-9

48The factor method is described in Knuth (1962), p. 598 and Knuth (1998), Section 4.6.3,
p.- 463.

49Gcholz indeed conjectured that £5(2™ — 1) < £3(m — 1) +m — 1 which is not true for m = 5
since £2(4) = 2 and £2(31) = 7 > 2+ (5—1). But this seems to be just a misprint in the original
paper.
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3. For 1 < i < [logy,m] do 4-9

4. If p=0and i < Ay(m) then '
5. For1<j < 2= do add the node (¢ 't/ — ¢7)/(¢ — 1) and the
rule ((¢* —1)/(¢—1)- ¢’ *,—q) toe.
gi  giml  gi-l
6. Add the node (¢ —1)/(¢ — 1) and the rule (¢ .1 q_l_l) to
E.
7. If p=1and > _; ;m;2 > 2""" then
8. Set M;_; = Zosjq-,l m;2/. For 1 < j < 2! do add the node
(¢"=1*7 = ¢7)/(¢ = 1) and the rule (¢ —1)/(¢—=1)-¢’~", —q)
to .
9. Set M; = Zo<]<z ,m;27. Add the node (¢ —1)/(q — 1) and the
M; 1+2 2t—1 91—1
rule (4 qlq Y L) to e.
10. Return .

LEMMA 6.28. Let m and q be positive integers, ¢ > 2. A parallel g-addition

chain for e = ‘1"1—_11 of weight (cg,ca) can be computed using 2 processors in

parallel in depth at most
Oq,(comen)(€) < ca- [logom] +cq - (2[log2 m] _ 1).

Before we proof, this lemma we illustrate the algorithm by an example.

EXAMPLE 6.29. Let m = 11 and e = £ for a scalar ¢ € N>o. For (11); =

(1011) the parallel 2-addition chain generated by Algorithm 4.3 translates as
illustrated in Figure 6.3. O

PROOF (of Lemma 6.28). Correctness of the algorithm follows by induction on
i with the invariant: in lap 1 < i < Ay(m) of the loop processor 0 computes

q2l
-1
M; =3 ;s m;2 if it is non-zero.

and processor 1 computes in lap 2 < ¢ < [log,(m)] the node (’M;% with

Processor 0 computes 2°~! many g-steps and one non-g-step in lap 1 < i <
A2(m). Meanwhile, processor 1 computes at most 2 2 many g-steps and one
non-g-step if 1 > 2. These operations are covered by the operations performed by
processor 0. There is a final loop whenever \y(m) = [log, m|. In the final loop,
processor 1 calculates at most 2/'°82™1=1 many ¢-steps and one non-g-step. This
extends the total depth. For both A2(m) = [log, m| and Ay(m) = [log; m] + 1,
we get 2/log2ml—1 4 Zo<z <[logy m]—1 2 = 282l _ 1 many ¢-steps by summation.
For A\y(m) = [logym] +1, we have A\y(m) —1 = [log, m| non-g-steps. Otherwise,
Ao(m) = [logy m| and there are also Ag(m) — 1+ 1 = [log, m| non-g-steps. [

For a normal basis representation we have cg = 0 and thus the inverse can
be computed in parallel with only P = max{2q — 3,2} processors. For ¢ = 2 the
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Algorithm 4.3 for 11 Algorithm 6.27 for q;l%ll
processor 0 processor 1 processor 0 processor 1
20 =1 -
T~ e T~
2t =2 20 — 1 ! b1 ql—ll

21 qil 21 -
N~ 20—
2 __ 1 L 2 —1 q3_1
l2l =4 14+2*=3 o qu 1
q
28 =38 s 2
- \ " \q‘
3423 =11 S

Figure 6.3: Illustration how to the parallel addition chain for 11 translates to a
parallel addition chain for (¢'! —1)/(¢ — 1).

depth is minimal and thus in this special case the number of processors depends
no longer on the input size n as it is in Algorithm 4.14.

COROLLARY 6.30. In a normal basis representation of Fy, the inverse of an
element B # 0 can be computed

o on at most 2q — 3 processors in depth ca - ([logy(g—1)] + [logy(n—1)] +1)
if ¢ > 2. This bound is at most 2 - c4 larger than the optimal depth.

o on 2 processors in optimal depth c4 - [logy,(n — 1)] if ¢ = 2.

PrRoOOF. For g = 2, the inverse B~! can be computed by evaluating the power 2-
(2"~1—1) of B. By Lemma 6.28, we can compute B2~ ~!in \y(n—1) = [log,(n—
1)] parallel steps. The final squaring (B2n_1—1)2 is free. Since w2(2"*1_1)

p)
wy(2"71 —1) = n—1, we have [logy(n—1)] = [logQ(wg(%)ﬂ. By Corollary 4.24
this is optimal!

For ¢ > 2, we have to evaluate the power (fl;_jl—1 (¢g—1)-q+ (¢ —2). Using
1 < P = ¢ < q processors, Algorithm 4.14 computes a digit ¢’ in depth [log, ¢'].
Thus, ¢ — 1 and ¢ — 2 can be computed with at most P = 2¢g — 3 processors in
depth [log,(¢ —1)]. The computation of an addition chain for e = qnq_—_ll_l can be
done in depth [log,(n — 1)] on 2 processors according to Lemma 6.28. Thus, we
can compute (BY1)¢ where e = qn;;l, in depth [logy(g — 1)] + [logy(n — 1)].
Evaluating the ¢-th power of B7"7'=1 is free. We add ¢ — 2 in a final non-g-step.




Data structures for parallel exponentiation 97

This gives a total depth of [log,(¢ —1)]+ [logy(n—1)] +1. The optimal depth is
02,0.1)(¢" —2) = [logy wy(q" —2)] with wy(¢" —2) = w,((g - L,... ,¢—1,9=2)) =

WV
n—1

(n—1)(¢—1)+ (¢ — 2) = n(g — 1) — 1. Therefore, the depth is

[logy(n(g —1) — 1)] > logy(n - (g — 1) — 1) > logy(n(qg — 1)) — 1
= logy,n+logy,(¢ —1) — 1> [logyn] + [logy(¢ —1)] — 3.

The latter one is the depth of our parallel inversion algorithm plus 2. 0

Experiments. In theory, the approach of Itoh & Tsujii (1988b) and the parallel
inversion described by Algorithm 6.27 differ only by a constant of at most 2. Is it
worth while to insert a shorter addition chain for n — 1 than the binary addition
chain if possible? We give an answer that is based on experiments. Again, we used
the optimal normal bases of the test series Normal. Multiplication and squaring
have been described in Section 6.3 above. For each field extension Fy. of the
test series Normal, we ran four different versions as documented in Table A.13.
We compared the parallel inversion (Algorithm 6.27) with the sequential version
which is basically Algorithm 6.21. For the sequential algorithm, we chose three
different addition chains for n — 1. For each value of n, we computed the inverse
of 100 randomly chosen elements in F, . The times as given in Figure 6.4 are the
average of these 100 trials. The binary addition chain as input for the sequential
algorithm was suggested by Itoh & Tsujii (1988b). The corresponding times are
marked by red dots and labeled binary a.c. in Figure 6.4. A second star addition
chain for n — 1 is due to Brauer’s idea, but with the modifications described in
Section 3.2. This generalization of the binary addition chain is labeled Brauer
a.c. in Figure 6.4. It shows slightly better times for 18 values of n out of the
chosen 50 in the test series Normal. It is always at least as good as the binary
addition chain (up to accuracy of measurement). The quotient between the times
is almost the same as the quotient between the length of the two addition chains.
Thus, a shorter chain means faster inversion (compare the quotients of columns 3
to 5 and 4 to 6, respectively, of Table A.13). In case of a Brauer star addition
chain, this causes a maximal speed-up of 1.13 for n = 1018. On average, we get
a speed-up of 1.03 over all 50 values for n.

Knuth (1962, 1998) described a method called power tree to generate short
addition chains. Our third sequential version used such a chain. The times in
Figure 6.4 are labeled power tree a.c. and are marked by blue dots. We count 41
shorter addition chains for the values of the test series Normal compared to the
binary addition chain. The maximal speed-up is here 1.27 for n = 1798; the time
for inversion in Fa. is only about 80% compared to the original algorithm of Itoh
& Tsujii (1988b) for three other values n € {5598,6396,7803}. Since the power
tree generates significantly smaller addition chains than the binary method, we
have an average speed-up of 1.12 for the test series Normal. We conclude that
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Inversion for normal basis with matrix-based multiplication
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Figure 6.4: Times for inversion for the test series Normal. The times are the aver-
age of 100 trials. The graphical representation compares the sequential inversion
algorithm a la Fermat (Algorithm 6.21) with the parallel version ([J) given in Al-
gorithm 6.27. The sequential version was run on three different addition chains
w for m = n—1 as input: the binary addition chain (+), Brauer’s addition chain
(x), and the addition chain generated by the power tree algorithm (x).

substituting the binary addition chain by a shorter (or even a shortest) one for
n— 1 in Algorithm 6.21 is a successful way to speed up inversion if it is based on
Fermat’s Little Theorem 2.3 in Fan.

For Algorithm 6.27, a parallel addition chain of optimal depth for n — 1
is hardwired in the algorithm. Figure 6.4 shows that this parallel approach—
labeled parallel a.c.—gives always the shortest measured times for inversion in
Fyn. It beats the fastest sequential addition chain for all values. We reach
an average speed-up of 1.35 over all 50 values. We get a speed-up of at least
1.5 compared to the binary addition chain for 7 values of n; these are n €
{1018, 1791, 1996, 3802, 5598, 6396, 7803 }.

Conclusions. We have generalized an approach of Itoh & Tsujii (1988b) to
apply sequential as well as parallel exponentiation to inversion in a normal basis
representation of F,» . Both the theoretical fact and our experimental observations
show that normal bases support the parallel computing in the case of exponentia-
tion. We have illustrated this for parallel inversion in F,». Nevertheless, the slow
matrix-based multiplication is the Achilles’ Heel of this data structure! Thus, our
goal will be to speed up the multiplication in a normal basis representation. To
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do so, we restrict to a special type of normal elements in the subsequent sections.
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7. Gaufl periods

In the preceding Section 6, we have considered arbitrary normal elements. We
have shown that this basis representation supports parallel exponentiation. But
we have also detected that matrix-based multiplication is the bottleneck that
prevents good performance.

Thus, we have to speed up multiplication for normal bases. Our idea is
to replace matrix-based multiplication by faster algorithms for specific normal
elements. Our choice for these specific normal elements are Gaufl periods which
were used for fast arithmetic by the construction of optimal normal bases. The
normal bases given in Fact 6.13 are just prime Gauf$ periods of type (n, k) over
F, with k € {1,2}. A reviewer remarked the relation first, as cited in Ash et al.
(1989)°.

In his Disquisitiones Arithmeticae in Article 343, Gauf} (1801) introduced cer-
tain elements—which are nowadays called Gaufl periods—for his famous solution
of the problem how to construct a regular 17-gon by ruler and compass. Due
to this application, Gaufl was only interested in the prime case. But he already
remarked at the end of Article 356 that this method can be generalized.?!

Normal elements which are Gauf} periods, also denoted as normal Gauf} peri-
ods, are connected to cyclotomic polynomials. This observation will point a way
to replace matrix-based multiplication by polynomial multiplication. The same
idea was already described for some special cases by Gao et al. (1995) and Gao
et al. (2000) for prime Gauf periods over F,, and by Blake et al. (1998) for op-
timal normal bases in Fy». Both cases are covered by our new and more general
results.

In this section, we present Gauf} periods and some of their main properties for
further use. In the first part (Section 7.1), we give the definition of generalized
Gauf} periods by Feisel et al. (1999). The second part (Section 7.2) is devoted
to certain properties of these generalized Gaufl periods. In particular, we are
interested in the case when Gaufl periods generate normal bases. Furthermore,
we discuss the relation between normal Gaufl periods in field towers and the
canonical projection of the subgroup that defines a Gaufl period. In Section 7.3,
we give the connection of Gauf} periods to cyclotomic polynomials. In particular,
we want to use this relation as our key to replace matrix-based multiplication
by polynomial multiplication. In the final part (Section 7.4), we collect some
properties on arbitrary normal elements, i.e. of elements a generating a normal

basis N = (a, ... ,a" ") in Fy.

504One of the reviewers of this paper pointed out that the element « in this theorem is of
classical origin and is referred as a period of Gauss.”, Ash et al. (1989), p. 196.

51“These theorems retain the same or even greater elegance when they are extended to
composite values of n. But these matters are on a higher level of investigation, and we will
reserve their consideration for another occasion.”, Gaufy (1801), Article 356. [Gau}’ n is the r
used above.]
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7.1. Definition of general Gaufl periods. We fix some notation.

NOTATION 7.1. Let q be a prime power, r be an integer greater than 1, and let
n and k be positive integers, such that q and r are co-prime and ¢(r) = nk. Here
¢(r) = #{a € N>1: 1 < a < r,gcd(a,r) = 1} denotes Euler’s totient function.
Let ¢ be a primitive r-th root of unity in an extension field of I, .

Furthermore, let 7y - - - r, with r; = p;* for 1 < ¢ <t be the prime power decompo-
sition of r. We set Ry = [[,;<; 0.y Pi the square-free part® of r and Ry =r/R;
the non-squarefree part. A GauB period « in Fy« is given as a sum of powers
of a primitive r-th root of unity (. Feisel et al. (1999) introduced the following
generalization of Gauf’ definition.

DEFINITION 7.2. Let r,q,n, k be positive integers, and let R,, Ry be the square-
free and non-squarefree part of r, respectively. We set

(7.3) ba)=a®- [[ D« €Tyl

1<i<t 1<s<e;

pilRy T T
Let IC be a subgroup of Z, of order k, and { be a primitive r-th root of unity
in an extension field of F,. A (general) Gauf} period of type (n, ) over F, with

respect to ( is defined as
o= Z b(¢?).

ack

The definition contains the power (* where a is in Z. But this is well-defined,
since ( is a primitive r-th root of unity. Let a and o’ be two integers such that
a = a mod r. Then we have a — o’ = ur for an v € Z and (*~ % = (¥ =1 =1,
i.e. (* = (%. Although, ( is a root of the polynomial 27 — 1 € F,[z] and hence an
element in F,-, the element « is in the smaller field F,». To see why, we remark
that there are at most n distinct cosets in ¢°K , ... , ¢" 'K of K, see also Fact 7.6.
But then ¢"XC = K, and

a = b(C)T =) b ) = Y b = b = e
ack ack acq"kK ack
For r = p, we have r = R; and R, = 1, and the polynomial b(x) in (7.3)
collapses to b(z) = z'. The group Z, is cyclic, and a subgroup K is therefore

uniquely determined by its order k. Hence, the already mentioned prime Gaufl
period of type (n, k) over F, is
o= Z ¢e.

ae

52Qur definition follows the one in Feisel et al. (1999). It differs from the common definition
of the square-free part. Usually, the square-free part of r =[], ., p;* is defined as []; ., <, pi,
see e.g. von zur Gathen & Gerhard (1999), Section 14.6. o T
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For our work, the case where r = p® is a prime power with e > 1 is important.
Here r = Ry and R; = 1 and (7.3) transforms into b(z) = 2"~ >, ..., 2¥" . Since
¢ is a primitive r-th root of unity, i.e. (" = 1, the prime power Gauf period of

type (n, K) over F, is
S Ip

a€k 0<s<e

ExXAMPLE 7.4. Let ¢q be equal to two.

(i) Let r = 5, ¢ a primitive 5-th root of unity, and let K = {1} be the uniquely
determined subgroup of Z: of order k = 1. Then a = ( is a prime Gauf
period of type (4,1) over F,.

(ii) Let r = 3%, ¢ a primitive 9-th root of unity, and K = {1, 8} be the uniquely
determined subgroup of Zg of order k = 2. Then o = M1+ 3118438 =
¢+ ¢+ (8 + (8 is a prime power Gauf8 period of type (3,{1,8}) over F,.
Here we used ¢** = (% (since 24 = 6 mod 9).

(iii) Let r = 32 -5 and ¢ be a primitive 45-th root of unity. There are three
different subgroups of order k = 2 of Zj; which define three different general
Gauf periods. The subgroup K; = {1,26} determines the Gauf8 period
ap = M+ ¢+ ¢+ ¢ of type (12,{1,26}). The subgroup K, = {1, 44}
generates the Gauf period ap = ¢ + (% + (2! + (3. Finally, n = 12 and
K3 = {1,19} define the Gauf} period az = ¢** + (** + (% + (%L, O

A Gauf} period is not completely determined by its parameters ¢, n and K. It
also depends on the chosen primitive r-th root of unity ¢. Let o = )" ., b(¢?) be
a Gauf} period of type (n, ) over F, with respect to ¢ where K is a subgroup of
Z). Let (" € Fyr be another primitive r-th root of unity and o/ =" . b(¢"*) be
the related Gau8 period. By construction there is an o’ € Z* such that ¢’ = ¢%.
If we assume {cq": c € K,h € Z} = Z then there are c € K and 0 < h < n such
that @’ = c¢" and ¢’ = ¢¢ = ¢“". This gives
qh
of =Y (¢ =) b = (Z b(ca)) =a’.
ack acK acK

Therefore, two distinct primitive r-th roots of unity define two conjugate normal
elements. We do not emphasize the specification of the primitive root of unity ¢
if we are not interested in the concrete conjugate of a Gaufl period.

7.2. The condition (¢, ) = Z)}. Subsequently, we restrict to Gauf} periods of
type (n, K) over F, with (g, ) = ZX. Here (¢,K) = {¢"amodr: h € Z,a € K}
denotes the subgroup of ZX that is jointly generated by powers of (¢ mod r)
and the subgroup . The Main Theorem of Feisel et al. (1999) states that this
condition is equivalent to the fact that a Gaufl period is normal.
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NORMAL GAUSS PERIOD THEOREM 7.5 (Feisel et al. 1999). Let o be a Gauf
period of type (n,K) over F, with K a subgroup of Z). Then « is normal in
F,~ if and only if (¢, K) = Z).

EXAMPLE 7.4 CONTINUED. (i) Since (2,{1}) = {2,4,3,1} = Z, the Gauf}
period of type (4,{1}) is normal in Fyg over F,.

(ii) One can easily check that (2,{1,8}) = Zg. Hence, the Gauf§ period of type
(3,{1,8}) is normal in Fg over F,.

(iii) Only the two subgroups K; = {1,26} and Ko = {1,44} generate normal
Gaufl periods in Fyi2 over Fy. For K3 = {1,19} we have (2,{1,19}) =
{2,38,4,31,8,17,16, 34, 23,32,1,19} # Z;;. Thus, the Gauf} period of type
(12,{1,19}) over Fy is not normal in Fypgg. %

Throughout this section we will assume that all parameters n, ¢, r and a subgroup
K of Z* of order k = 2% are given such that ¢(r) = nk and (g, K) = Z>. Usually,

n
only n and ¢ are given. We will discuss an algorithmic approach how to find r

and /C in this case in Section 9.4.

A necessary condition. For our arithmetic purposes we derive some further
conclusions from the condition (g, K) = ZX. The sets ¢"K, with 0 < h < n, are
(right) cosets of the subgroup K. This implies the following facts.

Fact 7.6. Let K be a subgroup of Z) order k and n = ¢(r)/k. If (¢, K) = Z}
then

(i) for all i, j € 7Z we have ¢'K N ¢’ KC # 0 if and only if ¢'K = ¢’K,
(ii) Wocpen €"K = (g, K) is a partition of ), and
(iii) ¢" € K.
As a direct consequence, we have that (g, ) = Z) is a necessary condition for a
GauB period of type (n, K) over FF, to be normal.

REMARK 7.7. Let r € N>y, and let a be a general GauB8 period of type (n,K)
over F, with IC C Z). If o is normal in Fyn then (g, ) = 7).

PROOF. Assuming the contrary, we may suppose that (g, ) # Z). Then there
is an 0 <7 < j < n such that ¢'K = ¢/K, and we get

a€e a€K acqiik

=Y b(C) =D b)) = (Z b(@)) =a”.

acEg K a€K ack
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Therefore, a, . .. ,aqn_l are not linearly independent which is a contradiction. [

The canonical projection. Let ' be a positive divisor of r not equal to 1,
and let

(7.8) et L) — 1) with 7 (a) = (e mod 7')

the canonical projection of Z) onto Z.), which is a surjective epimorphism on
groups. We apply this canonical projection to the subgroup K C Z) that defines
a Gauf} period of type (n, ) with respect to (, and we get the image 7, (K) of
the subgroup C under this epimorphism. Thus, 7,(K) is a subgroup of Z,. The
order k' of 7,/ (IC) divides both k£ = #IC and ¢(r') = #Z.,, and n' = ¢(r') /K is a
positive integer. The following lemma states that the canonical projection gives
a normal Gaufl period in a subfield of F,».

LEMMA 7.9. Let o be a Gauf$ period of type (n, ) over F, with respect to (.
Let r' be a positive divisor of r greater than 1, and let m,» be as in (7.8). Set
k' = #m.(K) and n' = ¢(r')/k" as above. If (q,K) = Z) then n' divides n,
and the GauB8 period o' of type (n', 7. (K)) over F, with respect to (/" satisfies
(a7 (K)) = 225,

The proof—its main ideas are sketched in Figure 7.1—uses the following observa-
tion about the Galois group of F» over F,. Wassermann (1993), Bemerkung 3.1.2,
proved this remark for prime Gaufl periods.

REMARK 7.10. Let o be a normal Gau$ period of type (n, K) over F,. Then the
quotient group Z) /K is isomorphic to the Galois group Gal(Fg /F,).

PROOF. Since « is normal, we have (g, ) = Z) by Remark 7.7. Let: Z} —
Z.' /K be the canonical projection onto the quotient group. Since (g, K) = Z), we
have [y, ¢"K a partition of Z by Fact 7.6(ii) and Z* /K = {1,q,... ,q"" '} =
(q). Hence, the quotient group is cyclic of order n.

The Galois group Gal(F;» /F,) has order [F : F,] = n, and it is cyclic with
the Frobenius automorphism o(A) = A? as its canonical generator as stated in
Fact 2.9. But two cyclic groups of same order are isomorphic. The isomorphism
is given by mapping ¢* € Z*/K on o € Gal(F;« /F,) for 0 < h < n. O

PROOF (of Lemma 7.9). The canonical projection 7, is an epimorphism, and
therefore (7 (q), v (K)) = Z,) if (¢, ) = Z). Tt remains to show that F . can
be regarded as a subfield of F;» to complete the proof.

Set ¥, = o m» which is an epimorphism from Z) onto the quotient group
Z) |7 (K). For all a € K, we have ¢.(a) = np(a) € 7 (K) = 1, and hence
IC C ker ¢),.. We can decompose the canonical projection from Z> onto Z / ker .
as ¢’ o, where ¢’ maps Z,/K onto Z)/ker ... The fundamental theorem of
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homomorphisms on groups (see e.g. Jacobson (1974), p. 60) claims the existence
of an isomorphism ¢: ZX/kerv,, — Z)/m.(K). By combining this with the
canonical projection ¢': Z)/K — Z/ ker 1., we get the epimorphism 7, = 1)t/
from Z) /K onto Z) /7. (K). Since @, is surjective, we have n' = #Z /7, (K)
a divisor of n = #Z) /K. By Remark 7.10, the Galois group Gal(F,. /F,) is a
subgroup of Gal(F« /F,). Thus, F. is a subfield of F». This completes the
proof of Lemma 7.9. U

Tyt

<Q7 IC) = Z;< Z:f’ = <7T7" (Q), Tyt (’C»

l Vs { _

{L.g....q" "} = ZX/’C\ /w/% K) = (1), (@)™ 1
7. ] ker 1,
Gal(FFyn /]F ) Gal(]F ' /Fy)

Figure 7.1: Illustration of the different projections discussed in this paragraph.

The connection between the group Z,* and the normal Gauf} period in a subfield
plays an important role in what follows. We illustrate this in the case of prime
power Gaufl periods. Let r be a prime power p® with e > 2, and let { be a
primitive p°-th root of unity. We suppose that the subgroup K of Z defines a
normal GauB period a = 3, Do, ¢ of type (n,K) over F, with respect

e—£

to ¢. Then (¢,K) = Z,. by Remark 7.7. For 0 < £ < e, we have (;, = (*" " a
primitive p‘-th root of unity, and we set n, = ¢(p%) /#m,(K). Then

> >

a€m, (K) 0<s<t

is the Gauf period of type (ng, m,¢(K)) over F, with respect to (;, by Lemma 7.9.
Since (g, m,t(K)) = Z;(, the Gau8§ period oy is normal in Fyn, over F,.

EXAMPLE 7.11. Let ¢ = 2 and 7 = 9. Then the subgroup K = {1,8} C Zg
and a primitive 9-th root of unity { jointly define the normal Gaufl period o =
C+ 348+ of type (3,{1,8}) over Fy. The canonical projection m3: Zg — Z5
maps K onto the subgroup m3(K) = {1,2} of Z}. We have that ¢; = ¢ = (®is
a primitive 3-rd root of unity. Lemma 7.9 claims that a; = Zaeﬂs(,c) ¢t =3+Cis
a normal Gauf} period of type (1, {1, 2}) over F,. In fact, we have (2, {1, 2}) = Z3,
and o is indeed a normal prime Gaufl period. O
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7.3. Cyclotomic polynomials. Primitive roots of unity are related to a spe-
cial class of polynomials: the cyclotomic polynomials. The proofs of the following
facts are given in Lidl & Niederreiter (1983), Section 2.4.

DEFINITION 7.12. Let q be a prime power, and r be a positive integer co-prime
to q. Let ¢ be a primitive r-th root of unity over F,. Then the polynomial

¢, = H (iU—CS)

0<s<r
ged(s,r)=1

is called the r-th cyclotomic polynomial over I, .

Since the roots of @, are all ¢(r) distinct primitive 7-th roots of unity, the degree
of @, is just deg @, = ¢(r). Therefore, we have ¢ € F o).

Fact 7.13 (Lidl & Niederreiter 1983, Theorem 2.45). Let ¢ and r be as above.
Then

(i) 2" =1 =TIli<a<r,ayr Pa, and
(ii) the coefficients of ®, belong to the prime subfield of F,,.

If r = p® is a prime power then the formula above implies

P _ 1 ,
(7.14) Q,(z) = L = Z z', and

e— p_l imE—
7.15 O (z) =@, (2" )= —— - — 27" for 0 < £ < e, and
P P —
. h —_ = \Tr — . \T).
(7.16) P ol=(z-1)- [] ®ple)

Over the field Q of rational numbers, the cyclotomic polynomial ®, is always
irreducible. This is no longer true in the case of a finite field F, with non-zero
characteristic. But in this case the factorization pattern is well-known.

Fact 7.17 (Lidl & Niederreiter 1983, Theorem 2.47). Let ¢ be a prime power
co-prime to a positive integer r, and let N = ord,(q) be the order of q in Z).
Then the r-th cyclotomic polynomial ®, € F,[x] factors into o(r)

“ distinct monic
irreducible polynomials of the same degree N.

We denote the d = % irreducible factors by 1, ... , uq € F,[z]. By the Chinese
Remainder Theorem we have the ring isomorphism

' R = F,[z]/(®;) Fol2]/(p1) x -+ - x Fy[z]/(pa)
(7.18) X A : (A mo:,ul,... , A mod Md/;-
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Since @,(¢) = 0 for any primitive 7-th root of unity ¢ € F (), we know that the
minimal polynomial y¢ of ¢ in F,[z] is one of the p, ..., yg. Then

o Fg(¢Q) — Fylz]/(ue) with ¢¢ ( Z AC’) = Z A;(z* mod p¢)

0<i<N 0<i<N

is the canonical isomorphism between the two images of F,~. The field F,(a)—
which is constructed by adjoining the Gau8 period oo = ) - b(¢*) to F,—is a
subfield of F,(¢). Thus, we know the image of « in F,[x]/(u¢). The key for fast
multiplication of Gaufl periods lies in the choice of a suitable preimage of « in
R.

REMARK 7.19. Let q,7,n,k be as above, and let K be a subgroup of Z) of order
k = ¢(r)/n such that {q,K) = Z). Let u € F,[z] be an irreducible factor of ®,
and ¢ € Fne a primitive r-th root of unity. Then there is an element a € K such
that u(¢*) = 0.

PrROOF. Since (¢,K) = Z} and U0<h<nq IC is a partition of ZX, we have

{C”qh: a € K and 0 < h < n} the set of all distinct primitive r-th roots of unity.
Thus, there are a € K and h € {0,...,n — 1} such that x(¢%") = 0. But then
also 0 = p(¢*")" ™" = p(¢*") = p(¢") where a/ = ¢"a. We have (¢ a primitive
r-th root of unity of the claimed form since ¢" € K by Fact 7.6(iii), and o’ € K
by a € K. O

Let 4 € Fy[z] be an irreducible factor of ®,, and let ¢ € K such that (' = (“is a
root of . Then we have for ¢ € K

o= Zb(ga) — Zb(gcc_la) — Zb(gla) —

acek ackl ackl

and @¢ (@) = Y ,cxc b(2® mod per) for all (" € {¢*: a € K}. Applying the inverse
isomorphism x of X/, we have

(be mod y), be mod p4) ) =Zb(x“ mod @, )

a€EK ae ae

a preimage of o in R. Finally, let p,... , g be the d irreducible factors of ®,.
and @, ... , ¢, the corresponding canonical isomorphisms with ; € {(*: a € K}
and p;() =0 for 1 <4 < d. We define the map

Fy(a) — R=TF,[z]/(®;)
A = x(pa (A)s -9, (A)).

which is a homomorphism of rings. If A is given as a linear combination of the
conjugates of o then

o( Z Ahozqh) = Z AiZb(aE“ mod ®,)

0<h<n 0<i<n aek

(7.20) P:
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Summarizing the discussion above, we have principally found a way to exchange
normal basis representation and a representation in a larger polynomial ring. We
will see in Section 8 that the choice of the ring homomorphism ¢ enables us
to do this change fast in both directions. Thus, ¢ opens the door to replace
multiplication in F,» given with respect to a normal basis N by polynomial
multiplication in R.

7.4. Field towers, traces, and normal elements. We conclude this section
by collecting some well-known properties on normal elements that are useful
subsequently. The properties listed below are true not only for normal Gaufl
periods but for all normal bases. We will discuss the algorithmic aspects for
normal bases generated by Gaufl periods in the subsequent sections.

The product of normal elements. It is a well-known fact (see e.g. Semaev
(1989), Lemma 1.1) that normality is inherited along a tower of fields

]F‘q g Fqnl g Fqnan g .. g Fqnl'“"t,
whenever the degrees ny,...,n; > 1 are pairwise co-prime.

FAcT 7.21 (Semaev 1989). Let nq, and noy be two co-prime positive integers, n =
ni - ng, and «; be a normal element in Fgn; over Fy for ¢ =1,2. Then oo = a1 - vy
is normal in Fgn over F,.

PROOF. Since ny and ny are co-prime, the field Fpn = Fyny (Fyra ) = Fyna (Fyn1 )
is the smallest extension field that contains both Fy», and Fgn, . Hence, the set
N = {oz‘{h1 -agh2 :0 < hy <ny and 0 < hy < ny} is a basis of Fn over F,: By con-

struction, any element in Fyn = Fyni (Fyno ) can be written as a finite linear com-
n;—1
bination of elements of Fyn. with coefficients in Fgni . But N; = (ay,...,0f )

is a basis for Fyn; for 7 = 1,2, and thus any element of Fy» is generated by a
linear combination of the set N. Since #N = n; - ny = n, it is indeed a basis.
By assumption we have gcd(ny, ne) = 1, and by the Chinese Remainder Theorem
there exist uy,us € Z such that u;n; = 1 mod n3_; and h = hy - ugng + hy - u1ny
where h; = hmodn; for i = 1,2. But a;!"" = «; for i = 1,2, which proves

o' = (ay - qp)? ™ = o/{hl -agh2. The map h — (hy mod ny, hs mod ns)
is bijective. Thus, N'={a? : 0 < h < n} and the claim follows. O

Fact 7.21 shows a way to compute the multiplication matrix Ty, of the normal
basis N = (o, ..., ") if ged(ny, ng) = 1 and the matrices Ty, are already
given for ¢ = 1,2. This was also done inSemaev (1989), Lemma 1.1.

FAcT 7.22 (Semaev 1989). Let nq, ny and oy, oy as in Fact 7.21 and set n = ny -
ny. Let Ty, = (ujl,hlzogjl,h1<’n1 and Ty, = (Vj, hs)0<js,ha<ns b€ the multiplication
matrices of Ny = {af : 0 < h <n} fori=1,2.
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(i) The multiplication matrix Txr = (tj5)o<j,h<n Of 0 = 1 - a2 is given by
tih = Wji by * Vja,he
where j = j; mod n; and h = h; mod n; for i =1, 2.

(ii)) The density dy of Ty is the product of the densities dy;, and dy;, of Ty,
and T)y;,, respectively.

(iii) The multiplication matrix T)yr can be calculated with dy = dy;, - dy, mul-
tiplications in F, from Ty, and Ty,.

PROOF. By definition of Ty = (tj)o<jnen We have o - o = Y o<h<n tjpad"
for 0 < 7 < n. Fact 7.21 gives -

o = (ar-an)" - (a1~ az) = (af -on) - (af -as)

- qh qj2 . th qh2
=\ o) -|ay -ay) = Ujy,hy O : Uja,ha X9

0<hi<ni 0<ha<na
_ g gh2) q"
= D D Ui Vi (0 0L ) = D (Ui Vi)
0<h1<n1 0<ha<na 0<h<n
where h; = hmodn; and j; = jmodn; for ¢ = 1,2. A comparison of the

coefficients proves (i). An entry ¢, = uj, p, - Vj, n, in Ty is non-zero if and only
if both entries in Ty, and T, are non-zero. Therefore, we have exactly dy;, - dy;,
non-zero entries in T as claimed in (ii). We observe that a non-zero entry can
be calculated with one multiplication in F,, hence, (iii) follows immediately. [

The trace of a normal element. Another basic tool which inherits normality
is given by the trace map defined in (6.9). We recall some properties of the trace,
see e.g. Lidl & Niederreiter (1983), Theorem 2.23(iii)-(v) and Theorem 2.26,
respectively, for a proof.

Fact 7.23. Let m and n be positive integers and F, be the finite field with g
elements.

(i) The trace Tryn/q is a linear transformation from Fyn onto F,.
(i) Trgnq(A) =nA for A € Fy, and Trgnq(A?) = Trgnq(A) for A € Fyn.

(iii) The trace is transitive, i.e. Trgmn/g(A) = Trgn/q(Trgmn gn(A)) for all A €
Fymn .

q

The next remark is also true for all Galois extensions over a finite field, see
Hachenberger (1997), Lemma 5.3. Informally spoken, the trace map inherits
normality downwards a field tower. We have already stated that multiplication
induces normality upwards.
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REMARK 7.24. Let n, and ny be two co-prime positive integers and n = ny - ns.
If o is normal in Fyn over F, then Trgn jgn (o) is normal in Fyni over .

PROOF.  Set oy = Trgn/gni (o). We have to show that oy, . .. ol

independent over F,. Let Ag,..., A, 1 € Fy such that >, Aha‘fh = 0.
Then -

1 .
are linearly

0= Y Aot = Y AT )

0<hi1<n1 0<h1<ni
g™

_ qinl - q’in1+h1
= > Au| 2 @ = 2. 2. Awa

0<h1<ny 0<i<n/ny 0<i<n/ni 0<hi<ng

h

= E Ahmodnla’q .

0<h<n

But « is normal in Fy» over F,, and hence, all Ay,...,A,,_; are zero. U

In the special case where n = n; - ny is the product of two co-prime factors
we get some further useful properties.®?

LEMMA 7.25. Let ny and ny be co-prime positive integers, n = ny - ny, and let
oy and oy be normal in Fyn, and Fyr, over I, respectively. Then

(i) Trgnjgns (i - ) = Trgm jq(01) - g and

(ii) oy is normal in Fyn over Fyn, .

PROOF. (i) We have
ing
Trqn/qn2 (Oél . Ckz) = Z (Ckl . Oég)q
0<i<n/ny
ing inog inog
= Z af ol =ay- Z af
0<i<n/na 0<i<n/n2
since ap € Fyna, i.e. ad =y foralll < i< n% Moreover, the map
Uny: {0,... ,n1—1} = {0,... ,n1—1} with ¢, (i) = noi remn, is a bijection
and hence

> af” = 37 af = Trpmlan).

0<i<n/n2 0<i<ny

33 A proof of Lemma 7.25(i) is also given in Jungnickel (1993), Lemma 5.1.8. A special version
of Lemma 7.25(ii) is cited in Agnew et al. (1993) for optimal normal bases.
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(ii) Since Ny = (an,...,ad " ) is a basis for Fpm,, the set N; is a basis of
Fgn over gy . By assumption, n; and ng are co-prime, and hence, the
map Uy, : {0,...,ne — 1} = {0,... ,ny — 1} with ¢, () = niiremny is a
bijection. Therefore, the set {ag’”h: 0<h<ng}= {agh: 0 <h<mny}is
the set of all ny conjugates of oy over Fyn,, and N> is a normal basis over

Fgn as claimed. O
]Fqnan
(67%) \
Q0 ]Fqn2
Fqnl (65)
ar
Iy

Figure 7.2: A tower of fields given by normal elements if ged(nq,ng) = 1.
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8. The prime power case

We are now ready to develop an algorithm that integrates polynomial multipli-
cation in a normal basis representation whenever the normal element is a Gaufl
period. In this section, we restrict to the case where o = Y, > g, (% is a
prime or prime power Gauf} period of type (n, K) over F,, i.e. r = p®. The main
result of this section generalizes the approach that was described in Gao et al.
(1995) and Gao et al. (2000) for prime Gauf} periods.

RESuULT 8.1. Let p be a prime, e be a positive integer, and o be a normal prime
power GauB period of type (n, K) over Fy, where K is a subgroup of Z.. Two ele-
ments of Fy» expressed in the normal basis N' = (a, . .. ,oﬂ"_l) can be multiplied
with at most O(p®log p® - loglog p®) operations in F,.

The underlying algorithm is the second corner pillar of this thesis. The algorithm
consists of three parts: multiplication in F,[z]/(z?" — 1), sorting the product to
identify prime (power) Gauf} periods in subfields of F;», and then applying the
trace map to return to the linear combination of the conjugates of the prime
(power) Gauf period. We discuss this in detail in Section 8.1. In doing so, we get
tools to derive some further results. We may perform the Extended Euclidean
Algorithm 5.29 to compute the inverse in the case of normal prime power Gaufl
periods (Section 8.2). The algorithmic tools are also used to generalize an algo-
rithm of Wassermann (1990); we calculate the multiplication matrix of normal
prime power Gauf} periods (Section 8.3). With the help of these tools we prove
the Normal Gauf} period theorem 7.5 for the special case of prime (power) Gauf
periods (Section 8.4).

8.1. An algorithm for fast multiplication. We start with an example that
will illustrate our algorithmic ideas.

ExXAMPLE 8.2. Let ( be a primitive 9-th root of unity, and let « be the normal
Gauf period of type (3,{1,8}) over Fy as in Example 7.4(ii). The conjugates of
Oz=<+<3+C8+C6 areoz21 :C2+C6+C7+€3 anda22:€4+€3+c5+<6'

(i) To calculate the product o’ -« as linear combination of a, a?, ot we regard

the conjugates of « as elements of Fy (¢). The product in this extension field
is

ot a=("+C+HE+HE) C+HE+E+ )
:C5+C10+<4+<8+C13+<14

Since ¢ is a primitive 9-th root of unity over Fy, we have ¢ = 1 and
a*-a = ( + (% The summands are summands of . We complete the
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missing terms to get
ot o=+ +CE+C)

(ii) Observe that ¢* and (% are primitive 3-rd roots of unity over F,. We
apply the canonical projection m3: Zg — Z3 as defined in (7.8). Then
m3({1,8}) = {1,2} = Z35 and hence n' = % = 1. Thus, the projection
generates the prime Gauf} period az = (¢*) + (¢*)? over F,. We substitute
¢34+ (% by a3 to get

ata=a+ Q3.

(iii) In order to express as as a linear combination of the conjugates of o we

compute the trace of o over Fyi:

Tros o1 () = Z o =a+a?+a
0<i<3
=(C+CHEFO)V+H(E+EHTHE)H(EHEC+ O+
=C++C+E+HEHCHEHE
We resort the summands and apply (7.15), i.e. 0 = ®3(¢3) =1+ + ¢ to
get

Trpsjm (@) =C-(1+CC+)+ - (C+1+3)+C+¢°
=+ =as.

Indeed, the trace describes a linear combination of the conjugates of « for
3. We insert this linear combination

ot a=a+a3=a+ Trsm(a) =a’+a’

which completes the computation. ¢

We will show that the map ¢: F,(a) = R = F,[z]/(®Ppe) as in (7.20) is in fact
an injective ring homomorphism if « is normal over F,.

A sum of Gaufl periods. The door to our algorithm tool box opens by a
careful look at the summands of the product ¢(A) - p(B). We claim that a
preimage of ¢ of this product in F,[z]/(z*" — 1) can be written in a particular
way. We note that 2% = 2° mod (2*° — 1) if a = b mod p*. The following idea
also carries the key to the computation of the multiplication matrix Ty, see
Section 8.3.

For all 0 <% < n, we define the positive integers
ul!

(8.3) G
Yy

#lae K:1+aqg" € p°Y¢"K} for0 <l <eand0<h<n,,
=#{aeK:1+ap’¢ € ¢"K} for0<f<eand0<h<n,.

T
Il

’
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Furthermore, we set

(@) _

4 { 1 if there is a € ¢*X such that 1 4+ a¢’ = 0 mod p¢, and
0,0 =

0 otherwise.

These numbers define the special form of the preimage in F,[z]/(z*" — 1) of
¢(A) - o(B), we are looking for. Subsequently, we suppose that (g, ) = Z,.. We
fix some further notation.

NoTATION 8.4. Let ¢ be a primitive p°~th root of unity. For 0 < £ < e let my
be the canonical projection from Z,. onto Z;Z. Set ky = #m,(K) and ng = %’?.

The Gauf§ period of type (ng, m,(K)) over F, with respect to (; = ¢**™" is denoted
by ay. We set ng = ko = 1.

Since ¢ is additive, it is sufficient to look at the following product.

LEMMA 8.5. Let 0 < i < n and I be the prime subfield of F,. Then there are
C’OZ) and C’X}L inTF for0 < ¢ <eand0<h< ny such that

(Exe)(x 3 )

ack 0<s<e beK 0<s'<e
q

= o + Z Z C’gf)b Z Z (z )" | mod (z* — 1).

0<t<e 0<h<nyg LIS, (K)0<s<?

Since ( is a root of (z7° — 1), the product of a? times a can be written as a sum
of those Gauf} periods oy which are given by the canonical projection of I onto
7%.

p

COROLLARY 8.6. Let o be the GauB period of type (n,K) over IF, with respect
to ¢. For 0 < £ < e, let oy be the Gauf} period of type (ng, 7, (K)) over F, with

respect to (pe_l. For 0 <i<n, let C’éi) and C’éf,)L for0<f¢<eand 0< h<ny as
in Lemma 8.5. Then

ol a = Céi)-}- Z Z Céfzazh.

0<£<e 0<h<ny

We start with a proposition that describes the coefficients of the preimage of
©(A) - p(B) in F,[z]/(2*" — 1) in terms of u% and ’Uéf).
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PROPOSITION 8.7. Let 0 < i < n be fixed and u% and vg,)l as in (8.3). Set

Co = k- ZO<€<€ (( f)- 20<h<n2 Uy h) and

C;’e_lqh - (Zﬂ<s<e s h + ZO<S<E( g + Ugnh ZZ)))
fora]10<€§eand0§h<ng.

Then

(Z 5 xapsa> . (Z 3 xbw')

a€ck 0<s<e bek 0<s'<e

= C)+ Z Z Cretqn Z (2 )*" mod (z* — 1).

0<£<e 0<h<nyg aEm (K)

Proor. A straightforward computation gives

(55 ) (55 )5 5 o

a€l 0<s<e beK 0<s'<e a,beK 0<s,s'<e

S 0 s+0 s+ i s S 0 s+4
— E:(E:xapqﬂnp +§: E’ (xap q"+bp +$apq+bp ))

a,be \0<s<e 0<l<e 0<s<e—¢
3 i s L i
= § :2 : E : xbp(1+aq)+§ E 2 ' E : 2tp° (L+apte’)
a€K beK 0<s<e a€K bEK 0<l<e 0<s<e—{

+ZZ Z Z 2P 7 (') 64 (7" —1).

beK aeK 0<fl<e 0<s<e—¢

We consider the three major summands separately.
Fix a € K. Then 1 + aq’ is either equal 0 modulo p® or there are 0 < £ < e
and 0 < h < ng such that 1+ ag® € p*~¢"K C Zpe. Then

Z Z " (tad) = Z Z 2° = ke mod (2" — 1)
bek 0<s<e beK 0<s<e
if 1 + a¢® = 0 mod p°, and otherwise we have

Z Z xbps(1+aq Z Z s e —£ h

bek 0<s<e bek 0<s<e

S (3 s 3 )

bek \0<s<? I<s<e

Z Z AL S Z(e )

beK 0<s<£ beK

Z Z P bq + k(e — ¢) mod (2P — 1).

0<s<€ b€7rps (K)
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If a runs through IC then we get the first intermediate result as

> (T3 )

ac \beK 0<s<e
= S Yl [T E T @ ke o) +ulhe
0<l<e 0<h<mny 0<s<l bewps (K)
I (CUID> uzz)
0<t<e 0<h<ny

+>. ( > “gzl) > =" )] mod (¥ —1).

0<l<e 0<h<ny E 1<s<e bEﬂ'pg (K)

For the second sum, we fix ¢ € K and 0 < ¢ < e. Since ap’q’ is divisible by p,
we have ged(1 + ap®q’,p®) = 1, ie. 1 + ap’q" € Z,.. By assumption, we have
(¢, K) = Z., and there is 0 < h < n such that 1+ ap’q’ € ¢"K. Then we get

Z Z Lt (Fapta’) — Z Z Lo

bek 0<s<e—¢ belC 0<s<e—¢
s
= g E («P E g bq mod (2" — 1).
beK t<s<e €<s<e bEﬂ'ps (IC)

If a runs through I then the sum over all 0 < £ < e is given by

>Y(r ¥ )

0<l<e ack \bEK 0<s<e—¢
— (%)
=Y YT X

0<t<e 0<h<ny Z<s<e bemys (K)

qh
e—{

Sy (Ex ) T e)

1<t<e 0<h<ng 0<5<€ bEﬂ'p[(’C)

By changing the roles of @ and b and substituting 7 by n — i, we get the formula
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for the third summand:

> 5(x 3 e

0<l<e bEK \a€eK 0<s<e—¢
qi+h
=Y ¥ (p X ”) > @y
1<£<e 0<h<ny 0<s<€ aem ¢ (K)

= Z Z kﬁ Z vﬁ"{j) Z (xpe_l)“ mod (z7° — 1).

1<€<e 0<h<ny o<s<e a€m ¢ (K)

This completes the proof. (Il

With the help of this first proposition, we can group all summands of the preim-
age of p(A) - ¢(B) in F,[z]/(z" — 1)—except the absolute coefficient—in terms
Y een e(,c)(xpe_l)“qh with 0 </ <eand 0 < h < ny. Let 0 < i < n be fixed as

before; we omit it in the notation. Now our approach is to resort these terms
into sums which are preimages of oy, for 0 < £ < e, in R. This is obvious but a
little bit technical. Thus, we want to define two useful sequences of integers for
all0 <f<eand 0 < h < ny:

Dﬁ = 0 and
8.8)  Cup = q) ~ D) and
Dzs’z — 5+1 ks+1 ZO<]<ns+1 Cs+1 Jhing fOI- E < s < e.

Informally spoken, the Dés,)l are those parts of the C’I') e—tgh which have already

been identified as Gaufl periods. We give some alternative computations of the
Déf,z to illustrate this.

REMARK 8.9. Let DE,Z and Cy, as above. Then

. (s) _ kg
(1) Dé,h = Zsssl<e kz_l ZO< i ls +1 s'+1,h+jng | for 0 < ¢ <s<e,

1) _ k (e+1)
(i) DZ _ z+1 20<y< e+1 D2+1,h+jng7 for0 <l <e,

k {+1
(iii) Deh Hl Zo<3< Hl (D§+1,I)1+jng + Ce+1,h+jm>; for0 </t <e.

Proor. We prove all three formulas by induction.
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(i) We prove by induction on s. For s = e — 1, by definition we have for all
0 < ¢ < e that

_ k
e—1 e
DY =D+ k_; D" Consing

N n
0§J<n—z

. Z : ks’—i—l C
- k E s'+1,h+jne—1

e—1<s'<e . Tl
= OS]<“—£

using Dée,z = 0. We suppose that the claimed formula is also true for

1 < s+1 < e. Inserting the induction hypothesis into the definition of D,gs,z
gives

k
] s+1 s+1
D) = D@D 4 =+ S Coripting

- _Ts41
0S7<=

k'l_|_1 k_|_1
= 2 Sk Y. Cosihem | + ,Sw > Cortmism,

s+1<s'<e . _Tel41 i Tstl
- OSJ<T 0<5< ny

kg

+1

= E E Cs’—|—1,h—|—jng 3
ke

s<s'<e _Tel 41
= 0<i<—5,
and the induction step is complete.

(ii) Let 0 < £ < e. Then

+1 ks'+1
Dé,h )= Z ke Z Cor+1,h+jng

+1<s'<e LTl
= ()SJ<T

by (i). We resort the summands:

0+1 kﬁql—l ks’+1
D§,h ) = Z . Z Z CS’+1,h+(jnz+lw+1)

ke K
£+1<s'<e ¢ t+1 0<j< ML gy s 41
- TS |
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k ks
— Z‘_—;l . Z Z % +1 Z Cs’+1,(h+jng)+lnz+1

¢
ogjr | e 0<i<
_ ke Z Dy
- k L+1,h+jn,"
¢ g4l
0<j<—>= oy

Here we have used formula (i) once more.

(iii) We prove by induction on £. For £ = e — 1, we have by the definition

E Ce Jhtgne—1s

0<<

D) = D

1

which is just the claimed formula since ng =0forall0 < ¢ < e We

assume that the claim also holds for 1 < £+ 1 < e. Then (ii) gives

k
Déé})l _ DX—H £+1 Z Ce+1 i

)

ko1 (e+1)
= & Z (DZ+1,h+jnl + C£+1,h+jnz) .
0§j<"’§c—j1 0
We prove with the help of these sequences Dés,z and Cyj that the preimage of
©(A) - (B) in F,[z]/ (2P — 1) can be written as a sum of GauB periods.

PRrROPOSITION 8.10. Let Cy = C} and let Cyy, and D,Es,z be as in (8.8). Then

(E ) (x 3 )

a€k 0<s<e bek 0<s’'<e

= Cot+ Y. Y Cun | X D @)

' <t<e 0<h<nyg Q€T 4 (K)0<s<?
! ([’) pe laqh pe
+ g E (Cpe_lqh — Dy, ) - E x mod (2P —1).
0<€<l 0<h<ng aEm l K)

for all 0 < V' < e.

This proposition covers Lemma 8.5 for /' = 0.
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PROOF (of Proposition 8.10). By induction on 0 < ¢’ < e. For ¢’ = e the right
side of the claimed equation is

Co+0+ > Y (C,’,e_zqh - Déf,)l) Y e

0<€<e 0<h<ny aEm (K)

which is just the right side of the congruence in Proposition 8.7 since Dé’e,z =0

forall 0 < £ <eand 0 < h < ny,. Now, we suppose that the formula is also true
for an £ € Nyg with 0 < ¢/ < /¢ <e. Then for all 0 < h < ng

7 e—t'  h
(Cll)efl’qh - DE’,I)l) ) E : P

aewpl,(IC)
! !
(858) Cgl . Z ( Z xpefl apsqh N Z xpefl apsqh>
agm g (K) \0<Zs<¥ 1<s<?!
! !
S D S St B VD S S
aem g (K) 0<s<#! AT g1 (K) 1<s<¥!
€
mod (27 — 1).

We resort the summands by adding the first term of the difference to the already
collected summands

Cot Do > G| D D@

U'<€<e 0<h<n, aEm ¢ (K) 0<s<¥
’
+ E Cgl,h . E E .’L‘pe_e apsqh
0<h<ny aem g (K) 0<s<t/

= Co+ Z Z Cop Z Z (22" )" mod (27° — 1).

V'<t<e 0<h<ny a€m (K)0<s<?
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The remaining part is

Z Z (,,e o — %’3). Z L ad”

0<e< 0<h<ny a€m ¢ (K)
S Con XX
0<h<ny a,Gﬂ'py (K) 1<s<¥/

> (o) [ 3 e
a€m o

0<€<t 0<h<n, o (K)
k(’ e—s h
Qi
E CZ’,h . E I{;— E (.Z'p ) q
0<h<ngy 1<s<l % a€mys (K)
_ ' (f’)
= > > |G [P+ Do Comvin
0< £l 0<h<nyg 0<j <"z'

Z 2" | mod (z¥° — 1).

a€m 4 (K)

But D%l) + %’ Y o<icm Co hying, = D%L_l) by construction in (8.8), and the in-
b -~ nz )

duction step follows. O

Applying the trace map. The last one of our ingredients is the trace map.
It points a way to write a normal Gauf} period oy € Fgn, as a linear combination
of the elements of the normal basis N = (o, a4,...,a?" ") of Fgn

LEMMA 8.11. Let r = p® be a prime power, and let o be a prime power Gaufl
period of type (n,KC) over F, with respect to ¢, where (q,K) = Z,.. For any
0 < ¢ <, let oy be the Gauf§ period of type (ng, my(K)) over F, with respect to
¢P*~". Then

in _
E o™ =p*ta, for0 < £ <e.
OSK%
Furthermore, we have
i _
E al = —pt L.
0<i<n

We again derive these formulas step-by-step, and we will give a proof of
Lemma 8.11 as a conclusion at the end of this paragraph. Moreover, we show
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that this lemma includes the reduction modulo ®,. we are looking for. We start
by defining a set of polynomials 79,7 € Fy[z] for 0 < £ < e and b € 7y (K).
Since we are still working in the ring F,[z]/(2?° — 1), we assume all polynomials
to be reduced modulo z7° — 1, i.e. we identify (a mod p¢) € Z, with its canonical
representative a € Z, 0 < a < p%, such that @ = a mod p°. For 0 < £ < e and
0 <i< =5 and afixed b € my(K) we define

Tipi = {a € mper1 (K): a = ¢ "™b mod '}

the set of all elements in m,¢+1(K) that are preimages of ¢~"¢b under the canonical

projection 7: Z;‘Hl — Z;L,. For 0 </ < e and b € my(K), we set

e—1 i
To = Docicm Qoacmp) (@ ) +1 € Fylz] and
e—(£+1) S i
(8.12) ey = Z:OSK"‘;’L—JZ1 Zaezl,,,,i Zogs<e+1(xp Jorat

—p- Zogsd(xpe_l)bps € Fylz].

PROPOSITION 8.13. For 0 < ¢ < e, let 7y and 74, be the polynomials as in (8.12)
for all b € e (KC). Then @, divides 1y and 7y.

ProoF. Fix 0 < ¢ <e, and let m: Z,,, — Z, with m(a) = (a mod p%) the

canonical projection from Z;,_, +1 onto Z;[. Since we have m, = m o my41, the

projection is a surjective homomorphism. Thus, each element b € Z;Z has a

ZX
preimage set 7~ (b) = {a € Z,,: a = bmod p'} of order #71(b) = #21:1 =
4
pi(p—1) ’
pl_l(pfl)

p“™1: 0 < z < p}. This gives a second way to express the preimage set of b in

X .

= p. One can easily check that the kernel of 7 is ker m = {(1 + p‘z) mod

(8.14) 771 (b) = b-kerm = {(b+ zp*) mod p**': 0 < z < p}.

Here we use that the map ¥,: {0,... ,p — 1} — {0,...,p — 1} with ¥(2) =
bzremp is a permutation because ged(b, p) = 1.
We can also give a description of 7 !(b) involving Zy;,;. Since we know that

g™ € mye(K), also the inverse of ¢ is an element in m, (k). Thus, the set Zyp;

. k . :
contains % elements. For 0 < i < nfl—ifl and a € Zyp;, we have 7(¢"™ - a) =

g™ - ¢~"™b = bmod p’. Hence, the set {¢"™a: 0 < i < nfl—jl and a € Tpp,} is a
subset of m71(b). But Wyc,,,, @'mpe+1 (K) is a partition of Z,,, and each subset

nepr | kepn ¢

has n TR T e =P different elements. Therefore, equality holds:

(8.15) a7l (b) = {qm‘a: 0<i< Tt and a € Ig,b,i} )
Ny
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With the help of these formulas we have for 0 < £ < e and all b € 7, (K):

S OY Y @y

0<i< fz,jl a€lyp ; 0<s<l+1

(8%5) Z Z pe (e+1) e (8514) Z Z pe (f+1> p*(b+2zpt)

aer—1(b) 0<s<l+1 0<2<p 0<s<f+1
—(£+1) s e—1 s €
= > ((xpe )or -(Z (2 )w)> mod (2 — 1)
0<s<b+1 0<z<p

For s = 0, the sum in the inner brackets vanishes modulo ®,. since

€

e—1 .Tp - 1
0; (7" )? =T = 0 mod @,
<z<p

by (7.15). For s > 1, we simplify modulo ®,.:
Z (xpkl)pl”s*l) = Z 17 = p mod De.
0<z<p 0<z<p

Inserting both formulas gives

SO Y @

0<4 <nl+1 a€Zlyp ; 0<s<l+1

pe— (f+1) pe (l‘f’l)
= (o 0+ Y @

1<s<t+1

p- Z bp mod @,

0<s<?

Il

(8.16)

It follows by construction of 744 in (8.12) that @, is a divisor of 74, for 0 < £ < e

and b € 7, (K). For 79 we have

2. DL @)= @y

0<i<n1 a€mp(K) a€Zy

e -1
=Z(xp 1)2—1::Cef—lz—lrnodq)pe
0<z<p P -1

since (g, m(KC)) = Z,, and the claim follows also for 7y with (7.15).

g

Let Cpefl = (; be a primitive p’-th root of unity for 0 < ¢ < e. Sincee —¢ > 1

e—{+e—1

and (G = ¢?

=1, a simple computation gives

=Y S (&) r1=nk+1=6(p)+1=p#0inF,

a€mp(K) 0<i<ny
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Thus, ged(rg, ®,¢) =1 for 0 < £ < e and for all b € 7, (K) we have

€

(8.17) ged(To, Tipy - -« 5 Te—1p, 27 — 1) = @pe in F,[z].

Since ¢ € m,e(K), we can write 7 (7, (K)) as

T (e (K)) =mpeea (K) = tI-J tI-J Topi-

0§i<% bem e (K)

A direct consequence is that for 0 < / < e
— pe—(l+1) apsqine
Te= Zogi<"‘;—jl Zaerle (K) Zogs<e+1( )

(818) e—{ ]
—p- Zbewpl (K) ZO§s<£(wp )P

is divisible by ®,..

REMARK 8.19. Successively applying (8.12) and (8.18), respectively, we can
transform the equation given in Lemma 8.5 into

h

(Z > xapscf) : (Z > mbps’) = > Cly (Z > xaps)q mod ®,e

aek 0<s<e bek 0<s'<e 0<h<n a€ck 0<s<e

where C, , depends on 0 < i < n.

This is indeed a way to compute a suitable preimage of p(A) - p(B) in R =

F,[z]/(®pe). We observe that the final formula is due to a basis of R which

supports the back-transformation into a linear combination of the conjugates of

a normal Gauf} period a.

LEMMA 8.20. Let ( = (r mod ®,) and R = Fy[z]/(®pe). If Zy. = (q,K) for a
X

subgroup K of Z,. then

B:{Z C“ps:an;e}

0<s<e

is a basis of R.

PROOF. A canonical basis of the polynomial ring R over F, is the set B’ =
{1,¢,...,¢*®)=1Y Since B has at most #B' = ¢(p°) elements, it is sufficient to
prove that B' C (B).

By construction, we have >, . (" € (B) for a € Z.. By induction on ¢,
we find with (8.12) that for 0 < £ < e we have ZOSSQ(CI’GJ)“”S €(B)fora€Z.

As a direct consequence of the previous and (8.12), we get —1 € ().
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Now let 1 < a < ¢(p°). Then there exist uniquely determined 0 < ¢ < e and
cE Z:l such that a = p*~‘c, and

Z (Cpe—l)cps _ Ccpe—z n Z (Cpe—l)cps _ CCpe_l n z (Cpe—(z+1))cp

0<s<? 1<s<¥ 0<s<l—-1
But both ZOSS<£(§”G4)CPS and Zogsd_l(CpHH)Cps are elements of (B). Hence,
¢P ™" = (% e (B) for all 0 < a < ¢(p°) and the claim follows. O

Now we translate this result into the language of traces that has motivated
the choice of 7. Let Tryn; jgne—1 be the trace map of Fyn, into Fgne—y for 0 < £ < ¢;
here ng = 1 by definition. The Galois group Gal(Fy /Fyn ) is generated by the
Frobenius automorphism o, and we have

ﬂqnl/qnl_l (az) = Z O',(Ojl) — Z agln[—l )

o' €Gal(Fn, /IFqnl,l ) 0<i<ng/mg_1

S

Since ¢ is a root of ®pc, we can apply (8.18) to ay = >y, S pcacs(CFTH
Then -

(8.21) Tryres fqne (1) = poy for all 1 < £ <ee.

For 75, we simply have

e

(822)  Trgmjglon) = > ) (¢ -3 ¢ = CPB : _1 —1=-1.

0<i<n1 a€ky a€Zy

The trace map is transitive, i.e. Trgn/gne (ar) = Troness jgne (Trgn jqresa (), as
stated in Fact 7.23. We use this to prove Lemma 8.11 by induction on 0 < /7 < e.
The case £ = 0 is also called the absolute trace.

PROOF (of Lemma 8.11). For £ = e, we have Trgn/gne () = Trgne jgne (o) =

Q. since n = n,. Now we suppose that the claim is true for an 1 < £ < e.

8.21
Then Tl“qn/qnz (af—kl) = T&‘qn£+1/qn£ (pC*(Z—i-l)az_'_l) = pe’(“‘l)TrqnzH/qng (ae+1) (:
D (pay). For £ = 0 we get Trgnjq(a) = p* 1 Trgm jq(cr) (522 —p°~! in the

same way. O

)

We finally rewrite Remark 8.19 inserting the root ¢ of ®,.

REMARK 8.23. The primitive p®-th root of unity Q is a zero of ®pe, and we have

for all 0 < i < n. The Cg, depend on tbe given 0 < i < n. They are elements of

the prime subfield F of ¥, because C;e_lqh € F by Lemma 8.5 and all manipula-
tions on the coefficients are done in F. Thus, the multiplication matrix T has
entries in F.



126 Michael Nocker

The complete algorithm. Although we have presented all parts of the al-
gorithm so far, we summarize the complete multiplication routine. We use an
implementation-oriented language, since this emphasizes the operations in F,.

ALGORITHM 8.24. The prime power case.
Input: A normal prime power Gau$§ period « of type (n,K) over F, with K a
subgroup of Zy of order k, and two elements A = > ., A;0? and
B=3 cicn B;a? of F,» with coefficients A;, B; € F,, 0 S_i <n.
Output: The pr_oduct C =3 o<icn C;a? of A and B with coefficients C; € F,,
0<21<n.
Transformation from Fp into Fy[z]/(zP" —1):
1. Set A7 =0 and B; =0 for all 0 < j < p°. .
2. Forall 0 <4 < n and a € K do set j = ag’remp® and A; = A; and

3. For0</<eandallie€ Z;e_(l_l) do
4. set j =i - p‘rem p® and compute A} < AL+ A} and B} < B; + Bj.

5. Set A'=37 ;. Ajxl and B' =33, . Bix/
Multiplication in F,[x] / (P —1):
6.  Compute C' = 229 cope—1 Cja? <= A"~ B' with (fast) polynomial multi-
plication in F, [z].
7. Reduce C" modulo z7° —1: For 2 < j < p°—1 do compute C} <= Cj+C7, .
Set Cp = Cje and O} = Cpe1. Set C' = Yy, Cja
Write the product as a sum of Gauf$ periods in Fylz]/(x? —1):
8. Set Cy = Cj,.
9. Forall 0 </ <eand 0 < h < n do set Dg,)lz 0and C,p, = C’(’Ih.
10. For ¢ from e — 1 down to 1 do 11-14

11. For0<h<n¢c3{o ,
1
12. Compute D§h 20<J< nes ( é;;,,)lﬂm + Cost,htjng)-
13. For 0 < h < n, do
14. compute Cyj C;)e_lqh — Dy,)L
e—4L s qh
15. Set " = Cop + Zo<zge Zoghme Con (ZaEﬂ'pg(lC) Zogsd(xp ) ) mod
(zP" —1).

Reduction modulo ®,. € F,[z] applying the trace map:

16. For 0 < h < n; do compute Cp < Cp — Cp.

17. Forl1</{<eand 0 < h<n,do

18. For 0 <i< nfl—jl do compute Cé—l—l,h—l—inl — Cg+1,h+ml +p71 . Cg,h.
Back-transformation from R = TF,[z]/(Ppe) into Fyn

19. For 0 <h <mndoset Cp=0Cep

20.  Return C= Y, Cra?".
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LEMMA 8.25. Algorithm 8.24 works as specified.

PrRoOOF. The computation of the transformation in steps 1-5 is due to the
definition of Gauf§ periods. The multiplication in steps 6-7 in F,[z]/(2?" — 1)
generates a preimage of the product of A - B. To compute the reduction modulo
®,, we apply the reordering of the summands according to Proposition 8.10 in
steps 8-15. Notice that we compute only the Dg,)L for 1 < ¢ < e according to
Remark 8.9(iii). These are sufficient to get all coefficients of Lemma 8.5, see (8.8).
The reduction in steps 16-18 is done due to (8.12) and (8.18), respectively. Thus,
we get the preimage of A- B in the ring R = F,[z]/(®pe) under the isomorphism
X as stated in Remark 8.19. The final back-transformation (steps 19-20) uses
the fact that C is a linear combination of the conjugates of o as claimed in
Remark 8.23. a

It remains to count the number of operations in F,. We recall that n, < ¢(p’)
for 1 < /¢ < e. Furthermore, the telescope sum below is useful:

Do) =) W -p"N=p+ Y = = -

1<t<e 1<t<e 1<t<e 1<t<e

We have the following estimates for each part of the algorithm. We emphasize
the prime case e = 1 since some steps are omitted in this special situation.

o The transformation (steps 1-5) is calculated with 2 additions for each i €
Z:e_(z_l) where 0 < ¢ < e. This results in a total of at most

2 =2 ) (") =200° — 1 - ¢(p)) = 2p° — 2p

0<t<e 2<t<e

operations in F,. For the prime case e = 1 we have 2(p® —p) = 0 operations.

o Since both A’ and B’ have absolute coefficient zero, the multiplication mod-
ulo zP° — 1 in steps 6-7 can be done with

M(p® —1) + (p® — 3)

operations. The second term is caused by additions. If e =1 then p — 1 =
¢(p) = nk.

o The resorting of the summands in steps 8-15 is omitted for the prime case

e = 1. Otherwise e > 2 and we may assume that kgl is precomputed for
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all 0 < £ < e. Then the number of operations is bounded by

> ¥ 1+:L+1 1+ > 1

15£<80§h<n[ 0<’L< [+1
¢
= 2> ma+ >, <2 o)+ ) olp
1<te 1<te 2<t<e 1<t<e

= 20°—p)+p ' -1

o The trace is applied in steps 16—-18. Step 16 is executed for all e > 1 with
n1 < p — 1 operations. For e = 1, we have ny = n. If e > 2 the subsequent
iterative computation of the trace map in steps 17-18 can be done with

Yoo D 2=2) m<2) ¢()=20"-p)

1<<e 0<h<ng gje MtL 2<t<e 2<t<e
<i<—

further operations if we suppose p ! to be precomputed.

o The back-transformation (steps 19-20) can be done without operations in
F

q-

We summarize this detailed cost analysis in the next theorem. We set r =
p¢ and M(p®) = O(p®logp® - loglogp®), i.e. we choose the fast multiplication
algorithm for polynomials of Schonhage & Strassen (1971) and Schénhage (1977),
respectively, as cited in Fact 5.8, and Result 8.1 follows immediately.

THEOREM 8.26. Let q be a prime power co-prime to a prime p, and e a positive
integer such that there exists a normal Gauf period « of type (n, ) over F,
where K is a subgroup of Z,.. If the elements of Fyn are given in the normal
basis representation with respect to N' = (a ... ,aqn_l) then two elements can
be multiplied with at most

M(p® — 1) 4+ 7p° +p° 1 — 6p — 44+ ny < M(p°) 4 8p° € O(M(p°))
operations in I,.

We remark that all divisions that are computed in the algorithm (steps 12 and
18) are performed in the prime subfield F of F,». The only operations that are
performed in I, are additions/subtractions and multiplications.

The result of Gao et al. (2000) for the prime case is cited as a corollary. Blake
et al. (1998) also described the idea to speed up multiplication in a normal basis
representation using polynomial multiplication. The latter paper is restricted to
optimal normal bases over Fy which are generated by prime Gaufl periods with
parameter k£ € {1,2}.
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COROLLARY 8.27 (Gao et al. 2000, Theorem 4.1). Let Fn be given by a normal
basis N' = (a, . .. ,qun_l), where « is a prime Gauf period of type (n, k) over F,.
Then two elements of I, given as a linear combination of the basis elements can
be multiplied with at most

M(kn) + (k+ 1)n — 2

operations in .

Experiments. For prime and prime power Gaufl periods, respectively, we ran
two different test series. The test series PrimeGP contains prime Gaufl periods
of type (n, k) over Fy where k € {1,2}. The values for n are those of the other
test series for polynomial and normal basis representation of Fy» as described
in Sections 5 and 6. Here, we want to verify that Gaufl periods indeed offer
a way to connect the advantages of both the polynomial and the normal basis
representations as claimed in Result 8.1. In a second experiment, we compared
prime and prime power Gaufl periods. For prime power Gaufl periods it is more
expensive than for prime Gaufl periods to get the suitable basis representation in
R = F,[x]/(®Ppe); compare the estimates of Theorem 8.26 and Corollary 8.27. In
particular, we discuss the role of the parameter k£ on this background.

All optimal normal bases of the test series Normal are generated by prime
Gau$B periods of type (n, k) with k € {1,2}. We copied these values for the test
series PrimeGP. The routine for squaring in Fy» was left unchanged, because
all Gauf} periods are normal. The matrix-based multiplication was replaced by
Algorithm 8.24. The included polynomial multiplication is just the same as for
polynomial basis representation: We used BIPOLAR'’s fast arithmetic library once
more. In the case of the test series PrimeGP with nk < 20000, polynomial multi-
plication means mainly multiplication via Karatsuba with M(kn) = O((kn)'&23).
Thus, we have M(2n) = 3M(n) if £ = 2: a multiplication of a Gauf} period of type
(n,2) over F, takes three times the time of a polynomial multiplication of two
polynomials of degree less than n. We did 10000 trials to get the average times
on multiplication and squaring for each field Fy» of the test series PrimeGP. The
times are documented in Figure 8.1, see also Table A.14. Obviously, the squar-
ing is still free. Thus, changing the multiplication routine does not influence the
possible speed-up on parallel exponentiation; ¢ = =2 is still 0. Also the fast mul-
tiplication worked as predicted by the theory. For both k =1 and k = 2 the costs
were dominated by the polynomial multiplication. Figure 8.1 illustrates this by
giving the relative time for one multiplication in terms of polynomial multiplica-
tions M(n); these blue dots are related to the right y-axis. The costs which are not
caused by the polynomial multiplication (steps 67 of Algorithm 8.24) slow down
the computation. But their proportion decreases for larger n. For £ = 1, we have
a total time that corresponds to 1.82 polynomial multiplications for n = 1018.
For n = 9802 the corresponding value is only 1.16. For k£ = 2, the pairs are 3.90
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Arithmetic in GF(2”n) using a normal basis generated by a prime Gauss period
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Figure 8.1: Times for multiplication (+) and squaring (x) for the test series
PrimeGP. The times are the average of 10000 trials. Here Fon is given by a
normal basis representation due to a normal basis N' = (a, ... ,aZn_l), and «
is a prime Gauf period of type (n,k) over Fy with & € {1,2}. The times are
marked on the left y-axis. The scale of the right y-axis relates to the quotient (x)
between the time for one multiplication in this normal basis and the time for one
polynomial multiplication of two polynomials of degree at most n — 1 over F,.

for n = 803 and 3.23 for n = 9998. This coincides with the predicted quotient 3
for k = 2, for large n. The times for multiplication for £ = 1 are comparable to
those of the test series Sparse. Sparse polynomials offer the fastest arithmetic of
the polynomial basis representations that have been presented in Section 5. The
experiment illustrates that the parameter k is the crucial point for prime Gauf}
periods; this parameter is an indicator for the blow-up of the problem size which
is caused by multiplying in the larger ring R = F,[z]/(z? — 1) instead of Fyn.
Getting smaller values of k£ for given n and ¢ was a motivation of Feisel et al.
(1999) to generalize prime Gauf periods.>® Comparing Table 6.1 and Table 8.2,
we observe a slightly increase in the percentage of field extensions with small £.
The prime power Gauf} periods offer smaller values for k for exactly 105 values 2 <
n < 10000. The maximal decrease for the value of k£ is 30; we can substitute the
prime Gauf} period of type (4374, 30) over Fy by the prime power Gauf} period of

344 ... ] the cost for arithmetic in F;» then depend not only on ¢ and n but also on k. So
it is important to find a value for k that is as small as possible.”, Feisel et al. (1999), p. 1-2.
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Existence of normal bases generated by a
prime power Gauf} period with given parameter k € N>

E O\ g 2 3 5 7 | 11 | 13 | 17 | 19
k=1 190| 491 510| 4.80| 4.60| 4.76| 4.65| 4.83
k<2 17.58 | 18.86 | 18.15 | 17.78 | 17.64 | 17.71 | 17.30 | 17.65
k <log,n || 63.79 | 67.10 | 65.86 | 70.09 | 70.25 | 70.15 | 70.22 | 70.12
k<.\n |86.96]91.12(89.4095.84|97.08 | 95.45 | 96.29 | 97.85
k<oo ||87.51]91.67|90.0196.43|97.73 | 96.16 | 97.06 | 98.69

Table 8.2: Percentage of field extensions F;» over F, with 2 < n < 10000 for
which a normal basis generated by a prime power Gaufl period of type (n, K)
over [, exists. The parameter ¢ is given in the top row; e.g. the figures for I, are
in the second column. The subgroup K of Zj. is of order k¥ € N5;. The rows show
the distribution if the value for £ is also restricted. Note that we have limited
our experiments for 7 = p® with ¢(r) = p*~1(p — 1) = nk by 2 < r < 1000000.

type (4374, {1}) where {1} C Zgs4,. Both Gauf} periods are normal in Faisra over
F,. We collected some of the n € {2,...,9999} for which the prime power Gauf}
period of type (n, K) is generated by a subgroup order #K < 2 and the parameter
k for the prime Gaufl period of type (n, k) is at least that order except for n =
5050. For this extension we compare a prime Gauf} period of type (5050, 1) over Fy
with the prime power Gauf} period of type (5050, {1 mod 10201, —1 mod 10201}).
The times for this test series PrimepowerGP are shown in Figure 8.2. The exact
values are documented in Table A.15. For both prime and prime power Gauf}
periods, multiplication is due to Algorithm 8.24. The times are the average
over 10000 products of different factors A, B € Fon. The right y-axis marks the
quotient of the order of the subgroup for the prime Gauf} period versus the prime
power Gaufl period. The prime power Gaufl period offers slower multiplication
if the order of K is at least that of the prime Gaufl period; this is the case
for n € {1014,2028,5050}. Though the r’s for both prime and prime power
Gauf} periods are close to each other, the additional computation for prime power
Gauf} periods to identify the Gaufl periods of the intermediate fields caused more
computational effort. If the order of the subgroup is smaller in the prime power
case, then the situation changes. The prime Gaufl period is now clearly the
inferior alternative. Prime power Gaufl periods can do multiplication faster in
this case—up to a factor of more than 14 for n € {1830, 2211, 3660, 4422}. We
conclude that k£ keeps its role; if a smaller k is available, then the substitution
of a normal prime Gaufl period by a prime power Gaufl period for Fy» speeds
up field multiplication. Our experiments show that arithmetic benefits from our
generalization of the approach of Gao et al. (2000)!
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Arithmetic in GF(2”n): prime vs. prime power Gauss periods
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Figure 8.2: Times for multiplication for the test series PrimepowerGP. Prime
power Gauf periods of type (n, ) are marked by +, prime Gauf} periods of type
(n,k) by <. The times are the average of 10000 trials and marked on the left y-
axis. The scale of the right y-axis relates to the quotient (x) between the order of
the subgroup K for the prime power Gauf} period and the order & of the subgroup
for the prime Gauf} period.

8.2. Algorithms for division. Since a normal prime power Gauf} period « of
type (n, K) over F, determines a normal basis N’ = (o, a9, ... ,09" ") of Fyu, the
algorithmic approach can be applied that has been described in Section 6.5 for
arbitrary normal bases. This gives the bound for division in a normal basis rep-
resentation due to A below. This follows directly from Theorem 6.24 combined
with Theorem 8.26.

COROLLARY 8.28. Let N = (q,... ,aqn_l) be a normal basis of Fn over F,
where « is a normal prime or prime power Gaufl period of type (n, ) over F,
with KC C Z,.. Let the elements be given by a normal basis representation with
respect to N'. Then division by a non-zero element can be computed with

O(M(p°®) - log (ng)) C O(p®logp® - loglog p° - (logn + log q))

operations in .

When we compute the inverse in the case of prime power Gaufl periods, we must
not stick to the application of Fermat’s Little Theorem. We can also change to
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the polynomial representation of the ring R = Fyn[z]/(®pe) using the homomor-
phism ¢ defined in (7.20). Then the inverse can be computed via the Extended
Euclidean Algorithm 5.29. By working out this approach, we will prove the
following consequence.

COROLLARY 8.29. Let N' = (a,... ,oﬂn_l) be a normal basis of Fyn over F,,
where o a normal prime power Gauf} period of type (n, K) over F, with I C Z..
Let the elements be given by a normal basis representation with respect to N .
Then the inverse of a non-zero element can be calculated with

O(M(p®) logp®) € O(p*log® p° - loglog p°)
operations in F,.

To emphasize the role of the Ertended Fuclidean Algorithm 5.29 (EEA) for our
algorithm, we define a function E: N>y — Rsi: We set E(n) the number of
operations in F, to apply the EEA to two polynomials in F,[z] of degree at most
n.

Computing the inverse for prime Gaufl periods. The idea to change to
the polynomial representation is already described for optimal normal bases in
Fon, i.e. prime Gaufl periods of type (n,1) and (n,2) over F,, by Rosing (1999),
Section 11. He reports on a successful working implementation but omits a
proof®. For all prime normal Gauf} periods the same idea including a proof can
be found in Gao et al. (2000).

FactT 8.30 (Gao et al. 2000, Theorem 4.1). Let F,» be represented by a normal
basis N' = (a,...,a?") where « is a prime Gauf period of type (n,k) over F,.
Then division by a non-zero element in Fg» can be computed with

M(nk) + (k + 2)n — 2 + E(nk) € O(nklog®(nk) loglog(nk))
operations in I, .

PrOOF. Let B = > .. B,a?" be an element in Fyn. We use the homo-
morphism ¢: Fn — R = F,[z]/(Ppe) with p(B) = > ;... Bi(" as defined in
(7.20). Here ¢ = (z mod ®,) and B} = B, for i € ¢"K. To compute B!, we
note that ¢(B) € R is invertible modulo ®,. We can calculate the canonical rep-
resentative of ¢(B)~! in the basis B’ = (1,(,...,(™ 1) applying the Extended
Euclidean Algorithm 5.29; this takes at most E(nk) € O(M(nk)log(nk)) opera-
tions in F, due to Fact 5.30. To get B™!, we have to represent ¢(B)™" in the
basis B = ({,...,(™) of R. Changing between the bases B = ((,...,(™) and

5541 leave it to the mathematicians to prove it.”, Rosing (1999), p. 286, and “I'm sure the
mathematicians can prove this is true, because the code works!”, Rosing (1999), p. 287.
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B' = (1,¢,...,(™ ") can be done with n additions in F,, using }_,,_,, (" = -1
as in Algorithm 8.24. Now we can substitute the division A/B € R by the multi-
plication A-B~!. The computation of the product uses at most M(nk)+(k-+1)n—2
operations in [, according to Corollary 8.27. 0

ExAMPLE 8.31. Let ¢ be a primitive 5-th root of unity. Then o = ( is the
normal Gauf} period of type (n, {1}) over F, already discussed in Example 7.4(i).
We have ®; = % =z*+ 2%+ 12>+ 12+ 1 € Fy[z]. For the element B =
a+ a? + ao® in Fy« we have ¢(B) = z + 2% + 2° mod ®;. This polynomial
is invertible modulo ®5, and the Extended Euclidean Algorithm 5.29 computes
B' = 23+ z + 1 € Fy[x] such that B' - B = 1 mod ®;. We change from the
canonical basis B’ = (1 mod ®5, r mod @5, 2> mod @5, 2® mod ®5) to the basis
B = (z mod @5, z*> mod @5, z* mod @5, 23 mod ®5) by replacing 1 = z + 22 +
z* + 23 mod ®5. Thus, we get B™' = o~ ! (2% + ') = o® + ™. O

The prime power case. In the prime case we can easily compute the preferred
basis representation of the inverse of B in R = F,[z]/(®,), since there is only the
check whether the absolute coefficient of the representation of ¢(B~!) modulo
2P — 1 is non-zero. In the prime power case with e > 2, we first have to compute
a representation of ¢(B~!) mod 2" ! which can be transformed easily into a
linear combination with respect to the basis B = {d <, (" : a € Z,.}. The
obvious idea is to do computations in the larger ring F,[z]/(2*" — 1) instead of
R. This idea works well for multiplication. But it may fail for division because
ged(o(B), 2P — 1) could be greater 1, i.e. ¢(B) might not be invertible in the
larger ring.

ExAMPLE 8.32. Let ¢ be a primitive 9-th root of unity. We recall the normal
GauB period o = ¢ + 3+ (8 + ¢ of type (3,{1,8}) over F, from Example 7.4(ii).
If we apply the homomorphism ¢ to the element B = a + o2 in Fys then (B) is
represented by the polynomial z + 28 + 27 + 22 € Fy[z]. But ged(z + 2® + 27 +
2,29 — 1) = 2° — 1 € Fy[x] is not trivial! O

By the Chinese Remainder Theorem, we have

Fyla]/ (2 —1) 2 Fyla]/(z — 1) x B[]/ (@) x -+ x Fylz]/(Ppe),

since o?° —1 factors over F, into the pairwise co-prime polynomials x—1, ®,, ... ,
@, due to (7.16), and 27 = (z — 1) - [Ti<¢<e ®pe. Our algorithmic idea now is
as follows: We first compute the inverse of B € Fjn in R = F,[z]/(®pe). The map
¢: Fn — R as defined in (7.20) is an injective homomorphism. Hence, ¢(B) is
invertible in R if and only if B € F. = F,[z]\{0}. Then we compute the preimage
of (p(B)71,0) € F,[z]/(®pe) x F,[x]/(2” " — 1) in the larger ring F,[z]/(z*" — 1)
using the Chinese Remainder Theorem. We claim that this preimage of B~! in
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F,[z]/(2"" — 1) can easily be transformed into a linear combination with respect
to B = {ZO<S<€ " :a €y } by applying the trace map.

Now, we suppose that (p(B)_1 is given with respect to B, i.e. go(B 1) =
ZO§z<nB (p(aq) has the prelmage C = Zo<z<n0 ZaEIC ZO<s<e ap v mod
(x*° — 1) in the larger ring. Then B™! = ¢ !'(C) can be computed with-
out operations in F,. The image of C onto R = F,[z]/(Pye) is just p(B) .
To compute the image of C onto F,[z]/(z”" — 1), it is sufficient to compute
Y uck Doo<sce 7" mod (zP"" — 1), since the canonical projection is a homomor-
phism. Then

Y e = Z( S +)

ack 0<s<e acek \0<s<e—-1

kk . Z Z 2% +k-1mod (z" —1).
e—1

QEM e—1 (K) 0<s<e—1

Thus, we have that C mod 2?1 is given as a sum of Gaufl periods in the
subring F, [z]/(z*"" — 1) 2 F,[z]/(z — 1) x - -- x F,[z]/(®, ). Our construction
sets the projection onto F [a:]/(:z:pe ' —1) to be 0 mod (27 " —1). We successively
apply 7, for 0 < ¢ < e as defined in (8.12) and (8.18), respectively, to compute
C mod (az:pef1 —1). Since 7, = 0 mod ®,¢, the projection on R is not touched by
this substitutions: Let 0 < £ < e. Then, we have

e(l+1) 8 4in
D DEED DEND DN C A D DD Bl

0<i< fjlrl a€m p41(K) 0<s<b+1 bem ¢ (K) 0<s<t

— Z Z ( Z (xpef(l+1))apsqin( + pe— — lplaqlnl)

OSZ<% a€71'p[+1 (’C) OSS<£

bem ¢ (K) 0<s<d—1
- Z kl—kl Z Z pe (£+1) ap s gine _ Z Z pe— (l+1) pS
0<i< “’1 agm l K) 0<s<t bemw l(lC) 1<s<t
Tot1
e k‘g+1 1-— p- kg mod ( — 1).

But ¢™ € 7,.(K) and negiken _ 907 p, which gives

neke o(p")
wo= MY S S )
¢ = :
" neky
e a€m o (K) 0<s<t bem ¢ (K) 1<s<t

e—1

b Y @) mod (2

G,Eﬂ'pl (’C)

~1).
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For ¢ = 0, a similar result holds with

w= Y N @ = Y e

0<i<n1 a€mp(K) a€{g,K)
= Z 1+1=pmod (z* " —1).
1<2<p

By assumption, we have ged(q, p) = 1. Thus, we may apply p~* -7, for 0 < £ < e.
This shows that C' mod (z#° —1) and (¢(B) ' mod ®,,0 mod z° " — 1) can be
computed from each other by successively applying the trace map. This transfor-
mation has already been presented in detail in steps 8-18 of Algorithm 8.24. If
d' € F,[x] of degree less than ¢(p°) is precomputed such that D = d'- (27 —1) =
1 mod ®,. then the inverse of B € F;,» can be computed by using the Ex-
tended Euclidean Algorithm 5.29 once on ®,. and B, computing the preimage
C = (¢(B)~%,0) with the Chinese Remainder Theorem using d' - (z*° ' — 1), and
successively applying the trace map.

EXAMPLE 8.32 CONTINUED. We have &g = iﬁj =28 + 23 +1 € Fy[x]. The
Extended Euclidean Algorithm 5.29 computes on input ®y and ¢(B) = z + x2 +
z7 + 28 the output C = z° + 22 + £ + 1 € Fy[x] such that C - (z + 2? + 27 +
78) = 1 mod ®y. Furthermore, we set d = % = 73 — 1; we can precompute
d' = 23 € Fylz] such that D = d-d" = 1 mod ®y. This gives C' = (C - D) =
27428 +2° +2* + 23 4+ 22 mod 2° — 1. We sort this to see that C’ is indeed a sum
of GauB periods: C' = (2?4 2° + 27+ 2%) + (2* + 2% + 2° + 2°) + (23 + 2°) € Fy[x].
Applying the trace map with 23+ 2% = 2+ 28+ 22+ 2" + 24 + 2° + 23+ 2° mod P,
results in C' =z + 2% + 2° + 2% € R = F,[z]/(Dy), i.e. B~ = a. O

We give a formal algorithmic description to prove Corollary 8.29.

ALGORITHM 8.33. Inversion in the prime power case.

Input: A normal prime power Gauf§ period a of type (n,K) over F, with K
a subgroup of Z;,(e of order k, and an element B = ) _,_. Biaqi with
coefficients B; € F, for 0 < i < n. A polynomial D € F,[z] of degree at
most p® — 1 with D = 0 mod " —1and D=1mod Dpe.

Output: The inverse B! of B in F as linear combination of the conjugates of

Q.

Transformation from Fp into Fy[z]/(xP" — 1):
Set B; =0 for all 0 < j < p°.
For all 0 <4 < n and a € K do set j = ag’rem p® and B} = B;.
ForO0</<eandallie€ Z;e_(l_l) do
set j =i - p‘remp® and compute B} < B} + B].
Set B' =37, Bjal.
Inversion in R = Fy[z]/(Ppe):

AR S
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6. Compute C' = Y . y0e) Cj2’ € Fy[z] such that B'- C' = 1 mod &, by
applying the Extended Euclidean Algorithm 5.29 on ®,. and B'.
7. Compute C' = Zogj<pe+¢(pe)_1cgl'$j < D - C with (fast) polynomial
multiplication in F, [z].
8. Reduce C' modulo z7° — 1: For 0 < j < ¢(p°) — 1 do compute Ch +
Ci+ Cype- Set C" =3 i e Cla?.
Transform C' to get a suitable preimage of p(B)~! in F,[z]/(z*" — 1):
9. Apply Steps 8-18 of Algorithm 8.24 on C’. Let the result be C”.
Back-transformation from R = TF,[z]/(®pe) into Fyn:
10. For 0 < h < ndoset Cy,=Cy,.
11. Return B~' = 3", ., Cha?".

LEMMA 8.34. Algorithm 8.33 computes the inverse of B € Fyn with at most
E(p®) + M(p®) + 6p° — 4p — 2 operations in F,.

Proor. Correctness follows with the arguments given above. For the counting
of the number of operations for steps 1-5 and 9, we refer to the analysation
of Algorithm 8.24. These steps can be done with 5p° + p¢ ! —5p —1+n <
5p¢ + p¢ ! — 4p — 2 operations in F,. Step 6 can be performed with at most
E(p®) operations in F, for deg B’ < p® and deg ®,c < ¢(p¢). In step 7, there
is a multiplication of the polynomials C' and D, both of degree less than p® by
construction. Thus, the product C - D can be computed with at most M(p°®)
operations in F,. We count at most ¢(p?) = p® — p°~* operations in F, in Step 8.
We sum up the single estimates to get the claimed number of operations. O

PRrOOF (of Corollary 8.29). The claimed bound follows with Algorithm 8.33 if
we apply fast polynomial arithmetic. We insert E(p®) = O(M(p°®) logp®) using
Fact 5.32, and M(p®) = O(p® log p®loglog p°) due to Fact 5.8. This completes the
proof. O

Experiments. In Section 6.5 we have reported on experiments on inversion in
a normal basis representation. For the test series Normal the inversion algorithm
is based on Fermat’s Little Theorem 2.3. Multiplication for this test series is
matrix-based multiplication. The experiments showed that the decrease on the
number of steps in a star addition chain for n — 1 takes an significant effect on
the total number of operations in Fyx.

We replicated these experiments for the test series PrimeGP. We computed
the parallel inversion algorithm and compared it to the sequential inversion algo-
rithm. The latter one ran on three different addition chains for n — 1 as input.
The relation between the times of these four algorithms is still determined by
the length of the star addition chains for n — 1. Figure 8.3 is very similar to
Figure 6.4 if we ignore the absolute times. But in the case of prime Gaufl periods
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Figure 8.3: Times for inversion for the test series PrimeGP. The times are the
average of 1000 trials. The graphical representation compares the sequential
inversion algorithm a la Fermat (Algorithm 6.21) with the parallel version given in
Algorithm 6.27 ([J) and inversion using the Extended Euclidean Algorithm 5.29.
The sequential version is performed on three different addition chains u for m =
n — 1 as input: the binary addition chain (4), Brauer addition chain (), and
the addition chain generated by the power tree algorithm (x).

multiplication is computed according to Algorithm 8.24. Thus, a single multi-
plication is much faster than for the test series Normal. For n = 209, our new
multiplication routine gave a speed-up of 16.27. This speed-up increased up to
303.07 for n = 9802 and 155.80 for n = 9998, see colum 8 in Table A.14. It
depends on the parameter k. This improvement for a single multiplication im-
plies nearly the same speed-up for inversion via Fermat. We compare sequential
inversion when the binary addition chain p for n — 1 is chosen. For n = 209,
one inversion took 1.34 milliseconds using fast polynomial multiplication. The
speed-up was roughly 15.05 compared to matrix-based multiplication, see col-
umn 5 of Table A.16. For n = 9802 and n = 9998, the improvements are 299.44
and 155.33, respectively. Since the number of multiplications for the test series
Normal and PrimeGP are identical, the improvement by multiplication is the key
to fast inversion via Fermat in a normal basis representation.

Additionally, we implemented inversion for prime power Gauf} periods includ-
ing the Extended Euclidean Algorithm 5.29. We simplified Algorithm 8.33 for
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prime Gaufl periods as described in the proof of Fact 8.30: we combined the
polynomial multiplication in step 7 and the transformation in step 9 of Algo-
rithm 8.33. We substituted these steps by n additions to change between the
two different bases B = ((,...,(™) and B' = (1,(,...,¢"1). The times for
inversion using the EEA are given in Figure 8.3 for the test series PrimeGP,
see also Table A.17, column 6. We compared the times to those for inversion a
la Fermat, see columns 7-10 of Table A.17. The EEA is faster for £ = 1 and
n < 10000 compared to parallel inversion (column 10). But the gain decreases
from 2.03 for n = 1018 down to 1.18 for n = 9802. For k = 2 the break point is
n = 5399; the parallel version beat the implementation of Algorithm 8.33 for all
greater values of n. For all but one value of n > 7005 our experiments showed
also better times for the fastest also given sequential variant of inversion a la
Fermat, see Table A.17, column 9. Our experiments confirm the observation of
Rosing (1999) for optimal normal bases in field extensions of small degree. But
for larger » = nk + 1 our experiments showed that the approach using inversion
due to Fermat’s Little Theorem 2.3 is faster.

8.3. Computation of the multiplication matrix. For a normal prime Gaufl
period « of type (n, k) over F,, Wassermann (1990, 1993) gave an algorithm to
compute the multiplication matrix 7 without applying polynomial arithmetic
in F,[z]; he counted the elements in (14 ¢'K)N¢"K. These numbers—also called
cyclotomic numbers®®—are just our u% as defined in (8.3). Wassermann stressed
the advantage to avoid the determination of an irreducible polynomial.>” Beth
et al. (1991) described a similar algorithm but used multiplication in F,(¢). Our
approach is a mixture of both ideas as suggested for the prime case by Gao et al.
(2000).

By a careful rereading of the previous Section 8.1, we reveal an algorithm
that takes up Wassermann’s idea for normal prime power Gaufl periods. The
key to this algorithm is Proposition 8.7: for all 0 < ¢ < n, the coefficients of the
product o - o only depend on the integers u% and véf,)l as defined in (8.3). Our
idea is now simple: determine all ugl and vg using only arithmetic in Z,. and
the prime subfield ¥ of F,. Then we can calculate the coefficients as defined in

Proposition 8.7. We may apply Algorithm 8.24 steps 8-20 on the sum

qu".a:C'(')—{— Z Z C;G—lqh Z (Cpe—e)aqh

0<€<e 0<h<n, aem ¢ (K)

for all 0 <7 < n. Our algorithm will give the following result:

%6Gee Gao et al. (2000), p. 884.
574 ... ] insbesondere kann auf die Bestimmung eines irreduziblen Polynoms und auf die
Uberpriifung von linearer Unabhingigkeit verzichtet werden.”, Wassermann (1993), p. 177.
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REsuLT 8.35. Let o be a normal prime power Gauf period of type (n, ) over
F, where K is a subgroup of Z,.. The multiplication matrix Ty of the normal

basis N = (a,... ,a?" ") can be computed with at most
2ep(p®) +p° +p* ' +2n+e— 6 € O(epf)

operations in Zy and at most

3 11
ed(p®) + 4n (pe +2p¢ 1 + Ze —p— Z) € O((e+n)p°)

operations in the prime subfield F of F,.

Determination of u% and v§’,’t In Section 6.2 we have defined the multipli-

cation matrix Ty which is a n x n-matrix with entries in ;. In the case of normal
prime power Gauf} periods, the entries are indeed in the prime subfield F of F,
as stated in Remark 8.23. Therefore, we take an operation in this prime subfield
as our basic operation. We additionally count the number of operations in Zpe.

ALGORITHM 8.36. Determine the integers in (8.3).

Input: Integers ¢,p,e,n € N>; with p a prime, ¢ a prime power with ged(q, p) = 1,
and a subgroup K C Z. of order k = ¢(p°)/n such that (g, K) = Z..

Output: The set of integers u% and véz,)L as defined in (8.3).

Precomputation: Determine 0 < £ < e and 0 < h < ny for all b € Z,. such
that b € ¢"my (K)

1. For0 </ <edo 24
2. If £ < e then compute 7y (K) = {a mod p*: a € Ty (K)}.
3. For 0 < h < ny do
4. For all a € 7,¢(K) do compute b < a - (¢" - p~%) mod p® and store
£(b) = £ and h(b) = h.
5. Store £(0) = 0 and h(0) = 0.
Compute the order of (1 + ¢'K) Np*~*¢"K and (1 + ¢'p*K) N ¢"K
6. For 0 <7 < ndo 7-10 .
7. Set u% =0forall0 < /¢<eand 0 <h < ng and set véz,)l = 0 for all
1<f<eand 0 < h <ny.
8. For all a € K do 9-10 . '
9. Compute b < (1+ag*) mod p® and increment u%),h(b) — u%),h(b)-l-
1.
10. FE)I)’ 0 </ <()e compute b + (1 + ap’q’) mod p° and increment
v, y + 1.

eb).n(e) < Vi), he)
11. Return all u% and vé?})r



Data structures for parallel exponentiation 141

PROPOSITION 8.37. Algorithm 8.36 computes all u% and v?,’l as given in (8.3)

with at most 2e¢(p®) +p°+ gcpce Me+n+e—5 < p¢ L(p+1)+2ed(p®)+2n+e—6
operations in Zy and e¢(p®) operations in the prime subfield F of F,.

ProOF. To generate the table in steps 1-5, we first compute ¢2,...,¢" ! and
p?,...,p®' modulo p® with n — 2 + e — 2 multiplications in Zy,. The pre-
computation of ¢" - p *mod p® for all 0 < ¢ < e and 0 < h < n, takes

Zo<e§e Zogh<n£ 1= ZO<£§@ v <+ ocrce ¢(p*) = n+p* ' —1 further opera-
tions in Zpe. The three loops in steps 1-4 perform >, ;. > ocpen, Zaew 1=

D oco<e ke = 0 rce #(p*) = p® — 1 additional multiplications. The computa-
tion of m,(K) for 1 < £ < e takes D 5oy ker1 < D g pce #(p*) = p®—1 reductions
which we do not count. For the second part of the algorithm (steps 6-11) we dis-
tinguish between operations in Z,. and operations in the prime subfield F of F,.
For the manipulations modulo p¢, we suppose that p‘q* € Zye is already precom-
puted. Then, we count Y ), .. > cxc(24+D gcpce 2) = 2nk+2(e—1)nk = 2eh(p®)
operations in Zy. Similar, we have less than nk + (e — 1)nk = e- ¢(p®) operations

in F to increment u% and vg,)l. O

Determination of the coefficients of o - . If the u% and véz,)l are given

then it is easy to determine the coefficients in Proposition 8.7. To avoid indexing
with 4, the next part of the algorithm takes input 0 <17 < n.

ALGORITHM 8.38. Determine the coefficients of Proposition 8.7.
Input: An integer 0 < ¢ < n and u% and vg,)l as determined by (8.3).
Output: The coefficients C}, and Czl) e tgh BS determined by Proposition 8.7.

1. Set C, =0 for all 0 < a < p°. Set Uy, = u{; and V;, = 0 and C', = U, for all
0<h<n.

2. ForO0< /< edo '

3. For 0 < h < n._y do compute U, + U}, + “gé,h and C;)lqh +— Cz,J‘qh ~+ Uy,

4. For 0 < ¢ <edo . _

5. For 0 < h < ny; do compute V,, + V), + (véz,)L + vg;:z)) and CJ, ,
Cll,e—lqh + Vh-

6. For 0 < ¢ <eand 0 <h <ny compute C/._, , k% e

7. 0f ugi}) = 1 then set C) = e.

8. For 0 </ <edo9-11

9. Set C' = u,(f()).
10. For 0 < h < my do compute C <+ C + u%
11. Compute Cj «— Cj+ C - (e — ¥).
12. Compute C§ < k - Cj.
13. Return C! for 0 < a < p°.
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We may label the coefficient C;} e—tgh with the two indices ¢ and h. Then we can
refer to all coefficients without index arithmetic. Therefore, the algorithm has
only operations in the prime subfield F.

PROPOSITION 8.39. Let 0 <4 < n be an integer. Algorithm 8.38 computes the
coefficients of o' -« as given by Proposition 8.7 with at most 7Y octce Met+3e—3 <
7p°~! + 3e — 10 operations in the prime field F of F,

Proor. Correctness follows with the formulas of Proposition 8.7. We count
the number of operations: The first loop (steps 2-3) uses D> 5y D gcpen, , 2 =
23 ocrce < 2D 0 pce ®(0') = 2(p*' — 1) operations. Summing up Vj, in
steps 4-5 can be done with at most > g ;.. D gcpen, 3 = 3D gcpco e further
operations, which is bounded by 3>, _,_, d(p*) < 3(p°~' —1). If we precompute
k% for 0 < ¢ < e in step 6 with e — 1 divisions then the step itself causes another
D octce < p°~! —1 operations. Note that k., = k and therefore the case £ = e is
omitted in this loop. The final computation of Cj causes ) ,_,., n¢+2(e—1)+1 <
2e — 2+ p° ! operations in T. O

Now, we can apply steps 8-20 of Algorithm 8.24 to compute the coefficients
C), of the product o4 - o = Zo<h<n Chaqh for all 0 < ¢ < n. The cost analysis
of Algorithm 8.24 includes a bound of at most 4p® + p¢~! — 4p — 1 operations for
each 1. Adding the estimates of the previous two propositions proves Result 8.35.
For the prime case e = 1 we get the following estimate. A similar result has been
given by Wassermann (1993), Section 3.2.58

COROLLARY 8.40. Let o be a normal Gaus period of type (n, k) over F,, and K
be the unique subgroup on:ka of order k. The multiplication matrix T\ of the
normal basis N' = (a,...,09" ") can be computed with at most (3k + 2)n — 3
operations in Zyk1 plus nk operations in the prime subfield F of F,.

8.4. Normality of prime power Gaufl periods. We have already cited the
Normal Gaufl period theorem 7.5: a general Gaufi period « of type (n, ) over
F, with £ C Z) is normal in F;» over F, if and only if (¢, ) = Z).

In this paragraph, we give a new proof for the case r = p®. Thus, let a be a
prime power Gaufl period. We use the trace argument once more. Our tools are
restricted to extensions over I, of finite degree.

THEOREM 8.41. Let p be a prime, e be a positive integer, and let o be a prime
power Gaufl period of type (n,K) over F, with K a subgroup of Z.. Then o is
normal in Fy» if and only if (q,K) = Z,..

8 “Fiir die Berechnung der I, ; wird ein Aufwand von O(kn) benétigt. Zusammen mit der
Reduktion von ¢ modulo kn + 1 bendtigt die Berechnung der Matrix T', abgesehen von der
Vorbesetzung mit 0, also O(kn + In g) Operationen.”, Wassermann (1993), p. 185. [the I, ; are

our u((]’;)h, and T is Ty in our notation.]
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PROOF. By Remark 7.7, the condition (g, ) = Z,. is necessary for a prime
power Gaufl period a to be normal in F;» over F,. It remains to show that this
condition is also sufficient. Since a?" = a, we have (q, . .. ,aq"_1> a subspace of
Fyn over F,. We prove that o and its conjugates are linearly independent. Since
we have dimy, (Fg» ) = n, the claim follows immediately.

We recall that ¢ is F,-linear. Thus, we have >, . uped” =0 if and only if

D 0<h<n Uh Dack Do<s<e ¢%"?" = 0in R with ¢ = (z mod ®,.). Since the subsets

¢"K for 0 < h < n form a partition of Ly,

=Y uw ¥ (X er)- 2wy e)

0<h<n acghic \0<s<e an;e 0<s<e

we have

and {ug, ... ,up 1} C{up: a € Zye}. But B= {3, (" :a€Zy} is a basis
of R as proven in Lemma 8.20. This gives u, = 0 for all a € Z,.. We conclude
that ug =---=u, 1 =0. Il

8.5. Exponentiation using normal prime power Gaufl periods. Both
the theoretical estimates and the experiments confirm that normal prime or prime
power Gauf periods are the data structure we are looking for. This data structure
connects the advantages of normal and polynomial basis representations if the
parameter k is small. The disadvantage is that this preferred data structure
does not exist for all finite fields Fy», as illustrated in Table 8.2. Let us assume

Normal basis representation with a normal prime power Gauf} period
of type (n, K) over F,
classical Karatsuba FFT

arithmetic

mult. (c4) O(k*n?) O (k'-59n1-59) O(knlognloglogn)

squaring (cq) 0 0 0
c= Z—f 0 0 0
exponentiation

sequential Ok ) Ok L) O(kn2loglog n)

parallel O((kn)?logn) | O((kn)**logn) | O(knlog® nloglogn)

Table 8.5: Bounds for exponentiation in F,» given by a normal basis represen-
tation generated by a prime power Gauf} period of type (n, ) over Fy with K
a subgroup of ZX of order k. We assume that r ~ ¢(r) = nk and that k is
polynomial bounded in n.

that 7 ~ ¢(r), and let us assume that there is a prime or prime power Gauf
period of type (n,K) over Fy with L C Z) of order £ € O(logn). Then fast
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arithmetic and the quotient Z—"A? = 0 result in soft-linear asymptotic upper bounds
for parallel exponentiation in Fo» , see Table 8.5, column ”FFT”. This assumption
holds for roughly 64% of all field extensions over F, of maximal degree n < 10000.
The three columns of Table 8.5 list the bounds for arithmetic using three different
polynomial multiplication algorithms: classical multiplication with M(n) € O(n?)
(Remark 5.2), Karatsuba’s algorithm with M(n) € O(n'°%23) (Corollary 5.7), and
FFT-based multiplication with M(n) = O(nlognloglogn) (Fact 5.8). If M(n) is
sub-quadratic then the bound on parallel exponentiation is also sub-quadratic!
This beats all bounds for polynomial basis representations discussed in Section 5.
All these data structures have bounds which are at least quadratic in n. Thus,
the asymptotic estimates for Gaufl periods are superior if £ can be chosen small.
This has already been shown for prime Gauf§ periods by Gao et al. (2000). Our
results hitherto extend this result to prime power Gaufl periods! We conclude
that a normal basis for F,» generated by a suitable prime or prime power Gauf}
period meets exactly the requirements on a data structure that supports parallel
exponentiation!
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9. Decomposable Gauf} periods

We now extend the result of Section 8 to the case that the Gauf} period « of type
(n, K) over F, is neither a prime nor a prime power Gauf} period. Our approach
is to reduce the general case to the prime power case along the prime power
decomposition of 7. In this section we prove the following result.

REsuLT 9.1. Let r be a positive integer greater than 1 with prime power decom-
position 1y - - -1, and let o be a normal Gauf$ period of type (n, K) over F, with
K a subgroup of ZZ. Then there is a Gauf$ period « such that N' = (a, . .. ,aqn_l)
is a normal basis of Fgn over F,. Two elements given by a linear combination of
the elements of N can be multiplied with at most O(][,;,(rilogr; - loglogr;))
operations in . o

We derive this result in three steps. First, we introduce our tool: decompos-
able Gauf periods. Those Gaufl periods can be written as a product of prime
and prime power Gauf} periods, respectively, see Section 9.1. We apply Algo-
rithm 8.24 to this special type of Gaufl periods as a second step in Section 9.2:
the factorization of decomposable Gaufl periods points a way to multiply along a
tower of fields. Each multiplication in this tower appears to be the prime power
case discussed in the previous section. As a third step, it remains to prove that
normal decomposable Gaufl periods exist whenever normal general Gaufl periods
do. This follows with a result of Gao (2001). We give the proof in Section 9.3.
The closing Section 9.4 describes a criterion for the existence of normal general
Gauf} periods, which is mainly a generalization of a result of Gao et al. (2000).
A similar approach can also be found in the paper of Gao (2001).

9.1. Decomposition of Gaufl periods. Let a be a general Gaufl period of
type (n, KC) over F, such that (¢, ) = Z). By the Chinese Remainder Theorem,
we can write ZX as a direct sum®® along the prime power decomposition of r =
T1 Ty

X v X X
L) 21 X - XL,

Applying the canonical projections 7, : Z — Z for all 1 < ¢ < ¢ on the
subgroup K gives

(9.2) K Cm(K) X -+ X m (K).

We have K a subgroup of the direct sum of its projections onto Z, 1 <4 < {.
Unfortunately, equality does not always hold!

% SQubsequently, we will identify both isomorphic groups and often write = instead of 2.
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ExXAMPLE 9.3. Recall the two subgroups K; = {1,26} and Ky = {1,44} of Z;
of order 2 in Example 7.4(iii). Both generate normal Gauf} periods in Fyi2 over
Fy. The first subgroup has the images 79 (K1) = {1,8} in Zg and 75(K;) = {1} in
Z7. For Ky the images are mo(KCy) = {1,8} and 75(KC) = {1,4}. Thus, K; is the
direct sum of its projected images while 7o (ICg) X 75 (ICo) =2 {1, 19, 26,44} # Ks. O

If equality holds in (9.2) then we can write the Gauf} period of type (n, KC) over F,
as a product of prime and prime power Gaufl periods along the product r - - - ;.

DEFINITION 9.4. Let r be a positive integer greater than 1 with prime power
decomposition 1 - - - 14, and let K be a subgroup of 7.

(i) Let m,;: Z.) — Z) for 1 < i <t be the canonical projection. The subgroup
K is called decomposable if

K=m,(K)x---xm, (K).

(ii) A Gaufi period « of type (n, K) over F, is decomposable if K is decompos-
able.
Let R; be the square-free part of r as in Definition 7.2%°. We call a Gauf} period
of type (n, ) over F, with K C Z square-free if r is square-free, i.e. r = Ry. If
R, =1 then we call a non-squarefree.

A product of prime (power) Gaufl periods. If equality is given in (9.2)
then the factorization of r causes a factorization of a normal Gaufl period «.

LEMMA 9.5. Let a be a decomposable normal Gauf$ period of type (n,K) over
F, with respect to ¢. Let ry---r; be the prime power decomposition of r. For
1 < i <t let oy be the Gauf$ period of type (n;, m,(K)) over F, with respect to

G = (", where n; = % Then there are 0 < h; < n; for 1 < i < t such that

Before we give the prove, we illustrate this by an example.

60This definition of square-free may be different from the definition the reader is familiar
with. Due to the definition here, the square-free part of 45 = 3% - 5 is 5, and not 3 - 5.
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EXAMPLE 9.3 CONTINUED. Let  be a primitive 45-th root of unity. The normal
GauB period o = (" + ¢** + ¢* + ¢% of type (12,{1,26}) with {1,26} C ZJ is
decomposable. The canonical projections along the prime power decomposition
of 45 = 3% - 5 generate the prime Gaufl period a5 = ¢° of type (4,{1}) and the
prime power GauB period ag = ¢° + (¢%)® + (¢°)® + (¢°)° of type (3,{1,8}) over
F,. Computing the product as-ag = ¢+ (P + P+ +¢30) = (M4 + ¢4+ ¢
verifies that as - g is indeed a factorization of . O

PRrOOF (of Lemma 9.5). We subdivide the proof into three steps. Since « is
normal, we have (¢, ) = Z by Remark 7.7.

CLAIM. A decomposable normal Gaul period can be written as a product of a
square-free Gauf3 period and a non-squarefree Gaufl period.

PROOF (of the claim). Let R; be the square-free part of r and Ry = 7o» and set
a; = a mod R; for i = 1, 2. For a primitive r-th root of unity ¢, we have ¢; = ¢"/%
a primitive R;-th root of unity for i = 1,2. Hence, (¢ = (* and (§ = (5*. Because
KC is decomposable, we have the direct sum K = 7g, (K) X 7g,(K). By a straight-
forward computation we have:

o= Z b(Ca) — Z CRza . H Z gaRlRQ/p;‘.‘

e aek 1<i<t,pi|R2 1<s<e;
— E (CT/R1)a1 . H E (C’I‘/Rz)asz/p‘z
(a1,a2)€mR, (K)X7TR,(K) 1<i<t,p;| Ry 1<5<e;

=X b be)

(a1,a2)€mR, (K)X7R, (K)

= > b Y (e

a1 Eﬂ'Rl (IC) a2€7rR2 (’C)

The first factor is a square-free Gauf} period of type (wq;(ﬁ}c))’WRl (IC)) over F,

with respect to (; = ("1, the second one is a non-squarefree Gauf§ period. O

CLAIM. A decomposable non-squarefree Gauf3 period which is not a prime power
GauB period can be written as a product of a non-squarefree Gaufl period and a
prime power Gaufl period.

PROOF (of the claim). Let « be a non-squarefree Gauf} period. Since it is not
a prime power Gaufl period, we have t > 2. Set R = ry---r;_1 > 2. Then we
have r; > 2 a prime power co-prime to R. For a primitive r-th root of unity (,
we have (; = (" = ("/F a primitive R-th root of unity, and ( = (¥ = (/" is a
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primitive r;-th root of unity. Let a; = @ mod R and a, = a mod ;. Then

=Y =X [ ¥ e

ack a€K 1<i<t 1<s<e;
:E H E (¢re)aR/pt H E : (¢Ryare/t

a€K 1<i<t,pi|R1<5<e; 1<i<tpilre 1<s<e;

R/pé S

=2 [T X @emeet 3 @

(a1,02)EmR(K)xmr, (K) \1<i<t,p;|R 1<s<e; 1<s<e;
= Db DL b

a1€mR(K) a2€m, (K)

with the first factor a non-squarefree Gaufl period and the second one a prime
power Gauf} period. O

CrLAIM. A square-free Gaufl period which is not a prime Gaufl period can be
written as a product of (conjugates of) a square-free GauB3 period and a prime
Gauf} period.

PROOF (of the claim). Let ¢ be a primitive r-th root of unity, and let R be
the product ry---7,_1 > 1 co-prime to r;. Let (; = (™ be a primitive R-th
root of unity and {, = ¢® a primitive r,-th root of unity. There are ui,uy € Z
such that u;r; + us R = 1 by the Chinese Remainder Theorem. Let a; and as

be the projections of a onto Zj and ZJ, respectively, and set n; = #i%c) and
ng = #ﬁgzt&c) Since « is normal, we have (¢, 7gr(K)) = Z} and (q, 7, (K)) = Z).

Thus, there are 0 < h; < n; and 0 < hy < ny such that u; € ¢"7mr(K) and
uy € ¢"m,,(K). We have

a = Z Ca — Z Caluﬂ‘t . Cagqu

ack (a1,02)Emg (IC) X7, (K)

h hs
=X @t
(a1,a2)€mR(K) X7, (K)

h1 ha

q

=1 > ] | D> ¢

a1€mR(K) az€mr, (K)

q

with the first factor a square-free Gaufl period of type (ni, 7gr(K)) over F, with
respect to ("/%, and the second factor a prime GauB period of type (ng,,,(K))
over [F, with respect to ¢rime, O

Induction on the number ¢ of prime divisors of r completes the proof of the
lemma. O
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9.2. Fast multiplication for decomposable Gaufl periods. If a normal
Gauf} period is decomposable then its factorization into prime and prime power
Gauf} periods is related to a tower of fields. Each Gauf} period along this tower
satisfies the assumptions of Fact 7.21, i.e. the extension degrees are pairwise
co-prime.

ProrosSITION 9.6. Let r,q,n,k be positive integers such that ¢ > 2 and r > 2
are co-prime and ¢(r) = nk. Let r---r, be the prime power decomposition of
r. Let KC be a subgroup of Z) of order k, set K; = m,,(K) its image of order k;
onto Z;‘i under the canonical projection T,;, and n; = %’;‘) for 1 < ¢ <t. Then
the following are equivalent:

(i) {(¢,K) = Z) and K is decomposable.

(i) (¢, ki) = Z) for all1 < i < t, and n = ny---ny with ny,... ,n; pairwise
co-prime.

Proor. “(i)=(ii)” The canonical projection =, is an epimorphism. Thus,
Z) = m (L)) = m,({q,K)) = (g, K;) for all 1 <4 < ¢ Since K is de-
composable, we have k = k; -+ k; and n = @ =[licics ¢§£") = [T, i<y -
We prove by induction on the number of prime divisors that ni, ... ,n,
are pairwise co-prime. For 7 = 1 there is nothing to show. Thus, we
suppose that the claim is true for K' = IC; x --- x K; which is a decom-
posable subgroup of Z) of order k' where ' = ry.-.r;. By construc-
tion we have (¢, ') = Z) and n' = %’;’) = ny---n;. We suppose that
d = ged(n',nig1) > 1, ie. n' - 2 < ny--opyyy. Since " € Ky

by Fact 7.6(iii), we have ¢™+™/? ¢ K;,,. But also ¢" ™+/¢ € K' since

q”' € K', and we conclude with the help of the Chinese Remainder Theo-

rem that ¢” ™+1/% € K' x K 1. Then #{q, K' x Ki11) < n’%j“ k' ki <

(n’ . kl) . (’I’LZ'_|_1 . ki—i—l) = ¢(T’) . d)(ri—l—l) = #(Z:fl X e+ X Z:fH_l) which is a

contradiction. Hence, n’ and n;y; are co-prime. The induction hypothesis

guarantees that n,...,n; are pairwise co-prime, and the claim holds for

Ny ey g1

“(ii))=(1)” The group K can be regarded as a subgroup of K; X - -+ x y;
hence £ is a divisor of k; - - - k;. By assumption we have n = nq - - -n;. Thus,
k = @ = <<t ‘bf:;) = ki -k, i.e. the subgroup K is decomposable.
We always have (g, K) C Z), and it remains to prove the other inclusion to
show equality. Let @ be an element in Z* and a; = 7,,(a) for all 1 <4 < ¢.
For (¢, K;) = Z there are ¢ € K; and 0 < h; < n; such that a; = ¢"¢]
for 1 < ¢ <t. But ny,...,n; are pairwise co-prime, and by the Chinese
Remainder Theorem exist 0 < h < n with A = h; mod n; for 1 < i < t.

Since ¢™ € K;, we have ¢" = ¢"ic! mod r; for suitable ¢ € K;, 1 < i < ¢.
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We set ¢ = (¢} /c},...,c/c!) € K to get a = ¢"c mod r. Thus, (g,K) D ZX,
ie. (g, K) =Z) as claimed. O

The factorization of a normal decomposable Gaufl period a offers a recursive

approach to do multiplication fast whenever F,» is represented by the normal
basis N = (..., 00" ).

REMARK 9.7. Let n, and ny be two co-prime integers, and set n = ny - ny. Let
oy € Fyni and oy € Fyny be normal elements over F,;, and oo = o - iy be a normal
element in Fn.

(i) The element oy is normal in Fyn over Fyn, .

(ii) Transforming an element given as linear combination of the conjugates of
a over I, into a linear combination of the conjugates of oy over Fyni can
be computed without operations in F,.

PROOF. (i) This is just Lemma 7.25(ii).

(i) Let A=) pon Apa?" be an element in Fy». Let h; = h mod n, fori = 1,2.
Then o?" = o/fhl . ozgh2 and

A= Z Ah (Oj(llhl . O./gh2) = Z ( Z A(h1,h2)a(11h1> aghQ

0<h<ning 0<ha<ny \0<hi1<ny

where we identify A and (hq, ho) = (h mod ny, h mod ny). Since n; and ne
are co-prime, we have {njaremny: 0 < a <mny} = {0 <a <ny} and

0<ha<ny \0<hi<ni

This is just a resorting of the coefficients of A which can be done without
operations in . ]

A constructive proof. We are now ready to give a constructive proof how
to apply fast polynomial multiplication if F,» is given by a normal basis N =
(ay . .. ,aqn_l) over F,, and « is a decomposable Gaufl period.

THEOREM 9.8. Let o be a decomposable normal GauB period of type (n, K) over
F, with K a subgroup of ), and let ry - - - 74 be the prime power decomposition of
r. Then two elements in Fyn given as linear combinations of the elements of the
normal basis N' = (... ,a?""") can be multiplied with at most O([[,<,<, M(7i))
operations in . o
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PrOOF. We prove by induction on the number of prime divisors ¢t of r. If t =1
the claim follows with Theorem 8.26. Now we suppose t > 2. We can write
a = [licics aghi as a product of conjugates of normal prime and prime power
GauB periods «; of type (n;, m,(K)) over F, by Lemma 9.5. Set n' = -. The

element o = [[; <i<i1 aghi is normal in F . over F,. Since a is decomposable,
Proposition 9.6 claims that n’ and n; are co-prime. Then ¢4 is a normal prime
or prime power GauB} period in Fp over F .~ by Remark 9.7(1). As claimed
in Remark 9.7(ii), we can multiply two elements in F» over F, by multiplying
them in Fy» over F ... By Theorem 8.26, the multiplication can be done with
at most O(M(r;)) operations (additions, multiplications) in F .. Moreover, o
is a decomposable normal Gauf§ period of type (n',m,,(K) x - -+ x 7, ,(K)) over
F,. By the induction hypothesis, multiplication in F .. can be done with at most
O(I1<;<;_y M(ri)) operations in IF,, and the claim follows. O

EXAMPLE 9.3 CONTINUED. The decomposable Gaufl period o = (14 4+ +(* +
¢3 of type (12, {1,26}) with {1,26} C Z}; over I, is normal in Fyi2. We calculate
the product o2 - a.

(i) As shown above, « factors into o = s - g with as a prime Gaufl period
of type (4,1) over F,, and ag a prime power Gauf} period of type (3,{1,8})
over Fy where {1,8} C Z;. We transform the task into a multiplication
over [Fg:

o' o :(a§ : 043) (a5 - ag) = (Oéé ca) - (043 - ag).

Now ag - a9 = a2 + g as computed in Example 8.2.

(ii) It remains to perform the arithmetic in Fg over Fy. Since as is a prime
Gauf} period, we have

as-as = () (O)=(O)P=1=0as+02 +ai +ab.

(iii) Combining both results gives

ot a = (as+ai+az+ad)- (o +ag)

_ 20 ol 21 ol 22 ol 23 ol 20 92 21 92
= Qg T05 0y +05 0 +05 0y +05 0y + Q5 Oy
22 92 23 92
+ oy g + af o

4 1 10 7 8 5 2 11
= o +a? +0* +0* +o® +ao* +a* +a*

2h1 2h2

. 2h _ _ 29h1+4h2
since o =g ' -of = (a5 - ag) .
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Experiments. We composed another test series squarefreeGP to illustrate the
arithmetic of decomposable normal Gaufl periods. This test series contained a
special type of decomposable Gaufl periods; square-free Gaufi periods play an
important role within general Gaufl periods. Square-free means that all factors
of the prime power decomposition of r are different primes. Square-free Gaufl
periods preserve the classical form given by prime Gauf} periods: o =) - (“ for
a subgroup K C Z). They were discussed by von zur Gathen & Schlink (1996) as
a first step towards a generalization of prime Gauf} periods. From our algorithmic
point of view, square-free Gaufl periods are the simplest non-trivial decomposable
Gaufl periods. Table 9.1 shows the significance of this type for fast arithmetic.
Square-free Gauf} periods are very useful to get smaller values for k£ compared to
the other three types including prime Gauf} periods. In particular, for extension

Minimal value of the parameter k for
normal Gaufl periods with respect to the class

class \ ¢ 2 3 5 7 11 13 17 19

prime 57.79 1 63.04 | 63.25 | 63.24 | 64.71 | 65.27 | 64.93 | 65.20
squarefree 26.19 | 29.22 | 30.35 | 23.35 | 25.78 | 25.16 | 32.33 | 22.59
prime power 0.87| 089 092| 0.84| 0.95| 1.08| 0.79| 0.62
general 2.66 | 6.85| 548 |12.56 | 856 | 849 | 1.95| 11.58
no normal GP || 12.49 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00| 0.00

Table 9.1: The percentage for which the minimal parameter k¥ € N>, is given by
the special class of a Gaufl period. The values are given for all field extensions
Fp with 2 < n < 10000. The values for ¢ are given in the first row; e.g. the
distribution over the binary field F, are listed in the second column. The search
for k = ¢(r)/n is restricted to r < 1000000. If the minimal & is given for more
than one class of Gauf} period then it is attached to only one; the chosen class is
then with respect to the rows from top to bottom.

fields over Fy nearly all smallest values for k& € N5, are given by either prime
or square-free Gaufl periods. There are only 2.66% of all extensions Fgn, 2 <
n < 10000, for which the minimal k is not given by a prime, a prime power or a
square-free Gauf} period. A comparison between Table 9.2 and Table 9.4 supports
the importance of square-free Gaufl periods. We implemented the algorithm
that is included in the proof of Theorem 9.8 for square-free Gaufl periods. Our
implementation based on the fast polynomial arithmetic of the software package
BIPOLAR. Since BIPOLAR restricts its powerful routines to polynomials over
the binary field Fy, we had to modify the arithmetic along the tower of fields.
One possible, but not realized, solution would be to apply Kronecker substitution,
see von zur Gathen & Gerhard (1999), Section 8.4. The price to pay is another
blow-up of the degree of the polynomials. Therefore, we have chosen another
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Existence of normal bases generated by a
square-free Gaufl period with given parameter k£ € N>,

E \ ¢ 2 3 5 7 11 13 17 19
k=1 470| 4.76| 4.92| 4.65| 4.43| 457| 450] 4.72
k<2 92522 | 25.78| 24.60| 23.21| 23.77| 22.67| 25.18| 22.75

k <logyn | 75.90| 86.23| 86.11 | 85.18| 85.24| 84.51| 86.31| 83.84
kE<+y/n 87.24 | 99.65| 99.68| 99.63 | 99.66 | 99.57| 99.57 | 99.50
k < oo 87.51{100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 99.98
theo. 87.51 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00

Table 9.2: Percentage of field extensions F;» over F, with 2 < n < 10000 for
which there is a normal basis given by a square-free Gauf§ period of type (n, K)
over F,. The rows show the distribution if the value for £ = #K is also restricted.
We limited our experiments for r with ¢(r) = nk to 2 < r < 1000000. The last
row labeled theo. is due to Fact 9.18.

way and used the trace map directly to identify the elements of the intermediate
fields.

For the test series squarefreeGP, we chose 50 values n & 2007 for 1 < i < 50.
Our selection was restricted to extension fields Fy» for which there is a normal
square-free Gauf} period of type (n, ) with £ = #K < 4. We compared these
square-free Gaufl periods with prime Gaufl periods. In particular, we wanted to
examine the significance of the parameter k. Thus, for all chosen n of the test
series squarefreeGP there is a normal prime Gaufl period, and the minimal k£ of
this prime Gauf} period is close to that of the square-free Gaufl period. For most
values the square-free Gaufl period offers a smaller value of k. But we also chose
9 values for n where both k£ are equal, and for 6 values the parameter k of the
prime Gauf} period is smaller than that for the square-free Gaufl period. The
details are listed in Table A.18, columns 2 and 7.

As for the test series PrimepowerGP, the direct comparison confirms that
the parameter k is in general a suitable indicator. As expected, the prime Gauf}
period performed faster multiplication whenever its parameter k£ was at most that
of the square-free Gaufl period. Otherwise, square-free Gaufl periods were mostly
superior if they had a smaller k. The only counterexample in our test series was
given for n = 4202. Here the square-free Gaufl period has parameter £ = 4, and
the prime Gauf} period is of type (4202,5) over Fy. But the maximal degree of
the polynomials is marked by the integer r with ¢(r) = nk, see columns 3 and
8 of Table A.18. In the case n = 4202 the degree is smaller for the prime Gauf}
period even though the parameter £ is larger. Two further examples were given
by n = 8622 and n = 8782. Here the parameters k differ for both classes of Gaufl
periods but the values for r are nearly equal. But whenever both the parameter
k and r decreased then our algorithm for general Gaufl periods beat the prime
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Arithmetic in GF(2”n): prime vs. square free Gauss periods
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Figure 9.1: Times for multiplication for the test series squarefreeGP. Square-free
Gauf periods of type (n, K) are marked by +, prime Gauf} periods of type (n, k)
by x. The times are the average of 10000 trials. They are related to the left
y-axis. The scale of the right y-axis marks the quotient (%) between the order of
the subgroup K for the square-free Gaufl period and the order k of the subgroup
for the prime Gauf} period.

case, see Table A.18 and Figure 9.1. The highest speed-up for the test series
squarefreeGP was given for n = 198; here the speed-up is 21.73. For most values
of n where k is larger for the prime Gaufl period the improvement is between
1.5 and 6. On average over all values of the test series squarefreeGP, replacing
a prime by a square-free Gaufl period decreased the value for r by 1.86 and sped
up the multiplication time by 2.95. Thus, our experiments show that a suitable
decrease for k, given by the substitution of a normal prime Gaufl period by a
normal general Gauf} period, results in faster arithmetic for Fyn.

9.3. Existence of decomposable Gaufl periods. There is one step missing
to derive Result 9.1 from Theorem 9.8: Not every normal Gauf} period is decom-
posable as already illustrated in Example 9.3. But a normal Gauf} period in Fg»
always indicates a decomposable normal Gauf} period in Fyn!

COROLLARY 9.9. Let r,q,n, k be positive integers with r,q > 2 such that r and
q are co-prime and ¢(r) = nk. The following are equivalent:

(i) There is a normal Gauf8 period of type (n,K) over F, with IC a subgroup
of ) of order k.
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(ii) There is a decomposable normal Gauf} period of type (n, L) over F, with £
a decomposable subgroup of 7, of order k.

Gao’s lemma. The proof of Corollary 9.9 is based on a result of Gao (2001)
which we discuss primarily.

GAO’s LEMMA 9.10 (Gao 2001, Theorem 1.1). Let Z be an Abelian group of
finite order. Let Q be a subset and KC be a subgroup of Z such that Z = (Q, K).
Then, for any direct sum of Z = Z; x --+ X Z;, there exists a subgroup L of the
form £ = L1 x --- x L; with L; a normal subgroup of Z; for 1 <1 <t such that
Z=(9Q,L)and Z/L = Z/K.

Translating this result into our special (and somehow simpler) situation, we get
the following version.

COROLLARY 9.11. Let r and q be co-prime positive integers greater than 2, and
r1---1¢ be the prime power decomposition of r. If there is a subgroup K of Z)
with {q,K) = Z) then there is a decomposable subgroup L of Z) of same order
#L = #IC such that (¢, L) =Z).

We prove the latter version by giving a construction for a decomposable subgroup
L. We start with some preliminaries.

The group of units modulo a prime power. We recall the basic structure
of Z) for a prime power 7.

Fact 9.12 (Hasse 1969, p. 57). Let r be a prime power.
(i) If r is not divisible by 8 then Z) is a cyclic group.

(ii) If 8 divides r, i.e. r = 2¢ with e > 3, then Z2. is the direct product of the
two cyclic groups +1 = (—1 mod 2°) and Z5. = (5 mod 2°).

We first turn to cyclic groups Z,, i.e. r is not divisible by 8.

REMARK 9.13. Let r and q be two co-prime prime powers, r % 0 mod 8, and KC
a subgroup of Z) of order k > 1 such that ¢(r) = nk and (q,K) = Z). Let p
be a prime dividing n = @, and set e = max{e’ € N5, : p® divides ¢(r)} > 1.
Then {(q) contains the uniquely determined subgroup® of order p¢ of ..

PROOF. Since r # 0 mod 8, we have Z a cyclic group. Let £ € Z be a
generator of the multiplicative group modulo 7, i.e. (§) = Z>. Then there is a
uniquely determined subgroup # of order p¢ in ZX; it is generated by £#(1/P°

r

Since e € N3, is maximal, we have gcd(%,p) =1

61Guch a subgroup is also called p-(Sylow) group (see e.g. Jacobson (1974), p. 78).
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We first suppose that neither N = ord,(q) nor k& = #K are divisible by p°.
All elements in (g, ) are of the type f“d)l(\;)”%, a,b € Z. Because e is maximal
such that p® divides ¢(r) and p® does not divide N or k, no element has order
p®. Thus, H is not a subgroup of (g, ), which contradicts X C Z = (g, K).
Therefore, we have N or k£ a multiple of p°.

Now, we suppose that p® divides k, i.e. H C K. Since e is maximal and ¢(r) =
nk, we know that n = @ is not divisible by p. This is again a contradiction.
Thus, p¢ divides N, and we conclude that # is a subgroup of (g). O

Our basic idea to prove Corollary 9.11 is to manipulate the subgroup K C Z)
by changing the corresponding subgroups £; in Z; for all factors ry,... 7, of
the prime power decomposition. These manipulations have to satisfy the in-
variant that (¢, ) = Z) at any time. In what follows, we set e = max{e’ €
N : p¢ divides ¢(r)} and H the uniquely determined subgroup of order p® of
the cyclic group ZX. By N = ord,(q) we denote the order of ¢ in Z)*. We assume
p to be a divisor of n = @

REMARK 9.14. Let N, n, k, p, ¢, and e be as above. If (q,K) = Z,. then
E = <qN/pe,]C>
is a subgroup of Z,. of order lem(p®, k) satistying (g, L) = Z,..

PROOF.  Since p divides n, we have H C (q) by Remark 9.13, and # is generated

by ¢"V/?°. We set £ = (H,K) the subgroup of order gcé’&f 5= lem(p®, k). Then

(q,L) = (¢, H,K) = {q,K) = Z) as claimed. dJ

Since e is maximal, we know that n’' = % = %dépe’k) is not divisible by p¢. All
) -

other prime divisors of n = i(— are prime divisors of n’. Thus, this tool enables

,
K
us to erase successively all common divisors of the n; = #%”(36) for1 <<t
Another tool is used to delete all elements of a given order in K.

REMARK 9.15. Let N, n, k, p, q, and e be as above, p a divisor of n, and
0< f<e If{(q,K) =Z, then

L= {a”:aecKk})

k-p¢—

f .
2cd(Fp?) satisfying {q, L) = Z;;e_

is a subgroup of Z,. of order
PROOF. We can write K = {(£20)/k)i: 0 < i < k}, since £ is a generator of
ZX. Then L' = {a"": a € K} = {(£*W/k)P°. 0 <4 < k} is a subgroup of order
k' = m. By Remark 9.13, the group # of order p° is a subgroup of (g).
We conclude that Z* = {q, K) = (g, L). We add all elements of the p/-subgroup
(¢N/7*77y of ZX to L. This generates the subgroup £ = (¢"/*~’ £’} which has

order lem(p®~/, k') = gf;(_piﬁc) and satisfies (¢, £) = (¢, L) = Z,.. O
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Applying this tool, n' = % is divisible by p/ but not by p/*'. As above, this
transformation has no effect on the other prime divisors of n = @

Let r1 ---r; be the prime power decomposition of r. For the cyclic subgroups
Z;, 1 <1 < t, we are now ready to assign suitable prime divisors of n to
and erase others. It remains to get the tools for Zj. for e > 3. For r = 2¢ with
e > 3 the group Z.. is no longer cyclic, but the necessary tool is simpler here.
We suppose that (¢, ) = Zs. for a subgroup K of order k. Then both k and
n = @ = ? are powers of 2. Thus, it is easy to find a subgroup £ C Zs. in
the two cases we are interested in. For n' = % =1 we set L = Zs., and for
n' = n we have £ = K. Both choices satisfy (g, L) = Z2..

Finally, we cite the following fact which is a direct consequence of the Chinese

Remainder Theorem.

FacT 9.16. Let r be a positive integer and ry - --r; its prime power decompo-
sition, and let q be an integer greater than 1 such that gcd(r,q) = 1. Then
N = ord,(¢q) = lem(ord,, (q), - .. ,ord,,(q))-

A proof of Gao’s lemma. We are now ready to give a proof of our tailor-made
version of Gao’s lemma.

PRrOOF (of Corollary 9.11). Let 7y ---r; and n) ---n! be the prime power de-
compositions of 7 and n, respectively. By assumption, we have (¢, K) = Z).
Thus, (¢, L;) = ij for all £; = 7, (K) with 1 < j <. We use the tools pre-

pared above to assign n' = p/ € {n},... ,n.} to exactly one prime divisor of r.
The manipulation has no effect on the invariant (g, £;) = Z;; and on the divisors
of nj = % for 1 < j <t which are co-prime to n'.

J

Since (g, ) = Z), we have that n’ divides N = ord,(¢). By Fact 9.16, there
is an 7 € {1,...,t} such that n' divides N; = ord,.(¢q). We distinguish between
two cases:

o Let n' = p/ be not a power of two. Then r; is not a power of 2 and /e
is cyclic. Let e = max{e’ € N5;: p¢ divides ¢(r;)}. We set the modified
subgroup £; to be (¢"i/*’ {a"*: a € L;}). By Remark 9.15, this is a
subgroup that satisfies (¢, £;) = Z; and gcd(%, p°) = n' as claimed. For
all other 1 < j <t with j # 7 we leave £, unchanged if p does not divide

n; = ‘;E—E Otherwise, we modify £; according to Remark 9.14.

o If n' is a power of two then there are two cases. If there exists 1 < i < ¢
such that n' divides N; = ord,,(¢g) and Z is cyclic, then we proceed as in
the cyclic case using Remark 9.14 for ;. For 1 < j <'t, i # j, we apply
Remark 9.15 for all odd r;. If here is also a 1 < j < ¢ such that r; is a

power of 2 then we set £; = ij. Otherwise, no odd prime divisor has a
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subgroup of order n'. Then, we have r; = 2¢ with ¢/ > 3. By Fact 9.16, we
have n' = % Thus, we do not change £;. For 1 < j <t with j # 4 and
:E(—Z? even, we use Remark 9.14 again.
By the steps described above, we can successively construct subgroups Ly, ...,
L; such that n = ny---n; and all n; = %, 1 < i < t, are pairwise co-prime.
Moreover, (q,L;) = Z) for all 1 < i < t. By Proposition 9.6, this generates
a decomposable subgroup £ = L£; x --- X L; of order k¥ = #K which satisfies

(g, L) =Z) as claimed. 0

Normal decomposable Gaufl periods. We can derive the Normal Gauf
period theorem 7.5 for decomposable Gaufl periods from Theorem 8.41 with the
help of Proposition 9.6.

THEOREM 9.17. Let o be a decomposable Gauf§ period of type (n,K) over T,
with KC a subgroup of Z)*. Then « is normal in Fy» over F, if and only if (¢, K) =
Zr.

PrROOF. Let a be a decomposable Gaufl period of type (n,K) over F, with
respect to ¢, where ¢ be a primitive r-th root of unity. Remark 7.7 formulates the
necessary condition for a normal Gaufl period «. Thus, it remains to show that
(q,K) = Z) is also sufficient. Let 7 ---r; be the prime power decomposition of

r, and 7, : Z; — Z,; the canonical projection, and set n; = #ﬁin&) for1 <i<t.
Proposition 9.6 states that nq,...,n; are pairwise co-prime, n = ny ---n;, and

(g, m(K)) = Z) for 1 < i < t. The GauB period o; of type (n;, 7,,(K)) over F,
with respect to ("/™ is either a prime or prime power GauB period for 1 < i < t.
It is normal according to Theorem 8.41. By Lemma 9.5, we get « as the product
of conjugates of the normal Gauf} periods ay, ..., a;. With the help of Fact 7.21,
we conclude inductively that a is normal in Fyn. O

We are now ready to prove Corollary 9.9.

PRrOOF (of Corollary 9.9). Since a normal decomposable Gauf period is in par-
ticular a normal Gauf} period, it remains to show direction “(i) = (ii)”. For a
normal GauB period o we have (¢, ) = Z* by Remark 7.7. Then Corollary 9.11
guarantees that there is a decomposable subgroup £ C Z of same order k such
that (¢, £) = Z*. By Theorem 9.17 this condition is sufficient for a decomposable
Gauf} period to be normal. O

We merge Corollary 9.9 with Theorem 9.8, and apply fast polynomial multipli-
cation to prove Result 9.1.

PROOF (of Result 9.1). Let o' be a general Gauf} period of type (n, ) over F,
generating a normal basis in F». By Corollary 9.9 there is a normal decompos-
able Gaufl period « of type (n, L) in F;n with #£ = #/K. Thus, we can write
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an element of Fy» as a linear combination of the elements of the normal basis
N = (a,... ,oﬂn_l) over F,. In this case Theorem 9.8 states that we can apply
fast polynomial multiplication to compute the product of two elements in Fyn.
Inserting M(r;) = O(r;logr; - loglogr;) for 1 < i <t due to Fact 5.8 proves the
claimed bound on the number of operations in F,,. 0

9.4. A criterion for the existence of a normal Gaufl period. Up to now,
we have worked with the assumption that we already know a triple of integers
g, n and r such that n divides ¢(r) and Z;) has a subgroup K of order k£ = @
Given such a subgroup K, it is easy to check whether the Gaufl period of type
(n, K) over F, is normal in Fy=; we just have to apply the criterion given in the
Normal Gauf} period theorem 7.5.

In practice, one starts with a finite field F;». Then the task is to construct
a normal Gauf} period in Fy». Thus, only ¢ and n are given. The integer r is
missing. The question, whether there exists r for given ¢ and n, was answered by

Gao (2001). He generalized Fact 6.16, which was proven by Wassermann (1990).

FAacT 9.18 (Gao 2001, Theorem 1.4). Let p be a prime, n and e be positive in-
tegers, and set ¢ = p°. There exist a positive integer r and a subgroup K C Z
of order k = @ such that the Gauf period of type (n,K) over F, is normal in
Fyn if and only if ¢ and n satisfy

ged(e,n) =1, and 8 fn in the case p = 2.

In the case of existence, one can efficiently create integers r for given ¢ and n
such that n divides ¢(r) and ged(r,q) = 1. Then the order k = ¢TT) of the
required subgroup of Z is fixed. But the search for a suitable subgroup K C Z)
of this order is still to be done. As illustrated in Example 7.4, the subgroup is
not uniquely determined by its order in the general case. Moreover, the same
example showed that one subgroup of given order may satisfy the criterion of
Fact 6.16 but another subgroup may fail.

In this closing part of Section 9, we describe how to check efficiently whether
there is a suitable subgroup K if ¢, n and r are fixed. Therefore, we do not
explicitly generate and test all subgroups of Z)* of order k = @ Our approach
which we present now is constructive, i.e. if there is a normal Gauf} period for
given integers ¢, r, n then a decomposable subgroup L of order k£ = @ satisfying
(g, L) = Z) can be easily derived. For some of the basic ideas see also Gao (2001),
Section 5.

In the prime case, i.e. r = p is a prime, the group Z) is cyclic. Thus, a
subgroup K is uniquely determined by its order k. Gao et al. (2000), Theorem 3.1,
gave a criterion in this case. Their proof holds for all cyclic groups Z>, i.e. r is

ro
a prime power not divisible by 8.



160 Michael Nocker

Fact 9.19 (Gao et al. 2000, Theorem 3.1). Let r = p® be a prime power not
divisible by 8, and let q be an integer greater than 1 and co-prime tor. Let n be
a positive divisor of ¢(r), and K the uniquely determined subgroup of Z) of order
k= @ Then (q,K) = Z) if and only jfgcd(%,n) =1, where N = ord,(q) is
the order of ¢ in Z°.

PROOF. Let £ be a generator of the cyclic group Z). Then the subgroups

{g) and K are both cyclic with generators £?"/N and £#(/k respectively. By

assumption, we have @ =

of type &/ with f =a- % +b-nfora,b € Z. As a consequence of the Extended

Euclidean Algorithm, we have f =1 if and only if gcd(%, n) = 1, and the claim

follows. O

n. The subgroup (g, ) of Z contains all elements

For the non-cyclic group Zj. with e € N>3 this criterion is no longer true.

EXAMPLE 9.20. For r = 8 and K = {1,7}, we have (3,K) = {1,3,5,7} =
Zg, i.e. % = 2 = 2. Furthermore, N = ords(3) = 2, ie. @ = 2, and

ged <@, %) =gcd(2,2) =2 # 1. O

For n = 1 and k = #Z.., we can always choose the trivial subgroup K = ZJ. to
get (q,K) = Zj.. For n > 2 we recall that ZJ. is the direct product of the two
cyclic groups +£1 = (—1 mod 2°¢) and Z3 = (5 mod 2°) as stated in Fact 9.12.

We start with the assumption that the subgroup generated by ¢ has maximal
possible order, i.e. N = ordae(q).

PROPOSITION 9.21. Let r be a power of 2 greater than 8, and let ¢ > 3 be a
positive integer co-prime to r. If N = ord,(¢) = 22 and 2 < n < 2?2 isa
divisor of N then K = £1 - (5" mod 2°) is a subgroup of Z) of order k = @
such that {q,K) =Z.

9e—2 . ge—1 o

PROOF. Forr = 2¢and e > 4, the subgroup K of Z; has order 2- = -

@. We have #(q) = N = 272, by assumption. Thus, (¢)/ =1 = Z, because
q generates a cyclic subgroup. By construction, —1 € K, hence {¢) U (—1) - {q)
is a subset of (g,K) of order 2 - 2¢7!. We conclude that #{q, ) = ¢(r), i.e.
(q, Ky =Z) as claimed. O

In fact, this proposition covers all cases n > 4.

REMARK 9.22. Let e be an integer greater than 4 and set r = 2°. Let q be an
odd prime power and K be a subgroup of order k of Zj. such that {(q, K) = Zs.,
and n = @ If n > 4 then {(q) has maximal order N = ordae(q) = 2¢ 2.
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ProOOF. Since n divides N, we have N > 4. Furthermore, the subgroup X
has order #K = %e) < 2641 2¢73 > 2. Let: Z). — Zs be the canonical
projection with @ = @ - +1. Then (g) is a cyclic subgroup of Z5c of order N > 4.
The projection is an epimorphism. Hence, (7, K) = Z5.. But n' = #Zo. /#K >
gZ—:i = 2 is divisible by 2, and by Remark 9.13 the subgroup (g) contains a
subgroup of maximal order 2¢~2, since Z,. is cyclic. We conclude that (q) = Zo,
i.e. N = ordye(q) > # 25 = 2°72. But a cyclic subgroup of Z. has order at most
2¢=2 and thus N = 2°72. (Il

For e = 3, we have always N = 2, and there is a subgroup K C Zg of order 2 with
(q,K) = Zg; for given ¢ > 3 we can choose K = (a) with a € Z§ \ {1, ¢ mod 8}.

The only case left is n = 2 and 2 < N < 2°72 for e > 4. Here two different
cases of g are important. Since we have ¢ an odd prime power, either ¢ = 1 mod 4
or ¢ = 3 mod 4. These two cases have different projections of (¢) onto +1. We
regard the canonical projection 7: Zy. — Z;. Then kerm = Z5¢, and we have a
bijection between +1 = ZJ. / kerm = Zj. / Z5e and Zj; applying the fundamental
theorem on groups. Thus, (¢)/ 2. = £1 if ¢ = 3 mod 4 and it is equal {1 mod 2¢}
if ¢ = 1 mod 4.

PropPOSITION 9.23. Let e be a positive integer greater or equal 4 and set r = 2°.
Let q be an integer greater than 2 and co-prime tor. Letn =2 < N = ord,(q) <

~2. Then there is a subgroup K C Z. of order k such that (¢, K) = Z) if and
only if ¢ = 3 mod 4.

PROOF. For ¢ = 3 mod 4, we have (q)/Zs = £1. Since n =2 = # + 1 and
+1 C {g) by assumption, we have (¢"/") = 1. Choosing the subgroup K = Zo.
of order k = 272 gives {(q,K) = Z..

For ¢ = 1 mod 4, we have (¢"/") = (5> mod 2¢) = {5°,1} C ZJ.. Since
e > 4, there are three subgroups of Zi. of order K = 272 > 4 in this case:
K1 = (5 mod 2¢), Ky = (=5 mod 2¢), and K3 = +1 - (5> mod 2¢). For e > 4, we
have 2¢73 > 2 and 5% ° = (—5)2° ° = (5%)2 " mod 2¢ is an element of all three
subgroups. Hence, (¢, ;) = K; # Z;. for 1 <4 < 3. Thus, there is no suitable
subgroup in the case ¢ = 1 mod 4. O

We collect the findings above to get the following criteria on the existence of a
suitable subgroup K in Z:.

LEMMA 9.24. Let r be a power of two divisible by 8. Let ¢ > 1 be an odd
integer, and n be a divisor of N = ord,(q). Set k = @ Then the following are
equivalent:

i ere is a subgroup K C of order k with (q,KC) = Z.
i) There i b K CZ) of order k with (q,K) =Z)

T

(ii) One of the following criteria holds:
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on=1,or
on=2andq=3mod4, or
o N =2"/4.

PROOF. We write r = 2¢ with e > 2. If one of the criteria in (ii) is satisfied then
either n = 1 and K = Z., or Proposition 9.21 or Proposition 9.23, respectively,
guarantee the existence of a subgroup K of order £ with (¢, ) = Z.. for e > 4.
There are two more cases to consider. For e = 3 and n = 2 we have N =
ordg(g) = 2. Then we can choose K = {1,3} if ¢ = 1 mod 4 and K = {1,5} if
¢ = 3 mod 4. Thus, it remains to prove that in the case n =2 and ¢ = 1 mod 4
and N < 2°72 there is no suitable subgroup. We have (q)/ + 1 C 25, and thus
{g) C (5? mod 2¢). But 5% mod 2¢ is an element in all three subgroups of order
k = 2¢72 of Z..; we have 52 € (5 mod 2¢) and 52 = (—5)? € (—5 mod 2¢) and
1-5% € £1- (52 mod 2¢). Since we have discussed all possible cases, equivalence
holds. D

Merging these criteria with Theorem 9.17 proves an alternative criterion. Ap-
plying this criterion, we can get rid of a preliminary fixing of a subgroup K.

THEOREM 9.25. Let q be a prime power and r and n be positive integers such
that ged(r,q) = 1 and n divides ¢(r). Let k = @ and ry---r; be the prime
power decomposition of r. Then the following are equivalent:

(i) There is a subgroup K of Z) of order k such that the Gauff period o of
type (n, K) over F, is normal.

(ii) There are pairwise co-prime positive integers ni,...,n; such that n =
ny---ng, and

o gcd(%r;),ni) =1 if r; is not divisible by 8, and
o n; divides N; and either n; = 1, or n; = 2 and ¢ = 3 mod 4, or

N; = 2¢72 if 8 divides r;
where N; = ord,.(q) for 1 <i <t.

PRrOOF. “(i)=-(ii)” By Theorem 9.17 there is a decomposable Gauf} period of type

(n, L) over F, with (g, L) = Z). By Proposition 9.6 the n; = #‘:;Sr”‘(?c) for1 <

i <t are pairwise co-prime and n; ---n; = n. Furthermore, (g, 7, (L)) =
Z;; and the criteria follows immediately with Fact 9.19 and Lemma 9.24.

“(ii)=(1)” By Fact 9.19 and Lemma 9.24, respectively, there is a subgroup
L; of order k; = %ﬂ:) such that (g, £;) = Z; for all 1 < i < t. Obviously,
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Existence of normal bases generated by a
general Gauf} period with given parameter £ € N>,

E \ ¢ 2 3 5 7 11 13 17 19
k=1 490| 491| 5.10| 480| 460| 4.76| 465| 4.83
k<2 26.78 | 29.42| 25.79| 27.12| 25.60| 24.76| 26.27| 25.26

k <log,n | 76.52| 87.83| 87.48 | 87.71| 87.18| 86.60 | 86.80| 86.71
kE<+y/n 87.30 | 99.76 | 99.75| 99.71| 99.74| 99.71| 99.62 | 99.67
k < oo 87.51 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
theo. 87.51 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00

Table 9.4: Percentage of field extensions Fy» over F, with n < 10000 for which
there is a normal basis given by a general Gaufl period of type (n, ) over F,.
Each column is related to a prime field F,, with ¢ given in the first row. The rows
show the distribution if the value for £ = K € N>, is also limited. We limited
our experiments for 7 with ¢(r) = nk by 2 < r < 1000000. The last row labeled
theo. is due to Fact 9.18.

L =Ly X --- X L; meets the assumptions of Proposition 9.6. By Theo-
rem 9.17, the criterion (g, £) = ZJ is sufficient for the Gauf} period of type
(n, L) over F, to be normal.

0

We close this section by computing the distribution of normal general Gauf
periods for prime fields F, with 2 < ¢ < 20 and field extensions 2 < n <
10000. The values are listed in Table 9.4. We have applied the criterion given in
Theorem 9.25 to compute the percentage of the extension fields over I, for which
there is a normal Gauf} period.
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10. Scalable parallel exponentiation

In Section 4.1 we have presented an algorithm for the parallel computation of an
e-th power that is related to the quotient ¢ = Z—‘j > 0. The algorithm works with
a fixed number of processors that depends only on the inputs A\,(e) and c¢. With
the help of this algorithmic approach, we have discussed the possible speed-up
for exponentiation with respect to different basis representations of Fy». Our
previous results may support principal design decisions when implementing e.g.
cryptography over finite fields.

In this section we describe our ideas and some details when implementing
parallel exponentiation algorithms on real parallel machines. We develop a scal-
able parallel algorithm for exponentiation. A similar approach was presented by
Stinson (1990) for exponentiation in ]an given by a normal basis representation.
He called such algorithms adaptive®®. Restrictions on the number of processors
were also discussed by von zur Gathen (1992). Such restrictions pay attention to
the fact that real parallel machines consist only of a fixed number of processors.
In particular, the assumption that the number of processors is scalable due to the
input size is often too generous. On the other hand, automatic distribution of a
large number of virtual processors on the small number of given processors might
cause poor results. If we would run the two virtual processors needed for Algo-
rithm 4.3 on a single-processor machine, then we run in fact the binary addition
chain in sequential. But this is slower than Brauer’s algorithm; the latter one
gives a speed-up of about 1.3 on average compared to the binary addition chain,
see Figure 10.1. Thus, we add the number of processors as a new parameter to
get the following:

RESULT 10.1. Let e be a positive integer, and cg and cs be the number of
operations in F, to evaluate a g-th power, and to multiply two elements in Fyn
respectively. Let P with 1 < P < n be the number of processors. Then the
power e of an element in Fy» can computed in depth at most
1 n
<2 [log, P| +4+ —= P 1— (1+ 0(1)))

operations in I, using at most P processors if cg = 0. If cg > 0 then the depth
is bounded by

n
(I14+c¢)f -1 . log, n
operations in ¥, if P > 5-°—. Otherwise the depth is at most

cQ-(n—l)—i-cA-(2-[log2P]+3+ -(1+o(1)))

cog-(n—1)+ca- (2. [logy Pl + 2+ 57— - Tog. 7 (1 +0(1))>
+ By (ca (@ —1) +2¢q) + cq - O(log”n)

logy n

62“These algorithms are adaptive, in that we can vary the number of processors to suit our
needs.”, Stinson (1990), p. 716.
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operations in I, using at most P processors.

Parts of this section were already published in Nocker (2000). The algorithm
used to prove Result 10.1 is an adaption of Brauer addition chains to parallel
exponentiation. We discuss the main stage of the algorithm (Section 10.2) and
the precomputation (Section 10.3) separately. As a preparation, we revisit the
model of weighted g-addition chains (Section 10.1) and complete it with respect
to the two most important restrictions of real machines: a limited number of
processors and communication delay. In the last part, we combine the different
basis representations of F,», that have been analyzed in the previous sections,
with Result 10.1. This comparison completes our discussion on parallel exponen-
tiation.

10.1. A refined model. Our algorithm in Section 4.1 works with a fixed num-
ber of processors and neglects communication cost. On real parallel computers
the number of processors is limited. This can influence algorithmic design even
for moderate input size of \,(e).

For example Algorithm 4.14 computes a 2-addition chain with weight (0, 1)
for an exponent of size 2048 bits on at most 1024 processors. The largest modern
parallel system available at the University of Paderborn has 96 computing units
with a total of 192 processors available. Thus, we have to adapt the original
algorithm with respect to the number of processors.

But even if there are enough processors available—as for Algorithm 4.3 if
P > 2—a redesign with respect to real-existing machines may improve the times.
This is because most parallel computers, and also computer networks, are a
collection of basic units which consist of local memory and a few processors
(typically one or two). Locally calculated and stored intermediate results are
made available to other processors via the network. This principal design of
parallel systems causes communication delay when accessing to non-local storage.
Algorithm 4.3 has optimal depth if we neglect communication cost. It tends to
exchange a lot of small pieces of information between the two involved processors.
This extensive communication can slow down the whole parallel computation.
Figure 10.1 illustrates that a substitution of communication by computation may
be better for small input size even if the original algorithm is optimal in the
PRAM model that neglects communication cost. Figure 10.1 illustrates that it
may yield advantages to substitute extensive communication of small pieces of
data between processors by redundant computation of intermediate results. We
extend our model of parallel computation with respect to this observation.

Since we want to keep our refined model handily, we abstract from technical
details. In particular, it should not be burden by network layout and such things.
Furthermore, communication should not affect the analysis of those parts of the
algorithm where each processor works only with locally stored data.

A model that meets our requirements was invented by Valiant (1990). We de-
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Parallel exponentiation in Kung's model
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| binary vs. Brauer (seq) —+— binary vs. Brauer (8 procs) ------ |
binary vs. Borodin & Munro =]

Figure 10.1: Parallel exponentiation in the model where the only operation is a
multiplication. All speed-ups are relative to the binary addition chain, i.e. the
repeated squaring algorithm. This chain is compared to Brauer addition chains.
Beside the sequential algorithm (+), we tested a parallel version of Brauer’s algo-
rithm with 2 () and 8 (x) processors, respectively. Furthermore, we compared
repeated squaring to Algorithm 4.3 (" ). The latter one uses 2 processors and
is optimal for original additin chains if one neglects communication cost. The
experiment shows that this assumption is too optimistically for field extensions
with small degree n.

scribe his bulk synchronous parallel (or BSP for short) model on the background
of exponentiation. The model is characterized by three parameters®® which de-
termine the parallel environment:

1. The number of processors® P € Ns: each processor has local memory. All
processors are connected to non-local memory by the network.

2. The latency and startup cost for routing is described by the parameter ¢ €
Q. Here it is given as the number of non-g-steps that can be performed
in the same time as synchronizing the network.

63Valiant describes the three attributes and the resulting analysation parameters in two steps,
see Valiant (1990), p. 105 first column and last column. We mix both parts.
64Valiant (1990), p. 105, calls them components.
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3. Finally, g € Q¢ contains the amount of communication. Originally, the
parameter g € Q> describes the basic throughput of the router. It can
be described by the ratio of basic computational operations, to the total
throughput of the router in terms of words of information delivered.®® Our
basic computational operation is the calculation of a non-g-step. Our basic
unit of delivered information is one element of the addition chain already
computed. Hence in what follows, g is the number of non-g-steps multiplied
with its weight c4 that can be performed in the same time as one element
A® of the underlying (cyclic) multiplicative group (A) C G—represented by
its exponent a € N>g——can be copied between different processors through
the network.

Valiant (1990) subdivided the total parallel computation into supersteps. Each
superstep consists of a local (sequential) computation on each single processor
and a subsequent data exchange. At the beginning, all processors know the
exponentiation problem: an element A € G, represented by the empty addition
chain v with S(y) = {1}, and the exponent e € N>;. Intermediate elements of
the g-addition chain that are not originally computed by a processor itself are
available to this processor earliest after the superstep they are computed at. A
superstep 1 < s < S has communication cost at most ¢ 4+ g - t; where ¢ is the
maximum number of received or sent exponents over all processors. The total
communication cost C of an addition chain 7y is the sum over all supersteps:

Cog)= > (t+g-t)=8-L+g-twitht= > t,.

1<s<S 1<s<S

Addition chains and the BSP-model. We use the BSP-model to take a
limited number of processors and communication delay into consideration. We
have to refine our model of addition chains once more, because we are forced to
do book-keeping: Which processors have computed an element that appears in
the semantics S(v) = {aq, ... ,a} of a g-addition chain y? Thus, we connect an
element (j(4), k(7)) of an addition chain 7y to a processor p(i) € P ={0,... ,P —
1}. Since a processor should store all its elements, we assume a; # ay if p(i) =
p(i") for 1 <4 < 1. We still will describe a g-addition chain by its semantics and
the set of rules. But we use a slightly modified notation. Now, a node is labeled by
the pair (a;,p(7)) € SxP for 1 <14 < I. We suppose the nodes (1,0),...,(1,P-1)
to be given. The set of rules R is now a subset of (S x P) x ((S x P) U {—q}).
For a g-step with k(i) = —¢ we include ((a;q),p(j(7))), —¢) in R; a non-g-step
with k(7) # —q is denoted by the rule ((a;q),p(j(4))), (arw), p(k(2))))-
A copy step is given if p(i) and p(j(i)) or p(k(i)) for k(i) # —q differ. If
both p(j(7)) and p(k(i)) are different then there are two copy steps. Since there
65«This g can be regarded as the ratio of the number of local computational operations

performed per second by all the processors, to the total number of data words delivered per
second by the router.”, Valiant (1990), p. 106.
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is local storage, a node (a;(),p(j(2))) is copied to processor p(i) at most once.
In the BSP-model, there has to be a synchronization between the calculation of
an element a; by processor p(i') and its usage by processor p(i) # p(i'). This
synchronization is realized by dividing the addition chain into supersteps. The
earliest superstep in which a node (a;, p(7)) for 1 < i <[ can be used is given as
follows: The node (1,p) with 0 < p < P is computed in superstep s(1,p) = 1.
For a node (a;, p(i)) with 1 <13 <1, we set

sy (G () + sign(p() — p(E)| kG = g,
s(anp() = { max{s(ay.p(j(0)) + sign(p(@) ~ PG, oo
s(argo, p(k(1))) + [sign(p(i) — p(k(i)))]}

We say that a g-addition chain 7 can be computed in (at least) S € N>, supersteps
if

S > max{s(a;,p(%)): a; € S(y)}.

The total cost for a parallel weighted g-addition chain v computing e in parallel
are the sum of the weighted depth 0g (cq.c4)(7) = cg-Q +ca - A and the commu-
nication cost Cyqy(y) =£-S+ g - t. Subsequently, we mainly focus on the depth
0g,(ca,ca) (7) of an addition chain . We also analyze the communication cost with
respect to the BSP-model. We bear in mind two basic strategies as contribution
to the communication costs.

1. We try to avoid communication, and we try to bundle as much data as
possible before we initiate a new superstep.

2. We try to avoid idle times. 1t may be better to compute an intermediate
result locally if we can substitute communication by idle times.

10.2. The main stage. Now, we develop an algorithm for parallel exponentia-
tion that is scalable with respect to the number of processors. We follow Brauer’s
approach and divide the algorithm into a precomputation stage and a main part;
this is the same strategy as in Section 4.1. The connecting link between both parts
is the ¢™-ary representation of the exponent. The tuning parameter m € N>,
allows a tradeoff between both stages. We start with the description of the main
stage. The precomputation is supposed as an input here, it will be discussed at
length in the subsequent Section 10.3.

Basic assumptions. For the main stage, we fix ¢" € N>o. We focus on the
¢™-ary representation (e)m = (ex_1,... ,e) of the exponent e € N>;. Further-
more by precomputation, all processors 0 < p < P have stored the elements
{1,...,¢™ — 1} locally.

As claimed above, the number of processors P is supposed to be limited. Since
the digits of the ¢™-ary representation of e are our atomic units, we restrict the
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number of processors P to A\;m(e). To simplify the notation, we write ¢ instead
of ¢ in this subsection but bear in mind the tuning parameter m.
We introduce some further notation: Let

(10.2) 0=14(0) <i(l) <--- <i(P—1) <i(P) = Ae)

be an increasing sequence of integers, and we set

E, = Z ejqj,

i(p)<j<i(p+1)

which is containing a part of the g-ary representation of e for all 0 < p < P. We
call the sequence (10.2) a partition of the (q-ary representation of the) exponent
eife= ZO<p<P E,. For 0 < p < P each part E, includes

Ay =i(p+1) —i(p)

digits of (e),, and a sedimentary part of i(p) zeros. Informally spoken, this
sedimentary part marks the number of g-steps that are necessary to shift the A,
leading digits of E, to the right position in (e),.

EXAMPLE 10.3. The exponent (53)s = (110101) has binary length \5(53) = 6.

(i) The uniform partition for 3 processors is given by
i(0) =0<i(l)=2<i(2) =4 < i(3) =6, ie (11/01]01)

and Ag = A; = Ay = 2. The intermediate results for 53 are Ey = 1-¢°+0-¢,
Ei=1-¢?+0-¢®and E, =1-¢*+1-¢°.

(ii) Another partition is
i(0) =0 <i(l) =3 <i(2) =5 < i(3) =6, ie. (1/10/101).

In this case we have Ag = 3, Ay = 2 and A, = 1, and the intermediate
results are By = 1+ ¢%, E; = ¢* and E, = ¢°. O

The algorithm. As for Algorithm 4.12, we separate the local computation and
the collection. Thus, the processor labeled p computes E,. In a second step, all
intermediate results are collected. Processor 0 is assumed to store the final result
€ =) o<p<p Ep- As stated above, the algorithm is basically a parallel version of
Algorithm 3.12.

The common way to collect results in parallel is by a (complete) t-tree. A
i-tree is a tree where all inner nodes have at most ¢ € N>, children. Our main
stage is the following algorithm.
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ALGORITHM 10.4. Parallel exponentiation with limits: main stage.

Input: A scalar ¢ € N>, an exponent e € N>; with (e); = (ex—1,-.. ,¢€q), the
number P € Ny, processors, and an addition chain ' with {(e;,p): (e)q =
(ex-1,---,€0),0 <p < P} CS(Y).

Output: A parallel g-addition chain v computing e using P processors.

—

. Set v =+".
. Determine a partition 0 = ¢(0) < --- < i(P) = A,(e) for (e),.
. For all processors 0 < p < P in parallel do 4-10
Compute a g-addition chain for E, = Zi(
X ip<icitprn) €19° 7 0 then
set t = max{i(p) <j <i(p+1):e; #0} and E, =e;.
For j from i — 1 down to i(p) do 7-8
Set E, < E, - ¢q. Add node (E,,p) and rule ((E,/q,p), —q) to 7.
Set E, < E, +e;. If (E,,p) € S(v) x {p} then add node (E,, p)
and rule ((E, — €;,p), (e;,p)) to .
9. For 0 < j < i(p) do set E, < E, - ¢ and add node (E,,p) and rule
((Ep/q,p), —q) to 7.
10. Else set F, = 0.
Perform a (complete) t-tree to get e.
11. For 0 <! < [log, P| do 12-14

wW N

)
p)<j<i(p+1) €& 0N Processor p.

P N oo

12. If ¢+ divides p then

13. Forl1 <u<tdo

14. If p+ut’' < P and E,,,u > 0 then set E, « E, + E, s and
add node (E,, p) and rule ((E, — Eyy i, 0)s (Epyun, p + ut)) to
7.

15. Return 7.

ExAMPLE 10.3 cONTINUED. We apply the algorithm to compute a 2-addition
chain with weight (1, 2) for 53 using 3 processors. We use a binary tree in steps 11—
14 and compare the two partitions computed above for step 2. The resulting
addition chains are given in Figure 10.2. O

LEMMA 10.5. The algorithm works as specified.

(i) It generates a g-addition chain v with weight (cg, ca) computing e in depth
at most

Og(cqea) (1) < [pax, {ea-(ilp+1) —i(p) =) +cq- (tp+1)—1)}

+ca-[log, P|-(t—1).
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proc 0 proc 1 proc 0 proc 1
partition (11 | 01 | 01) (1 | 10 | 101)
depth

Figure 10.2: Parallel 2-addition chains with weight (1,2) for 53. The partitions
are described in Example 10.3. The left graph is with respect to the uniform
partition, the right one takes the weight into account.

(ii) In the BSP-model this can be implemented with S = [log, P|+1 supersteps
and communication cost

Crg(7) < [log, P1-(£+g-(t—1)).

PrOOF. We prove correctness in two steps. For the loop in steps 6-8, we
have E, = Zj<h<i(p+1) eng" 7 after lap j for processor 0 < p < P. Thus,

after lap i(p) we have E, = 3 0 4 i1
adds i(p) many g¢-steps, i.e. after the local computation, we have E, = qi® .
Yi)<n<irn) nd" " = Yig<ncipin) €nd” as claimed.

For the collection part in steps 11-14, we have the following invariant which
can be shown by induction on i: If p = ut! for an u € Nsp and 0 < [ <
[log, P| then E, = 370 </cminfitpiut+1—1),i(p)} €9 after lap I. Thus, after the
last lap processor 0 has computed the node Ey = Zi(o)gj<min{z‘(tf1°gt P1Vi(P)} ejq’ =

)ehqh_i(p). In step 9, the algorithm
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20§j<i(P) ejq’ = 20§j<)\q(e) ejq’ = e.
We count all ¢g-steps and non-g-steps in the loop (steps 6-9). The loop can
be computed in depth at most

(cq+ca)-(ilp+1) —ilp) = 1) +cq - i(p)
= cq-(ilp+1) —1)+ca-(ilp+1) —ilp) — 1)

for each 0 < p < P. In steps 11-14, there are only non-g-steps. Processor 0 is the
only processor performing the else-case for all 0 < i < [log, P]. In steps 13-14,
there are at most ¢—1 non-g-steps in each lap which gives a total of [log, P|-(t—1)
non-g-steps.

Each lap of the loop in Algorithm 10.4 step 11-14 causes at most (¢ — 1)
copy steps. Including the final computation of processor 0, we have [log, P| +
1 supersteps. For the last step, we have no communication. Thus, the total
communication costs are at most [log, P|-({+g- (t—1)). O

An optimal partition. We have to specify step 2 of Algorithm 10.4. This
is one starting point to minimize the overall cost. For a single processor or
Ag(€) =1, there is nothing to do; hence, A\,(e) > P > 2 in what follows. We have
Ay, =i(p+ 1) —i(p) digits of (e), that are assigned to processor p. If we assume
the non-zero digits to be equal-distributed among all digits of (e),, then a digit is
expected to be non-zero with probability v = ((e% > 0. Hence v- (A, —1) is just
the number of (expected) non-g-steps to compute E, = Zi(p)§j<i(p+1) e;jq’. For
the worst case analysis, we set v = 1. Since 0 = i(0) < i(1) < --- <i(P) = \,(e)
is a partition of (e),, we have

(10.6) ip+1)= > Ay and Afe)= Y A,

0<p'<p 0<p<P

But maxg<p<p{ca-v-(i(p+1) —i(p) —1)+cqg- ({(p+ 1) — 1)} is minimal if all
terms are equal:

ca-v-(Ap—1)+cg- (Z A:—l)

0<p’<p

= cA-v-(Ap1—1)+cQ-( z Ap/—1> for1<p<P.

0<p'<p-—1
We set ¢ = z—j and do some simplifications on the equation to get
(10.7) Ap-(v+c)=Ap1-vforl<p<P
Since v > 0 and ¢ > 0, we have v + ¢ > 0. Inductively, we modify (10.7) to get

P
v
(10.8) Ap:(v—i—c) -Ng for 0 <p < P.
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Thus,

M= 3 = ¥ ()

0<p<P 0<p<P

and we have to distinguish between two cases. For ¢ = 0, this is

(10.9) Ale)=Ag- > 1P=Ag- P,
0<p<P
and we have Ag = --- = Ap_; = ’\"T@ the uniform partition of (e),. This is the

situation discussed in Stinson (1990) and von zur Gathen (1992). For ¢ > 0, we
have

(10.10) )\q(e)=/\o'¢:f\0'v+c'<1—( v )p>

’U_—|—C_1 C v+c

with the help of the geometric series. We substitute Ay by Ap 1 - (”TJFC)P_1 due
to (10.8), and we set v = 1. Then

1 l+c 1-(1+¢)"
Ale) = Ap_i-(1+0¢) "(14+0P 1-(1+0¢)

(1+c)f -1

= Ap_;-

EXAMPLE 10.3 CONTINUED. The exponent 53 has binary length \9(53) = 6,

and Hamming weight 15(53) = 4, i.e. v = gzgg% = 2. The chain has weight (1,2),

i.e. ¢ = 3. The formula above suggests the partition (1|10/101) for (53)s, since

Ay =~ g—f = 316... ~ Ay = 3
A = g—ﬁ = 180... ~ A, =
Ay = £ = 103... ~ Ay = 1.

This partition supports faster computation of an 2-addition chain with weight
(1,2) for 53 than the uniform partition as shown in Figure 10.2. O

We substitute Ap_; = i(P) —i(P — 1) and i(P) = A,(e) to get a bound on
Algorithm 10.4 step 2:

ProrosiTION 10.11. Let e be an exponent, q be a scalar greater than 1, and P
with 1 < P < \,(e) be the number of processors. Then there are a partition for
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(e), and a q-addition chain y with weight (cg,c4) that computes the exponents
of this partition using at most P processors in depth

CA - PQT@-‘ ifcg =0, and
cg - (Ag(e) —1)+cqa- [/\q(e) o G 1-‘ ifcg >0

if the nodes {(a,p): 1 < a < q,0 < p < P} are already precomputed.

Og,(cquen) (V) <

For cg > 0, we observe that the processor labeled P — 1 mainly performs g-steps.
This is the bottleneck of the parallel computation as identified in Section 4.1.

The optimal tree. The second tuning parameter is given by ¢ € N>,. This
parameter determines the depth of the collection stage in Algorithm 10.4 step 11—
14. Tt fixes the number of inner nodes in the communication tree. The previously
determined partition of e does not depend on t. Therefore, we can handle the
collection separately to further decrease the overall cost. We have to minimize

ca - [log, P] - (t — 1) + [log, P (£ + g - (t - 1)).

The first summand counts the number of non-¢-steps, the second one describes

the communication cost. For simplicity, we approximate [log, P| by % and
discuss the differentiable function L: R>y — R with
In P In P t v
Lit)=cp-— - (t—1)+—- (4 (t—=1)) = — - —
(t) = ca Int ( )+ Int (E+g-( ) Int u+lnt

where u =InP - (ca+¢g) and v =In P - ({ — c4 — g). The first derivation is

t-(Int—1)-u—w

L'(t) =
®) tin’t

)

and a local minimum at t, with o In?ty # 0 satisfies
to-(Intg—1)-u—v =0,
which is equivalent to
exp(lntg—1) - (Intg — 1) = %exp(—l).

This is an equation of type w-exp(w) = = which is given by Lambert’s W function,
see page 22. Thus, we have

v
Intg —1=W <E -exp(—l))
which has the solution

to = exp (W (% . exp(—l)) + 1) :
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This is indeed the global minimum. If we neglect latency, i.e. £ = 0, then u =
InP-(cqa+g)=-vandty =exp(W(—1-exp(—1))+1) = exp(—1+1) = 1 since
W(—1-exp(—1)) = —1. The best integer value for ¢ € N>, is then ¢, = 2 since
L'(t) > 0 for t > 2. We summarize our discussion for the main stage inserting
Proposition 10.11 and a binary tree in Lemma 10.5.

COROLLARY 10.12. Let e be an exponent, q be a scalar greater than 1, and P
be the maximal number of processors with 1 < P < \,(e) = A. Let 7' be an
addition chain with S(v') x {0,...,P —1} D {(a,p): a € £,0 < p < P} for
E={1,...,¢q—1}.

(i) There is a q-addition chain y with weight (cq, ca) that computes e using P
processors in depth
ca-([3] =1+ log, P]) ifcg=0, and
O (cqiea) (V) = Oaequen) (V) H9 o - (A —1) +ca - [log, P

+CA'|-W')\—1-|

ijQ > 0.

(ii) In the BSP-model, this can be implemented with S = [log, P| + 1 super-
steps and communication cost

Cig(v) < [logy PT-(£+g).

10.3. Parallel precomputation. The main computation needs a precompu-
tation stage whenever ¢ > 2. We recall Brauer’s idea which we have presented
in Section 3.2, and introduce a tuning parameter m € Ns;. It reduces the total
depth by balancing the costs for precomputation and the main stage. The pre-
computation generates a g-addition chain +' for S(v') = {1,2,...,¢™ — 1}. The
main stage computes a ¢"-addition chain 7 for a given exponent e € N>;. We
take the communication cost into account and recall that the number of proces-
sors is limited. The number of elements that can be calculated in a few parallel
steps is restricted by Theorem 4.22. This does not depend on the number of
available processors. The limited resources become a bottleneck for the precom-
putation whenever the order of S(v') is large compared to P. Thus, we divide
the precomputation into two successive parts: an initial one and a flowing one.
The resulting algorithm will prove the following bound:

LEMMA 10.13. Let q be a scalar greater than 1, m be a positive integer, and
(cg,ca) be a weight.

(i) Using at most P € N>, processors there is a g-addition chain ' with weight
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(cg,ca) computing & = {1,... ,¢™ — 1} in depth

ca - [m-log, q] if P = 2Mloea?] | p
! > qm — 1, and
6(17(CQ,CA) (7) S cy - (% . (qm _ qm—l) + 1 + [logQ P'|)

+eg- (% . ‘1;":11 + % < (m? + 3m)) otherwise.

(ii) In the BSP-model, this can be implemented with

g < [m-logyq| if P'>q™—1, and
= | [logy P +2 else

supersteps and communication cost at most

l- [m-log2q]+g-(%q2m—2qm+1) if P> ¢™—1,

Crg(7) < 2-([logy P] +2)+g- (qm (11— %) otherwise.
+3P*— 4P +10+ § - (m? + m))

We illustrate the dependence of the precomputation on the number of processors
by an example.

EXAMPLE 10.14. Let ¢ = 2 and m = 3. We assume c4 = ¢g = 1, and therefore
the edges are not labeled. The computation of 4/ for &€ = {1,2,3,4,5,6,7} may
be as in Figure 10.3. For P = 1 the number of processors is the bottleneck.
This is no longer true for P > 3 processors. In the latter case, the depth is a
consequence of the lower bound on parallel exponentiation. O

For the communication costs, we assume that all processors have stored all ele-
ments {1,...,¢™ — 1} after the precomputation locally, i.e. (a,p) € S(§) x P for
alll1<a<q¢mand 0 <p<P.

Initialization. In the first part of the precomputation, we calculate and dis-
tribute nodes until each processor has computed at least one node. Thus, we
compute a total of P’ = 2M1°62F1 1 P exponents if P € Ny, processors are avail-
able. Without loss of generality, we restrict the number of processors and assume
P' < ¢™ — 1; the number of processors is not a bottleneck for the initialization
stage.
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#processor P =1
depth 0

0 ®
1 @

Figure 10.3: An illustration of the precomputation stage when the number of
processors changes. The parameters are described in Example 10.14.

ALGORITHM 10.15. Precomputation: initialization.

Input: A scalar ¢ € N>o, and the number of processors P € N>;.

Output: A g-addition chain 4’ computing the set £ = {1,2,..., P'} where P' =
2Mog2 P1 1 P The g-addition chain satisfies £ x {0,... , P—1} C S(v') x

{0,...,P—1}.
1. Set 7' the empty addition chain with S(v') = {1}.
2. For all processors 0 < p < P in parallel do 3-7
3 For 0 < i < [log, P| do 4-7
4 If p < 2° then
5. Set e = 2"+ (p+1).
6 Add node (e, p) and rule ((2%,p), (p+1,p)) to 7.
7. For all 0 < p' < P with p # p' do add the node (e, p) to +'.
8. Return «'.

PRrOPOSITION 10.16. The algorithm works as specified.

(i) The g-addition chain 4" with weight (cg,ca) computing & = {1,...,P'}
can be performed in depth

Saconea)(V) < ca- ([logy P +1).
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(ii) In the BSP-model this can be implemented with S = [log, P|+1 supersteps
and communication cost at most

Ceg(Y) < €-([logy P14+ 1) +g- (P'=1)- (P —1).

ProoOF. Correctness follows with the invariant: After lap ¢ of steps 3—7 all
nodes (a,p) with 1 < a < min{2*"!, P’} and 0 < p < P are in 7/. We show this
by induction on %.

Before the loop, all processors have generated the empty addition chain and
thus S(v') x {0,...,P—1} = {(1,p): 0 < p < P}. Now, we suppose that the
invariant holds before lap i. Let e be an element with 2! < e < min{2'*!, P'}. By
the induction hypothesis, the nodes (2¢,p) and (p + 1,p) are already in 7' since
0 < p < 2. Therefore, processor p = ¢ — 2* — 1 < min{2’, P} computes node
(e,p) correctly. Step 7 distributes e to all processors. Thus, after the lap any
processor 0 < p < P has stored the nodes (a,p) with 1 < a < min{2°"!, P'}.

There are only non-g-steps. Only processor 0 computes a node in every lap
of steps 3—7. This proves the claimed depth.

In the BSP-model, we can identify each lap by a superstep, i.e. S = [log, P]+
1. In lap 0 < i < [log, P] each processor 0 < p < min{2¢, P} sends P — 1 copies
of its result to all other processors. This causes a total communication of

> (P-1)-min{2,P}=(P-1)- [P+ Y 2

0<i<[log, P] 0<i<[log, P]
=P?-P+(P-1)-(2M&P1 1)

=P (P+2MePl) _ (p42lell) _(p_1)
=P.P—-P - (P-1)=(P —-1)-(P-1)

as claimed. O

The flow. The initialization generates a chain of at most P’ = 2/°62F1p > 2P
elements. If ¢ = 2 and m = 3 then the precomputation is complete whenever at
least 3 processors are involved, as illustrated in Example 10.14. For larger values
of m or g, or a smaller number of processors, we have to add a second stage.
This is a little bit difficult, since we want to avoid unnecessary communication.
We assume that all processors communicate their locally stored intermediate
results to all other processors. Thus, we focus on the reduction of the number of
supersteps and, hence, the total start up cost S - /.

We define the sequence of all positive integers by, by,... not divisible by a
given scalar ¢ € N>, by

bi_l + 2 if q divides bi_1 +1

bi 1 +1 else for i € N>.

(10.17)  bp=1 and b = {
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We have b, p—b; < (b;+2P)—b; = 2P for all i € N>, and all involved processors
have stored the first P’ > 2P elements 1,..., P’ locally. Thus, each processor
0 < p < P can compute the nodes b p; > P’ for an i < P’ and j € Ny
without falling back upon non-locally stored predecessors. All missing exponents
are multiples of ¢ and can be calculated subsequently. We formalize the described
second part of the precomputation.

ALGORITHM 10.18. Precomputation: flow.

Input: A scalar ¢ € N>9, a set of processors 0 < p < P, a parameter m € N>,
such that P' = 2M°&:P1 4 P < ¢™ — 1, and a g¢-addition chain +' with
{(a,p): 1 <a<P,0<p<P}=8(")x{0,...,P—-1}.

Output: A g-addition chain v computing £ = {1,...,¢™ — 1}.

1. Set v =+".
2. For all processors 0 < p < P in parallel do 3-12
3. Set a = b, and j = 0.

4. While a < ¢™ do 5-10
5. Set b+ a-q.
6. While b < ¢"™ do 7-8
7. If b > P' then add node (b,p) and rule ((g,p), —q) to 7.
8. Set b« b-q.
9. Set j <= j+1and a = byijp.
10. If a < ¢™ and a > P’ then add rule ((a — byi(j—1)p, D), (bp+(j-1)P> D))

and node (a,p) to 7.
11. For all (a,p) € S(y) x {0,...,P — 1} with P’ <a < ¢™ do
12. For 0 < p' < P with p’ # p do add node (a,p’) to 7.
13. Return 7.

ProrosiTION 10.19. The algorithm works as specified.

(i) The g-addition chain ~y with weight (cg, c4) computing & = {1,... ,¢™ —1}
can be generated in depth

1 m m—
daeaen)(V) < daeqe)(V) Fea 5o (¢ =)
1 ¢"-1 P-1
R : 3 )
+cq (P p— t5p (m” + m))

(ii) In the BSP-model, this can be implemented with S = 1 supersteps and
communication cost of at most

1 m? +m
Crg(y) < Ce,g(71)+€+g-qm-(1—ﬁ)+g.( 5 +9>‘
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Before we give the proof, we do some preparation. For the cost analysis we count
the number of non-g-steps and the number of ¢-steps, which are added by each
processor 0 < p < P, separately. Thus, we group the multiples of ¢ in the set
E={1,...,¢™ —1}. The multiples 1-q,...,1-¢™ ! of ¢q are discounted here.

REMARK 10.20. Let1 <t < m be an integer. Then there are exactly ¢'—q" ' —1
elements a € {2 < a' < ¢™: q does not divide a'} such that #{i € N>1: aq’ <
"t =m—1.

PROOF. Let a € {2,...,¢™ — 1} such that ¢! + 1 < a < ¢ for a fixed
t € N>1. Then we have ¢™ > aq’ > ¢'q* = ¢"*" for a if and only if i < m—t. Since
(@1 +1)-¢" P =g +¢™ "t < a < ¢'¢™ ! = g™, there are exactly ¢! — (¢" 1 +1)
elements a not divisible by ¢ which satisfy #{i € N> : ag < q"}=m—t. 0O

PROOF (of Proposition 10.19). Correctness can be seen as follows: All proces-
sors 0 < p < P have stored the nodes (1, p), ..., (P’ p) as an input in step 1. Pro-
cessor p starts with (by, p) € S(7y) in step 3. Since b, < 2P < P’ this node is stored
locally. Hence, in steps 9-10 processor p can calculate by, ;p as claimed in step 10
of lap 7 using only elements that have been stored in local memory. Inductively, all
elements b, ;p-¢" < ¢™ are computed and stored in step 6-8 by processor p. Thus
in step 12, processor p copies all locally generated elements to all other processors,
and we have {(a,p): 1 <a < ¢™,pe{0,...,P—1}} C S(y) x{0,...,P -1}
as claimed.

For the cost analysis, we count the non-g-steps first. Exactly ¢™—2— [%J =
g™ — ¢™ ! — 1 non-g-steps have to be generated in the precomputation. Exactly
P' < ¢™ — 1 elements are computed by 7/, divided into L%'J many g¢-steps and

P — L%'J non-g-steps. The remaining

e (e )
q

non-g-steps are equally distributed to the P processors. Thus, each processor has
to compute at most [4] many of them. We insert P’ — %] > P =7 >2P- %
to get

A 4, g-—1 g—1 1 4 qg—1
il m—1 _9. N L - B
[P-‘<q P g p1¢ P

For the g-steps, we suppose that no multiples of ¢ are in «'. Hence, our upper
bound on the number of ¢-steps may be too generous. Then processor 0 < p < P
adds at most ¢ many ¢-steps in step 6-8 of Algorithm 10.18 to y for each a not
divisible by ¢. By Remark 10.20, there are ¢* — ¢! — 1 many elements with ¢
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many g¢-steps. The number of g-steps for each processor is at most

3= | 2 [=%=2] -

1<t<m
< lszt;m (qt—q;l —1y 1) (m —t)
(R 5L AN o) EEN b o1
1<t<m 1<t<m 1<t<m
— m _ m(, _ m _ _ 2
— %. (m,qq_ll . q(q(z 1;) N (qq—1)12) +PP 1 m ;—m
Pt g
—%-q;n__ll—k (m2+m)—%-(m2+3m)
Furthermore, processor 0 has to compute the elements ¢, ¢?,...,¢™ !. For the

communication cost we observe that all processors copy the locally stored el-
ements to all other processors. Each processor receives all elements but the
precomputed P’ elements and the elements it has computed on its own, i.e.

roree 18

many elements. We have

A 1
| > = (¢"—¢"'—-1-P-(1-2)-1)—1
HIERRG -1
g—1 .1 2 3
> 14— - 2242
= ~p 1 p pPT
and
Q qt_qt—l_l PI
i _t_ _
HIE Y e RCS N
1<t<m
t t—1
¢ —q -1 3
> Z( . —1)-(m—t)—5—1
1<t<m
1 ¢"—1 m>+m m?>-m
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Thus, we have

1 ¢>2—qg+1 24 >
cun v o (1 5 3t

P  ¢?>—q 2 2P
as a bound on the communication cost. O

PROOF (of Lemma 10.13). If we have ¢™ — 1 < P' = 21921 1 P then there
is only an initialization part. At most P = [qm{l} > % processors compute
p=2Me: Pl p>92. 421 = gm 1 elements. Thus, P = [£--1] processors are
sufficient to compute ¢ — 1. We insert this value for P in Proposition 10.16 to
get the estimate; in this case using [log, P|+1 < [log,(¢™)] —14+1 < [m-log, q].

If ¢™ — 1 > P’ then the estimates of the initialization in Proposition 10.16
and the flow part in Proposition 10.19 have to be summed up. We set P’ < 3P

to get the claimed upper bound. O

Connecting precomputation and main stage. It remains to connect the
precomputation and the main stage. We restrict to exponentiation in the finite
field F;». By Fermat’s Little Theorem 2.3, we have 0 < A,(e) < n. The proof of
Result 10.1 follows with Corollary 10.12 and Lemma 10.13, inserting a suitable
value for the connecting parameter m € N>;. We suppose that the field extension

is large enough, i.e. 53— > lnﬁq. As in the proof of Corollary 3.10, we choose
m = [log,n — 2loglog,n| + 1 > 1, if the number of processors P is small

compared to n, i.e. [3] < |log, n —2log,log, n| + 1. If there are more processors

available then we set m = [§] > 1.

We first discuss the case m = [log, n —2log,log,n| +1 > 1. Then the bound
on the depth of the precomputation stage in Lemma 10.13 is as follows. For
3P > P =2M&Pl L P> g™ _ 1 we have

(1021)  Syeqen(¥) < ca- (og(3P)] +1) < ca - ([log, P] +3).

If the number of processors P is smaller, then the precomputation has two parts.
In this case, the depth is bounded by

(1022)  byeqen(?) < ca-([logy P1+1)+cq - Oflog?n)
1 n
+c « — . — 1 - -
A'p (g ) loggn
1
+CQ s — 9 "

P'q—llloggn'

If the number of processors P is large relative to n, then we choose m = [%]. The
bound does not change in the case P’ > ¢™—1. Since m < [log, n—2log,log, n|+
1, the previous estimate is also an upper bound on the depth if P is large compared
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to n. Therefore, we always have basic cost at most c4 - ([logy, P| + 3) for the
initialization. If there is a successive flow part in the precomputation then the
work of this part is (nearly) evenly distributed among the P processors.

The estimate on the depth of the main stage is given by Corollary 10.12.
The main stage works with the ¢™-ary representation of the exponent. We have
Agm(€) < %-Aq(e)—i-lg L+1forall0<e<q"

For m = [%], the partition is uniform for both cg = 0 and c¢g > 0. Each
processor 0 < p < P has to compute only g-steps to calculate its intermediate
result £, = epq” from the precomputed digit e,. This takes at most cg - m -
(Agm(e) — 1) < ¢q - Ay(e) many g-steps. Our scalable algorithm is also powerful
if m = |log,n — 2log,log,n| + 1. Then the intermediate results F, computed
by processors 0 < p < P may contain sums of digits. For cg = 0, the depth is
bounded with respect to Corollary 10.12. We have Agm(e) < = + 1

1 n
(10.23) 840,60 (7) = Fg,0,em) (V) < €a- (F' (E * 1> + [log; PW)
n 1 2log,log, n

. =1 1_—¢ - ([logy P1+ 1

- log,n P < logqn—Qlogqlogqn>+cA ([log, P +1)
1 n

< -—- - (1 1 - ([logy P1+1).
< e g () Fea (logy P+ 1)

The exponentiation problem is highly scalable, because the non-¢-steps can be
evenly distributed to all available processors. The only additional cost is given
by the collection. For small values of P, we expect a good speed-up if c¢g = 0.
Thus, this favorable case offers not only the highest parallel speed-up for parallel
exponentiation but also good scalability. For cg > 0, the main stage reveals the
bottleneck of parallel exponentiation. In this case, we suppose that the cost for
a ¢™-step are (roughly) the costs for m many g¢-steps. Then

5(11(056/—1) (f}/) - (5‘];(076.4) (f)/l)

< ¢cg-(n—1)+ca- [log, P]
+c ¢ n
la+oP -1 log, n — 2log log, n
(10.24) < ¢cg-(n—1)+ca-([logy, P]+1)

c n
(14+¢)f =1 log,n

(1+0(1)).

+ca-

The number of ¢-steps is not touched by the number of processors P. Only the
number of non-¢-steps decreases if the number of available processors P increases.
Ifc= i—i is close to 0, then we have m close to %, since lim,_, m =
lim._,o 57 = & by de I'Hospital’s rule. Therefore, we expect a high speed-up only

for small amounts of P and cg < c4. If the number of processors increases, the
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bottleneck becomes dominant. The speed-up is limited by the number of g-steps
which have to be done in sequential.

We merge all the estimates for small P given above to prove Result 10.1. The
estimates for larger P can be found in a similar way.

PROOF (of Result 10.1). For c¢g = 0 we add (10.21) to (10.23) which gives

a0 (1) < car (2 [logy Pl +4)+ca — (14 o(1)).

P log, n
This estimate is also true if we have an additional flow part in the precomputation
given by (10.22).

If cg > 0 and P > "5 then the depth of the precomputation is bounded by

3logZn
(10.21). Otherwise, we insert (10.22) in (10.24) to get the claimed upper bound
on the depth. O

10.4. Experiments. It remains to summarize all our ideas presented through-
out this work. The concluding experiments that are described now should verify
our theoretical results on exponentiation in finite fields Fo» . We implemented the
scalable parallel exponentiation algorithm that has been developed in this section.
We included the arithmetic for the different basis representations of Fy» that are
discussed in the previous sections. Thus, these final experiments combine the
algorithmic ideas on weighted 2-addition chains, on fast arithmetic in Fon, and
on parallel (scalable) exponentiation. The intention of these experiments is to
validate the significance of the ratio ¢ = i—j as the basic criterion to find suitable
data structures for parallel exponentiation. They also should illustrate that the
limits given by the lower bound in Section 4.2 are realizable in practice!

There are (at least) two further aspects that we want to illustrate by the
experiments: We want to show that scalability really works for parallel exponen-
tiation. And last but not least the tests should determine the breakpoint, i.e. the
number of processors for which a normal basis representation given by a prime
Gau$B period of type (n,2) beats the polynomial basis representation with sparse
modulus.

Experimental setup. We ran our implementation of Algorithm 10.4 with
the four already introduced test series: Arbitrary, Sparse, Sedimentary, and
PrimeGP. The test series Normal was not part of these final experiments be-
cause of the experimental and theoretical comparisons between this test series
and the test series PrimeGP. Both test series coincide with respect to ¢ = 0.
The only difference between Normal and PrimeGP is given by the faster mul-
tiplication for the latter one. Our experiments on inversion in a normal basis
representation (see Section 6.5 and Section 8.2) validated this observation; the
structure of the computation was not touched, but the faster multiplication for
prime Gauf} periods sped up the whole computation significantly.
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For each of the four test series we ran the exponentiation algorithm on 2, 4,
8, 16, and 32 processors in parallel. The programs were executed on the PSC2
cluster of the Paderborn Center for Parallel Computing. As before, each test
series contained 50 different extension fields Fyn over Fy; we chose n =~ 2007 with
1 <4 < 50. For each value of n we did 100 trials for the three test series Sparse,
Sedimentary and PrimeGP. For Arbitrary there were only 10 trials. For each
trial an exponent of exactly n bits and an element of F,» were chosen at random.
All times in Tables A.20-A.23 are average values for all trials with given n. To
run a single test series in sequential took about 24 hours on the PSC2.

Evaluation. We compared the results on parallel exponentiation with two dif-
ferent sequential exponentiation algorithms: an implementation of Algorithm 3.12
(Brauer 2-addition chains) and of repeated squaring (Algorithm 3.12 with ¢ = 2
and m = 1). The speed-up shown in Figures 10.4-10.7 is with respect to Brauer
2-addition chains. Since Brauer 2-addition chains are among the shortest known
addition chains, the speed-up illustrates the profit that can be taken from paral-
lel computing for exponentiation in Fo» using different basis representations. We
recall that Brauer’s idea has also been our starting point to parallelize exponen-
tiation; Algorithm 10.4 can be viewed as Algorithm 3.12 if we have only a single
processor.

Exponentiation in GF(2”n): polynomial basis with arbitrary modulus
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Figure 10.4: The speed-up of parallel exponentiation for the test series Arbitrary
on the PSC2-cluster using 2, 4, 8, 16 and 32 processors. These speed-ups are
relative to a sequential implementation of Algorithm 3.12.
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Exponentiation in GF(2”n): polynomial basis with sparse modulus
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Figure 10.5: The same experiments as illustrated in Figure 10.5 but for the test
series Sparse.

We compared parallel exponentiation to repeated squaring, see Table A.24
and Figure 10.8, respectively. The expected speed-up of Algorithm 4.12 with
respect to repeated squaring has been documented in Figure 4.10. Those re-
sults base on theoretical estimates and are in a sense maximal speed-ups. The
speed-ups illustrated in Figure 10.8 purely base on experiments and connect our
experimental results to the theory. In particular, we can compare the two differ-
ent approaches of Algorithm 4.12 and Algorithm 10.4 to each other. The latter
one takes communication cost and a limited number of processors into account.

Results. The speed-ups for test series Arbitrary are documented in Figure 10.4
and Table A.20, respectively. The poor speed-up and the missing improvement for
more than 4 processors are obvious. Both facts have been predicted by the theo-
retical results. Since ¢ ~ % is close to the assumptions of original addition chains,
there is no real profit using parallel computing. Furthermore, three processors are
sufficient to get the maximal speed-up due to Algorithm 4.12. This saturation
coincides with the fact that—compared to 4 processors—only marginal better
speed-ups are shown in Figure 10.4 for more than 4 processors. Nevertheless, the
costs to coordinate all processors increased which caused a decrease in the speed-
up for 32 processors. The achieved speed-up with respect to repeated squaring
is close to the predicted one, see column 4 of Table A.24. We conclude that
a polynomial basis representation with arbitrary modulus for Fy. is no suitable
data structure for exponentiation. This is true both for sequential and parallel



Data structures for parallel exponentiation 187

Exponentiation in GF(2”n): polynomial basis with sedimentary modulus

6 T T T T T T T T T

n
[ E)

4 F _
E

5 5 xex X
S A 1 Nalp™
2 F\DWD G g-Bm A-a 7%,«*%
% : ,*'“‘"%*m**%%‘? ’*.*‘D % =~
= 2 * ¥
Ry RS
Ry W
-}
%
2k Q ME% ! i
Sq ¥
',va */++++7+++++++++*/¢7—4—Fq—k—4—k+ﬂﬂ—o—é—kar\*_/—o—kﬂx\k Attt
yﬂ/‘#i*/
l 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
degree n of field extension over GF(2)

| 2 processors —+— 8 processors ------ |
16 processors B

Figure 10.6: The same experiments as illustrated in Figure 10.5 but for test series
Sedimentary.

computing. The reason is that squaring is expensive both relative to multiplica-
tion and in comparison with sparse modulus. This causes poor performance and
poor speed-up compared to the other discussed data structures.

The experiments validated the better qualification of a polynomial basis rep-
resentation with sparse modulus for Fo» in an impressive way. For 2 processors
we had an efficiency®® of more than 0.8 for all n > 2212. And even for 4 pro-
cessors the experiment showed an efficiency of at least 0.6 for most n > 4401.
Figure 10.5 illustrates that the possible speed-up depends on the ratio ¢ = z—i.
For trinomials (only one index in column 2 of Table A.21) the speed-up is higher
than for pentanomials since the ratio ¢ = Z—i (column 3 of Table A.21) is smaller
in this case. The faster squaring is significant for parallel exponentiation.

We also observed that the scalability depends on ¢ = Z—i. For n < 4211 the
ratio ¢ is at least 0.07. Algorithm 4.12 runs on between 8 and 16 processors.
The experiments showed no great difference between the speed-up for 8, 16 and
32 processors for small n. For n > 4401 the ratio is at most ¢ < 0.05 and the
number of processors used for Algorithm 4.12 is clearly greater than 16. The
experiments showed that the increase of processors from 8 to 16 or even 32 led
to clearly higher speed-up.

The speed-up of test series Sparse relative to the (sequential) repeated squar-
ing algorithm validated the theoretical results. The scalable algorithm showed
speed-ups close to the expected ones for this test series. Thus, the predicted

66 The efficiency is the quotient of the speed-up divided by the number of used processors.
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Exponentiation in GF(2”n): normal Gauss periods
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Figure 10.7: The same experiments as illustrated in Figure 10.5 but for the test
series PrimeGP.

speed-up can be achieved with a moderate number of processors.

We conclude that a sparse modulus is a good choice if the data structure for
Fy» is based on the polynomial basis representation. The sequential arithmetic
is much faster than for arbitrary modulus, see Figure 10.9. And exponentiation
is well-parallelizable if a moderate number of processors is involved.

The test series Sedimentary showed no principal differences in comparison
to the test series Sparse, as documented in Figure 10.9 and Figure 10.10. In
Section 5.2.3, we observed that the slightly slower computation of the canonical
representative caused slightly higher values for the ratio c, see also column 2 of
Table A.22. Therefore, there were smaller speed-up than for test series Sparse.
The same scenario has been drawn in Section 4.3 using only theoretical results.

As expected, a normal basis representation showed the best speed-up, see
Figure 10.7. The speed-ups of the test series PrimeGP are significantly higher
than for the test series Sparse. For 2 processors the efficiency is more than 0.9
for all values of n but 209 and 398. The efficiency stuck to more than 0.9 for all
n > 1601 using 4 processors, and it was still at least 0.85 for all but two values of
n greater than 1601 on a cluster with 8 processor. Thus, exponentiation is very
well scalable for a normal basis representation of Fon.

Fast polynomial multiplication in a normal basis representation transformed
this advantage into faster exponentiation, as illustrated in Figure 10.10. Normal
prime Gauf} periods of type (n,1) over Fy already beat a polynomial basis with
sparse modulus in sequential, see Figure 10.9. The slightly slower multiplication
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Realized speed-up for different sets of weights
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Figure 10.8: The maximal achieved speed-ups for the for test series Arbitrary
(+), Sparse (), Sedimentary (), and PrimeGP ([J) in relation to the repeated
squaring algorithm. The figure is based on experimental data in contrast to
Figure 4.10 where the illustration of the erpected speed-ups is due to theoretical
estimates.

(see Table A.14, column 2 and Table A.10, column 2) is compensated by free
squarings. For Gauf} periods of type (n,2) over Fy this compensation is not
sufficient to outperform the fastest arithmetic for Fo[x]/(f), i.e. the modulus f is
an irreducible sparse polynomial. Figure 10.9 shows the gap that gains between
normal prime Gauf} periods of type (n,2) and polynomial representation with
sparse modulus. The situation changes when we compute a power in parallel.
Then the higher speed-up comes into play. The breakpoint is between 8 and
16 processors. Figure 10.10 gives the times for parallel exponentiation if 16
processors are involved. For at least this number of processors both types of
prime Gaufl periods were superior for exponentiation in Fy». The margin was
roughly 2.8 for the Gauf} period of type (9802,1), and 1.01 for type (9998, 2) over
F2.

Conclusions. If normal prime Gaufl periods with small parameter £ € Ny;
are available then this data structure is best to do parallel exponentiation in Fy»
on massive-parallel machines, i.e. on machines with a large number of processors.
Moreover, our experiments in Section 8.1 and Section 9.2 have shown that general
Gaufl periods often improve the situation if the parameter £ is large for prime
Gauf periods. Thus, we can draw the following conclusion for the compared basis
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Sequential exponentiation in GF(2”n)
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Figure 10.9: Times for sequential exponentiation for the four test series Arbi-
trary (+), Sparse (<), Sedimentary (*), and PrimeGP ([J). The exponentiation

algorithm is with respect to a 2-Brauer addition chain.

Parallel exponentiation in GF(2”n): 16 processors
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representations of the finite field Fyn: We claim with respect to our experiments
which are in conformity with the theoretical results that general normal Gauf}
periods offer the best data structure for finite fields on massive-parallel machines.
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11. Conclusions

This thesis is concerned with fast exponentiation in finite fields. It was motivated
by arithmetic that is used in modern cryptosystems. Our approach to speed up
exponentiation is by parallel computing. We have focussed on two main topics to
enhance fast parallel exponentiation. The first one discusses bounds on weighted
g-addition chains to get a principal understanding on the restrictions of exponen-
tiation with respect to parallel computing. The second topic emphasizes the role
of different bases representations. Our goal is to profit from fast multiplication in
finite fields. In particular, we look at the use of general Gauf} periods that define
a normal basis.

We first recall our results on the background of weighted ¢-addition chains.
This generalization of addition chains is particularly useful to model exponenti-
ation in finite fields. Although we have only applied this model to this specific
task, it is of more general interest. For example, the multiplication of a point on
an elliptic curve by a scalar can also be adapted to this model. Thus, the results
on exponentiation can be easily transferred to elliptic curve cryptosystems.

We have found a lower bound on parallel exponentiation for g-addition chains
with weight (cg, c4). This lower bound is not strict for all weights, but it coincides
with previously known lower bounds in two important special cases. Therefore,
our general bound closes the gap between original addition chains with weight
(1,1) and addition chains with free scalar, i.e. weight (0,1). As shown by ex-
periment, most polynomial basis representations for finite fields have arithmetic
properties that are related to this gap. This gap is characterized by the ratio
c= 2—3 of the cost between a g¢-step, i.e. an evaluation of the Frobenius automor-
phism in F,» with cg operations in F;, and a non-g-step, i.e. a multiplication in
Fyn with cost ca.

The ratio ¢ can be seen as the indicator whether exponentiation can be par-
allelized successfully. We have used this observation to develop a new parallel
algorithm for exponentiation. Starting from the optimal algorithm of Borodin &
Munro (1975) for original addition chains, we have taken this ratio into account.
It does not only determine the depth of the generalized algorithm but also the
necessary number of processors. In the special case ¢ = 0, the algorithm was
formerly described by von zur Gathen (1991). The ratio ¢ = 0 describes the
arithmetic properties of a normal basis representation of F,». As for the lower
bound, our general approach connects both previously known algorithms. Our
results support the assumption that the lower bound is close to the depth in all
discussed cases.

As a second point, we have considered fast arithmetic for normal bases. We
present a parallel algorithm for inversion in F,». It has optimal depth in case Fa»
where it uses only 2 processors by taking advantage of the special form of the
exponent e used for inversion. This improves the general algorithm with respect
to the number of processors in an important case.
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Our main result on normal bases concerns normal general Gaufl periods. For
these particular normal elements, we overcome the slow matrix-based multiplica-
tion routine by fast polynomial multiplication. Therefore, we have translated the
relation between Gaufl periods and cyclotomic polynomials into an algorithmic
benefit. This approach was already described for prime Gaufl periods by Gao
et al. (2000). We have generalized their algorithm to prime power Gauf} periods
to make fast polynomial multiplication and inversion available.

Decomposable Gaufl periods have been our tool to extend this result to general
Gauf periods. With their help, we prove that fast polynomial multiplication can
be used in a normal basis representation of F;» whenever there is a normal Gaufl
period of type (n, K) over F,.

In the closing section, we discuss some problems that arise when exponenti-
ation in finite fields is implemented on real parallel machines. We have devel-
oped a scalable parallel exponentiation algorithm with respect to our results that
takes the limited number of processors into account. The algorithm also tries
to minimize communication costs. All key algorithms of this thesis have been
implemented and compared by experiments. These experiments support our the-
oretical results. They show the advantages (and disadvantages) of the discussed
basis representations for Fy» with respect to fast (parallel) exponentiation in de-
tail. In particular, they support the choice of normal general Gaufl periods of
type (n,K) over F, as the preferred data structure for parallel exponentiation
whenever C has small order. Therefore, we are optimistic that the results of this
thesis are of use to cryptography and other applications of finite fields where fast
arithmetic, in particular fast exponentiation, plays an important role.
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A. Appendix: Experiments

A.1. Addition chains. Tables A.1-A.5 document in detail the results of the
experiment that is described in Section 3.4. The entries of these tables are the
input for Figures 3.1-3.3. All sets of weights consist of 50 different values n =
2007, 1 <1 < 50. Each row includes the average values for 10000 trials on input
n and c.

The key to Tables A.1-A.5

column ‘ label ‘ description

1-2 Param. Input parameters of the 2-addition chain with
weight (cg, ca) for an exponent e € N»;.

1 n The binary length of the exponent e.
2 c The ratio ¢ = 2—3 of the weight (cg,ca)-

3-5 binary The average number of steps of the binary addition
chain (p. 21) on 10000 randomly chosen exponents
e of binary length n.

3 A The number of non-doubling steps.

4 Q The number of doublings.

5 L The normalized weighted length L = A+ c¢- @ of
the binary addition chain.

6-10 Brauer The average number of steps and some parameters
of the Brauer 2-addition chain (Algorithm 3.12) on
the same 10000 randomly chosen exponents as for
the binary addition chain.

6 m The tuning parameter; we have chosen the value
by hand such that L (column 9) is minimal.

7-9 A Q, L See columns 3—6.

10 spd. The ratio of the entries of column 5 to those of
column 9. This illustrates the improvement of a
Brauer 2-addition chain compared to the binary
addition chain.

11-15 BGMW The average number of steps and some parameters
of the BGMW 2-addition chain (Algorithm 3.25).

11-14 | m, A, @Q, L | See columns 6-10.
15 spd. The ratio of the entries of column 5 to those of
column 14.
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| Addition chains with weighted length: Kung’s model |

Param. binary Brauer BGMW

n [ c A Q L A Q L spd. Q L spd.
209[1.00]] 103 208 311 55 212 267 1.16 62 212 274 1.14
398(1.00( 198 397 595 91 408 499 1.19 106 400 506 1.18
606|1.00( 302 605 907 131 616 747 1.21 147 610 757 1.20
803|1.00( 400 802 1202 169 813 982 1.22 184 805 989 1.22
1018 1.00|| 508 1017 1525 211 1028 1239 1.23 226 1020 1246 1.22
1199|1.00|| 599 1198 1797 226 1224 1450 1.24 257 1200 1457 1.23
1401|1.00|| 700 1400 2100 260 1426 1686 1.25 291 1404 1695 1.24
1601 |1.00|| 800 1600 2400 292 1626 1918 1.25 323 1602 1925 1.25
1791|1.00|| 894 1790 2684 324 1816 2140 1.25 355 1794 2149 1.25
1996 | 1.00|| 997 1995 2992 357 2021 2378 1.26 388 1998 2386 1.25
2212(1.00 (1106 2211 3317 393 2237 2630 1.26 424 2214 2638 1.26
2406 (1.00 || 1202 2405 3607 424 2431 2855 1.26 455 2406 2861 1.26
2613|1.00 (| 1306 2612 3918 459 2638 3097 1.27 490 2616 3106 1.26
2802 (1.00 || 1400 2801 4201 489 2827 3316 1.27 520 2802 3322 1.26
3005|1.00 (1501 3004 4505 488 3061 3549 1.27 554 3006 3560 1.27
3202|1.00 (1600 3201 4801 516 3258 3774 1.27 579 3206 3785 1.27
3401|1.00( 1700 3400 5100 544 3457 4001 1.27 607 3402 4009 1.27
3603 |1.00 (1801 3602 5403 572 3659 4231 1.28 635 3605 4240 1.27
3802|1.00( 1900 3801 5701 601 3858 4459 1.28 664 3808 4472 1.27
4002 |1.00 || 2000 4001 6001 629 4058 4687 1.28 692 4004 4696 1.28
4211]1.00| 2105 4210 6315 659 4267 4926 1.28 722 4214 4936 1.28
4401|1.00 || 2200 4400 6600 686 4457 5143 1.28 749 4403 5152 1.28
4602 |1.00 | 2300 4601 6901 714 4658 5372 1.28 777 4606 5383 1.28
4806 1.00 || 2402 4805 7207 743 4862 5605 1.29 806 4809 5615 1.28
50021 1.00 || 2500 5001 7501 771 5058 5829 1.29 834 5005 5839 1.28
5199 1.00 (| 2599 5198 7797 799 5255 6054 1.29 862 5201 6063 1.29
5399 1.00 || 2698 5398 8096 827 5455 6282 1.29 891 5404 6295 1.29
5598 1.00 || 2798 5597 8395 855 5654 6509 1.29 918 5600 6518 1.29
5812 1.00 (| 2905 5811 8716 886 5868 6754 1.29 949 5817 6766 1.29
6005 | 1.00 || 3002 6004 9006 913 6061 6974 1.29 976 6006 6982 1.29
6202 |1.00( 3100 6201 9301 941 6258 7199 1.29 1004 6202 7206 1.29
6396 | 1.00 | 3197 6395 9592 968 6452 7420 1.29 1031 6398 7429 1.29
6614 |1.00 || 3306 6613 9919 999 6670 7669 1.29 1062 6615 7677 1.29
6802 | 1.00 || 3400 6801 10201 1026 6858 7884 1.29 1089 6804 7893 1.29
7005 1.00 || 3501 7004 10505 1055 7061 8116 1.29 1118 7007 8125 1.29
7205 1.00 || 3600 7204 10804 1083 7261 8344 1.29 1146 7210 8356 1.29
7410(1.00 || 3704 7409 11113 1112 7466 8578 1.30 1175 7413 8588 1.29
7602|1.00 || 3801 7601 11402 1073 7721 8794 1.30 1202 7602 8804 1.30
7803 1.00 || 3900 7802 11702 1098 7922 9020 1.30 1225 7808 9033 1.30
8003 | 1.00 || 4000 8002 12002 1122 8122 9244 1.30 1250 8008 9258 1.30
8218 |1.00| 4108 8217 12325 1149 8337 9486 1.30 1276 8224 9500 1.30
8411|1.00( 4205 8410 12615 1173 8530 9703 1.30 1300 8416 9716 1.30
8601 | 1.00 || 4299 8600 12899 1197 8720 9917 1.30 1324 8608 9932 1.30
8802 |1.00 {4400 8801 13201 1222 8921 10143 1.30 1349 8808 10157 1.30
9006 | 1.00 || 4502 9005 13507 1247 9125 10372 1.30 1374 9008 10382 1.30
9202 1.00 (4599 9201 13800 1272 9321 10593 1.30 1399 9208 10607 1.30
9396 | 1.00 || 4697 9395 14092 1296 9515 10811 1.30 1423 9400 10823 1.30
9603 | 1.00 || 4801 9602 14403 1322 9722 11044 1.30 1449 9608 11057 1.30
9802 | 1.00 || 4900 9801 14701 1346 9921 11267 1.30 1474 9808 11282 1.30
9998 | 1.00 || 4999 9997 14996 1371 10117 11488 1.31 1498 10000 11498 1.30
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Table A.1: Comparison of different 2-addition chain algorithms if doublings and
non-doublings have same weight. This is assumed for Kung’s model.
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| Addition chains with weighted length: arbitrary modulus |

Param. binary Brauer BGMW

n | c A Q L A Q L spd. Q L spd.
20970.74T 103 208 257 55 212 212 1.21 62 212 219 1.17
398(0.64| 198 397 453 91 408 353 1.28 106 400 363 1.25
606 0.61( 302 605 669 131 616 504 1.33 147 610 517 1.29
803 (0.64 || 400 802 913 161 828 691 1.32 184 805 699 1.31
1018 |0.69|| 508 1017 1213 197 1043 920 1.32 226 1020 933 1.30
1199|0.62|| 599 1198 1340 226 1224 984 1.36 257 1200 1000 1.34
14011 0.63| 700 1400 1578 260 1426 1155 1.37 291 1404 1172 1.35
1601 |0.64 || 800 1600 1830 292 1626 1339 1.37 323 1602 1354 1.35
1791|0.67|| 894 1790 2089 324 1816 1536 1.36 355 1794 1553 1.35
1996 | 0.70|| 997 1995 2390 357 2021 1768 1.35 388 1998 1783 1.34
221210.64 | 1106 2211 2529 393 2237 1833 1.38 424 2214 1849 1.37
2406 | 0.64 || 1202 2405 2746 403 2462 1983 1.38 455 2406 1999 1.37
2613 0.65| 1306 2612 2996 432 2669 2159 1.39 490 2616 2183 1.37
28021 0.65 || 1400 2801 3234 459 2858 2330 1.39 520 2802 2354 1.37
3005 |0.67 || 1501 3004 3513 488 3061 2538 1.38 554 3006 2567 1.37
3202 |0.67 || 1600 3201 3742 516 3258 2696 1.39 579 3206 2725 1.37
3401 |0.68 | 1700 3400 4014 544 3457 2897 1.39 607 3402 2922 1.37
3603 |0.70 | 1801 3602 4311 572 3659 3122 1.38 635 3605 3147 1.37
3802 |0.71 (1900 3801 4596 601 3858 3337 1.38 664 3808 3365 1.37
4002 |0.73 /2000 4001 4904 629 4058 3574 1.37 692 4004 3598 1.36
4211]0.68 || 2105 4210 4950 659 4267 3542 1.40 722 4214 3569 1.39
4401|0.67 || 2200 4400 5157 686 4457 3682 1.40 749 4403 3708 1.39
4602 | 0.68 || 2300 4601 5405 714 4658 3858 1.40 777 4606 3886 1.39
4806 | 0.67 || 2402 4805 5609 743 4862 3988 1.41 806 4809 4015 1.40
5002 |0.67 || 2500 5001 5829 771 5058 4138 1.41 834 5005 4165 1.40
5199 0.66 || 2599 5198 6028 799 5255 4266 1.41 862 5201 4293 1.40
5399 |0.67 || 2698 5398 6310 827 5455 4477 141 891 5404 4507 1.40
5598 | 0.66 || 2798 5597 6483 855 5654 4578 1.42 918 5600 4605 1.41
58120.67 (2905 5811 6783 886 5868 4802 1.41 949 5817 4831 1.40
6005 | 0.67 || 3002 6004 7039 913 6061 4989 1.41 976 6006 5015 1.40
6202 | 0.65 | 3100 6201 7153 941 6258 5032 1.42 1004 6202 5058 1.41
6396 | 0.67 || 3197 6395 7495 968 6452 5304 1.41 1031 6398 5331 1.41
6614 | 0.67 || 3306 6613 7729 949 6733 5452 1.42 1062 6615 5487 1.41
6802 | 0.64 || 3400 6801 7734 973 6921 5384 1.44 1089 6804 5425 1.43
7005|0.67 || 3501 7004 8167 998 7124 5744 1.42 1118 7007 5786 1.41
7205 |0.67 || 3600 7204 8425 1023 7324 5929 1.42 1146 7210 5975 1.41
7410 0.67 || 3704 7409 8681 1049 7529 6107 1.42 1175 7413 6155 1.41
7602 |0.67 || 3801 7601 8889 1073 7721 6242 1.42 1200 7608 6293 1.41
7803 |0.67 | 3900 7802 9120 1098 7922 6398 1.43 1225 7808 6449 1.41
8003 | 0.67 || 4000 8002 9341 1122 8122 6544 1.43 1250 8008 6595 1.42
8218 | 0.66 || 4108 8217 9564 1149 8337 6685 1.43 1276 8224 6737 1.42
8411 0.66 || 4205 8410 9747 1173 8530 6794 1.43 1300 8416 6846 1.42
8601 |0.66 || 4299 8600 9957 1197 8720 6933 1.44 1324 8608 6987 1.43
8802 | 0.67 || 4400 8801 10258 1222 8921 7160 1.43 1349 8808 7211 1.42
9006 | 0.66 || 4502 9005 10489 1247 9125 7314 1.43 1374 9008 7363 1.42
9202 |0.67 || 4599 9201 10761 1272 9321 7515 1.43 1399 9208 7566 1.42
9396 | 0.66 || 4697 9395 10873 1296 9515 7551 1.44 1423 9400 7603 1.43
9603 | 0.65 || 4801 9602 11077 1322 9722 7676 1.44 1449 9608 7729 1.43
9802 | 0.66 || 4900 9801 11395 1346 9921 7920 1.44 1474 9808 7973 1.43
9998 0.66 || 4999 9997 11548 1371 10117 7999 1.44 1498 10000 8049 1.43
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Table A.2: Comparison of different 2-addition chain algorithms if doublings and
non-doublings have quotient roughly 2/3. This is the case if division is computed
via Newton inversion as described in Section 5.2.1.
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| Addition chains with weighted length: sparse modulus |

Param. binary Brauer BGMW

n | c A Q L Q L spd.lm A Q L spd.
20970.48]] 103 208 202 54 219 158 1.28 62 212 163 1.24
398(0.29( 198 397 313 91 408 209 1.49 106 400 222 1.41
606|0.18 | 302 605 410 129 631 241 1.70 147 610 255 1.60
803|0.18 | 400 802 546 161 828 311 1.75 184 805 330 1.65
1018{0.19|| 508 1017 704 197 1043 398 1.77 226 1020 423 1.67
11991 0.11|| 599 1198 734 226 1224 364 2.02 257 1200 392 1.87
1401]0.10|| 700 1400 846 260 1426 409 2.07 291 1404 438 1.93
1601|0.10|| 800 1600 959 292 1626 454 2.11 323 1602 483 1.99
1791]0.10|| 894 1790 1077 315 1847 504 2.14 355 1794 538 2.00
1996 | 0.10|| 997 1995 1205 345 2052 559 2.15 388 1998 596 2.02
2212|0.08 (1106 2211 1277 375 2268 551 2.32 424 2214 595 2.14
2406 |0.08 || 1202 2405 1404 403 2462 609 2.30 455 2406 657 2.14
2613|0.08 (/1306 2612 1517 432 2669 647 2.34 490 2616 701 2.16
2802|0.08 || 1400 2801 1618 459 2858 682 2.37 520 2802 739 2.19
3005|0.08 /1501 3004 1739 488 3061 731 2.38 551 3010 790 2.20
3202|0.08 || 1600 3201 1842 516 3258 762 2.42 579 3206 821 2.24
3401|0.06 || 1700 3400 1918 544 3457 766 2.50 607 3402 825 2.32
3603 |0.08 || 1801 3602 2077 572 3659 852 2.44 635 3605 911 2.28
3802 0.08 /1900 3801 2189 601 3858 895 2.45 664 3808 954 2.29
4002|0.08 || 2000 4001 2315 629 4058 948 2.44 692 4004 1007 2.30
4211|0.07 | 2105 4210 2382 659 4267 940 2.53 722 4214 999 2.38
4401|0.05( 2200 4400 2419 686 4457 908 2.66 749 4403 968 2.50
4602 0.05( 2300 4601 2523 699 4721 928 2.72 777 4606 1001 2.52
4806 | 0.05 || 2402 4805 2622 724 4925 950 2.76 806 4809 1026 2.55
5002|0.051 2500 5001 2770 749 5121 1025 2.70 834 5005 1104 2.51
51990.04 | 2599 5198 2827 773 5318 1006 2.81 862 5201 1090 2.59
53991 0.04 || 2698 5398 2929 798 5518 1035 2.83 891 5404 1123 2.61
5598 10.04 || 2798 5597 3038 823 5717 1068 2.84 918 5600 1158 2.62
5812|0.04 12905 5811 3152 850 5931 1102 2.86 949 5817 1196 2.63
6005 | 0.05 (3002 6004 3310 874 6124 1189 2.78 976 6006 1284 2.58
6202 0.04 | 3100 6201 3363 898 6321 1166 2.88 1004 6202 1267 2.65
6396 |0.04 || 3197 6395 3463 922 6515 1193 2.90 1031 6398 1297 2.67
6614 |0.04 | 3306 6613 3580 949 6733 1228 2.91 1062 6615 1336 2.68
6802 0.05| 3400 6801 3733 973 6921 1312 2.85 1089 6804 1422 2.62
7005 0.05 || 3501 7004 3850 998 7124 1353 2.84 1118 7007 1467 2.62
7205 0.05 || 3600 7204 3951 1023 7324 1379 2.86 1146 7210 1497 2.64
7410(0.04 || 3704 7409 4012 1049 7529 1362 2.94 1175 7413 1484 2.70
7602{0.04 || 3801 7601 4123 1073 7721 1400 2.94 1200 7608 1523 2.71
7803 0.05 [| 3900 7802 4300 1098 7922 1504 2.86 1225 7808 1625 2.65
8003 | 0.05 | 4000 8002 4420 1122 8122 1548 2.85 1250 8008 1670 2.65
8218 0.04 || 4108 8217 4448 1149 8337 1494 2.98 1276 8224 1617 2.75
8411 0.04 | 4205 8410 4565 1173 8530 1538 2.97 1300 8416 1660 2.75
8601 |0.03 || 4299 8600 4595 1197 8720 1497 3.07 1324 8608 1620 2.84
8802 0.03 || 4400 8801 4687 1222 8921 1513 3.10 1349 8808 1636 2.86
9006 | 0.03 || 4502 9005 4788 1247 9125 1537 3.11 1374 9008 1661 2.88
9202 0.03 || 4599 9201 4890 1272 9321 1567 3.12 1399 9208 1690 2.89
9396 |0.03 || 4697 9395 4980 1296 9515 1583 3.15 1423 9400 1706 2.92
9603 |0.04 || 4801 9602 5145 1322 9722 1670 3.08 1449 9608 1793 2.87
9802|0.03 || 4900 9801 5241 1346 9921 1691 3.10 1474 9808 1815 2.89
9998 0.03 || 4999 9997 5296 1371 10117 1671 3.17 1498 10000 1795 2.95
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Table A.3: Comparison of different 2-addition chain algorithms if doublings and
non-doublings decrease. The values for c are valid for the case when the modulus
is a sparse polynomial as described in Section 5.2.2.
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| Addition chains with weighted length: sedimentary modulus |

Param. binary Brauer BGMW

n | c A Q L |m A Q L spd.lm A Q L spd.
20970.57] 103 208 221 54 219 179 1.24 62 212 183 1.21
398(0.32| 198 397 325 91 408 222 1.47 106 400 234 1.39
606|0.24| 302 605 448 129 631 281 1.59 147 610 294 1.52
803|0.24 | 400 802 590 161 828 358 1.65 184 805 375 1.57
1018]0.21|| 508 1017 718 197 1043 412 1.74 226 1020 436 1.64
1199|0.15|| 599 1198 781 226 1224 412 1.89 257 1200 439 1.78
1401(0.14|| 700 1400 894 260 1426 457 1.95 291 1404 485 1.84
1601|0.16|| 800 1600 1049 292 1626 545 1.92 323 1602 572 1.83
1791]0.13|| 894 1790 1133 315 1847 562 2.02 355 1794 595 1.90
1996 | 0.13|| 997 1995 1257 345 2052 613 2.05 388 1998 649 1.94
2212|0.11 (1106 2211 1352 375 2268 627 2.15 424 2214 670 2.02
2406 |0.10 || 1202 2405 1452 403 2462 658 2.20 455 2406 705 2.06
26130.09 (1306 2612 1544 432 2669 675 2.29 490 2616 728 2.12
2802 |0.08 || 1400 2801 1634 459 2858 698 2.34 520 2802 754 2.17
3005|0.09 (1501 3004 1769 488 3061 761 2.32 554 3006 822 2.15
3202 0.09 (1600 3201 1898 516 3258 819 2.32 579 3206 877 2.16
3401|0.10 (1700 3400 2046 544 3457 896 2.28 607 3402 953 2.15
3603 |0.09 (1801 3602 2110 572 3659 886 2.38 635 3605 945 2.23
3802 0.08 /1900 3801 2204 601 3858 909 2.42 664 3808 968 2.28
4002 0.10 |/ 2000 4001 2388 629 4058 1022 2.34 692 4004 1080 2.21
42110.07| 2105 4210 2419 659 4267 977 247 722 4214 1036 2.33
4401 0.07 || 2200 4400 2493 686 4457 983 2.54 749 4403 1043 2.39
4602 0.06 || 2300 4601 2583 699 4721 989 2.61 777 4606 1060 2.44
4806 | 0.07 || 2402 4805 2729 724 4925 1059 2.58 806 4809 1133 241
5002|0.07 {2500 5001 2839 749 5121 1096 2.59 834 5005 1173 2.42
5199 0.06 || 2599 5198 2905 773 5318 1086 2.67 862 5201 1168 2.49
5399 0.06 || 2698 5398 3007 798 5518 1114 2.70 891 5404 1201 2.50
5598 10.05 (2798 5597 3100 823 5717 1132 2.74 918 5600 1221 2.54
5812|0.05( 2905 5811 3217 850 5931 1168 2.75 949 5817 1261 2.55
6005 | 0.06 || 3002 6004 3350 874 6124 1229 2.73 976 6006 1324 2.53
6202|0.05( 3100 6201 3431 898 6321 1235 2.78 1004 6202 1335 2.57
6396 | 0.05 || 3197 6395 3531 922 6515 1262 2.80 1031 6398 1365 2.59
6614 | 0.05| 3306 6613 3651 949 6733 1300 2.81 1062 6615 1407 2.59
6802 0.05| 3400 6801 3754 973 6921 1334 2.81 1089 6804 1444 2.60
7005{0.06 || 3501 7004 3891 998 7124 1394 2.79 1118 7007 1508 2.58
7205 | 0.07 || 3600 7204 4098 1023 7324 1529 2.68 1146 7210 1644 2.49
7410{0.05 || 3704 7409 4096 1049 7529 1448 2.83 1175 7413 1567 2.61
7602 0.05 || 3801 7601 4209 1073 7721 1487 2.83 1200 7608 1608 2.62
7803 0.06 || 3900 7802 4349 1098 7922 1554 2.80 1225 7808 1674 2.60
8003 |0.07 || 4000 8002 4575 1122 8122 1705 2.68 1250 8008 1825 2.51
8218 0.05( 4108 8217 4533 1149 8337 1580 2.87 1276 8224 1701 2.66
8411 0.05| 4205 8410 4620 1173 8530 1594 2.90 1300 8416 1715 2.69
8601 |0.05( 4299 8600 4695 1197 8720 1599 2.94 1324 8608 1721 2.73
8802 0.05 || 4400 8801 4829 1222 8921 1657 2.91 1349 8808 1778 2.71
9006 | 0.04 || 4502 9005 4861 1247 9125 1610 3.02 1374 9008 1733 2.80
9202 0.04 | 4599 9201 4964 1272 9321 1641 3.02 1399 9208 1764 2.81
9396 | 0.04 || 4697 9395 5056 1296 9515 1660 3.05 1423 9400 1782 2.84
9603 | 0.05 | 4801 9602 5277 1322 9722 1804 2.92 1449 9608 1926 2.74
9802|0.04 || 4900 9801 5335 1346 9921 1786 2.99 1474 9808 1909 2.79
9998 | 0.04 || 4999 9997 5372 1371 10117 1749 3.07 1498 10000 1872 2.87
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Table A.4: Comparison of different 2-addition chain algorithms if doublings and
non-doublings decrease. The values for c are valid for the case when the modulus
is a sedimentary polynomial as described in Section 5.2.3.
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Addition chains with weighted length: free doublings

Param. binary Brauer BGMW

n | c A Q L |m A Q L spd.lm A Q L spd.
20970.00]] I03 208 1I03] 4 55 212 55 1873 66 210 66 1.56
398(0.00( 198 397 198| 5 91 408 91 2.18| 4 106 400 106 1.87
606(0.00( 302 605 302| 6 129 631 129 2.34| 5 147 610 147 2.05
803|0.00| 400 802 400| 6 161 828 161 2.48| 5 184 805 184 2.17
1018|0.00|| 508 1017 508| 6 197 1043 197 2.58| 5 226 1020 226 2.25
1199|0.00|| 599 1198 599| 6 226 1224 226 2.65| 6 257 1200 257 2.33
1401|0.00|| 700 1400 700| 6 260 1426 260 2.69| 6 291 1404 291 2.41
1601]0.00|| 800 1600 800| 7 289 1657 289 2.77| 6 323 1602 323 2.48
179110.00|| 894 1790 &894| 7 315 1847 315 2.84| 6 355 1794 355 2.52
1996 | 0.00|| 997 1995 997| 7 345 2052 345 2.89| 6 388 1998 388 2.57
2212|0.00( 1106 2211 1106| 7 375 2268 375 2.95| 6 424 2214 424 2.61
2406 0.00 | 1202 2405 1202| 7 403 2462 403 2.98| 6 455 2406 455 2.64
2613|0.00 1306 2612 1306| 7 432 2669 432 3.02| 6 490 2616 490 2.67
2802|0.00 | 1400 2801 1400| 7 459 2858 459 3.05| 6 520 2802 520 2.69
3005|0.00 {1501 3004 1501 | 7 488 3061 488 3.08| 7 551 3010 551 2.72
3202|0.00 (1600 3201 1600| 7 516 3258 516 3.10| 7 579 3206 579 2.76
3401|0.00 {1700 3400 1700| 7 544 3457 544 3.12| 7 607 3402 607 2.80
3603|0.00( 1801 3602 1801| 7 572 3659 572 3.15| 7 635 3605 635 2.84
3802|0.00(1900 3801 1900 8 599 3921 599 3.17| 7 664 3808 664 2.86
4002|0.00 || 2000 4001 2000| 8 624 4121 624 3.21| 7 692 4004 692 2.89
4211)0.00 || 2105 4210 2105| 8 650 4330 650 3.24| 7 722 4214 722 2.92
4401|0.00 || 2200 4400 2200| 8 674 4520 674 3.26| 7 749 4403 749 2.94
4602|0.00 || 2300 4601 2300 8 699 4721 699 3.29| 7 777 4606 777 2.96
4806 0.00 || 2402 4805 2402 | 8 724 4925 724 3.32| 7 806 4809 806 2.98
5002|0.00 {2500 5001 2500 8 749 5121 749 3.34| 7 834 5005 834 3.00
5199|0.00 || 2599 5198 2599 8 773 5318 773 3.36| 7 862 5201 862 3.02
53991 0.00| 2698 5398 2698 | 8 798 5518 798 3.38| 7 891 5404 891 3.03
559810.00 || 2798 5597 2798 | 8 823 5717 823 3.40| 7 918 5600 918 3.05
5812|0.00(2905 5811 2905| 8 850 5931 850 3.42| 7 949 5817 949 3.06
6005|0.00 {3002 6004 3002| 8 874 6124 874 3.43| 7 976 6006 976 3.08
6202|0.00 (3100 6201 3100 8 898 6321 898 3.45| 7 1004 6202 1004 3.09
6396 |0.00 || 3197 6395 3197 | 8 922 6515 922 3.47| 7 1031 6398 1031 3.10
6614 0.00 || 3306 6613 3306 8 949 6733 949 3.48| 7 1062 6615 1062 3.11
6802 0.00 (/3400 6801 3400 8 973 6921 973 3.49| 7 1089 6804 1089 3.12
7005(0.00 || 3501 7004 3501| 8 998 7124 998 3.51| 7 1118 7007 1118 3.13
7205(0.00 | 3600 7204 3600| 8 1023 7324 1023 3.52| 7 1146 7210 1146 3.14
7410(0.00 || 3704 7409 3704 | 8 1049 7529 1049 3.53| 7 1175 7413 1175 3.15
7602{0.00 || 3801 7601 3801 | 8 1073 7721 1073 3.54| 8 1200 7608 1200 3.17
7803{0.00 (| 3900 7802 3900| 8 1098 7922 1098 3.55| 8 1225 7808 1225 3.18
8003 |0.00 || 4000 8002 4000| 8 1122 8122 1122 3.57| 8 1250 8008 1250 3.20
8218|0.00 || 4108 8217 4108 | 8 1149 8337 1149 3.58| 8 1276 8224 1276 3.22
8411|0.00 || 4205 8410 4205| 8 1173 8530 1173 3.58| 8 1300 8416 1300 3.23
8601|0.00 || 4299 8600 4299 | 8 1197 8720 1197 3.59| 8 1324 8608 1324 3.25
8802|0.00 || 4400 8801 4400| 8 1222 8921 1222 3.60| 8 1349 8808 1349 3.26
9006 | 0.00 || 4502 9005 4502 | 8 1247 9125 1247 3.61| 8 1374 9008 1374 3.28
9202|0.00 || 4599 9201 4599 | 8 1272 9321 1272 3.62| 8 1399 9208 1399 3.29
9396 0.00 || 4697 9395 4697 | 9 1295 9642 1295 3.63| 8 1423 9400 1423 3.30
9603 |0.00 || 4801 9602 4801 | 9 1318 9849 1318 3.64| 8 1449 9608 1449 3.31
9802 0.00 || 4900 9801 4900 | 9 1341 10048 1341 3.65| 8 1474 9808 1474 3.32
9998 0.00 || 4999 9997 4999 | 9 1362 10244 1362 3.67| 8 1498 10000 1498 3.34

Table A.5: Comparison of different 2-addition chain algorithms if doublings
free and non-doublings have unit cost. This situation is given for normal basis
representations of finite fields.

are
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Tables A.6—A.8 list the calculations that are discussed in Section 4.3. All
values are computed due to the theoretical results of Section 4. The different sets

of weights are the same as in Tables A.2-A 4.

The key to Tables A.6-A.8

column ‘ label ‘ description

1-3 Param. Input parameters for a 2-addition chain with
weight (cg, ca) for an exponent e € N»;.

1 n The binary length of the exponent e.

2 c The ratio ¢ = Z—j of the weight (cg, ca).

3 P The number of processors to execute Algo-
rithm 4.12 on input e and c.

4 binary The average normalized length L = ¢-(n—1) +
z(n — 1) of a binary addition chain for a ran-
domly chosen exponent e of exactly n bits. This
length is the actuarial expectation in contrast
to column 5 of Tables A.2-A.4 where the av-
erage length is given by experiment on 10000
randomly chosen exponents.

5-7 lower bound | The lower bounds on the depth for some expo-
nents due to Result 4.17.

5 e=2""1 The lower bound for the n-bit exponent 277!,
6 e=2"-1 The lower bound for the n-bit exponent 2" — 1.
7 A The gap between column 5 and column 6.

8-10 Algorithm 4.12 | Values that quantify the quality of Algo-
rithm 4.12 in comparison to the lower bound
(columns 5-7) and the binary addition chain
(column 4).

8 depth The estimate on the depth for Algorithm 4.12
as given in Theorem 4.13.

9 A The gap between the lower bound for the expo-
nent e = 2" — 1 (column 6) and the depth given
in column 7.

10 spd. The speed-up of Algorithm 4.12 relative to the
average length of the binary addition chain.
This is computed as quotient of column 4 and
column 8.
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| Addition chains with weighted length: arbitrary modulus |

Param. binary Iower bound Algorithm 4.12
n | ¢ [Plav.L]e=2"1 e=2"—-1 A[ depth A spd.
20970.747 3 259 154.80 155.80 1] 156.80 1.00 1.65
398 10.64| 3 454 255.49 256.49 1| 257.49 1.00 1.76
606 0.61| 3 670 367.30 368.30 1| 369.30 1.00 1.81
80310.64| 3 915 513.64 514.64 1| 515.64 1.00 1.77
1018 0.69| 3 1214 705.04 706.04 1| 707.04 1.00 1.72
1199/0.62| 3 1341 742.00 743.00 1| 744.00 1.00 1.80
1401 /0.63| 3 1579 878.82 879.82 1| 880.82 1.00 1.79
1601|0.64| 3 1831 | 1030.63 1031.63 1(1032.63 1.00 1.77
1791(0.67| 3 2090 | 1195.42 1196.42 1|1197.42 1.00 1.75
1996 |0.70| 3 2391 | 1393.43 1394.43 1|1395.43 1.00 1.71
2212(0.64| 3 2529 | 1423.94 1424.94 1(1425.94 1.00 1.77
2406 |0.64| 3 2747 1544.34 1545.34 1(1546.34 1.00 1.78
2613|0.65| 3 2997 | 1690.56 1691.56 1|1692.56 1.00 1.77
2802 (0.65| 3 3235 | 1834.13 1835.13 1(1836.13 1.00 1.76
3005(0.67| 3 3514 | 2012.24 2013.24 1|2014.24 1.00 1.74
3202(0.67| 3 3743 | 2142.75 2143.75 1|2144.75 1.00 1.75
3401 (0.68| 3 4014 | 2314.33 2315.33 1|2316.33 1.00 1.73
3603(0.70| 3 4312 | 2510.55 2511.55 1(2512.55 1.00 1.72
3802(0.71| 3 4597 | 2696.24 2697.24 1(2698.24 1.00 1.70
4002 (0.73| 3 4905 | 2904.16 2905.16 1|2906.16 1.00 1.69
4211]0.68| 3 4950 | 2845.10 2846.10 1|2847.10 1.00 1.74
4401 10.67| 3 5158 | 2957.72 2958.72 1]2959.72 1.00 1.74
4602 | 0.68 | 3 5406 | 3105.94 3106.94 1|3107.94 1.00 1.74
4806 |0.67| 3 5610 | 3207.13 3208.13 1|3209.13 1.00 1.75
5002 |0.67| 3 5830 | 3329.27 3330.27 1(3331.27 1.00 1.75
5199(0.66 | 3 6029 | 3429.75 3430.75 1|3431.75 1.00 1.76
5399(0.67| 3 6312 | 3612.85 3613.85 1|3614.85 1.00 1.75
5598 (0.66 | 3 6484 | 3685.67 3686.67 1|3687.67 1.00 1.76
5812(0.67| 3 6784 | 3878.32 3879.32 1|3880.32 1.00 1.75
6005 (0.67| 3 7040 | 4037.81 4038.81 1(4039.81 1.00 1.74
6202 (0.65| 3 7154 | 4053.78 4054.78 1|4055.78 1.00 1.76
6396 0.67| 3 7496 | 4298.57 4299.57 1|4300.57 1.00 1.74
6614(0.67| 3 7730 | 4423.68 4424.68 1|4425.68 1.00 1.75
6802(0.64| 3 7735 | 4334.66 4335.66 1|4336.66 1.00 1.78
7005(0.67| 3 8168 | 4666.28 4667.28 1|4668.28 1.00 1.75
7205(0.67| 3 8428 | 4825.87 4826.87 1|4827.87 1.00 1.75
7410(0.67| 3 8682 | 4977.99 4978.99 1(4979.99 1.00 1.74
7602 |0.67| 3 8889 | 5088.70 5089.70 1]5090.70 1.00 1.75
780310.67| 3 9121 5220.17 5221.17 1|5222.17 1.00 1.75
8003(0.67| 3 9343 | 5341.90 534290 1|5343.90 1.00 1.75
8218 (0.66 | 3 9565 | 5456.47 5457.47 1|5458.47 1.00 1.75
8411(0.66| 3 9747 | 5542.11 5543.11 1|5544.11 1.00 1.76
8601 (0.66 | 3 9958 | 5658.03 5659.03 1|5660.03 1.00 1.76
8802 (0.67 | 3| 10259| 5858.28 5859.28 1|5860.28 1.00 1.75
9006 | 0.66 | 3| 10490| 5987.50 5988.50 1]5989.50 1.00 1.75
9202 (0.67| 3| 10763 | 6162.99 6163.99 1|6164.99 1.00 1.75
9396 (0.66 | 3| 10874 | 6176.93 617793 1|6178.93 1.00 1.76
9603 (0.65| 3| 11078 | 6276.55 6277.55 1|6278.55 1.00 1.76
9802 (0.66 | 3| 11396| 6495.12 6496.12 1|6497.12 1.00 1.75
9998 [0.66 | 3| 11548 | 6549.71 6550.71 1|6551.71 1.00 1.76

Table A.6: Comparison of the upper bound (Section 4.1) and the lower bound
(Section 4.2) for parallel exponentiation for the weights of Table A.2.
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| Addition chains with weighted length: sparse modulus |
Param. binary Tower bound Algorithm 4.12
n | ¢ |[Pllav. L][e=2"T e=2"—-1 Aldepth A spd.
20910.48T 4 204 99.68 100.68 102.68 2.00 1.98
398 0.29| 5 314 115.55 117.55 118.55 1.00 2.65
606 (0.18| 7 411 108.04 111.04 112.04 1.00 3.66
803(0.18| 7 547 146.23 149.23 150.23 1.00 3.64
10180.19| 7 705 196.46 198.46 200.46 2.00 3.52
1199|0.11| 10 734 135.28 138.28 140.28 2.00 5.23
1401|0.10| 11 847 | 146.80 149.80 151.80 2.00 5.58
1601 |0.10 |12 960 159.83 162.83 164.83 2.00 5.82
1791|0.10 11| 1079 183.56 186.56 188.56 2.00 5.72
1996 |0.10 | 11| 1206| 208.54 211.54 213.54 2.00 5.65
2212(0.08 (14 || 1277 171.65 175.65 176.65 1.00 7.23
2406 (0.08 {13 || 1405| 202.14 206.14 207.14 1.00 6.78
2613(0.08 (14| 1517 211.10 215.10 216.10 1.00 7.02
2802(0.08 (14| 1619| 218.99 222.99 223.99 1.00 7.23
3005|0.08|14| 1741 238.78 242.78 243.78 1.00 7.14
3202(0.08 15| 1843| 242.40 246.40 247.40 1.00 7.45
340110.06|17| 1919| 218.87 222.87 223.87 1.00 8.57
3603|0.08 15| 2077| 276.23 280.23 281.23 1.00 7.39
3802(0.08 15| 2190| 289.92 293.92 294.92 1.00 7.43
4002(0.08 14| 2316| 315.08 319.08 320.08 1.00 7.23
4211(0.07|17| 2383| 277.72 281.72 282.72 1.00 8.43
440110.05|22| 2419| 219.29 223.29 225.29 2.00 10.74
4602 |0.05|22| 2524| 223.79 227.79 229.79 2.00 10.99
4806 0.05|23| 2623| 220.67 224.67 226.67 2.00 11.57
5002 (0.05(20| 2771 270.40 274.40 276.40 2.00 10.03
5199(0.04 (24| 2827 228.29 233.29 234.29 1.00 12.07
539910.04 | 25| 2931 231.86 236.86 237.86 1.00 12.32
5598 (0.04 (25| 3039| 240.61 245.61 246.61 1.00 12.32
5812(0.04 (25| 3153| 247.24 252.24 253.24 1.00 12.45
6005|0.05|21| 3311 308.89 312.89 314.89 2.00 10.51
6202(0.04|25| 3364| 263.83 268.83 269.83 1.00 12.47
6396 0.04 26| 3464| 266.16 271.16 272.16 1.00 12.73
6614 |0.04 26| 3581 274.51 279.51 280.51 1.00 12.77
6802|0.05(22| 3734| 333.37 337.37 339.37 2.00 11.00
7005(0.05 (22| 3852| 349.84 353.84 355.84 2.00 10.82
7205(0.05 (22| 3953| 351.11 355.11 357.11 2.00 11.07
7410(0.04 | 25| 4013| 308.89 313.89 314.89 1.00 12.75
7602 (0.04 | 25| 4123| 322.75 327.75 328.75 1.00 12.54
7803 (0.05 (21| 4302| 400.58 404.58 406.58 2.00 10.58
8003 |0.05|21| 4422| 420.58 424.58 426.58 2.00 10.37
8218 (0.04 26| 4449| 340.79 345.79 346.79 1.00 12.83
8411(0.04|25| 4565| 360.18 365.18 366.18 1.00 12.47
8601|0.03|31| 4596| 296.45 301.45 302.45 1.00 15.20
8802(0.03|32| 4688| 287.12 292.12 293.12 1.00 15.99
9006 |0.03|33| 4789| 286.93 291.93 292.93 1.00 16.35
9202(0.03|33| 4892| 291.26 296.26 297.26 1.00 16.46
9396 |0.03 35| 4981 283.71 288.71 290.71 2.00 17.13
9603 0.04 29| 5145| 344.31 349.31 350.31 1.00 14.69
9802(0.03|30| 5242| 341.35 346.35 347.35 1.00 15.09
9998 10.03|35| 5296| 297.36 302.36 304.36 2.00 17.40
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Table A.7: Comparison of the upper bound (Section 4.1) and the lower bound
(Section 4.2) for parallel exponentiation for the weights of Table A.3.
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| Addition chains with weighted length: sedimentary modulus |

Param. binary Iower bound Algorithm 4.12
n | ¢ |Pllav. L]e=2"T e=2"—-1 Aldepth A spd.
209]0.57] 3 223 118.94 119.94 17120.94 1.00 1.84
39810.32| 5 326 127.87 129.87 2|130.87 1.00 2.49
606|0.24| 6 449 146.47 148.47 2]150.47 2.00 2.98
803(0.24| 6 592 190.99 192.99 2[194.99 2.00 3.04
1018 |0.21| 6 719 210.03 212.03 2(214.03 2.00 3.36
1199|0.15| 8 781 182.43 185.43 3]186.43 1.00 4.19
1401/0.14| 9 894 194.36 19736 3|198.36 1.00 4.51
1601|0.16| 8 1049 249.04 252.04 3|253.04 1.00 4.15
1791(0.13| 9 1135 239.97 242.97 3(243.97 1.00 4.65
1996 |0.13| 9 1258 260.68 263.68 3(264.68 1.00 4.75
221210.11|10 1352 246.47 249.47 3(251.47 2.00 5.38
2406|0.10| 11 1453 250.01 253.01 3(255.01 2.00 5.70
2613|0.09 |12 1544 238.48 242.48 424348 1.00 6.34
2802(0.08 |13 1635 234.47 238.47 4(239.47 1.00 6.83
3005(0.09 (13 1770 268.34 272.34 4|273.34 1.00 6.48
3202(0.09 |12 1899 298.10 301.10 3(303.10 2.00 6.26
3401(0.10 |11 2047 346.78 349.78 3(351.78 2.00 5.82
3603(0.09(13 2111 309.97 313.97 4(314.97 1.00 6.70
3802(0.08 |14 2205 304.18 308.18 4(309.18 1.00 7.13
4002(0.10 |12 2389 388.28 391.28 3/393.28 2.00 6.07
4211(0.07|15 2420 314.59 318.59 4|319.59 1.00 7.57
4401 (0.07 |16 2494 293.86 297.86 4(298.86 1.00 8.34
4602 (0.06 | 18 2584 283.47 287.47 4(289.47 2.00 8.93
4806 [ 0.07 | 16 2730 327.48 331.48 433248 1.00 8.21
5002(0.07|16 2840 339.16 343.16 4(344.16 1.00 8.25
5199|0.06|18 2905 306.36 310.36 4(312.36 2.00 9.30
539910.0619| 3009 309.95 313.95 431595 2.00 9.52
5598 10.05|20| 3101 303.00 307.00 4309.00 2.00 10.04
581210.05]|20| 3218 312.17 316.17 4|318.17 2.00 10.11
6005(0.06 |19 3350 348.32 352.32 4(354.32 2.00 9.46
6202 (0.05 (20| 3432 331.13 335.13 4|337.13 2.00 10.18
6396 | 0.05 | 21 3532 334.66 338.66 4340.66 2.00 10.37
6614 (0.05 |21 3652 345.54 349.54 4|351.54 2.00 10.39
6802 |0.05| 21 3755 354.92 358.92 4(360.92 2.00 10.41
7005|0.06|19]| 3892 390.04 394.04 4(396.04 2.00 9.83
7205|0.07|16| 4100 498.49 502.49 4|503.49 1.00 8.14
7410|0.05|20]|| 4097 392.70 396.70 4|398.70 2.00 10.28
760210.05]|20| 4209 408.41 412.41 4(414.41 2.00 10.16
780310.06|19| 4350 449.30 453.30 4(455.30 2.00 9.55
8003 (0.07 |15 4576 575.19 579.19 4(580.19 1.00 7.89
8218 |0.05| 21 4534 425.23 429.23 4(431.23 2.00 10.51
8411|0.05| 22 4620 415.22 419.22 4(421.22 2.00 10.97
8601 (0.05 (23| 4697 396.73 400.73 4(402.73 2.00 11.66
8802 (0.05 |22 4830 429.47 433.47 4(435.47 2.00 11.09
9006 | 0.04 |27 || 4862 359.19 364.19 5(365.19 1.00 13.31
9202(0.04 |27 || 4966 365.13 370.13 5|371.13 1.00 13.38
9396 (0.04 | 28 5057 359.58 364.58 5/365.58 1.00 13.83
9603 [ 0.05 | 22 5278 476.93 480.93 4(482.93 2.00 10.93
9802 (0.04 | 24 5336 435.39 440.39 5(441.39 1.00 12.09
9998 [ 0.04 | 28 5372 373.89 378.89 5|379.89 1.00 14.14

Table A.8: Comparison of the upper bound (Section 4.1) and the lower bound
(Section 4.2) for parallel exponentiation for the weights of Table A.4.



204 Michael Nocker

A.2. Basic arithmetic.

A.2.1. Polynomial basis representation.
nomial basis representation is discussed in Section 5. The times for the three
different moduli are listed in separate tables. All times are the average of 10000
trials. Table A.9 contains the figures for arbitrary modulus f, i.e. the test series
Arbitrary. Table A.10 lists the times for the test series Sparse. Here the mod-
uli are trinomials and pentanomials. The third test series Sedimentary includes
irreducible sedimentary polynomials. The experiments are documented in Ta-
ble A.11. All three tables have the same structure, but column 2 is missed out

in Table A.9.
The key to Tables A.9-A.11
column | label | description
1-2 Param. characterization of the modulus f
1 n the degree of f
—/es, ea,€1/k | Table A.9: no such column,
Table A.10: indices of the non-negative coefficients
in the modulus: only e; given: f=2a"+2z +1 €
Fy[x] is a trinomial. Else f = ™+ 2% 4 2% + 2 +
1 € Fy[z].
Table A.11: k is the degree of the sediment A and
f=a"+he IFQ[I]
3—4 multiplication | figures for the multiplication of two randomly cho-
sen elements of Fyn
3 cA the average time over 10000 trials in CPU-
milliseconds
4 #poly the number of multiplications of randomly chosen
polynomials in Fy [z] of degree less than n that can
be computed in the same time
56 squaring figures for the squaring of a randomly chosen ele-
ment of Fan
5 cQ analogous column 3
6 #poly as column 4
7 co/ca the quotient ¢ = z—i of col. 5 and col. 3
89 inverse figures for the inversion of a randomly chosen ele-
ment of Fyn
8 — the average time over 1000 trials in CPU-
milliseconds
9 #poly as column 4

Basic arithmetic for Fy» in a poly-




Data structures for parallel exponentiation 205

| Arithmetic in B [z]/(f) |

Para. || multiplication squaring inversion
n ca | #poly | cq [ #poly | co/ca [ #poly
209 0.05 260 0.04 1.93 0.74 0.15 7.32
398 0.14 2.32 | 0.09 1.49 0.64 0.38 6.13
606 0.27 2.21 | 0.17 1.34 0.61 0.74 5.97
803 0.42 2.45 | 0.27 1.57 0.64 1.18 6.82
1018 0.56 2.81 | 0.39 1.95 0.69 1.78 8.87
1199 0.83 2.41 | 0.52 1.49 0.62 2.40 6.93
1401 1.05 2.48 | 0.66 1.56 0.63 3.15 7.44
1601 1.31 2.60 | 0.84 1.68 0.64 3.99 7.93
1791 1.52 2.81 1.02 1.88 0.67 4.93 9.10
1996 1.78 3.05 | 1.25 2.13 0.70 6.02  10.28
2212 2.33 2.64 | 1.50 1.70 0.64 7.29 8.28
2406 2.70 2.64 | 1.73 1.69 0.64 8.50 8.32
2613 3.09 2.68 | 2.00 1.73 0.65 9.87 8.55

2802 3.45 2.75 | 2.26 1.80 0.65 11.28 8.98
3005 3.82 2.86 | 2.56 1.92 0.67 12.86 9.63
3202 4.29 2.85 | 2.87 1.91 0.67 14.51 9.63
3401 4.74 2.99 | 3.22 2.04 0.68 16.28  10.29
3603 5.14 3.13 | 3.58 2.18 0.70 18.19  11.09
3802 5.54 3.24 | 3.93 2.30 0.71 20.17  11.79
4002 6.00 3.44 | 4.36 2.50 0.73 22.36  12.83
4211 6.54 2.99 | 4.42 2.02 0.68 24.69  11.27
4401 7.52 2.95 | 5.06 1.98 0.67 26.77  10.48
4602 8.14 2.98 | 5.50 2.01 0.68 29.50  10.79
4806 8.86 2.90 | 5.91 1.94 0.67 31.94  10.46
5002 9.33 292 | 6.21 1.95 0.67 34.37  10.77
5199 || 10.06 293 | 6.64 1.93 0.66 37.60  10.97
5399 || 10.63 291 | 7.12 1.95 0.67 39.96  10.95
5598 || 10.97 292 | 7.22 1.92 0.66 42.69 11.36
5812 || 11.48 293 | 7.66 1.96 0.67 45.65  11.65
6005 || 11.89 297 | 8.00 2.00 0.67 48.88  12.20
6202 || 12.40 2.96 | 8.11 1.93 0.65 51.87  12.37
6396 || 13.01 296 | 8.75 1.99 0.67 55.28  12.59
6614 || 13.40 293 | 897 1.96 0.67 59.15  12.94
6802 || 13.76 292 | 8.77 1.86 0.64 62.31  13.20
7005 || 14.05 2.92 | 9.36 1.95 0.67 66.00 13.71
7205 || 14.51 295 | 9.72 1.98 0.67 70.33 14.31
7410 || 14.86 2.92 | 9.98 1.96 0.67 74.40  14.62
7602 || 15.04 2.96 | 10.07 1.98 0.67 77.83  15.29
7803 || 15.31 2.96 | 10.25 1.98 0.67 81.49 15.74
8003 || 15.42 2.95 | 10.30 1.97 0.67 85.40  16.33
8218 || 16.82 297 | 11.17 1.97 0.66 90.27  15.92
8411 | 19.34 2.96 | 12.74 1.95 0.66 94.63 14.49
8601 || 20.96 2.94 | 13.79 1.94 0.66 99.02  13.90
8802 || 22.65 2.96 | 15.07 1.97 0.67 || 102.81 13.42
9006 || 23.71 2.95 | 15.76 1.96 0.66 || 108.36 13.51
9202 || 24.52 2.99 | 16.43 2.00 0.67 || 113.09 13.79
9396 || 25.97 2.96 | 17.08 1.95 0.66 || 117.48 13.38
9603 || 26.80 2.93 | 17.52 1.92 0.65 || 123.63  13.52
9802 || 27.59 2.93 | 18.28 1.94 0.66 || 127.78  13.57
9998 || 28.21 2.96 | 18.48 1.94 0.66 || 133.09 13.95

Table A.9: Times for basic operations (multiplication, squaring, inversion) in Fon
for the test series Arbitrary.
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| Arithmetik in Fo[2]/(2” + 2% + 2% + 2° +1) |

Parameter multiplication squaring inversion
n_|es,exer | ca | #poly | cg | #poly | cg/ca | #poly
209 6 [ 0.03 1.3270.01 0.63 0.48 0.15 7.26
398 7,6,2 || 0.07 1.18 | 0.02 0.34 0.29 0.38 6.14
606 165 || 0.13 1.06 | 0.02 0.19 0.18 0.75 6.05
803 | 14,9,2 || 0.19 1.08 | 0.03 0.20 0.18 1.19 6.72

1018 | 12,10, 5 || 0.22 1.09 | 0.04 0.21 0.19 1.80 9.11
1199 114 || 0.36 1.03 | 0.04 0.12 0.11 2.39 6.91
1401 92 || 0.44 1.03 | 0.05 0.11 0.10 3.16 7.47
1601 548 || 0.52 1.02 | 0.05 0.10 0.10 3.99 7.91
1791 190 || 0.56 1.03 | 0.06 0.11 0.10 4.88 8.99
1996 307 || 0.60 1.03 | 0.06 0.11 0.10 6.01 10.28
2212 423 || 0.90 1.02 | 0.07 0.08 0.08 7.28 8.27
2406 | 14, 12,5 || 1.05 1.03 | 0.09 0.09 0.08 8.52 8.34
2613 | 14,12,9 || 1.19 1.03 | 0.10 0.08 0.08 9.89 8.56

2802 | 18,14, 3 || 1.29 1.03 | 0.10 0.08 0.08 11.42 9.09
3005 | 14, 12,5 || 1.37 1.03 | 0.11 0.08 0.08 13.06 9.75
3202 | 24,12,3 || 1.54 1.03 | 0.12 0.08 0.08 14.62 9.79
3401 531 || 1.60 1.01 | 0.10 0.07 0.06 16.43 10.41
3603 | 23, 11,6 || 1.69 1.03 | 0.13 0.08 0.08 18.29 11.15
3802 | 16, 15, 8 || 1.77 1.05 | 0.14 0.08 0.08 20.24  11.93
4002 | 24, 11,6 || 1.80 1.04 | 0.14 0.08 0.08 22.35 12.84
4211 | 14,12,6 || 2.25 1.03 | 0.15 0.07 0.07 24.66 11.24

4401 394 || 2.60 1.01 | 0.13 0.05 0.05 26.83 10.39
4602 675 || 2.77 1.01 | 0.13 0.05 0.05 29.44 10.69
4806 2349 || 3.08 1.01 | 0.14 0.05 0.05 31.69 10.42
5002 | 39, 23,5 || 3.25 1.02 | 0.18 0.06 0.05 34.24  10.72
5199 1546 || 3.46 1.01 | 0.15 0.04 0.04 36.95  10.76
5399 485 || 3.67 1.01 | 0.16 0.04 0.04 39.80  10.97
5598 101 || 3.78 1.01 | 0.16 0.04 0.04 42,71  11.39
5812 295 || 3.96 1.01 | 0.17 0.04 0.04 45.77  11.70
6005 | 28, 12,2 || 4.06 1.02 | 0.21 0.05 0.05 48.83  12.23
6202 867 || 4.23 1.01 | 0.18 0.04 0.04 52.84 12.60
6396 91 || 4.43 1.01 | 0.18 0.04 0.04 55.39  12.61
6614 2105 || 4.61 1.01 | 0.19 0.04 0.04 59.15  12.94

6802 | 29, 25,3 || 4.82 1.02 | 0.24 0.05 0.05 62.43 13.25
7005 | 14, 11,4 || 4.89 1.01 | 0.24 0.05 0.05 66.28 13.71
7205 | 21,5,2 || 5.00 1.01 | 0.24 0.05 0.05 69.47  14.06
7410 2179 || 5.10 1.02 | 0.21 0.04 0.04 73.68  14.70
7602 555 || 5.13 1.01 | 0.22 0.04 0.04 77.53  15.26
7803 | 19, 14, 2 || 5.25 1.02 | 0.27 0.05 0.05 81.64 15.81
8003 | 26, 21, 2 || 5.31 1.02 | 0.28 0.05 0.05 86.09  16.52

8218 1443 || 5.68 1.01 | 0.24 0.04 0.04 90.57  16.05
8411 | 30, 27,5 || 6.62 1.01 | 0.28 0.04 0.04 9491 14.53
8601 734 || 7.15 1.01 | 0.25 0.03 0.03 99.72  14.01
8802 2139 || 7.71 1.01 | 0.25 0.03 0.03 || 103.79  13.55
9006 1477 || 8.07 1.01 | 0.26 0.03 0.03 || 109.31  13.62
9202 211 || 8.29 1.01 | 0.26 0.03 0.03 || 113.28 13.81
9396 369 || 8.87 1.01 | 0.27 0.03 0.03 || 11831  13.50

9603 | 19, 10,4 || 9.21 1.01 | 0.33 0.04 0.04 || 123.10 13.45
9802 | 12, 10, 3 || 9.47 1.01 | 0.33 0.04 0.03 || 129.32  13.77
9998 4013 || 9.60 1.01 | 0.29 0.03 0.03 || 13249 13.88

Table A.10: Times for basic operations (multiplication, squaring, inversion) in
Fy» for the test series Sparse.
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| Arithmetik in F,[2]/(2™ + h) with degh =k |

Parameter || multiplication squaring inversion
n | k ca | #poly | cq | #poly | cg/ca | #poly
209 5 [ 0.03 1.57 ] 0.02 0.90 0.57 0.15 7.29
398 7 || 0.08 1.24 | 0.02 0.40 0.32 0.39 6.35
606 9 || 0.14 1.15 | 0.03 0.28 0.24 0.73 5.91
803 8 || 0.20 1.18 | 0.05 0.28 0.24 1.19 6.89
1018 | 10 || 0.22 1.12 | 0.05 0.23 0.21 1.77 8.84
1199 | 11 | 0.37 1.08 | 0.06 0.16 0.15 2.40 6.93
1401 | 11 || 0.46 1.08 | 0.06 0.15 0.14 3.14 7.42
1601 | 11 || 0.56 1.11 | 0.09 0.17 0.16 3.97 7.88
1791 | 12 || 0.58 1.07 | 0.08 0.14 0.13 4.94 9.08
1996 9 || 0.63 1.07 | 0.08 0.14 0.13 5.98 10.23
2212 | 11 || 0.95 1.08 | 0.11 0.12 0.11 7.27 8.27

2406 8 || 1.10 1.07 | 0.11 0.11 0.10 8.57 8.38
2613 | 11 || 1.21 1.05 | 0.11 0.10 0.09 10.01 8.67
2802 9 | 1.31 1.05 | 0.11 0.09 0.08 11.29 9.00
3005 9 | 1.39 1.04 | 0.12 0.09 0.09 12.88 9.63
3202 9 || 1.59 1.07 | 0.15 0.10 0.09 14.65 9.84
3401 | 11 || 1.67 1.06 | 0.17 0.11 0.10 16.28  10.33
3603 | 10 || 1.71 1.04 | 0.15 0.09 0.09 18.17  11.07
3802 | 13 || 1.81 1.07 | 0.14 0.09 0.08 20.20 11.92
4002 8 || 1.86 1.07 | 0.18 0.10 0.10 22.32  12.85
4211 | 12 || 2.28 1.03 | 0.17 0.08 0.07 24.64 11.18
4401 | 12 || 2.65 1.03 | 0.18 0.07 0.07 26.84  10.45
4602 | 14 || 2.82 1.03 | 0.17 0.06 0.06 29.22 10.63
4806 | 12 || 3.18 1.04 | 0.22 0.07 0.07 31.73  10.39
5002 | 11 || 3.33 1.04 | 0.23 0.07 0.07 34.66  10.86
5199 | 12 || 3.52 1.03 | 0.21 0.06 0.06 37.25 10.86
5399 9 || 3.75 1.03 | 0.22 0.06 0.06 39.73  10.94
5598 9 1 3.85 1.02 | 0.21 0.06 0.05 43.03 11.45
5812 | 11 || 4.02 1.03 | 0.22 0.06 0.05 4595 11.75
6005 | 12 || 4.09 1.03 | 0.24 0.06 0.06 49.23 12.34
6202 | 12 || 4.31 1.03 | 0.23 0.05 0.05 52.04 12.39
6396 | 12 || 4.50 1.02 | 0.24 0.05 0.05 55.73  12.68
6614 | 12 || 4.69 1.03 | 0.25 0.05 0.05 59.06  12.96
6802 | 11 || 4.84 1.03 | 0.25 0.05 0.05 62.88 13.34
7005 | 13 || 4.93 1.03 | 0.27 0.06 0.06 66.15  13.76
7205 | 14 || 5.12 1.04 | 0.35 0.07 0.07 69.52  14.13
7410 | 10 || 5.15 1.02 | 0.27 0.05 0.05 73.63  14.63
7602 | 10 || 5.22 1.03 | 0.28 0.06 0.05 7749  15.25
7803 | 12 || 5.30 1.03 | 0.31 0.06 0.06 81.69  15.82
8003 8 || 5.44 1.04 | 0.39 0.07 0.07 85.83 16.40
8218 | 12 || 5.81 1.03 | 0.30 0.05 0.05 90.52 16.04
8411 | 12 || 6.66 1.02 | 0.33 0.05 0.05 94.65 14.44
8601 T 7.27 1.02 | 0.34 0.05 0.05 99.34  13.98
8802 | 14 || 7.90 1.03 | 0.39 0.05 0.05 || 103.38  13.48
9006 9 | 8.19 1.02 | 0.33 0.04 0.04 || 108.14 13.48
9202 | 12 || 8.44 1.03 | 0.33 0.04 0.04 || 113.33  13.79
9396 | 13 || 8.92 1.01 | 0.34 0.04 0.04 || 11832 13.40
9603 | 12 || 9.40 1.03 | 0.47 0.05 0.05 || 123.99 13.62
9802 | 12 || 9.61 1.02 | 0.43 0.05 0.04 || 129.63 13.81
9998 | 13 || 9.71 1.02 | 0.36 0.04 0.04 || 132.88 13.93

Table A.11: Times for basic operations (multiplication, squaring, inversion) in
Fy» for the test series Sedimentary.
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A.2.2. Normal basis representation.

sion in a normal basis representation of Fy. is presented in detail in Section 6.

Test series Normal uses a matrix-based multiplication algorithm and works for
arbitrary normal bases. The experiments are analogous to those for the poly-

nomial basis representations but there are only 1000 trials for each value of n.
Table A.12 has a similar structure as Tables A.9-A.11.

The key to Table A.12
column ‘ label ‘ description
1-2 Param. parameter of the optimal normal basis
1 n the degree of the field extension over Fy
2 k the type of the optimal normal basis
34 multiplication | figures for the multiplication of two randomly cho-
sen elements in Fon
3 cA the average time over 1000 trials in CPU-
milliseconds
4 #poly the number of multiplications of randomly chosen
polynomials in Fy [z] of degree less than n that can
be computed in the same time
o6 squaring analogous columns 34 for squaring
7 co/ca the quotient ¢ = z—f of col. 5 and col. 3

Multiplication, squaring and inver-
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| Arithmetic using a normal basis N of type k& |

Parameter multiplication squaring
n | k ca | #poly | cg | #poly | co/ca
209 2 194 9732 70.00 0.12 0.00
398 2 6.97 114.80 | 0.00 0.05 0.00
606 2 16.03 131.57 | 0.00 0.03 0.00
803 2 28.03 163.43 | 0.00 0.02 0.00
1018 1 33.10 166.88 | 0.01 0.03 0.00
1199 2 62.64 182.44 | 0.01 0.02 0.00
1401 2 85.31 202.67 | 0.01 0.02 0.00
1601 2 112.24 224.60 | 0.01 0.01 0.00
1791 2 140.39 260.43 | 0.01 0.01 0.00
1996 1 126.51 217.65 | 0.01 0.01 0.00
2212 1 155.93 178.08 | 0.01 0.01 0.00
2406 2 269.16 264.72 | 0.01 0.01 0.00
2613 2 324.44 282.29 | 0.01 0.01 0.00
2802 1 252.03 201.66 | 0.01 0.01 0.00
3005 2 432.89 325.85 | 0.01 0.01 0.00
3202 1 330.39 220.24 | 0.01 0.01 0.00
3401 2 555.79 352.91 | 0.01 0.01 0.00
3603 2 622.50 380.88 | 0.01 0.01 0.00
3802 1 472.96 277.67 | 0.02 0.01 0.00
4002 1 525.73 303.13 | 0.01 0.01 0.00
4211 2 852.51 390.51 | 0.02 0.01 0.00
4401 2 930.89 365.73 | 0.02 0.01 0.00
4602 1 718.69 263.71 | 0.02 0.01 0.00
4806 2 || 1109.56 365.94 | 0.02 0.01 0.00
5002 1 854.73 268.62 | 0.02 0.01 0.00
5199 2 || 1297.36  379.43 | 0.02 0.01 0.00
5399 2 || 1399.88 384.67 | 0.02 0.01 0.00
5598 2 || 1504.22 401.28 | 0.02 0.01 0.00
5812 1| 1161.42 297.36 | 0.02 0.01 0.00
6005 2 || 1730.87 433.38 | 0.02 0.01 0.00
6202 1| 1324.32 316.75 | 0.02 0.01 0.00
6396 1| 1404.63 320.66 | 0.02 0.01 0.00
6614 2 || 2100.66 460.98 | 0.02 0.01 0.00
6802 1| 1589.78 337.70 | 0.02 0.01 0.00
7005 2 || 2354.07 490.48 | 0.03 0.01 0.00
7205 2 || 2490.07 508.20 | 0.03 0.01 0.00
7410 1| 1887.56 372.03 | 0.03 0.01 0.00
7602 1| 1982.59 390.77 | 0.03 0.00 0.00
7803 2] 2920.99 565.91 | 0.03 0.01 0.00
8003 2 || 3074.39 589.68 | 0.03 0.01 0.00
8218 1| 2321.12 410.50 | 0.03 0.01 0.00
8411 2 || 3395.38 521.59 | 0.02 0.00 0.00
8601 2 || 3557.05 500.51 | 0.03 0.00 0.00
8802 1| 2659.76 348.05 | 0.03 0.00 0.00
9006 2 || 3892.01 486.12 | 0.03 0.00 0.00
9202 1 2906.29 355.14 | 0.03 0.00 0.00
9396 1| 3031.63 346.03 | 0.03 0.00 0.00
9603 2 || 4430.00 485.61 | 0.03 0.00 0.00
9802 1| 3298.51 350.93 | 0.03 0.00 0.00
9998 2 || 4795.50 503.80 | 0.04 0.00 0.00

Table A.12: Times for basic operations (multiplication, squaring) in Fan for test
series Normal.
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The times for inversion are the average of 100 trials. They are listed separately
in Table A.13.

The key to Table A.13

column ‘ label ‘ description
1-2 Param. as columns 1-2 of Table A.12
3-10 in sequential | figures for sequential inversion
34 binary input addition chain for n—1 is the binary addition
chain
3 t the average time over 100 trials in CPU-
milliseconds
4 L the length of the input addition chain for n — 1
5-7 Brauer input addition chain for n — 1 is a Brauer addition
chain
5-6 t, L as columns 3—4
7 A the quotient of col. 5 and col. 3

8-10 power tree | input addition chain for n — 1 is a a power tree
addition chain

89 t, L as columns 3-4
10 A the quotient of col. 8 and col. 3
11-12 in parallel | figures for parallel inversion on two processors, see
Algorithm 6.27
11 t the average time over 100 trials in CPU-
milliseconds

12 A the quotient of col. 11 and col. 3
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| Inversion a la Fermat using a normal basis N of type k |

Parameter in sequential in parallel
n k binary Brauer power tree

t | L t | L] A t |L]| A t | A
209 2 17.09 10 17.59 10 0.97 1755 10 0.97 15.95 1.07
398 2 86.94 13 83.82 13 1.04 76.88 12 1.13 63.22 1.38
606 2 230.01 15 225.20 15 1.02 192.90 13 1.19 161.29 1.43
803 2 338.75 13 337.53 13 1.00 338.10 13 1.00 282.53 1.20
1018 1 525.57 17 463.62 15 1.13 433.11 14 1.21 334.27 1.57
1199 2 936.99 16 942.37 16 0.99 812.83 14 1.15 687.66 1.36
1401 2| 1271.67 16| 1285.84 16 0.99| 111564 14 1.14 942.03 1.35
1601 2| 1358.70 13| 1345.21 13 1.01| 1343.80 13 1.01| 1231.01 1.10
1791 2| 2509.80 19| 2252.12 17 1.11| 1980.57 15 1.27| 1561.11 1.61
1996 1] 2131.47 18| 1900.24 16 1.12| 1772.61 15 1.20( 1397.30 1.53
2212 1] 2344.81 16| 2336.14 16 1.00| 217442 15 1.08 | 1866.25 1.26
2406 2| 4334.40 17| 4313.31 17 1.00| 3771.90 15 1.15| 3238.25 1.34
2613 2| 4877.26 16| 4851.60 16 1.01| 4560.15 15 1.07| 3891.06 1.25
2802 1] 4279.48 18| 4281.14 18 1.00| 3788.14 16 1.13| 3012.38 1.42
3005 2| 774147 19| 7369.85 18 1.05| 649435 16 1.19| 5203.05 1.49
3202 1| 4527.47 15| 4607.72 15 0.98| 4613.07 15 0.98 || 3956.02 1.14
3401 2| 8402.38 16| 8346.91 16 1.01| 7790.34 15 1.08| 6674.10 1.26
3603 2] 9434.85 16| 9353.21 16 1.01| 9366.45 16 1.01| 7493.37 1.26
3802 1| 8530.44 19| 7997.75 18 1.07| 7578.98 17 1.13 || 5685.95 1.50
4002 1| 8947.48 18| 8405.96 17 1.06| 7900.36 16 1.13 | 6325.21 1.41
4211 21 13637.00 17|13634.30 17 1.00|12783.90 16 1.07 | 11079.90 1.23
4401 2] 14013.00 16| 13955.30 16 1.00|13946.50 16 1.00 || 12107.40 1.16
4602 1 13570.50 20 | 12709.80 19 1.07|11314.00 17 1.20 || 9274.14 1.46
4806 21| 18810.20 18| 18872.50 18 1.00|16661.60 16 1.13 || 14404.80 1.31
5002 11 14673.20 18 | 14508.20 18 1.01|12799.20 16 1.15 || 11098.20 1.32
5199 21 21999.80 18| 22107.70 18 1.00|20799.70 17 1.06 | 16867.70 1.30
5399 2| 23374.80 18 | 23805.20 18 0.98 | 21011.00 16 1.11 | 18190.20 1.29
5598 21 30274.60 21 |28577.00 20 1.06 |24094.20 17 1.26 || 19561.50 1.55
5812 11 22154.20 20 | 20892.20 19 1.06 | 18573.20 17 1.19 || 15089.20 1.47
6005 2| 32644.10 20 | 31195.90 19 1.05|27729.80 17 1.18 | 22495.40 1.45
6202 11 22579.20 18 |22477.60 18 1.00|21162.80 17 1.07 || 17171.20 1.31
6396 11 28244.00 21 | 25270.00 19 1.12|22480.70 17 1.26 || 18288.80 1.54
6614 2 1| 40048.40 20| 39948.60 20 1.00|33640.60 17 1.19| 27324.10 1.47
6802 11 26944.10 18 | 27044.20 18 1.00 | 25471.40 17 1.06 || 20665.80 1.30
7005 2| 44998.50 20 | 42465.10 19 1.06 | 37708.60 17 1.19 | 30644.50 1.47
7205 21 39998.30 17 |39851.50 17 1.00|39997.20 17 1.00 | 32457.70 1.23
7410 11 35855.60 20 |32061.90 18 1.12|32134.60 18 1.12 || 24524.30 1.46
7602 11 37704.50 20 | 35749.60 19 1.05|33775.50 18 1.12 (| 25829.10 1.46
7803 2 || 58726.20 21 | 55472.40 20 1.06 | 46736.00 17 1.26 || 38076.30 1.54
8003 2 || 55496.70 19| 52336.60 18 1.06 | 49197.90 17 1.13 | 40070.70 1.38
8218 1 37214.50 17 |37115.90 17 1.00|37092.80 17 1.00 || 32458.80 1.15
8411 2] 61220.00 19|61120.40 19 1.00|57736.50 18 1.06 | 47598.40 1.29
8601 2] 61083.60 18 |56790.10 17 1.08 | 56822.90 17 1.07 | 49715.90 1.23
8802 11 45079.10 18 | 45282.20 18 1.00|45247.90 18 1.00 || 37262.00 1.21
9006 2 || 74419.00 20 | 74050.60 20 1.00|66143.70 18 1.13 | 54524.00 1.36
9202 11 58281.10 21 |55245.90 20 1.05|49417.30 18 1.18 || 40753.80 1.43
9396 1| 57053.70 20 | 57607.10 20 0.99 | 51534.50 18 1.11 || 42455.40 1.34
9603 2 ]| 75584.80 18| 75292.60 18 1.00|70754.60 17 1.07 | 62076.10 1.22
9802 1 59151.00 19 |59355.90 19 1.00|52794.30 17 1.12 || 46259.90 1.28
9998 2 90891.80 20 |91102.20 20 1.00| 76661.80 17 1.19| 67175.20 1.35

Table A.13: Times for inversion in Fy» for test series Normal.
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A.2.3. Normal Gaufl periods.

The algorithms for normal Gauf} periods are

developed in Section 8 for prime power Gaufl periods and in Section 9 for de-

composable Gaufl periods. The test series PrimeGP contains the same fields as
the test series Normal but uses fast polynomial multiplication instead of matrix-
based multiplication. The experiments documented in Table A.14 are analogous

to those given in Table A.12. But for PrimeGP the times are the average of 10000
trials for multiplication and squaring.

The key to Table A.14
column | label | description
1-2 Param. parameter of the normal prime Gaufl period
1 n the degree of the field extension over Fy
k the order of the subgroup K C Z.,
34 multiplication | figures for the multiplication of two randomly cho-
sen elements in Fon
3 cA the average time over 10000 trials in CPU-
milliseconds
4 #poly the number of multiplications of randomly chosen
polynomials in Fy [z] of degree less than n that can
be computed in the same time
o6 squaring analogous columns 34 for squaring
7 cg/ca the quotient ¢ = z—f of col. 5 and col. 3
8 vs. Th the quotient of column 3 of this table and col-
umn 3 of Table A.12; it is the speed-up that is
achieved by exchanging matrix-based multiplica-
tion by polynomial based multiplication for normal
prime Gauf} periods
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| Arithmetic using a normal Gauf} period of type (n, k) |

Parameter || multiplication squaring vs. Tn
n | k ca | #poly | cg | #poly | cg/ca
209 2 0.12 5.83 1 0.00 0.12 0.02 16.27
398 2 0.26 4.20 | 0.00 0.05 0.01 27.08
606 2 0.48 3.87 | 0.00 0.03 0.01 33.59
803 2 0.67 3.90 | 0.00 0.03 0.01 41.72
1018 1 0.36 1.82 | 0.01 0.03 0.01 91.03
1199 2 1.25 3.65 | 0.01 0.02 0.00 49.94
1401 2 1.54 3.64 | 0.01 0.02 0.00 55.55
1601 2 1.82 3.63 | 0.01 0.01 0.00 61.80
1791 2 1.98 3.66 | 0.01 0.01 0.00 71.01
1996 1 0.90 1.54 | 0.01 0.01 0.01 || 140.87
2212 1 1.23 1.40 | 0.01 0.01 0.01 || 127.12
2406 2 3.53 3.47 | 0.01 0.01 0.00 76.29
2613 2 3.99 3.47 | 0.01 0.01 0.00 81.40
2802 1 1.69 1.35 | 0.01 0.01 0.01 || 148.74
3005 2 4.60 3.46 | 0.01 0.01 0.00 94.09
3202 1 1.99 1.33 | 0.01 0.01 0.01 || 166.03
3401 2 5.41 3.43 | 0.01 0.01 0.00 || 102.82
3603 2 5.67 3.47 | 0.01 0.01 0.00 || 109.82
3802 1 2.29 1.34 | 0.01 0.01 0.01 || 206.41
4002 1 2.37 1.36 | 0.02 0.01 0.01 || 222.11
4211 2 7.46 3.42 | 0.02 0.01 0.00 || 114.24
4401 2 8.55 3.36 | 0.02 0.01 0.00 || 108.89
4602 1 3.46 1.27 | 0.02 0.01 0.00 || 207.59
4806 2 || 10.11 3.32 | 0.02 0.01 0.00 || 109.77
5002 1 3.98 1.25 | 0.02 0.01 0.00 || 214.52
5199 2 || 11.28 3.30 | 0.02 0.01 0.00 || 114.97
5399 2 || 11.99 3.29 | 0.02 0.01 0.00 || 116.77
5598 2 || 12.38 3.30 | 0.02 0.01 0.00 || 121.55
5812 1 4.83 1.24 | 0.02 0.01 0.00 || 240.69
6005 2 || 13.19 3.30 | 0.02 0.01 0.00 || 131.25
6202 1 5.18 1.24 | 0.02 0.01 0.00 || 255.70
6396 1 5.40 1.23 | 0.02 0.01 0.00 || 260.10
6614 2 || 15.03 3.30 | 0.02 0.01 0.00 || 139.73
6802 1 5.79 1.23 | 0.02 0.01 0.00 || 274.62
7005 2 || 15.86 3.30 | 0.03 0.01 0.00 || 148.43
7205 2 || 16.20 3.31 | 0.03 0.01 0.00 | 153.72
7410 1 6.19 1.22 | 0.03 0.01 0.00 || 304.76
7602 1 6.32 1.24 | 0.03 0.01 0.00 || 313.84
7803 2 || 17.07 3.30 | 0.03 0.01 0.00 || 171.16
8003 2 || 17.32 3.32 | 0.03 0.01 0.00 || 177.53
8218 1 6.94 1.23 | 0.03 0.01 0.00 | 334.45
8411 2 || 21.29 3.27 | 0.03 0.00 0.00 || 159.45
8601 2 || 23.14 3.26 | 0.03 0.00 0.00 || 153.71
8802 1 9.07 1.19 | 0.03 0.00 0.00 || 293.26
9006 2 || 25.93 3.24 | 0.03 0.00 0.00 || 150.07
9202 1 9.69 1.18 | 0.03 0.00 0.00 || 299.92
9396 1 10.29 1.17 | 0.03 0.00 0.00 || 294.59
9603 2 || 29.26 3.21 | 0.03 0.00 0.00 || 151.40
9802 1 10.88 1.16 | 0.03 0.00 0.00 || 303.07
9998 2 || 30.78 3.23 | 0.04 0.00 0.00 || 155.80

Table A.14: Times for basic operations (multiplication, squaring) in Fy. for the
test series PrimeGP.
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Table A.15 documents the experiments on multiplication and squaring for the
test series PrimepowerGP. Its goal is to give a comparison between prime Gaufl
periods and prime power Gaufl periods as described in Section 8.1. All figures
are the average of 10000 trials.

The key to Table A.15
column ‘ label ‘ description

1 n the degree of the extension field Fy» over Fy for
which normal prime and prime power Gauf} peri-
ods are compared

2-6 prime power | parameters and times for prime power Gauf} peri-
GauB period | ods of type (n, K) over Fy
2 k the order of the subgroup K
3 |r K CZY and ¢(r) = nk
4 CA the average time over 10000 multiplications in
CPU-milliseconds
5 #poly the number of multiplications of randomly chosen

polynomials in Fy[z] of degree less than n that can
be computed in the same time

6 cQ the average time over 10000 squarings in CPU-
milliseconds
7-11 prime Gauf} | as columns 2-6 but for prime Gauf} period of type
period (n, k) over Fy
12-13 | comparison comparison between prime and prime power Gaufl
periods
12 | A, the quotient between columns 8 and 3
13 | A, the quotient between columns 9 and 4; this is the

speed-up achieved by substituting the prime Gauf}
period by the prime power Gauf} period.
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| Comparison of arithmetic between prime power and prime Gauf} periods |

prime power Gauf3 period prime Gauf} period comparison

n k| r | ca |#poly| cg || k| r | ca |[#poly]| co || Ar | Ac,

171 2 361 020 11.24 0.00] 12 2053 | 0.80 45.85 0.00 || 5.69 4.08

406 || 2 841 | 0.48 6.89 0.00 6 2437 | 1.21 17.34 0.00 || 2.90 2.52

605 || 2 1331| 0.94 6.72 0.00 6 3631 1.90 13.58 0.00 || 2.73 2.02

812 || 1 841 | 0.69 4.03 0.00| 3 2437 | 1.27 7.40 0.001 2.90 1.84

1014 | 2 2197 | 1.74 8.90 0.01 2 2029 | 0.86 4.37 0.01 ] 0.92 0.49
1210 || 1 1331 | 1.26 3.74 0.01 9 10891 | 11.59 34.34 0.01 || 8.18 9.19
1378 || 2 2809 | 2.23 544 0.01| 6 8269 | 6.61 16.09 0.01 2.94 2.96
1711 | 2 3481 | 2.82 543 0.01 6 10267 | 10.50 20.22 0.01 || 2.95 3.72
1830 || 2 3721 | 2.98 540 0.01 || 18 32941 | 59.54 107.90 0.01 || 8.85 19.98
2028 || 1 2197 | 2.29 3.95 0.01 1 2029 | 1.03 1.77 0.01|0.92 0.45
2211 || 2 4489 | 4.29 495 0.01 || 20 44221 |77.94 89.81 0.01 || 9.85 18.16
2485 || 2 5041 | 4.98 4.78 0.01| 4 9941 |10.25 9.83 0.01] 1.97 2.06
2500 || 1 3125 | 3.65 346 0.01] 9 22501 |34.78 32.99 0.01| 7.20 9.53
2756 || 1 2809 | 2.95 241 0.01| 3 8269 | 6.84 558 0.01 294 2.32
3081 || 2 6241 | 6.44 4.68 0.01| 12 36973 | 62.70 45.53 0.01 | 5.92 9.74
3249 || 2 6859 | T7.57 5.12 0.01 || 10 32491 | 48.73 32.96 0.01 || 4.74 6.44
3403 || 2 6889 | T7.12 4.60 0.01| 4 13613 15.16 9.80 0.01] 1.98 2.13
3660 || 1 3721 | 3.95 241 0.02| 9 32941 (59.96 36.64 0.01 || 8.85 15.20
4422 || 1 4489 | 5.43 2.11 0.02 || 10 44221 |79.13 30.80 0.02 || 9.85 14.58
5050 || 2 10201 | 13.22 4.19 0.02 1 5051 | 4.29 1.36 0.02 || 0.50 0.32
5253 || 2 10609 | 14.32 4.16 0.02 4 21013 | 32.87 9.55 0.02]1.98 2.29
6250 || 2 15625 | 23.67 5.65 0.02| 6 37501 |64.11 15.29 0.02 | 2.40 2.71
6806 || 1 6889 | 9.06 1.95 0.03| 2 13613 |15.75 3.40 0.03]1.98 1.74
7203 || 2 16807 | 28.32 5.87 0.03| 4 28813 |46.40 9.62 0.03| 1.71 1.64
8515 || 2 17161 | 27.61 4.03 0.03| 4 34061 |61.35 8.95 0.03] 1.98 2.22

Table A.15: Times for basic operations (multiplication, squaring) in Fy» for the
test series PrimepowerGP.
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The times for inversion of the test series PrimeGP are listed in Table A.16 and
Table A.17. All times are average values for 1000 trials. Table A.16 contains the
values for sequential inversion a la Fermat, as described in detail in Section 6.5
for arbitrary normal bases. Table A.17 is a continuation of Table A.16. It com-
pares the sequential inversion to parallel inversion a la Fermat (also described
in Section 6.5) and inversion via the EEA i.e. Algorithm 8.33 adapted to prime
Gauf periods.

The key to Table A.16

column ‘ label ‘ description
1-2 Param. as columns 1-2 of Table A.14
3-10 in sequential | figures for sequential inversion
a la Fermat
3-5 binary input addition chain for n — 1 is the binary
addition chain
3 t the average time over 1000 trials in CPU-
milliseconds
4 L the length of the input addition chain for n—1
5 vs. Ty the quotient of column 3 of this table and col-

umn 3 of Table A.13; it is the speed-up that is
achieved by exchanging matrix-based multipli-
cation by polynomial based multiplication for
normal prime Gauf} periods

6-9 Brauer input addition chain for n — 1 is a Brauer ad-
dition chain
6-8 t, L, Ty as columns 3-5
9 A the quotient of columns 6 and 3
10-13 power tree | input addition chain for n — 1 is a power tree

addition chain
10-12 t, L, Ty as columns 3-5
13 A the quotient of columns 10 and 3
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The key to Table A.17

column ‘ label ‘ description
1-2 Param. as columns 1-2 of Table A.14
3-5 a la Fermat | inversion by exponentiation
3 binary a reprint of column 3 of Table A.16
4-5 in parallel | figures for parallel inversion on two processors, see
Algorithm 6.27
4 t the average time over 1000 trials in CPU-
milliseconds
5 A the quotient of columns 3 and 4
6-10 via EEA inversion by applying the Extended Euclidean Al-
gorithm in R = F,[x]/(Prk+1)
6-7 | in sequential | figures for inversion via EEA
6 t as column 4
7 A the quotient of columns 3 and 6
8-10 | compared to | the speed-up of inversion via EEA in comparison
with inversion a la Fermat
8 Brauer quotient of column 3 with column 6 of Table A.16
9 power tree | quotient of column 3 with column 10 of Table A.16
10 parallel quotient of columns 3 and 6
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| Tnversion using a normal GauB period of type (n, k) |

Parameter in sequential a la Fermat

n k binary Brauer power tree

t | L]vs. Ty t | L]vs.Ty| A t | L]vs.Ty]| A

209 2 1.14 10 15.05 1.14 10 15.3970.99 1.15 10 15.30]0.99
398 2 3.16 13| 27.55 315 13  26.64|1.00 290 12 26.52|1.09
606 2 6.72 15| 34.21 6.72 15  33.51 | 1.00 5.79 13  33.30|1.16
803 2 819 13| 41.36 8.14 13 4146 1.01 821 13  41.19]1.00
1018 1 598 17| 87.92 522 15 88.82|1.15 4.88 14  88.74|1.22
1199 2] 1895 16| 49.43| 1896 16 49.71|1.00| 16.49 14 49.29|1.15
1401 21 2325 16| 54.69| 23.17 16 55.49|1.00| 20.17 14 55.32|1.15
1601 2] 2205 13| 61.61| 21.92 13 61.37|1.01| 22.02 13 61.03|1.00
1791 2] 3593 19| 69.85| 31.83 17 70.76|1.13| 27.93 15 70.90|1.29
1996 1| 15.53 18| 137.26 | 13.64 16 139.29|1.14 | 12.82 15 138.23|1.21
2212 1| 18.66 16| 125.67 | 18.63 16 12540|1.00| 17.44 15 124.68|1.07
2406 21 57.09 17| 7592| 56.93 17 75.77|1.00| 50.31 15 74.97|1.13
2613 2] 60.26 16| 80.94| 60.00 16 80.86|1.00| 56.16 15 81.19] 1.07
2802 1 29.06 18| 147.26 || 29.05 18 147.35|1.00| 25.75 16 147.10|1.13
3005 2| 8351 19| 92.71| 78.66 18 93.70|1.06| 69.56 16  93.36 | 1.20
3202 1| 2845 15| 159.11 | 28.22 15 163.30|1.01 | 28.42 15 162.33|1.00
3401 2| 81.63 16| 102.93 || 81.71 16 102.15|1.00| 76.08 15 102.40|1.07
3603 2| 85.05 16| 11093 || 85.40 16 109.52|1.00| 8&5.13 16 110.03 | 1.00
3802 1| 41.76 19| 204.29 | 39.50 18 202.48|1.06| 37.17 17 203.88|1.12
4002 1| 40.64 18| 220.16 | 38.47 17 218.53|1.06| 36.00 16 219.44|1.13
4211 21 119.18 17| 114.43 || 120.33 17 113.31|0.99 || 112.01 16 114.14| 1.06
4401 21 128.90 16| 108.72 || 129.81 16 107.51|0.99 || 128.97 16 108.14 | 1.00
4602 1| 66.76 20| 203.27 | 63.54 19 200.01|1.05| 56.37 17 200.72|1.18
4806 21 172.32 18| 109.16 | 172.69 18 109.29 | 1.00 || 152.16 16 109.50| 1.13
5002 1| 6852 18| 214.14 || 68.92 18 210.51|0.99| 60.49 16 211.59]|1.13
5199 21 193.64 18| 113.61 || 193.86 18 114.04|1.00 || 183.40 17 113.41 | 1.06
5399 21 205.70 18| 113.63 | 204.75 18 116.27|1.00 || 182.16 16 115.35|1.13
5598 21/ 248.95 21| 121.61 | 236.59 20 120.79|1.05] 199.26 17 120.92|1.25
5812 1 9248 20| 239.55| 87.48 19 238.82|1.06| 77.90 17 238.43]|1.19
6005 21 251.58 20| 129.76 || 239.10 19 130.47|1.05| 211.97 17 130.82|1.19
6202 1| 88.62 18| 254.79 | 88.90 18 252.84|1.00| 83.54 17 253.32|1.06
6396 1109.22 21| 258.59 | 98.04 19 257.76|1.11| 87.34 17 25740 1.25
6614 21 287.04 20| 139.52 || 289.21 20 138.13|0.99 | 242.06 17 138.97|1.19
6802 1 99.10 18| 271.90 99.67 18 271.35|0.99| 93.38 17 272.78|1.06
7005 2 303.13 20| 148.44 | 287.93 19 147.49|1.05| 255.78 17 147.42|1.19
7205 21 260.15 17| 153.75 | 260.42 17 153.03|1.00 || 260.42 17 153.59 | 1.00
7410 1111814 20| 303.50 || 105.97 18 302.55|1.11 | 105.86 18 303.54 | 1.12
7602 1|120.28 20| 313.48 || 113.87 19 313.95|1.06 | 108.03 18 312.66 | 1.11
7803 2] 342.40 21| 171.51 | 325.67 20 170.33|1.05| 273.86 17 170.66 | 1.25
8003 21 313.66 19| 176.93 | 295.36 18 177.20|1.06 | 278.83 17 176.44|1.12
8218 1| 112.75 17| 330.06 || 111.84 17 331.87|1.01 | 112.89 17 328.58 | 1.00
8411 21 386.15 19| 158.54 || 385.66 19 158.48|1.00 || 364.93 18 158.21| 1.06
8601 21 396.18 18| 154.18 || 372.37 17 152.51|1.06 || 372.19 17 152.67| 1.06
8802 1| 155.62 18| 289.68 || 155.056 18 292.04|1.00 || 156.38 18 289.34 | 1.00
9006 21/ 493.32 20| 150.85 | 496.83 20 149.05|0.99 || 441.57 18 149.79| 1.12
9202 1194.38 21| 299.83 || 184.67 20 299.16 | 1.05 || 164.99 18 299.52 | 1.18
9396 1195.92 20| 291.21 || 195.65 20 294.44|1.00 | 175.39 18 293.82|1.12
9603 21/ 499.59 18| 151.29 || 500.67 18 150.38|1.00 || 470.06 17 150.52 | 1.06
9802 1119754 19| 299.44 | 197.38 19 300.72|1.00 || 175.72 17 300.45 | 1.12
9998 2 || 585.14 20| 155.33 || 585.47 20 155.61| 1.00 || 491.49 17 155.98|1.19

Table A.16: Times for inversion in Fy» for the test series PrimeGP. This table
contains the figures for sequential inversion a la Fermat.
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| Inversion using a normal GauB} period of type (n, k) |

Parameter a Ja Fermat via EEA
n k binary in parallel in sequential compared to
t t | A t | A | Brauer | power tree | parallel
209 2 1.14 121 0.94 054 2.11 2.12 2.13 2.24
398 2 3.16 2.64 1.19 1.38 2.28 2.28 2.10 1.91
606 2 6.72 5.16 1.30 2.69 2.50 2.50 2.15 1.92
803 2 8.19 7.10 1.15 4.36 1.88 1.87 1.88 1.63
1018 1 5.98 4.18 1.43 2.06 2.90 2.53 2.37 2.03
1199 2 18.95 14.41 1.32 8.96 2.12 2.12 1.84 1.61
1401 2 23.25 17.49 1.33 12.01 1.94 1.93 1.68 1.46
1601 2 22.05 2045 1.08 15.20 1.45 1.44 1.45 1.35
1791 2 35.93 22.68 1.58 18.77 1.91 1.70 1.49 1.21
1996 1 15.53 10.67 1.46 6.52 2.38 2.09 1.97 1.64
2212 1 18.66 15.34 1.22 7.83 2.38 2.38 2.23 1.96
2406 2 57.09 | 43.92 1.30 | 3297 1.73 1.73 1.53 1.33
2613 2 60.26 49.21 1.22 38.75 1.56 1.55 1.45 1.27
2802 1 29.06 21.50 1.35 12.04 241 2.41 2.14 1.79
3005 2 83.51 | 56.32 1.48 | 50.34 1.66 1.56 1.38 1.12
3202 1 28.45 | 24.53 1.16 | 1541 1.85 1.83 1.84 1.59
3401 2 81.63 66.08 1.24 63.85 1.28 1.28 1.19 1.03
3603 2 85.06 | 68.96 1.23 | T71.12 1.20 1.20 1.20 0.97
3802 1 41.76 28.51 1.46 21.19 1.97 1.86 1.75 1.35
4002 1 40.64 29.55 1.38 23.36 1.74 1.65 1.54 1.26
4211 2 || 119.18 98.14 1.21 96.63 1.23 1.25 1.16 1.02
4401 2 || 128.90 | 112.38 1.15 | 106.38 1.21 1.22 1.21 1.06
4602 1 66.76 46.27 1.44 30.60 2.18 2.08 1.84 1.51
4806 2 || 172.32 | 132.28 1.30 | 125.45 1.37 1.38 1.21 1.05
5002 1 68.52 | 52.88 1.30 | 35.74 1.92 1.93 1.69 1.48
5199 2 || 193.64 | 148.30 1.31 | 146.15 1.33 1.33 1.25 1.01
5399 2 || 205.70 | 157.18 1.31 | 156.81 1.31 1.31 1.16 1.00
5598 2 || 248.95 | 163.09 1.53 | 168.46 1.48 1.40 1.18 0.97
5812 1 92.48 64.01 1.44 47.72 1.94 1.83 1.63 1.34
6005 2 || 251.58 | 173.72 1.45 | 193.13 1.30 1.24 1.10 0.90
6202 1 88.62 | 68.38 1.30 | 53.94 1.64 1.65 1.55 1.27
6396 11 109.22 | 71.75 1.52 | 57.53 1.90 1.70 1.52 1.25
6614 2 || 287.04 | 198.09 1.45 | 235.32 1.22 1.23 1.03 0.84
6802 1 99.10 76.41 1.30 64.45 1.54 1.55 1.45 1.19
7005 2 || 303.13 | 208.90 1.45 | 264.76 1.14 1.09 0.97 0.79
7205 2 || 260.15 | 212.33 1.23 | 276.56 0.94 0.94 0.94 0.77
7410 1| 118.14 82.41 1.43 75.69 1.56 1.40 1.40 1.09
7602 1 120.28 | 83.20 1.45 | 79.30 1.52 1.44 1.36 1.05
7803 2 || 342.40 | 224.79 1.52 | 327.32 1.05 0.99 0.84 0.69
8003 2 || 313.66 | 227.88 1.38 | 340.69 0.92 0.87 0.82 0.67
8218 1 || 112.75 98.31 1.15 9249 1.22 1.21 1.22 1.06
8411 2 || 386.15 | 300.31 1.29 | 376.57 1.03 1.02 0.97 0.80
8601 2 || 396.18 | 326.12 1.21 | 394.79 1.00 0.94 0.94 0.83
8802 1 || 155.62 | 128.43 1.21 | 106.42 1.46 1.46 1.47 1.21
9006 2 || 493.32 | 365.88 1.35 | 429.82 1.15 1.16 1.03 0.85
9202 1 || 194.38 | 137.57 1.41 | 115.77 1.68 1.60 1.43 1.19
9396 1] 195.92 | 14499 1.35 | 120.23 1.63 1.63 1.46 1.21
9603 2 || 499.59 | 412.95 1.21 | 491.26 1.02 1.02 0.96 0.84
9802 1 || 197.54 | 154.94 1.27 | 131.39 1.50 1.50 1.34 1.18
9998 2 || 585.14 | 431.94 1.35 | 527.09 1.11 1.11 0.93 0.82

Table A.17: Times for inversion in Fy» for the test series PrimeGP. This table
contains the figures for parallel inversion a la Fermat and the inversion with the
help of the EEA.
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Table A.18 documents the experiments on multiplication and squaring for the
test series squarefreeGP. Its goal is to give a comparison between prime Gauf}
periods and square-free Gaufl periods as described in Section 9.2. All figures are
the average of 10000 trials. The table is similar to Table A.15.

The key to Table A.18
column | label | description

1 n the degree of the extension field Fon over Fy for
which normal prime and square-free Gauf§ periods
are compared

2-6 square-free parameters and times for square-free Gaufl periods
GauB} period | of type (n, K) over [y
26 | k the order of the subgroup K
3 0T K CZ) and ¢(r) = nk
4 cA the average time over 10000 multiplications in
CPU-milliseconds
5 #poly the number of multiplications of randomly chosen

polynomials in Fy[x] of degree less than n that can
be computed in the same time

6 |co the average time over 10000 squarings in CPU-
milliseconds
711 prime Gauf} | as columns 2—6 but for prime Gauf} period of type
period (n, k) over Fy
12-13 | comparison comparison between prime and square-free Gauf
periods
12 | A, the quotient between columns 8 and 3
13 | A, the quotient between columns 9 and 4; this is the

speed-up achieved by substituting the prime Gauf}
period by the square-free Gauf period.
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| Comparison of arithmetic between square-free and prime Gaufl periods |

square free Gaul} period prime Gaul} period comparison

n k| r | ca |#poly]| cg k] r | ca |#poly]| co A | Ag,
1987 2 43717 0.13 444 0.00]22 4357 2.772 96.57 0.00]9.97 21.73
396 || 2 851 | 0.29 3.67 0.00| 11 4357 | 2.75 35.43 0.00 || 5.12 9.66
598 || 2 1797 | 0.71 4.62 0.00 | 15 8971 | 8.45 54.80 0.00| 4.99 11.86
805 || 4 3337 | 1.81 9.67 0.00| 6 4831 | 3.37 17.98 0.00| 1.45 1.86
1004 || 2 2515 | 1.32 6.22 0.01 5 5021 | 3.56 16.77 0.01] 2.00 2.70
1219 || 4 5029 | 3.57 9.62 0.01 4 4877 | 3.50 9.40 0.01 ] 0.97 0.98
1398 || 2 3269 | 1.86 4.34 0.01 2 2797 | 1.54 3.58 0.01]0.86 0.83
1602 | 2 3401 | 1.95 3.80 0.01 6 9613 | 9.79 19.07 0.01] 2.83 5.02
1790 || 2 3949 | 2.17 3.96 0.01 2 3581 | 1.98 3.63 0.01 091 091
1996 || 2 5991 | 4.53 7.63 0.01 1 1997 | 0.90 1.51 0.01|0.33 0.20
2206 || 2 6621 | 5.20 6.05 0.01 3 6619 | 5.14 5.98 0.01 || 1.00 0.99
2398 || 2 7197 | 5.53 5.39 0.01 6 14389 | 15.65 15.25 0.01] 2.00 2.83
2604 || 2 6515 | 5.19 4.50 0.01 7 18229 | 25.67 22.25 0.01 | 2.80 4.95
2796 || 2 6071 | 4.71 3.77 0.01 1 2797 | 1.69 1.35 0.01|/0.46 0.36
2098 || 2 8997 | 8.84 6.68 0.01 6 17989 | 25.27 19.11 0.01 | 2.00 2.86
3212 || 2 6739 | 5.46 3.67 0.01 9 28909 | 46.47 31.22 0.01 4.29 8.51
3406 || 2 10221 | 10.61 6.68 0.01 || 10 34061 | 74.16 46.68 0.01 || 3.33 6.99
3597 || 4 16793 | 20.80 12.57 0.01 4 14389 | 15.75 9.52 0.01 ] 0.86 0.76
3799 || 4 15517 | 16.81 9.86 0.01 | 10 37991 | 77.58 45.49 0.01 || 2.45 4.62
4002 || 2 8201 | 6.63 3.75 0.02 1 4003 | 2.37 1.34 0.02 /049 0.36
4202 || 4 26427 | 42.97 19.62 0.02 5 21011 | 32.84 14.99 0.02 ] 0.80 0.76
4410 2 9329 | 9.75 3.82 0.02 2 8821 | 8.57 3.36 0.02]0.95 0.88
4602 || 2 13809 | 15.54 5.69 0.02 1 4603 | 3.46 1.27 0.02 | 0.33 0.22
4807 || 4 19693 | 30.05 9.91 0.02 6 28843 |46.36 15.28 0.02| 1.46 1.54
5004 || 2 10583 | 11.89 3.75 0.02 3 15013 | 16.50 5.20 0.02 || 142 1.39
5198 || 2 10669 | 12.03 3.50 0.02 6 31189 | 48.67 14.17 0.02 | 2.92 4.05
5395 || 4 21877 | 35.36 9.73 0.02 6 32371 |49.57 13.64 0.02 ] 1.48 1.40
5604 || 2 14015 | 15.94 4.28 0.02 7 39229 | 7831 21.04 0.02 | 2.80 4.91
5804 || 2 14515 | 16.38 4.20 0.02 5 29021 | 46.59 11.94 0.02 | 2.00 2.84
5996 || 2 14995 | 16.86 4.24 0.02 3 17989 | 25.69 6.47 0.02 ] 1.20 1.52
6198 || 2 18597 | 27.79 6.67 0.02 6 37189 | 77.55 18.63 0.02 | 2.00 2.79
6404 || 2 16015 | 17.45 3.96 0.02 3 19213 | 28.95 6.56 0.02 1.20 1.66
6604 || 4 26977 | 45.23 9.99 0.02 3 19813 | 30.09 6.65 0.02 ] 0.73 0.67
6806 || 2 13861 | 16.06 3.40 0.02 2 13613 | 15.52 3.28 0.02]0.98 0.97
6996 || 2 16331 | 17.64 3.69 0.03| 5 34981 | 74.80 15.67 0.03 || 2.14 4.24
7206 || 2 21621 | 35.58 7.31 0.03(| 6 43237 |96.48 19.83 0.03| 2.00 2.71
7380 || 2 15023 | 17.23 3.44 0.03| 5 36901 | 77.73 15.53 0.03 || 2.46 4.51
7598 || 2 15517 | 17.33 3.42 0.03| 6 45589 (99.70 19.67 0.03 || 2.94 5.75
7794 || 4 32927 | 71.10 13.72 0.03 || 5 38971 | 7833 15.12 0.03 || 1.18 1.10
7980 || 4 38773 | 74.30 14.32 0.03 || 5 39901 | 78.65 15.16 0.03 || 1.03 1.06
8199 || 4 34637 | 71.50 12.75 0.03 || 4 32797 |74.61 13.30 0.03 | 0.95 1.04
8395 || 4 36949 | 73.63 11.29 0.03 || 4 33581 |74.98 11.49 0.03 | 0.91 1.02
8622 || 2 25869 | 43.07 6.03 0.03| 3 25867 | 42.86 6.00 0.03 || 1.00 1.00
8782 || 2 26349 | 43.78 5.77 0.04 || 3 26347 | 43.77 5.76 0.03 || 1.00 1.00
9012 || 2 22535 36.71 462 0.04| 5 45061 [97.06 12.23 0.03 | 2.00 2.64
9204 || 2 23015 | 37.58 463 0.03| 5 46021 |97.36 12.00 0.03 || 2.00 2.59
9379 || 4 37909 | 74.19 850 0.03| 4 37517 | 78.16 896 0.03]0.99 1.05
9596 || 2 23995 | 38.69 429 0.04 | 3 28789 | 46.72 5.18 0.03 | 1.20 1.21
9798 || 4 40091 | 75.02 8.07 0.04| 2 19597 | 30.08 3.24 0.04 ] 0.49 040
9996 || 2 20291 | 31.55 3.34 0.04| 3 29989 | 48.25 510 0.04 | 1.48 1.53

Table A.18: Times for basic operations (multiplication, squaring) in Fy. for the
test series squarefreeGP.
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A.3. Parallel exponentiation. The times for Figure 10.1 are documented
Table A.19. The experiments used the test series Arbitrary, i.e. the finite field Fy»
was represented by a polynomial basis with an arbitrary irreducible polynomial as
modulus. But here, the squaring operation was substituted by a multiplication
to guarantee that multiplication and squaring have nearly the same cost, i.e.

cg = c4. The times are the average of 10 trials for each n.

The key to Table A.19
column | label | description
1 deg the degree of the extension field of F,
24 sequential sequential exponentiation in Fyn
2 binary /sec the average times for 10 trials in CPU-
milliseconds if the binary addition chain is
applied to exponentiation
3-4 Brauer exponentiation is done in sequential using a
Brauer addition chain (Algorithm 3.12)
3 sec the average times for 10 trials in CPU-
milliseconds
4 spd quotient of columns 2 and 3; this can be re-
garded as the speed-up of Brauer addition
chains in comparison with the binary addi-
tion chain
5-10 parallel figures for different parallel exponentiation
algorithms
56 Brauer (2 proc) figures of the parallel version of Brauer’s al-
gorithm described in Section 10 on 2 proces-
sors
5, 6 sec, spd similar to columns 3—4
7-8 Brauer (8 proc) figures of the parallel version of Brauer’s al-
gorithm described in Section 10 on 8 proces-
Sors
7,8 sec, spd similar to columns 3-4
9-10 | Borodin & Munro | figures of Algorithm 4.3 which runs on 2 pro-
Cessors
7,8 sec, spd similar to columns 3—4
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| Parallel exponentiation if only multiplications are used |

deg sequential parallel

n | binary| Brauer [|Brauer (2 procs)]|Brauer (8 procs)|Borodin & Munro
sec sec |spd|| sec | spd sec | spd sec | spd

209 0.02] 0.01 1.12 0.01 1.39] 0.01 1.427 0.02

398 0.09] 0.08 1.14|| 0.06 1.44| 0.06 1.42| 0.07
606 0.25| 0.21 1.17| 0.17 1.43| 0.17 1.45) 0.19
803 0.50| 041 1.21 0.34 1.45| 0.33 1.49) 0.35
1018 0.83] 0.71 1.17| 0.57 1.45| 0.56 1.49) 0.58
1199 144 1.21 1.19( 0.99 1.45| 0.97 1.49) 0.99
1401 2.14| 1.77 1.21 1.46 1.46| 1.43 1.50| 1.44
1601 3.03| 2.49 1.22 2.07 1.46| 2.01 1.51] 2.03
1791 3.92| 3.22 1.22 2.69 1.46| 2.62 1.50| 2.64
1996 5.16| 4.20 1.23|| 3.53 1.46| 3.43 1.50| 3.46
2212 747 6.04 1.24| 5.08 147 4.94 1.51] 4.98
2406 9.39| 7.57 1.24| 6.42 146 6.24 1.50] 6.26
2613| 11.73| 9.43 1.24 7.99 147 7.78 1.51| 7.80
2802| 14.06| 11.25 1.25 9.54 147 9.33 1.51| 9.34
3005| 16.70| 13.77 1.21| 11.38 1.47| 11.05 1.51} 11.11
3202| 19.90| 16.37 1.22| 13.56 1.47| 13.21 1.51] 13.22
3401 23.39| 19.05 1.23| 15.85 1.48| 15.46 1.51| 15.49
3603| 26.97| 21.87 1.23|| 18.27 1.48| 17.83 1.51| 17.85
3802| 30.70| 24.82 1.24| 20.88 1.47| 20.26 1.51] 20.26
4002| 35.06| 28.22 1.24| 23.75 1.48| 23.13 1.52] 23.12
4211 39.77| 32.00 1.24| 26.95 1.48| 26.29 1.51} 26.21
4401| 48.05| 38.45 1.25| 32.53 1.48| 31.68 1.52| 31.58
4602| 54.46| 43.67 1.25| 36.88 1.48| 35.99 1.51] 35.94

4806| 61.85| 49.51 1.25| 41.90 1.48| 40.92 1.51| 40.76
5002 || 67.55| 53.90 1.25| 45.83 1.47| 44.71 1.51| 44.67
5199| 75.66| 59.88 1.26| 50.91 1.49| 49.78 1.52| 49.63
5399 83.59| 66.27 1.26| 56.44 1.48| 55.12 1.52] 54.90
5598 || 88.58| 70.23 1.26| 59.93 1.48| 58.60 1.51| 58.31
5812| 96.77| 76.59 1.26| 65.48 1.48| 63.91 1.51| 63.57

6005 103.49| 81.81 1.27| 69.94 1.48| 68.46 1.51| 68.25
6202 110.30| 86.71 1.27| 74.36 1.48| 72.59 1.52| 72.49
6396 | 121.30| 95.09 1.28| 81.57 1.49| 79.80 1.52| 79.26
6614 | 128.77|100.90 1.28| 86.76 1.48| 84.84 1.52| 84.57
68021 132.91|103.78 1.28| 89.13 1.49| 87.17 1.52| 86.49
7005 || 142.42|111.70 1.28| 96.17 1.48| 94.07 1.51| 93.73
7205 (| 150.94|118.28 1.28/101.86 1.48| 99.65 1.51| 99.22
7410 159.44|124.31 1.28107.50 1.48105.02 1.52|104.53
7602| 164.87|128.87 1.28|/111.14 1.48108.94 1.51|108.80
7803 ([ 172.00(138.61 1.24|/115.94 1.48|113.70 1.51113.18
8003 177.78|143.10 1.24|119.69 1.49(117.22 1.52]116.48
8218/ 198.09|159.563 1.24|133.28 1.49|130.65 1.52]129.86
84111 232.27|186.60 1.24| 156.60 1.48|153.56 1.51]152.39
8601 || 259.11|207.39 1.25|174.62 1.48|170.93 1.52]169.82
8802 288.63|230.67 1.25|194.52 1.48|190.48 1.52]189.45
9006 || 309.57|246.89 1.25]208.29 1.49|204.45 1.511203.20
92021 328.45|261.13 1.26||220.72 1.49(216.23 1.52|214.83
9396 || 351.22|279.01 1.26]|235.99 1.49(231.42 1.52|229.54
9603 || 371.28294.91 1.26|| 249.42 1.49|244.59 1.52|243.09
98021 392.73|311.48 1.26263.99 1.49|258.92 1.52]257.63
9998 |1 406.50|321.63 1.26 || 272.90 1.49|267.19 1.52]266.34
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Table A.19: Comparison of sequential and parallel exponentiation algorithms if
multiplications and squaring have same cost.
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Tables A.20—A.23 list the results of the experiments described in Section 10.4.
All four tables have the same structure. They contain average times and speed-
ups for the four test series Arbitrary, Sparse, Sedimentary and PrimeGP. For the
latter three test series all values are the average of 100 trials. For the test series
Arbitrary the experiments were repeated only 10 times for each n. The times are
given in CPU-seconds, the speed-up is with respect to exponentiation based on
weighted 2-Brauer addition chains.

The key to Tables A.20-A.23

column ‘ label ‘ description
1-3 Parameter characterization of the basis representation
1 n degree of the extension field over F,

—/es3, ez, e1/k | Table A.20: no such column,

Table A.21: indices of the non-negative co-
efficients in the modulus: only e; given: f =
2" + 2% + 1 € Fy[z] is a trinomial. Else
f=a"+2% +2%2 42 +1€ Flz].

Table A.22: k is the degree of the sediment
hand f=2"+ h € Fy[z].

Table A.23: k is the order of the subgroup

K C Zyyyy-
3 c the ratio z—i
4 seq. average time in CPU-seconds for 10 (Ta-

ble A.20) or 100 trials (all other tables),
respectively, for sequential exponentiation
with respect to a weighted 2-Brauer addition
chain

5-14 parallel figures for the implementation of the parallel
exponentiation algorithm described in Sec-
tion 10

5 2 the average times in CPU-seconds for the
parallel algorithm performed on 2 processors
6 spd. the speed-up compared to the sequential al-
gorithm, i.e. the quotient of columns 4 and
5

7,8 4, spd. times and speed-up similar to columns 56
but for 4 processors

9,10 8, spd. times and speed-up similar to columns 56
but for 8 processors

11, 12 16, spd. times and speed-up similar to columns 56
but for 16 processors

13, 14 32, spd. times and speed-up similar to columns 56
but for 32 processors
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The closing Table A.24 compares the predicted speed-up (see Section 4.3) to
the achieved speed-up (see Section 10.4) for the four test series Arbitrary, Sparse,
Sedimentary and PrimeGP.

The key to Tables A.20—A.23
column | label | description
1 Param./n | the degree of the field extension
2-4 Arbitrary | figures for the test series Arbitrary
2 exp. the maximal speed-up in relation to repeated
squaring that is given by experiment; the
maximum is taken over the average times for
2,4, 8, 16 and 32 processors
3 theo. the expected speed-up as documented in Ta-
ble A.6, column 10.
4 % the quotient of columns 3 and 4
o7 Sparse figures for the test series Sparse
) exp. as column 2
6 theo. the expected speed-up as documented in Ta-
ble A.7, column 10
7 % the quotient of columns 5 and 6
8-10 Sedimentary | figures for the test series Sedimentary
8 exp. as column 2
9 theo. the expected speed-up as documented in Ta-
ble A.8, column 10
10 % the quotient of columns 8 and 9
11-13 PrimeGP | figures for the test series PrimeGP
11 exp. as column 2
12 theo. the optimal depth in case of weight (0,1) is
given by Fact 4.15
13 % the quotient of columns 11 and 12
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| Parallel exponentiation in Fy[z]/(f) with f arbitrary |
Parameter|| seq. parallel (number of processors)

n | c 2 spd] 4 spd.[ 8 spd.] 16 spd.] 32 spd.
209] 0.74] 0.0I] 0.01 1.08] 0.01 1.32] 0.01 1.34]7 0.01 1.29] 0.0T 1.29
398| 0.64| 0.05| 0.04 1.23| 0.04 1.31| 0.04 1.34| 0.04 1.22| 0.04 1.35
606( 0.60|| 0.14| 0.11 1.23| 0.10 1.33| 0.10 1.34| 0.11 1.27| 0.10 1.34
803| 0.64| 0.30| 0.24 1.23| 0.23 1.31| 0.22 1.33] 0.23 1.29| 0.23 1.28
1018 0.69| 0.52| 0.43 1.20| 0.40 1.28| 0.40 1.29| 0.41 1.27| 042 1.24
1199| 0.62|| 0.82| 0.68 1.21| 0.63 1.30| 0.62 1.31| 0.64 1.29| 0.65 1.27
1401| 0.63| 1.22| 1.01 1.20| 0.94 1.29| 0.94 1.30| 0.94 1.29| 0.96 1.26
1601| 0.64| 1.75| 1.47 1.19| 1.37 1.28| 1.36 1.28| 1.37 1.28| 1.40 1.25
1791| 0.67| 2.35| 1.96 1.20| 1.84 1.28| 1.84 1.28| 1.86 1.27| 1.88 1.25
1996 0.70 3.15| 2.66 1.18| 2.53 1.24| 2.51 1.25| 2.58 1.22| 2.57 1.23
2212| 0.64| 4.27| 3.61 1.18| 3.37 1.26| 3.36 1.27| 3.37 1.27| 3.43 1.24
2406| 0.64|| 5.35| 4.52 1.18| 4.25 1.26| 4.22 1.27| 4.23 1.27| 4.30 1.24
2613| 0.65|| 6.68| 5.68 1.18| 5.33 1.25| 5.29 1.26| 5.30 1.26| 5.41 1.24
2802| 0.65| 8.04| 6.87 1.17| 6.46 1.24| 6.40 1.26| 6.40 1.26| 6.56 1.23
3005( 0.67| 9.75| 8.32 1.17| 7.82 1.25| 7.79 1.25| 7.78 1.25| 7.97 1.22
3202| 0.67| 11.62| 9.94 1.17| 9.34 1.24| 9.31 1.25| 9.32 1.25| 9.54 1.22
3401| 0.68| 13.73| 11.80 1.16| 11.12 1.23| 11.08 1.24| 11.08 1.24| 11.32 1.21
3603| 0.70|| 16.04| 13.81 1.16| 13.07 1.23| 12.98 1.24| 13.01 1.23| 13.32 1.20

3802 0.71| 18.47| 15.93 1.16| 15.14 1.22| 15.05 1.23| 15.08 1.22| 15.44 1.20
4002| 0.73|| 21.46| 18.55 1.16| 17.64 1.22| 17.57 1.22| 17.57 1.22| 18.00 1.19
42111 0.68|| 23.07| 19.47 1.19| 18.78 1.23| 18.76 1.23| 18.82 1.23| 19.25 1.20
4401 0.67|| 27.56| 23.26 1.18| 22.47 1.23| 22.49 1.23| 22.70 1.21| 22.94 1.20
4602| 0.68| 31.40| 26.47 1.19| 25.64 1.22| 25.49 1.23| 25.55 1.23| 26.05 1.21
4806| 0.67| 35.31| 29.86 1.18| 28.76 1.23| 28.72 1.23| 28.75 1.23| 29.29 1.21
5002 0.67|| 38.58| 32.56 1.18| 31.45 1.23| 31.29 1.23| 31.41 1.23| 32.05 1.20
5199 0.66| 42.81| 36.02 1.19| 34.85 1.23| 34.70 1.23| 34.73 1.23| 35.22 1.22
5399 0.67| 47.44| 40.08 1.18| 38.81 1.22| 38.55 1.23| 38.71 1.23| 39.34 1.21
55981 0.66| 50.25| 42.31 1.19| 41.10 1.22| 40.99 1.23| 40.86 1.23| 41.50 1.21
5812 0.67|| 55.14| 46.50 1.19| 45.22 1.22| 44.81 1.23| 44.88 1.23| 45.77 1.20
6005| 0.67|| 59.29| 50.25 1.18| 48.81 1.21| 48.47 1.22| 48.41 1.22| 49.51 1.20
6202 0.65|| 62.34| 52.51 1.19| 51.13 1.22| 50.94 1.22| 50.86 1.23| 51.47 1.21
6396 | 0.67| 68.94| 58.25 1.18| 56.70 1.22| 56.57 1.22| 56.72 1.22| 57.81 1.19
6614| 0.67| 72.99| 61.79 1.18| 60.07 1.22| 59.85 1.22| 59.90 1.22| 61.06 1.20
6802 0.64| 74.29| 62.63 1.19| 60.72 1.22| 60.42 1.23| 60.37 1.23| 60.90 1.22
7005| 0.67| 80.84| 68.44 1.18| 66.53 1.22| 66.33 1.22| 66.33 1.22| 67.91 1.19
7205| 0.67| 85.92| 72.92 1.18| 70.96 1.21| 70.60 1.22| 70.80 1.21| 72.37 1.19
7410| 0.67| 90.66| 77.01 1.18| 74.82 1.21| 74.45 1.22| 7446 1.22| 76.69 1.18
7602| 0.67| 93.74| 79.83 1.17| 77.33 1.21| 77.18 1.21| 77.52 1.21| 79.27 1.18
7803 | 0.67| 97.95| 83.42 1.17| 81.01 1.21| 80.73 1.21| 80.59 1.22| 83.22 1.18
8003 | 0.67(/101.10| 85.84 1.18| 83.75 1.21| 83.43 1.21| 83.08 1.22| 85.70 1.18
8218 0.66(/112.40| 95.68 1.17| 93.26 1.21| 92.67 1.21| 92.43 1.22| 94.64 1.19
8411 0.66|(131.15(111.38 1.18{108.21 1.21|107.84 1.22|107.69 1.22(110.39 1.19
8601| 0.66|/145.37(123.60 1.18|120.05 1.21|119.93 1.21|119.57 1.22|122.12 1.19
8802 0.67|(162.07|138.19 1.17(134.48 1.21|133.64 1.21|133.68 1.21|137.29 1.18
9006 | 0.67|(173.42|148.37 1.17(144.23 1.20|143.33 1.21|142.84 1.21|146.83 1.18
9202 0.67(/184.20|157.23 1.17|152.85 1.21|153.10 1.20|152.57 1.21|156.31 1.18
9396 | 0.66(/195.52|166.39 1.18/162.18 1.21|161.61 1.21|161.16 1.21|164.70 1.19
9603 | 0.66(/205.97|175.67 1.17|170.52 1.21|170.64 1.21|169.89 1.21|173.57 1.19
9802 0.66||218.67|186.57 1.17|181.81 1.20|181.73 1.20|180.69 1.21|185.38 1.18
9998 0.66]/225.50]192.42 1.17/186.66 1.21|186.44 1.21|186.02 1.21]190.34 1.18

Table A.20: Times for exponentiation in Fy. for the test series Arbitrary.
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Parallel exponentiation in Fy[z]/(f) with f sparse |

Parameter seq. parallel (number of processors)

n_ Jes,en,e1 ]| ¢ spd.] 4 spd.| 8 spd.] 16 spd.] 32 spd.

209 610471 0.00 1.2170.00 1.40[0.00 1.4370.00 1.31]0.00 1.38
398 7,6,2(0.29| 0.02 1.35{0.01 1.47]0.01 1.65(0.01 1.65|0.01 1.62
606 165 0.18 | 0.03 1.50{0.02 1.76 0.02 1.91|0.02 2.04|0.02 1.57
803 | 14,9,2(0.18 | 0.06 1.4810.03 1.84|0.03 1.84(0.03 1.98|0.04 1.66
1018 | 12, 10, 5| 0.19| 0.09 1.46|0.05 1.79]0.05 1.80(0.04 1.93|0.05 1.61

1199 114|0.11| 0.13 1.53|0.06 2.15|0.06 2.34(0.05 2.40|0.06 2.11
1401 9210.11| 0.18 1.58{0.08 2.21|0.07 2.45|0.07 2.49|0.08 2.27
1601 548 10.10 || 0.24 1.62(0.11 2.24]0.09 2.53(0.09 2.52|0.10 2.39
1791 190 1 0.10| 0.28 1.59(0.13 2.21|0.11 2.49|0.11 2.47|0.12 2.34
1996 307 (0.11 || 0.34 1.58(0.16 2.15/0.14 2.43|0.14 2.40|0.14 2.33
2212 423 10.08 || 0.50 1.64(0.21 2.40|0.17 2.84|0.17 2.84|0.17 2.87

2406 | 14, 12, 5| 0.08 || 0.65
2613 |14, 12,9 | 0.08 || 0.78
2802 | 18, 14, 3| 0.08 | 0.88
3005 | 14, 12, 5| 0.08 | 1.01
320224, 12,30.07| 1.18
3401 531(0.06 || 1.23
3603 [ 23, 11, 6 | 0.08 || 1.44
3802 16, 15, 8 | 0.08 | 1.58
4002 | 24, 11, 6 | 0.08 || 1.71
421114, 12, 6 | 0.07 || 2.12
4401 394 (0.05 || 2.36
4602 675 0.05 || 2.58
4806 2349 | 0.05 || 2.93
5002 | 39, 23, 5| 0.05 || 3.35
5199 1546 | 0.04 | 3.50

1.63(0.28 2.34|0.24 2.76(0.24 2.75|0.23 2.78
1.63(0.33 2.36|0.28 2.78(0.28 2.82|0.27 2.85
1.61|0.37 2.36|0.31 2.80(0.31 2.88|0.30 2.89
1.60(0.43 2.34|0.36 2.76(0.36 2.80|0.35 2.85
1.610.50 2.37/041 2.83|0.40 2.93|0.40 2.94
1.62]0.50 2.46 |0.40 3.05(0.38 3.21|0.38 3.25
1.59 (0.60 2.38|0.52 2.79|0.50 2.88|0.50 2.90
1.62]0.66 2.38|0.57 2.77(0.55 2.85|0.55 2.89
1.65(0.73 2.35|0.63 2.72|0.61 2.80|0.60 2.84
1.67(0.86 2.46|0.71 2.98(0.69 3.05|0.67 3.14
1.7310.88 2.69|0.68 3.46|0.67 3.53|0.63 3.76
1.7210.96 2.69|0.74 3.47|0.68 3.79|0.67 3.87
1.731.07 2.74]0.83 3.54(0.76 3.84|0.73 4.02
1.701.28 2.61|1.02 3.28(0.99 3.40|0.94 3.55
1.73|1.27 2.76 |0.97 3.62|0.87 4.03|0.85 4.13

5399 48510.04 || 3.81 1.7211.38 2.76 | 1.05 3.64 (097 3.94|0.92 4.15
5598 101/ 0.04 | 4.07 1.7211.48 2.75|1.12 3.63|1.00 4.05|0.99 4.11
5812 29510.04 | 4.37 1.7211.60 2.74|1.20 3.62|1.08 4.03|1.07 4.08
6005 |28, 12,2 |0.05| 4.84 1.69|1.86 2.60|1.47 3.30(1.40 3.46|1.34 3.61
6202 86710.04 || 4.95 1.711.81 2.74|1.37 3.62(1.20 4.11|1.21 4.09
6396 91]0.04| 5.32 1.7111.94 2.74]1.46 3.65|1.33 4.00|1.28 4.16

6614 2105 [ 0.04 || 5.70
6802 | 29, 25, 3| 0.05 || 6.32
7005 | 14, 11, 4 | 0.05 || 6.65
7205 | 21,5,2|0.05| 6.93
7410 2179 0.04 | 6.92
7602 55510.04 || 7.22
7803 | 19, 14, 2| 0.05 | 7.93
8003 | 26, 21, 2 | 0.05 || 8.25
8218 1443 10.04 || 8.56
8411 | 30, 27, 5| 0.04 | 10.26
8601 734 10.03 || 10.76
8802 2139 [0.03 || 11.71
9006 1477 0.03 || 12.45
9202 211 |0.03 || 12.99
9396 369 | 0.03 || 14.00
9603 | 19, 10, 4 | 0.04 || 15.41
9802 | 12, 10, 3 | 0.03 || 16.02
9998 4013 ]0.03 | 16.16

1.7112.07 2.75|1.56 3.66|1.39 4.11|1.37 4.16
1.68|2.42 2.62|1.89 3.34(1.79 3.52|1.73 3.64
1.68 2.55 2.61|2.00 3.33|1.90 3.51|1.85 3.60
1.68|2.64 2.62|2.06 3.361.97 3.51|1.94 3.58
1.69(2.55 2.71]1.93 3.581.75 3.96|1.84 3.75
1.69(2.67 2.70]2.03 3.56|1.88 3.85|1.96 3.68
1.66 | 3.08 2.58 |2.42 3.28 227 3.49|2.24 3.55
1.65(3.23 2.56 |2.56 3.22 (244 3.38|2.43 3.39
1.69(3.15 2.72]2.38 3.60(2.11 4.07|2.12 4.04
1.68(3.82 2.68|2.87 3.582.63 3.90|2.87 3.57
1.7113.81 2.82]2.76 3.90 (237 4.55|2.31 4.65
1.71 411 2.85|2.91 4.02|2.55 4.59|2.42 4.85
1.71 435 2.86|3.05 4.08|2.58 4.82|2.48 5.02
1.714.54 2.86|3.15 4.13|2.68 4.85|2.59 5.02
1.714.86 2.88|3.35 4.18(2.82 4.96|2.76 5.07
1.69|5.556 2.77]3.96 3.89 (347 4.44|3.46 4.45
1.69(5.69 2.82]4.06 3.95|3.51 4.57|3.67 4.36
172542 298|380 4.25|3.19 5.06|3.37 4.79
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Table A.21: Times for exponentiation in F,» for the test series Sparse.
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| Parallel exponentiation in Fy[2]/(f) with f = 2™ + h sedimentary |

Parameter seq. parallel (number of processors)

n k] ¢ spd.] 4 spd.] 8 spd.] 16 spd.] 32 spd.
2091 570.52] 0.01 1.2170.00 1.36]0.00 1.3970.00 1.3470.00 1.34
398 | 71032 0.02 1.36(0.01 1.50|0.01 1.63|0.01 1.63|0.01 1.65
606 | 9]0.25| 0.04 1.320.02 1.74/0.02 1.79|0.02 1.85|0.03 1.52
803 | 8|0.24| 0.07 1.43|0.04 1.70/0.04 1.73|0.04 1.78|0.05 1.53
1018110 0.20 || 0.09 1.4410.05 1.76|0.05 1.78 |0.056 1.87|0.06 1.58
1199 |11|0.15 || 0.15 1.50{0.08 1.96|0.07 2.08|0.07 2.13|0.08 1.90
1401|11|0.14 || 0.21 1.55]0.10 2.02|0.10 2.16 | 0.10 2.19|0.10 2.03
1601|11|0.15 | 0.30 1.53|0.16 1.94|0.15 2.07|0.15 2.07|0.15 1.97
1791 |12|0.13 || 0.33 1.55(0.16 2.03|0.15 2.20|0.15 2.18{0.16 2.10
1996 | 9|0.13 || 0.38 1.5410.19 2.03|0.17 2.21(0.18 2.18|0.18 2.12
2212 (11 (0.11| 0.60 1.5710.28 2.14|0.25 2.41(0.26 2.34|0.25 2.36
2406 | 8(0.10|| 0.72 1.58(0.33 2.17|0.29 2.46|0.30 2.38 |0.29 2.45
2613 |11 |0.09| 0.81 1.60|0.36 2.26 |0.31 2.60|0.31 2.63|0.31 2.64
2802 | 9(0.08| 0.92 1.60|0.40 2.31/0.34 2.72|0.34 2.72|0.33 2.77
3005 9(0.09| 1.06 1.59|0.47 2.26 040 2.63|0.40 2.66|0.40 2.67
3202| 9(0.09| 1.30 1.5810.09 2.22|0.51 2.55|0.50 2.59|0.50 2.60
340111 |0.10 || 1.50 1.55(0.69 2.18|0.62 2.43|0.61 2.46|0.61 2.47
3603 | 10 [ 0.09| 1.52 1.58 [ 0.66 2.30|0.57 2.65|0.56 2.69|0.56 2.72
380213 (0.08| 1.63 1.580.70 2.33|0.60 2.73|0.59 2.77|0.58 2.79
4002 | 8]0.10 1.91 1.61|0.87 2.19|0.77 2.48 |0.77 2.47|0.76 2.50
4211112 0.07 | 2.22 1.65|0.93 2.38|0.78 2.83|0.78 2.85|0.76 2.92
44011121 0.07 || 2.60 1.68|1.05 2.47|0.87 3.00(0.87 3.00|0.84 3.11
4602 | 14 | 0.06 || 2.80 1.68|1.11 2.52|0.91 3.09|0.86 3.27|0.84 3.32
4806|121 0.07 || 3.38 1.66|1.38 2.45|1.14 2.95|1.11 3.05|1.10 3.08
5002 |11 | 0.07 || 3.67 1.671.50 2.45|1.24 296 |1.23 2.97|1.22 3.00
5199 |12 (0.06 || 3.84 1.68 | 1.51 2.54|1.20 3.19|1.14 3.35|1.16 3.30
5399 | 9(0.06 || 4.17 1.68 1.64 2.54|1.30 3.21|1.23 3.37[1.32 3.15
5598 | 9(0.05 | 4.37 1.69|1.69 2.58|1.33 3.29|1.25 3.49|1.27 3.45
581211 |0.05 || 4.70 1.68|1.82 2.59|1.43 3.30|1.37 3.44|1.33 3.53
6005 |12 | 0.06 || 5.03 1.67]2.00 2.52|1.59 3.17(1.58 3.18|1.51 3.32
6202 |12 | 0.05 || 5.32 1.68 (2.07 2.57|1.62 3.29|1.53 3.48 |1.56 3.41
6396 | 12 | 0.05 || 5.70 1.67(2.21 2.58|1.72 3.32|1.65 3.47|1.67 3.41
6614 |12 | 0.05|| 6.11 1.68(2.36 2.59|1.84 3.31|1.76 3.47|1.74 3.51
6802 |11 |0.05|| 6.44 1.67|2.50 2.58 196 3.29 |1.84 3.51|1.84 3.50
7005 |13 |0.06 | 6.89 1.66|2.73 2.52|2.16 3.19|2.09 3.29|2.06 3.34
720514 ]0.07| 7.81 1.62|3.29 2.37|2.74 2.85|2.67 2.93|2.62 2.98
7410110 0.05| 7.44 1.66 (2.92 2.54|2.28 3.26|2.16 3.45|2.13 3.49
7602 | 10| 0.05| 7.76 1.66 | 3.06 2.55|2.39 3.25|2.24 3.46|2.48 3.13
7803 12|0.06 | 8.25 1.65(3.32 2.49|2.64 3.12|2.52 3.28|2.64 3.12
8003 | 8(0.07| 9.29 1.60|4.00 2.32|3.37 2.75|3.27 2.84|3.75 2.48
8218 12| 0.05| 9.19 1.66 | 3.60 2.55|2.80 3.28|2.62 3.51|2.62 3.50
8411 |12 |0.05 | 10.69 1.67|4.12 2.60|3.16 3.38 |2.93 3.64|2.92 3.66
8601 | 7(0.05| 11.64 1.67(4.42 2.63|3.34 3.48|3.10 3.75|3.10 3.75
8802 |14 |0.05 || 13.16 1.66 | 5.08 2.59|3.88 3.39|3.64 3.61|3.82 3.45
9006 | 9(0.04 || 13.20 1.69(4.85 2.72|3.54 3.73|3.17 4.16|3.14 4.21
920212 |0.04 || 13.78 1.68|5.08 2.71|3.68 3.74|3.30 4.17|3.47 3.97
9396 | 13 | 0.04 || 14.89 1.70|5.41 2.75|3.89 3.83|3.46 4.31|3.45 4.32
9603 | 12 | 0.05 || 17.08 | 10.25 1.67|6.44 2.65|5.12 3.33 |4.77 3.58 |5.05 3.38
9802 |12(0.04 | 17.22]10.32 1.67|6.32 2.72|4.86 3.54 |4.43 3.89|4.46 3.86
9998 |13 10.04 || 17.09 | 10.06 1.70|5.96 2.87|4.41 3.88|3.90 4.39|3.90 4.38
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Table A.22: Times for exponentiation in Fy. for the test series Sedimentary.
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Parallel exponentiation using a normal Gauf} period of type (n, k) |

Parameter seq. parallel (nodes X processors)

n k] ¢ 2 spd.] 4 spd.] 8 spd.] 16 spd.] 32  spd.

209127000 0.0I] 0.00 1.70] 0.00 2.1970.00 2.59]70.00 2.30[0.00 3.39

39812|0.00| 0.02| 0.01 1.71| 0.01 2.76|0.01 3.71|0.01 3.20|0.00 4.96

606 2|0.00| 0.06| 0.03 1.89| 0.02 3.32|0.01 4.75(0.01 5.51|0.01 441

803(2|0.00| 0.11| 0.06 1.85| 0.03 3.39(0.02 5.32|0.02 7.08|{0.01 8.54
1018 (1]0.00) 0.07| 0.04 1.81| 0.02 3.29(0.01 5.13({0.01 6.33|0.01 6.26
1199(2|0.00| 0.30| 0.16 1.89| 0.08 3.55(0.05 6.10]0.03 8.62|0.03 9.87
1401(2|0.00| 0.42| 0.22 1.89| 0.12 3.59(0.07 6.42|0.04 9.93|0.04 10.57
1601 |(2|0.00| 0.54| 0.27 2.00| 0.14 3.81(0.09 6.21|0.05 9.99|0.04 13.17
1791(2)0.00) 0.67| 0.33 2.05| 0.17 3.95(0.10 6.94|0.06 10.61|0.06 11.88
1996 (1|0.00| 0.34| 0.16 2.04| 0.09 3.90(0.05 6.85]0.03 9.61|0.03 12.07
221211(0.00| 049 0.25 2.00| 0.13 3.84|0.07 6.93|0.05 10.42|0.04 13.68
2406 |2 (0.00|| 1.46| 0.77 1.91| 0.40 3.70|0.21 6.90|0.13 11.35|0.10 14.23
26132 (0.00| 1.80| 0.93 1.93| 0.48 3.77|0.26 6.96|0.15 11.59|0.12 15.55
2802|1(0.00| 0.84| 042 1.99| 0.22 3.87|0.12 7.13|0.08 11.03|0.06 14.54
3005(2(0.00)| 231| 1.22 1.89| 0.63 3.69|0.33 6.90|0.20 11.50|0.15 15.52
320211(0.00| 1.06| 0.56 1.89| 0.29 3.67|0.16 6.84|0.09 11.42|0.07 15.91
340112(0.00f 3.03| 1.61 1.88| 0.83 3.65|0.44 6.92|0.25 12.02|0.17 18.09
36032(0.00) 3.30| 1.80 1.83| 0.91 3.63|0.48 6.89|0.27 12.00|0.19 17.47
3802|1(0.00f 1.39| 0.77 1.82| 0.39 3.57|0.21 6.73|0.12 11.40|0.09 15.37
4002 |1(0.00) 1.49| 0.83 1.81| 0.42 3.54|0.22 6.66|0.13 11.42|0.09 17.04
421112(0.00| 4.92| 247 1.99| 1.27 3.87|0.72 6.80|0.41 12.09|0.27 18.53
440112 (0.00| 5.79| 298 1.94| 1.52 3.80|0.79 7.30|0.48 12.02|0.31 18.58
4602 |1(0.00| 245| 1.25 1.96| 0.65 3.78(0.34 7.19|0.20 12.22|0.14 17.10
480612 (0.00| 7.35| 3.80 1.94| 1.93 3.80|1.01 7.30|0.57 12.86|0.37 19.86
5002 |{1(0.00| 3.04| 1.56 1.95| 0.80 3.80|0.42 7.24|0.25 12.35|0.16 18.66
51992 (0.00| 880| 4.57 1.93| 2.32 3.79|1.21 7.29|0.68 12.94|0.45 19.49
53992 (0.00| 9.61| 5.02 1.91| 2.54 3.78|1.33 7.23|0.74 13.06|0.50 19.08
5598 | 2(0.00 || 10.22| 5.35 1.91| 2.73 3.74|1.41 7.25|0.78 13.05|0.54 18.77
5812|1(0.00| 4.13| 2.17 1.91| 1.10 3.74|0.58 7.14|0.33 12.69|0.22 18.50
6005|2(0.00 11.56| 6.09 1.90| 3.10 3.73|1.60 7.21|0.88 13.09|0.59 19.44
6202|1]0.00| 4.68| 2.46 1.90| 1.25 3.73|0.66 7.14|0.37 12.78 |0.26 18.14
6396 |1]0.00( 5.02| 2.66 1.88| 1.35 3.71|0.70 7.14|0.39 12.74|0.27 18.33
6614 |2 |0.00 | 14.38| 7.60 1.89| 3.87 3.71|1.99 7.24|1.08 13.27|0.72 19.87
6802|1(0.00| 5.68| 3.01 1.89| 1.53 3.71|0.80 7.14|0.44 12.88(0.30 18.91
7005|2(0.00 | 15.93| 8.46 1.88| 4.28 3.72|2.20 7.23|1.22 13.10|0.82 19.43
7205|2(0.00 || 16.64| 8.86 1.88| 4.50 3.70(2.32 7.19|1.26 13.16|0.80 20.77
7410|1(0.00| 6.53| 3.49 1.87| 1.77 3.68|0.92 7.11|0.561 12.81|0.33 19.57
7602 |1(0.00| 6.81| 3.62 1.88| 1.84 3.69|0.95 7.16|0.563 12.81|0.34 19.77
7803 |2 (0.00 || 19.00 | 10.08 1.88| 5.11 3.72|2.63 7.23|1.44 13.16|0.93 20.40
8003|2(0.0019.71]10.44 1.89| 5.31 3.71|2.73 7.23|1.48 13.27|0.93 21.20
8218 |1(0.00| 820| 4.31 1.90| 2.19 3.75|1.13 7.24|0.62 13.21|0.40 20.26
8411121(0.00 | 25.27|13.48 1.88| 6.84 3.70|3.52 7.19|1.90 13.27|1.23 20.50
8601|2]0.00 2790|1490 1.87| 7.56 3.69|3.88 7.20|2.11 13.20|1.35 20.64
8802|1(0.00 11.27| 6.00 1.88| 3.04 3.70|1.56 7.20|0.85 13.21|0.53 21.24
9006 | 2]0.00 | 33.25|17.50 1.90| 885 3.76|4.556 7.31|2.45 13.56|1.53 21.74
9202|1]0.00 | 12.55| 6.69 1.88| 3.41 3.68|1.74 7.21|{0.94 13.40|0.60 21.06
9396 |1|0.00 13.52| 7.20 1.88| 3.67 3.69|1.88 7.18|1.01 13.36|0.65 20.81
9603 | 2 |0.00 || 39.02|20.95 1.86|10.62 3.67|543 7.182.91 13.40|1.80 21.73
9802 |1(0.00| 1497 | 798 1.88| 4.04 3.70|2.08 7.19|1.12 13.36|0.70 21.52
9998 | 2] 0.00 || 42.39]22.90 1.85|11.59 3.66|5.98 7.09|3.16 13.40|1.97 21.54

Table A.23: Times for exponentiation in Fy. for the test series PrimeGP.
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Comparison between expected and realized speedup

Param. Arbitrary Sparse Sedimentary PrimeGP

n exp. theo. % | exp. theo. % | exp. theo. % | exp. theo. %

2097163 1.65 099 1.80 198 091] 1.74 1.84 095 6.38 13.00 0.49

398 || 1.74 1.76 0.99| 2.45 2.656 093| 240 249 096 |10.74 22.06 0.49

606 || 1.78 1.81 0.98| 346 3.66 094 3.03 298 1.01]12.94 30.25 0.43

803 | 1.75 1.77 0.99| 347 3.64 095| 294 3.04 097|21.12 40.10 0.53
1018 || 1.70 1.72 0.99| 3.38 3.52 0.96| 3.26 3.36 0.97|16.29 50.85 0.32
1199 (1 1.79 1.80 0.99| 4.83 5.23 0.92| 4.07 4.19 0097 |25.58 54.45 0.47
1401 | .77 1.79 0.99| 5.13 5.58 0.92| 4.28 4.51 0.95|28.41 63.64 0.45
1601 || 1.75 1.77 0.99| 5.34 5.82 0.92| 3.97 4.15 0.96|36.46 72.73 0.50
1791 (| 1.73 1.75 0.99| 532 5.72 0.93| 445 4.65 0.96|33.61 81.36 0.41
1996 (| 1.69 1.71 0.99| 5.22 5.65 0.92| 4.55 4.75 0.96 | 34.59 90.68 0.38
2212|175 1.77 099 | 6.62 7.23 0.92| 5.17 5.38 0.96|40.34 92.12 0.44
2406 || 1.76 1.78 0.99| 6.31 6.78 0.93| 543 5.70 0.95|43.50 100.21 0.43
2613 || 1.75 1.77 099 6.59 7.02 0.94| 6.02 6.34 0.95|46.80 108.83 0.43
2802 1.74 1.76 099 | 6.84 7.23 0.95| 6.45 6.83 0.94|44.26 116.71 0.38
3005 | 1.73 1.74 099 6.79 7.14 0.95| 6.21 6.48 0.96|48.37 125.17 0.39
3202 1.74 1.75 099 7.10 745 095| 6.03 6.26 0.96|49.28 133.38 0.37
3401 1.72 1.73 099 | 818 857 0.95| 5.66 5.82 0.97|57.48 141.67 041
3603 | 1.71 1.72 1.00| 7.03 7.39 0.95| 6.45 6.70 0.96 | 55.55 150.08 0.37
38021169 1.70 099 7.03 7.43 0.95| 6.73 7.13 0.94|48.85 15838 0.31
4002 || 1.68 1.69 0.99| 6.90 7.23 0.95| 5.83 6.07 0.96|54.57 166.71 0.33
4211\ 1.72 1.74 099 | 794 843 094| 7.22 7.57 0.95]|60.51 161.92 0.37
4401\ 1.72 1.74 0.99]10.01 10.74 0.93| 7.88 8.34 0.94|61.08 169.23 0.36
4602 || 1.73 1.74 0.99 | 10.51 10.99 0.96 | 8.67 8.93 0.97|57.56 176.96 0.33
4806 || 1.74 1.75 0.99 | 11.056 11.57 0.95| 7.98 8.21 0.97|66.88 184.81 0.36
5002 || 1.73 1.75 0.99| 9.57 10.03 0.95| 7.78 8.25 0.94|63.12 192.35 0.33
5199 1.74 1.76 0.99|11.54 12.07 0.96| 894 9.30 0.96|66.10 199.92 0.33
5399 (| 1.74 1.75 0.99 |11.67 12.32 0.95| 9.08 9.52 0.95|64.87 207.62 0.31
5598 || 1.74 1.76 0.99 | 11.65 12.32 0.95| 9.54 10.04 0.95|64.60 215.27 0.30
5812 1.74 1.75 1.00|11.62 1245 0.93| 9.68 10.11 0.96 | 64.11 223.50 0.29
6005 || 1.73 1.74 0.99|10.04 10.51 0.95| 9.05 9.46 0.96|67.63 230.92 0.29
6202 || 1.74 1.76 0.99|11.83 12.47 0.95| 9.66 10.18 0.95|64.30 238.50 0.27
6396 || 1.72 1.74 0.99(12.02 12.73 0.94| 9.68 10.37 0.93|65.12 245.96 0.26
6614 || 1.73 1.75 0.99|12.05 12.77 0.94| 9.84 10.39 0.95|69.43 254.35 0.27
6802 || 1.77 1.78 0.99(10.35 11.00 0.94| 9.89 10.41 0.95|67.06 261.58 0.26
7005 || 1.73 1.75 0.99|10.20 10.82 0.94| 9.31 9.83 0.95|68.24 269.38 0.25
7205 || 1.73 1.75 0.99|10.22 11.07 0.92| 8.03 8.14 0.99|73.24 277.08 0.26
7410 || 1.73 1.74 0.99|11.67 12.75 0.92| 9.93 10.28 0.97 | 70.47 284.96 0.25
7602 || 1.73 1.75 0.99|11.27 12.54 0.90| 9.77 10.16 0.96 | 71.18 292.35 0.24
7803 || 1.73 1.75 0.99|10.13 10.58 0.96| 9.19 9.55 0.96 | 72.37 300.08 0.24
8003 || 1.73 1.75 0.99| 9.65 10.37 0.93| 7.61 7.89 0.96|75.61 307.77 0.25
8218 1.74 1.75 0.99|12.01 12.83 0.94]10.02 10.51 0.95|72.37 293.46 0.25
8411 1.75 1.76 0.99 |11.52 12.47 0.92 | 10.56 10.97 0.96 | 73.45 300.36 0.24
8601 | 1.74 1.76 0.99 |14.23 15.20 0.94|11.00 11.66 0.94|74.26 307.14 0.24
8802 || 1.74 1.75 0.99|15.00 15.99 0.94|10.59 11.09 0.95|76.87 314.32 0.24
9006 || 1.74 1.75 0.99|15.64 16.35 0.96 | 12.70 13.31 0.95| 76.83 321.61 0.24
9202 || 1.73 1.75 0.99|15.73 16.46 0.96 | 12.61 13.38 0.94|75.81 328.61 0.23
9396 || 1.75 1.76 0.99(15.92 17.13 0.93|13.15 13.83 0.95|75.31 335.54 0.22
9603 || 1.75 1.76 0.99|13.76 14.69 0.94|10.38 10.93 0.95| 78.87 342.93 0.23
9802 || 1.74 1.75 0.99|14.21 15.09 0.94|11.61 12.09 0.96 | 78.13 350.04 0.22
9998 || 1.75 1.76 0.99|15.97 17.40 0.92|13.43 14.14 0.95]|78.99 357.04 0.22

Table A.24: Comparison of expected and realized speed-up.
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