. These works may not be posted elsewhere without the explicit written per-
of the copyright holder. (Last update 2017/11/29-18 :21.)

mission

nvoked by poses.

nts i

commercial pur-

only for non

notwithstanding that ing any of these documents will adhere to the terms and constrai
nically. It is understood that all persons copy- each copyright holder, and in particular use them

or by other copyright holders,

are posted here electros

are maintained by the authors

these works

of scholarly

Copyright and all rights therein

nsure timely dissemination

on-commercial basis.

ns to el

al work on a n

MICHAEL NOCKER (1996). Exponentiation in finite fields : theory and practice. Diplomarbeit, Universitit-GH Paderborn. URL
http://www—math.upb.de/ aggathen/noecker.html.

This document is provided as a mea

and technic:

L(Universitat Gesamthochschule Paderborn
L Fachbereich 17 - Mathematik/ Informatik

Exponentiation in finite fields:
theory and practice

Michael Nocker
Diplomarbeit im Fach Informatik

Paderborn, im Oktober 1996

Betreuer:
Prof. Dr. Joachim von zur Gathen

Contents

. Introduction 3
. Different exponentiation problems 5
. Addition chains 7
3.1. Definitions and introduction 0000 7
3.2. Binary method o000 12
3.3. Brauer’smethod Lo 13
3.4. The ¢"-ary method 0L 16
3.5. The algorithm of Brickell, Gordon, McCurley & Wilson 19
3.6. Addition chain algorithms using data compression 23
3.7. Data Compression according to Ziv & Lempel 24
3.8. Addition chain algorithms with proper sets 29
3.9. A new algorithm based on data compression 35
3.10. Summarizing survey 41
. Fast exponentiation 43
4.1. The relation between addition chains and exponentiation 43
4.2. Results transferred from addition chains 44
. Inversion in F;. 49
5.1. Inversion based on Fermat’s Little Theorem 49
5.2. Calculating the Inverse with Euclid 53
5.3. Comparison 55
. Finite fields 56
6.1. Introduction 56
6.2. Definitions oo oo 56
6.3. The representation of finite fields 57
. Polynomial representation 59
7.1. Irreducible polynomials oL 59
7.2. Fast multiplication for polynomials. 59
7.3. Modular composition L0000 65

7.4. Shoup’s algorithm o000 71

2 CONTENTS
8. Normal bases 75
8.1. Definition and basic arithmetic operations 75
8.2. Normal bases generated by Gaufl periods 79
8.3. Construction of the multiplication table Ty 82
9. Using fast multiplication within normal basis representation 87
9.1. The basicidea o 87
9.2. The residue class ring F,[z]/(®,) 87
9.3. A transformationo oL 88
9.4. Fast multiplication based on GauBl periods 89
9.5. A summarizing table 0000000 91
10. Practical results for addition chain heuristics 93
10.1. The experiment 93
10.2. The classical algorithms 94
10.3. Algorithms based on data compression 96
10.4. Comparison between the two methods 97
10.5. Addition chains: theory vs. practice 97
11. Practical comparison of exponentiation algorithms 99
11.1. The experiment i 99
11.2. Remarks on the algorithms 102
11.3. Results o 105
12. Conclusion 109

References

111

1. Introduction

Some cryptographical methods use exponentiation as a basic operation: e.g.,
the Diffie-Hellman method for key-exchange (Diffie & Hellman 1976), ElGa-
mal’s algorithm for digital signature (ElGamal 1985) or the RSA-scheme of
Rivest et al. (1978). Using one of these public key cryptosystems one has to
use large exponents in finite fields for encoded transmission. Therefore fast
exponentiation, and as we will see in the sequel, also fast multiplication algo-
rithms have to be developed.

Exponentiation in finite fields can be done by successive multiplication of
smaller powers of the given basis. Hence we can speed up exponentiation by
searching for a clever selection of smaller powers. This leads to the topic of
addition chains because the problem of multiplication of powers of a given basis
“can be easily reduced to addition, since the exponents are additive.”(Knuth
1981, p. 444). Addition chains and their transfer to exponentiation algorithms
are the first part (Sections 2-5) of this Diplomarbeit.

In Section 3 we present g-addition chains as a new generalization of addi-
tion chains which are helpful when discussing exponentiation over the finite
field Fyn. We derive concrete upper bounds on the number of multiplications
for exponentiation using addition chains and introduce a new addition chain
algorithm based on data compression techniques. This algorithm is compared
theoretically to the five best known addition chain algorithms that can be found
in the literature.

We show in Section 5 that the problem of inversion in finite fields can be
reduced to addition chains and compare this method to inversion using the fast

Extended FEuclidean Algorithm.

Another point to examine is how fast one single multiplication can be com-
puted in finite fields. This coheres with the topic of representation of finite
fields. Fast multiplication algorithms are based on polynomial arithmetic. Rais-
ing to a determined power can often be done much more efficiently by using
normal bases. Hence the problem of representation of finite fields and the dif-
ferent exponentiation algorithms derived from this are contents of the second
part (Sections 6-9) of this Diplomarbeit.

We give a survey on fast polynomial multiplication, fast matrix multiplica-
tion and modular composition in Section 7 and introduce the exponentiation
algorithm of Shoup (1994) based on modular composition for arbitrary finite
fields. Shoup (1994) restricted his algorithm to field extensions over F,.

We also analyze an exponentiation algorithm based on a normal basis rep-
resentation of finite fields that uses a sparse multiplication table due to Ash et
al. (1989) and Mullin et al. (1989). Both algorithms are theoretically compared
in detail to an algorithmic idea of Gao ef al. (1995a) that connects polynomial
and normal basis representation via Gaul} periods to get a fast exponentiation
algorithm.

The last part (Sections 10-12) is concerned with practical results on im-
plementations of both different addition chain algorithms and exponentiation
algorithms using different ways to multiply. The implementations are written
in C++.

In Section 10 we present our practical results on addition chains. For the
first time all five algorithms that can be found in the literature are practically
compared to each other and the new addition chain algorithm in detail. We
also give a comparison between theoretical and practical results.

Section 11 1is pointed out to be the first comparison of the three fastest
exponentiation algorithms so far. We show that normal basis representation
has to be combined with fast polynomial arithmetic to get optimal results.

Finally T would like to thank Prof. Dr. von zur Gathen and the members of
his group for stimulating discussions, motivating support and excellent working
conditions during the work on this Diplomarbeit.

2. Different exponentiation problems

The basic problem. The simplest way to compute 6° for b € G, where G
is a multiplicative group and e € N, is to start with b and multiply e — 1
times by b. This brute force algorithm can be improved: “The time required
for an exponentiation can be reduced by two orthogonal methods. On the
one hand, one can reduce the time per multiplication by optimizing it. On
the other hand, one can reduce the number of multiplications”(de Rooij 1995,
p. 389). The first method also means to profit of special structures given for
(G: this can often reduce the time required for exponentiation. But first we
concentrate on the idea to reduce the number of multiplications; methods to
speed up multiplication will be discussed later.

ProBLEM 2.1. Find an algorithm that needs a small number of multiplications
to compute b® for given b € G,e € N.

Three cases. There are three forms of the basic problem (see de Rooij 1995,
pp. 389-390):

1. band e are both variable. This problem is required e.g. for the ElGamal-
algorithm (see ElGamal 1985).

2. bis fixed, e is variable. This case appears in many cryptosystems (see

the references given by Brickell et al. 1993).

3. b is variable, € is fixed. This is the situation for RSA (see Rivest et al.
1978) when ¢ is a key.

Since the first item is the most general case, we concentrate on this when
introducing the different algorithms. When discussing these algorithms in de-
tail we also examine their usage for the remaining two cases.

The representation of numbers. Before we work on methods to solve
Problem 2.1 we have to look at the representation of numbers because several
ideas are based on a special representation of the exponent e.

DEFINITION 2.2. Given integers m € N and q > 2, the g-ary representation of
m is defined as (mx_y,...,mg), with Y 0 miqt =m, \ = [log,m] + 1 and
Mo, ...,my—1 € {0,...,q—1}. We write (my_1,...,mo) = (m),.

The g-ary representation for given m is unique. Because it is so important
we give an example for the 2-ary or binary representation:

EXAMPLE 2.3. Let m = 141,¢g =2. Then m =128 +8+4+1=1-2"4+0-
240-2240-24+1-2241-2240-24+1 and Wehave(141)2=(10001101).

DEFINITION 2.4. Let (m), = (mx_1,...,mg) be the g-ary representation of m.
The g-ary Hamrming weight v,(m) is defined as v,(m) = #{i:m; # 0,0 <1 <

AL,

3. Addition chains

3.1. Definitions and introduction.

Original addition chains. Although Problem 2.1 deals with multiplication,
the problem can be easily reduced to addition, since the exponents are additive.
Therefore, we first concentrate on addition chains for finding algorithms to solve

Problem 2.1.

DEFINITION 3.1. 1. An (original) addition chain for m is a sequence of
integers 1 = ag, ai,...,ar, = m with the property that a; = a; + ay for
somek <j <iforalli=1,2,...,L (Knuth 1981). L is its length.

2. The smallest L for which there exists an addition chain of length L for
m is denoted by l[(m) (see Knuth 1981).

Following Knuth (1981), where one can find an excellent survey on addition
chains, we may assume without loss of generality that an addition chain is
‘ascending’:

l=ay<a, <...<ap=nm. (3.1)

We also use a few special terms in connection with addition chains that were
introduced by Knuth (1981). By definition we have, for 1 <7 < L, a; = a; + ax
for some 0 < 3 < k < 1.

1. If j =k <i—1 then we call step ¢ of (3.1) a doubling.
2. If j <k =1—1 then step 7 is called a star step.

Knuth (1981) uses the term doubling in a more restrictive way by imposing
j=k=1—1.

A generalization. For our algorithmic purposes it is useful to generalize the
notion of addition chains in the following way:

DEFINITION 3.2. Let q,m € N.

A g-addition chain for m is a sequence of integers 1 = ag, a1,...,a;, = m with
the property that a; = aj + ay for some k < j <1 or a; = q - a; for some j <1
foralli=1,2,..., L.

We denote the length of a shortest ¢g-addition chain for a given m by [,(m).
We call step ¢ a g-step if a; = g - a;. For ¢ = 2 this is just a doubling.

Every g-addition chain can be rewritten as an original addition chain by
expanding a; = ¢ - aj to 2a;,...,qa; = a;. This can be done using [log, ¢|
doublings and at most [log, ¢| star steps. If we denote the number of doublings
by D, the number of ¢-steps by) and the number of remaining addition steps
by A we can write

L=D+Q+A (3.2)

for a g-addition chain of length L. We therefore get an upper bound on the
length L' = D" 4+ A" of an original addition chain generated out of a g-addition
chain of length L = D + Q) + A:

D' < D+ [log,q]Q,
AI S Hogzq-‘Q—}_Aa
L' = D'+ A" <D+ A+2[log, q|Q.

3.1.1. Complexity of addition chains. To find algorithms for Problem 2.1
we now have to find algorithms that generate short addition chains. This leads
to a new problem:

PROBLEM 3.3. Let m and k be positive integers. Does there exist an addition
chain for m with length L < k7

The answer was given by Downey et al. (1981):
Fact 3.4. Problem 3.3 is NP—complete.

Therefore, it would not be a promising approach to try and calculate an
addition chain with shortest length; rather we look for one with short length.

Word chains. Let A be a finite set that we shall call an alphabet. A g-letter
alphabet is an alphabet A with ¢ elements. We can assume without loss of
generality that A ={0,...,¢ —1}.

DEFINITION 3.5. A word over the alphabet A is a finite sequence of elements
of A:

(’NLA_l, TNN_Q,y .« vy 1T, mo) € ./4A

for some A € N. The set of all words over A is denoted by A*.

A survey on the topics of words can be found in Lothaire (1983).

DEFINITION 3.6 (CF. BERSTEL & BRLEK 1987). 1. A word chain for a
word w € A* over a g-letter alphabet A is a sequence

Wi—gy-..,Wo,W1,...,W[,

of words such that A = {w;_,,...,wo}, wy, = w and for each 1 <1 < L
there exist j,k with 1 — q < j,k < i such that w;, = (wj,wy) is the
concatenation of w; and wy. The length of the word chain is the integer

L.

2. The shortest length L for which there exists a word chain for w is denoted
by [4(w).

REMARK 3.7. 1. (Original) addition chains correspond bijectively to word
chains over a one-letter alphabet, and therefore word chains are a gener-
alization of addition chains.

2. Word chains provide a short notation for shifts and concatenations of the
g-ary representations.

3. Let wi_g,...,wr, be an addition chain over A. Let 1 < ¢ < L and
w; = (my_1,...,mg) € A*. Then there exist 1 —q < j,k < i with
w; = (wj,wg) and X € {1,...,X — 1} with w; = (my_1,...,my) and

Wy = (m/\/_l, .. .,T)’LO).

LEMMA 3.8. Let w € A*. Then l4(w) > log, X is a lower bound on the
shortest length of a word chain for w. If [4 = log, A, then w = (w',w') for
some w' € A*.

Proor. (by induction on A:) For A = 1 we have w € A and thus [4(w) =
0 > log, A. Let us assume that the induction hypothesis holds for all w’ € AV
with A < A. Let wy_,,...,wr, be a shortest word chain for w over A with
L = l4(w). Then there exist 1 — ¢ < j,k < L with w = (wj,w;). But
4 =max{ls(w;), la(wr)} +1 >1log, 5 +1=1log, \. O

10

Comparison. We have introduced two generalizations of addition chains so
far. We simulate word chains over a ¢g-letter alphabet A by g-addition chains.
This can be done by identifying A4* and N via the g-ary representation in the
following way: Let m € Nwith (m), = (my_1,...,mg). Then (my_q,...,mg) €
A*. Vice versa let m € A* with (m), = (ma-1,...,mg). Then Zo<¢'<A miq' €
N.

Let A be a g-letter alphabet. Let m € A* with (m), = (ma_1,...,mo).
Then m; € {0,...,g—1} for 0 <7 < A Let wi_g,...,wo, w1,...,wr, be a word
chain for m. Then we have a g-addition chain ao,...,ar by the rules:

1. Set ap = wi—g41 =1,...,05-0 = wog =¢q— 1.

2. Let 1 < < Land 1—-¢q < 5,k <@ with w; = wjw. Let 5/, k" with
aj = w; and ap = wg. Let A = _logq wi] + 1. Then we can create
ajr,q - ajr, .. .,q/\ . aj/,qA s ajr + ap = a; = w;.

Therefore step ¢ in a word chain can be simulated by a g-addition chain
using A ¢-steps plus one star step.

PRrROPOSITION 3.9. A word chain of length . can be simulated by a g-addition
chain of length L' < (q¢+ 1)L.

We illustrate this in an example.

ExamprLE 3.10. Let m = 141 and ¢ = 4. Then the 4-ary representation of 141
is (141)4 = (2,0,3,1).

1. A word chain form = (2,0,3,1): w_3, w_y, w_y, wp, wy, wy, ws =0,1,2,3,
(2,0),(3,1),(2,0,3,1). It can be easily seen that there is no shorter word
chain for m = (2,0,3,1) = (141)4 over {0, 1,2,3}.

2. A 4-addition chain for m = 141 derived from the given word chain:
ag, a1, g, A3, da, A5, g, a7, a8 = 1,2,3,4-2,4-3,124+1,4-8,4-32,128 4+ 13.

3. An (original) addition chain for m = 141 derived from the given 4-
addition chain: by, by, by, bz, by, bs, bg, bz, bg, by, b1g, by1,b10 = 1,2,3,2 + 2,4
+4,343,6+6,12+ 1,848,164+ 16,32 4+ 32,64 + 64,128 4+ 13. This is
not the shortest possible addition chain for m = 141. A shorter one is
e.g.: b, by, bl b bl bl bl b b by by =1,2,242,44+4,848, 164+ 1,17+
17,34 41,35+ 35,70 4+ 70, 140 + 1.

11

word chain:

0.(1).(2.3).20), @1, (2031

|
|

|
|

|
|

| I \

|
|

|
|

|

I \

4-édd|t|on chain:
V v

1, 2, é,

4 \ ¥

é, 12,13, % 12814

| |

| |

| |

| |
I

| |

| |

| |

I

I /

\ | /

(original) addltlori chain /
T i Yoy ’

1, 2, 3 4,8, 612 13 1632 64128 141

Figure 3.1: Simulation of a word chain for (141)4 = (2,0,3,1) by an original
addition chain via a 4-addition chain.

! |
!

I
|
I
|
I
I
|
I
I
I
I
/ A
I
\

: 1 |

/ |
|

| |
\

| |
‘ ! | |
1 ;o / I I
! 1

| |
| i | / I I
l

| |
|

| |
|

| |
|

| |
\

\ \

/
/
/

In the other direction, we cannot simulate all g-addition chains by word
chains over a g-letter alphabet because we cannot express a; = a; + a; directly
as a step in a word chain. Because some algorithms given below operate not only
with shifts and concatenations over the g-ary representation (e.g. Algorithm
3.25) we concentrate on the g-addition chains which are just original addition
chains for ¢ = 2.

An upper bound on the number of star steps. Berstel & Brlek (1987)
proved the following:

THEOREM 3.11. Let A be a g-letter alphabet. For an arbitrary ¢ > 0 there is
a constant Ay such that, for any word w € A* of length X > Xq, there exists a
word chain computing w of length < (1 + 5)@.
REMARK 3.12. Let m € N and A = |log,m| + 1. According to Theorem
3.11 and the relationship between addition chains, g-addition chains and word
chains, there exists an (original) addition chain with X doublings and ; (1 +

o(1)) star steps. Corollary 3.28 will give the number of doublings and Gtar steps
more precisely.

12

3.2. Binary method.

Basic idea. The most commonly used algorithm to generate addition chains
is probably the binary method. The algorithmic idea is based on the binary

representation (m)s = (ma_1,...,mg) of m and the facts that
0 (Logjermiot Mit1+i2)2 = (macy,. . ymirn), (2 0gjanmiot Mis1+i2)2 =
(215]'0_2' Miyj2)2 = (ma-1, ..., miy1,0) and
0 lej</_2- m2+]21 +m; = 20§j<z\—i m2+]21 and (ZOS]{A—Z’ mi+j2-7‘)2 =
A1y ooy).

The first equation denotes a doubling in the notation of addition chains and
the second one is just a star step. In the literature (see e.g. Jungnickel 1993) it
is often suggested to scan from low—order to high—order. The better way seems
to be to scan in the opposite direction, since we then only have to deal with
one intermediate result. In the other case we have to evaluate supplementary
2" in the ith step.

Algorithm. We can derive an algorithm straight forward using the ideas
above:

ALGORITHM 3.13. binary
Input: m € N with (m)y = (m_1,...,mg) and X = |log, m| + 1.
Output: 1 = ag,...,ar, = m, an addition chain for m of length L.

1. Set dy =1 and j = 1. Set ap = dp.
2. Fori1 = A — 2 downto 0 compute

3. Compute aj = aj_1 + aj_1. Set j = j + 1 [Comment: This is the
doubling.]

4. If m; =1 then compute a; = aj_1+dy and set j = j+ 1. [Comment:
The star step depends on m; = 1.]

5. Return dy,ay,...,a;_;.

LeMMA 3.14. Algorithm binary computes an addition chain for m. It uses
A = vy(m) — 1 star steps and D = |log, m| doublings, where v,(m) is the
Hamming weight of (m)s,.

13

PrOOF. The loop invariant for the loop in Steps 2—4 can be chosen as follows:
after round ¢ we have an addition chain 1 = dy,ay,...,a;_1 with (a;_1), =
(m,_l, e ,mz-).

With : = A —1 and j = 1 we have (1); = (dy); = (my — 1), an addition
chain for 1 before entering the loop and the invariant holds. Let us now as-
sume that the invariant also holds for ¢+ < £ < A. Then in round : we generate

aj = 2aj_y with (a;—1)2 = (mac1,...,miy1) and (a;)2 = (mac1, ..., mig1,0). If
m; = 1 we have to do Step 4: aj41 = a; + ap and aji1 = (a1, ..., Mit1, M)
and therefore — with ascending j — in both cases the invariant holds. In

Step 5 the algorithm returns the addition chain 1 = dy,ay,...,a;-1 with
(aj—1)2 = (maz1,...,mg) = (m). This shows partial correctness. Termi-
nation and thus total correctness are clear.

For the cost analysis, we note that for any ¢ < A, a star step is brought
to the addition chain iff m; = 1 for all 0 <7 < A — 1 (see Step 4). Thus
A = v3(m) — 1 because my_y = 1. At every lap we get one doubling and with

A—2+1lapsweget D=X—1. 0

Worst and Average Case. The worst case occurs at m = 28 — 1,k € N.
Then we have D = [log, (2 —1)] =k —1and A = 1p(2* —1) -1 =k -1
star steps. According to Equation (3.2) weget L=A+D=k—-1+k—-1=
2k — 2 = log, 22(5=1) = 2]og, 25~ < 2log, m as an upper bound on the length
of the addition chain.

Let k € Nand Q = {m € N:m < 2*} be a probability space with the
uniform distribution. For an arbitrary exponent m €) we have m; = 0 with
probability 1. Therefore we can expect vy(m) = 1 - [log, m] on average.

COROLLARY 3.15. The binary method generates an addition chain on input

m € N with Ay, = [log,m]| — 1 star steps in the worst case and A, =
% - [log,m| — 1 star steps on the average. There are always D = [log,m]|
doublings.

3.3. Brauer’s method.

Basic idea. The question whether the upper bound [(m) < 2log, rn given by
the binary method could be improved leads to a generalization of the binary
method. The following algorithm was suggested by Brauer (1939) who used it
to create addition chains for m of length L < (1 4 o(1))log, m. The idea is
to use the 2"-ary representation of m instead of the binary representation with
r € N a selectable parameter. To be able to do so we have to precompute all
elements dy = 1,...,dyr_y =2" — 1.

14

The algorithm.

NoTATION 3.16. To distinguish between precomputed elements of the addi-
tion chain — i.e., elements that are (probably) used more than once — and
intermediate results we use the following notation:

o The precomputed elements are denoted by d;. The set of all precomputed
elements is given by D.

o Other elements are denoted by a;.

ALGORITHM 3.17. brauer

Input: m,r € N with (m)yr = (my_y,...,mg) and X = |log,m| + 1.

Output: L € N and 1 = dy,...,dyr_2,a97_1,...,ar, = m, a 2"-addition chain
for m of length L.

1. Set dy = 1. Compute d; = dj_1 + do for all 3 = 1,...,2" — 2. Set
D: {do,...,dgr_g}.

2. Set j=2" —1. Set aj_y = dy with dy € D and (di)sr = (mr-1).
3. Fori =\ —2 downto 0 do

4. Compute a; =2" - aj_y. Set j = j+ 1.
5. If m; # 0 then compute a; = aj_1 + dy with dy € D and (dy)y = m;
and set j =7+ 1.

6. Return do, cee dgr_g, Agr_1y...,05_1.

LEMMA 3.18. Algorithm brauer computes a 2"-addition chain for given m €
N.

PRrROOF. The correctness of the algorithm can be proven simular to Lemma
3.14 noting that all possible values for m;, 0 < i < X, with m; # 0 can be found
in the set D of the precomputed values. O

LEMMA 3.19. The addition chain algorithm brauer generates a 2"-addition
chain for m with

A = wvyr(m)+2" — 3 star steps and
Q = |log, m| 2 -steps.

15

The algorithm can be modified to compute an (original) addition chain with

A = I/2r<m> + 2" — 3 star steps and

D = r|logy m| — (r — |log, _WH) doublings.
PrRooOF. The precomputation of dy = 2,...,dy_y = 2" — 1 can be done with
2" — 2 star steps. Let (m)yr = (my_1,...,mg) be the 2"-ary representation of

m with A = |log,, m|+1 and my_; = (_QT(T—_UJ)ZT The algorithm can be sum-
marized as follows: In round ¢ a shift has to be done which needs one 2"-step.
If m; # 0 a further star step has to be computed. There are A — 1 rounds.
Therefore the algorithm produces a 2"-addition chain with Q = X — 1 2"-steps
and A = vy (m) —1 4 2" — 2 star steps (because my_; # 0).

To compute an (original) addition chain we exchange Step 4 with
4’. Compute aj1p = ajpp-1 + ajpp—1 forall k =0,...,r —1. Set j =7+ 1.

This gives r doublings for every 2"-step. But let us have a closer look at

the first round. We have my_; = (_W%J)gr and we create r elements:
2ma_1, 22ma_1,...,2"mx_1. But we don’t need to count the elements that

occur twice because they have already been added to the addition chain by
precomputation: Let k € 0,...,r —1 with 2¥m,_; < 2" < 28%'m,_; with k
denoting the number of elements that are counted twice. Then k& < log, % =
r —log, my_1. Therefore k = r — [log, my_1] elements are counted twice if we
use doublings. Hence, the total number of doublings is D = rXA —1 — (r —

|log, my_1]). Using 2"-steps would not generate any elements twice. O

Conclusions. Using this result and the fact that L = A + D for an original
addition chain we can easily prove two further corollaries:

COROLLARY 3.20. Let I(m) be the shortest addition chain for m. Let p =
log, m. There are upper bounds given by

2 2 J7
I(m) < p(l+ + —)<pu+2 14 o(1)).
() S R0+ b) <k 21 o)

PROOF. (cf. Brauer 1939) Let r = |1 log, pt] 4+ 1. Then the following inequal-
ities hold:

1
vor(m) < logym—{—l:;,u—{—l

16

p 2p
S A +1,
|5 logq pt] +1 log,
1
rllogym| = r|-p] <p,

2" —3 = 2blsultl _3 <9 .oilsr 3
= 2-/p—3
Using these inequalities and the fact that [(m) < L where L = A+ D is the
length of the addition chain for m created by Algorithm brauer, we can write:
I(lm)<L = A+D
= r|logy m| + vor(m) + 2" —3 — (r — |log,

m

)
2

< p+t +1+2y/p—-3
H T g VI
< p(l+ + 2)
M —_—
logop /1
[log, p
= p+2 I+
10g2u(\//7)
7
< pu+2 1 +o(l)). O
logQ,u((1))

Brauer uses r = |lnlnm] 4+ 1 to prove the upper bound I(m) < p(1 +

lnli —+ o ;l)fﬁm). For implementation purposes the above chosen r depending

on logarithms in basis 2 is more suited.

COROLLARY 3.21. The binary method generates addition chains for m € N of
length
_log2 mj + I/Q(T)’L) — 1.

Proor. Algorithm brauer with r = 1 is just the binary method. Lemma
3.19 about the length of the addition chains for Algorithm brauer proves the
statement because log, _M%mjj =0. 0

3.4. The ¢"-ary method.

Basic idea. Brauer’s method generalizes the binary method by taking r bits
as one new element. This idea of using the 2"-ary representation can also be
generalized by using just the ¢"-ary representation with ¢ € N and r as a
selectable parameter again. For given m € N we have

17

m = (m_1,...,mog)y with A = _logqr m|]+1and 0 <m; <q"

forall e € {0,..., A —1}.
To get a ¢"-addition chain we can use the following equality, where the right
side is well known as Horner’s rule:

m= Y mi(q") =q (¢ (@msa+maa) +-+m)+mo. (3.3)
0<i<A

We therefore can create a ¢"-addition chain by using this grouping of addi-
tions and multiplications if we first precompute dy = 1,...,dy_3 = ¢"—1. The
algorithm derivated from this is quite simular to Algorithm brauer — we only
have to substitute ‘2’ by ‘¢’. The algorithm can easily be modified to create a
g-addition chain. Indeed for ¢ = 2 we just get Algorithm brauer and for g = 2
and r = 1 we have the binary method.

Remarks. We emphasize two points:

1. Perhaps not all of the elements dy,...,d,—, have to be used to calcu-
late an addition chain for m. To avoid unnecessary calculations other
algorithmic ideas have to be added.

2. There is no star step in the addition chain when m; = 0. In this case,
we have to do only ¢"-steps to shift to the next element of the ¢ -ary
representation of m.

Number of steps. Because of the previous remark it makes sense to separate
the analysis: we first work on the number of steps used in precomputation and
then take a look at the computation of the other elements of the addition chain
for m. We analyze the number of ¢-steps more precisely.

1. Because we distinguish between g-steps and ‘ordinary’ steps we count all
i€ {l,...,q"—2} with 2 # 0 mod q. Since each step yields a new element
of the addition chain we count A; = ¢" —¢"~! —1 star steps and Q; = r—1
g-steps.

2. In Equation (3.3) we have A — 1 additions and A — 1 multiplications with
q". Therefore we get at most A; = XA — 1 star steps and @, = (A — 1)r
q-steps.

18

The following lemma summarizes the results. A simular result relative to
exponentiation can be found in von zur Gathen (1992).

LeEMMA 3.22. Let (m); = (ma_1,...,mg) be the ¢"-ary representation of m
with A = [log,, m|+41. Then we can compute a q-addition chain using at most

A= qgd—-q¢g -1+ [log,- m] star steps and
Q = r—1+4r[log, m] gsteps.

COROLLARY 3.23. Let m,q € N, ¢ > 2, and p = log, m. There is a g-addition
chain for m of length at most

lo 1

I 8y 1

p+q I+ +-)<p+gq I+o(1)).
el) a1+ 1)

Proor. Choose r = _% log, p1] + 1. Then we get the followings estimates for
A and :

A= ¢ —¢'—1+ [log,- m]
1
= ¢ Hg-1)—-1+ [~ log, m]

7 108 1
7
< qyptaq
i log, 1
]
S | i L WY
log, p N
Q = r—l—{—r_logqrmj
< r—14p
1
< glogquﬂﬁ-

Using the fact that . = A 4+ D completes the proof. O

COROLLARY 3.24. Let k,m™,m® € N. Then a g-addition chain con-
taining m™M, ..., m® can be computed in at most
A= ¢ —¢ -1+ Z [log,- m(i)J
1<i<k

< ¢ ¢ t=14 k(log, m] star steps and
Q = r—1+r Z [log,- m(i)J <r —1+kr|log, m] g-steps,

1<i<k

19

where m = max;<j<r m(9.

PrOOF. We can use the fact that the precomputation has to be done only
once. Hence we have to do Ay = ¢" — ¢"~' — 1 star steps and Q;, = r — 1 g-steps
for precomputation and A,; = [log, m(i)J star steps and Qg; = r|[log,. m(i)j
g-steps for 1 <1 <k. O

3.5. The algorithm of Brickell, Gordon, McCurley & Wailson.

Basic idea. The ¢"-ary method computes an addition chain for m according
tom = E?:o m;(q")" by first (pre)computing all possible non-zero values for m;:
do=1,dy =2,...,dy_o = q" — 1. The algorithm of Brickell et al. (1993) which
is introduced now is also based on the ¢"-ary representation of m but it uses a
different arrangement. It (pre)computes ¢", ..., (¢")*~" where A = [log, m]+1
as before. Then it uses the grouping

m= 3 (¢ (3.4)

1<5<q” mi2g
to generate a g-ary addition chain for m.

The algorithm. Equation 3.4 is based on the idea of rewriting m as a sum
of special smaller summands, and cleverly computing this sum (see de Rooij
1995). It leads to the following algorithm to generate a g-addition chain for m
(cf. Brickell et al. 1993):

ALGORITHM 3.25. bgmw

Input: m € N with (m), = (ma1,...,mg), the ¢"-ary representation of m and
A= _logqr mJ + 1.

Output: 1 = ag,...,ar = m, a g-addition chain for m of length L.

1. Set ag = 1. Compute D ={d,;:1 =0,...,\—1} by successively comput-
ing a()_l)(z'_l)_m' = Q'a(/\—l)(z'—l)+(j—1) for all v = 1, ey A—1 andj = 1, e, T
and set d.; = a,; for alli =0,...,X — 1. [Comment: This is a precompu-
tation.]

2. Initialize « = 0 and 8 = 0. Set j =r(A —1).
3. For k = ¢" — 1 downto 1 compute
4. For each 1 € {0,..., A — 1} such that m; = k do

20

5. Compute o = a+d,; with d.; = ¢". If o & {a;:0 <1 < j} then
set a; =a and 7 =5+ 1.

6. Compute 8 = 3+ a. If 8 & {a;:0 <1 < j} then set a; = 8 and

J=7+1L
7. Return 1 = aqp,...,a;_1 = m.
Correctness.

LEMMA 3.26. Algorithm bgmw computes a g-addition chain for m € N cor-
rectly.

Proor. The precomputation in Step 1 calculates an addition chain with
ap =1 and a,_1)4; = gDt fori=1,....,A=1and j=1,...,r. In partic-
ular, d,; = ¢" for 1 =0,...,) — 1 are precomputed.

The main part of the algorithm (Steps 2-7) has two loops:

1. The inner loop (Steps 4+5) is the loop that sorts the summands ¢ for
0 <17 < XA —1 according to descending m; beginning with m; = ¢" — 1.
With o; = Zmi:]- q" for 1 < j < ¢, the invariant for this loop can be
formulated as follows:

o = Z .

J<k<g"

2. The outer loop (Step 3-6) concatenates the result of the inner loop with
the intermediate result of the previous turn. With 3; = Zj<k<qr(ak (k—
j+1)) for 1 <j< g, we can formulate as invariant: -

B =B

With k& = ¢ before Step 3 the invariants hold because a = 8 = 0 (Step
2). Assume that the invariants are also true before round £ of the outer loop.
Then with Steps 445 we have

g’ =1
a= Y o+ > =() e ta=) a
J+1<k<qr mi=j k=j+1 i<k<qr

and the inner invariant holds.

21

With this new « Step 6 calculates

B = Biyi+a=04+ Z ay,

= Y (k=D + Y
J+1<k<qg" 1<k<q"

= (D> (- (k=GN +T+D)) +a;-(G—5+1))
JH1<k<q"

- .Z (ap - (k—j4+1)) = p;

This shows the right choice of the second invariant. Therefore the algorithm

returns
B=p= Y (- (k=14+1)= > (D> ¢

1<k<q” 1<5<q” m; 25

which is just Equation (3.4). This shows partial correctness. The termination
of both loops is clear and thus the algorithm works correctly. O

Number of steps. Again we analyze the number of star steps and the num-
ber of g-steps for precomputation separately:

1. The precomputation in Step 1 uses ¢}y = (A — 1) - r g-steps which can be
seen directly. There are no further addition steps, for this means A; = 0.

2. The outer loop is repeated ¢" — 1 times. Therefore there are at most
q" — 2 addition steps not counting the first one. For the first one we have
8 = a+ 0. But the element « has already been added to the addition
chain. Additional there are the steps of the inner loop. But these are
at most A — 1 — not counting the first one with 0 — because every m;
for 1 = 0,...,A — 1 appears exactly once. Therefore the main part uses
Ay =¢" — 2+ X — 1 addition steps and no g-steps (Q, = 0).

LEmMA 3.27. Let m € N. Then a g-addition chain for m can be computed in
at most Q = r|log, m| g-steps (only appearing in precomputation) and A =
q"+log, m] =2 further addition steps (only appearing after precomputation).
We therefore get the length L of the g-addition chain as

L<A+Q=q +(r+1)|log, m| —2.

COROLLARY 3.28. Let m,q € N, ¢ > 2, and 1 = log, m. There is a q-addition
chain for m of length at most

2log, lo
log, (1 log, p~ log, pn — 2log, log, log, p1

PROOF. We have [,(m) < L =Q+ A. But Q = r[log,, m| <r-1y=yand
A=q + |log, m| —2<q + Lty for any r € N.

w+

) S p+

Select r = [log, p — 2log, log, 1| + 1. Then we get:

1+log, p
A < 31 I + L
g*logtogar |log p—2log, log, | +1
qp p
: (log, 1) * log, p — 2log, log,
o e p log, 1
(log, u)? ~ log,u log, pu —2log,log, pu p
o e
(log, p1)* ~ log, p
H q
- logq ,u<10gq] +e),
where
- H log, 1
log, p —2log, log, u
log,

log, 1 — 2log, log,
log, 1 — 2log, log, 1 + 2log, log,
log, p — 2log, log,
2log, log,
log, p — 2log, log, yi°

= 1+

Hence, we have

A

L q 5 log, log,)

IN

log, log, log, i — 2log, log,
7
= 14+ o1
e (1 ol1)

which proves the upper bound. O

23

COROLLARY 3.29. Let k € N. Then a g-addition chain containing the positive
integers m"). ..., m*) can be computed in at most

Q = r|log, m| g-steps and
A = k(¢ -2)+ Z [log,- 'm(i)j < k(q" + [log, m| = 2) further steps,

1<i<k
where m = maxy<;<; m®.

Proor. Splitting the number of steps in precomputation and further steps
we have to do @ = r|log,- m] g-steps only once. For each i € {1,...,k} we
have to do A; = ¢" — 2 + |log,- m'¥ | further steps. O

3.6. Addition chain algorithms using data compression. Many algo-
rithms for addition chains use the same basic idea: they (pre)compute some
elements that hopefully will be reused more than once. Let D be the set of all
precomputed elements again. Then the following is obvious: if D is built of
such g-ary subsequences which often appear in (m), we can reduce the number
of unnecessarily precomputed elements of the addition chain and nevertheless
use the advantages of it.

But the problem to extract the most probable subsequences from a given
sequence also appears in data compression. In this context subsequences that
often appear in a sequence should be compressed and encoded by fewer bits
than others (see Bocharova & Kudryashov 1995). Therefore it is worth while
looking at data compression methods. We present different techniques to find
a proper set D to (pre)compute: the first one is the method of Ziv & Lempel
(1978) that was first used for addition chains by Yacobi (1991). The second one
was suggested by Bocharova & Kudryashov (1995) and is based on an algorithm
of Tunstall (1968) (given in Jelinek & Schneider 1972) to get a proper set D.
We finally construct another algorithm which extracts only the subsequences
that can be found more than once in a given sequence.

NoTATION 3.30. Let m € N and (m), = (my_1,...,mqg) be the binary repre-
sentation of m. We call m; for 0 <1 < X a bit. (miys,...,m;) with s > 1 is
called a bitstring.

24

3.7. Data Compression according to Ziv & Lempel.

The main ideas. The ¢"-ary method builds the set D of all subsequences
1,2,...,¢" — 1. But often it is not necessary to precompute all elements
d € {1,2,...,4" — 1} because some d do not appear further along in the ad-
dition chain for m. Yacobi (1991) therefore suggests to build D during the
construction of the addition chain. The second property of the ¢"-ary method
is the fact that all d € D have a fixed predetermined length of r according to
the g-ary representation of m. Yacobi (1991) does not impose this restriction.

His two main ideas have also been established within the compression al-
gorithm of Ziv & Lempel (1978). Therefore Yacobi uses a modified version of
Ziv & Lempel’s algorithm to determinate D: Parse (m), from one end to the
other and create a binary ‘compression’ tree where the path from the root to
a node is a subsequence (d), of the exponent (m), and this node contains d.

The algorithm. We describe the algorithm informally and use no explicit
data structure. We concentrate on ¢ = 2 and r = 1 like Yacobi (1991) but we
scan (m)q from left to right.

ALGORITHM 3.31. yacobi
Input: m € N with m = (my_1,...,mg)z and X = [log, m]| + 1.
Output: 1 = aq,...,a, = m an addition chain for m.

1. Set ag=dy=1and D= {dp}. Seti=X—2andj=1.
2. While1 > 0 do

3. If m; = 0 then evaluate a; = a;_1 +a;_y. Set j =j+1andi =1i—1.

4. else the next sequence & beginning with 1 has been detected: Let
this sequence be & = (my,...,mi_sy1) with s = max{s:3d €
D with (d); = (my,...,mij_g41)}. Do Steps 5-7.

5. Compute aj4r = Gjyp—1 + ajpp—1 for all k =0,...,s — 1. Set
j=j3+sandi=1— s+ 1.

6. If 1 = 0 then compute a; = a;_; + d with (d); =S and d € D.
Set j=j+1andi=1—1.

7. else set 1 =1 — 1 and do Steps 8-11.

8. [Comment: actualize D.] Let d € D with (d); = S. Set
dy=d+d. Set k' =1.

25

9. If m; =1 then set dy = d1+d, and set a; = dy and j = 5+1.
Set k' = 2.
10. Set D = DU {dy}.
11. [Comment: Add a new element to the addition chain.] Set
a; =aj_1+aj_y and aj4; = a; + di. Set 3 =5+ 2.

12. Return the addition chain built by concatenating aq,...,a;—y and D.

An example. We give an example to illustrate this algorithm in Figure 3.2.
This example with m = 5541 shows how the bitstring for m is scanned, which
values are computed for the addition chain and which values are stored. D is
illustrated by a binary tree according to the stored sequences.

Bitstring: (soredvaes, sar sc® Tree [stored values]:
>1<010110100101 L, - 1 [1]
startsequence

248, 1,2
12?10<\1}3§90101 o S

zero = shift sequence
already stored
1010>11<0100101 %% —0 10123
gleﬁelé?jr)llcgtor od new bit
10101010101 T w0 1 (1234
zero = shi ?ﬁe%ﬂ}cgored I new bit
1010110100>101< 162> [1,2,3,4,5]
U e ot 0" Loewsi

Algorithm Y acobi:
(5541),=(1010110100101)

Figure 3.2: A schematic illustration of Algorithm yacobi on input m = 5541.

Correctness.

LEMMA 3.32. Algorithm yacobi computes an addition chain for given m € N.

PRrROOF.

To prove partial correctness we first define an invariant for the loop

given in Steps 2-11:

26

ag, - .., aj—1 together with D is an addition chain for (my_1,...,m;41).

After Step 1 ag = dy = 1 and m,_; = 1. Therefore the invariant holds
before entering the loop.

Assume this is also true for 2: ag,...,a;-1,D 1s an addition chain for
(ma1,...,mit1)2. Because of Step 3 we have (a;)2 = (mac1,...,mi41,0)
and m; = 0. Because a;_; has already been in the addition chain and 7 1s

decremented the invariant holds.

If m; = 1 we start with a new sequence S in (m)s. A sequence is a bitstring
starting with ‘1’ that has already be found in (m)y before. s is the length of
the maximal sequence in (m), starting at position i. After Step 5 we have s
new elements with (a;_1); = (ma-1,...,mi4s5,0,...,0) and ag,...,a;_1,D is
an addition chain for (my_1,...,miys,0,...,0). If there are no more bits left
in (m)z, we can add a; = aj_; + d with d € D and (d); = S. We have (q;); =
(rma—1,-.-,Mits, ..., m;) because we already calculated d. With ¢ =i — 1 the
invariant holds.

In the other case we have 7 = 2 —1 and we can inspect one further m;. After
Step 10 we have computed (dy),; = (S,m;) and di € D using only elements
evaluated so far. Therefore in Step 11 we can compute a; = a;_y + dp with
(aj)2 = (Mrz1y .oy Migsg1, Migs, - .., my;). With respect to the decrementation
of 7 the invariant holds after the loop.

We therefore return an addition chain for m. Because ¢ is decreased in
order to the scanned elements of (), the algorithm terminates after scanning
all A 4+ 1 bits of (m)2 This shows total correctness. O

Number of steps. The number of doublings to scan () is A—1 = [log, m]|
because any decrementation of 7 1s connected with a doubling step and ¢ =
0,...,A—2.

The number of further steps is not as simple to see as the previous one. To
give a transparent discussion of this topic we use the data structure of a tree.
Then the following remark is obvious:

REMARK 3.33. The d € D calculated within Algorithm yacobi can be ar-
ranged in a binary tree according to the rules:

1. dy =1 1is declared to be the root.

2. 2d+j3,7 € {0,1} can be computed from d by doing a doubling (for j =0)
or by doing a doubling and a star step (j = 1). Let 2d be the left and
2d 4+ 1 be the right son of d.

27

Then we can count one doubling step for each son and one further star step for
any right son in the tree.

Additionally we have to add a star step to the addition chain for any new
sequence §. The number of sequences — which we denote by S and which is
just the number of sons in the tree — is bounded by v4(m) — 1 because a new
sequence has to start with ‘1’. We can summarize:

LEMMA 3.34. Let m € N and A = |log,m| + 1. Then Algorithm yacobi
produces an addition chain for m with D = A— 145 doublings and A = R+ 5
star steps where S € Ny is the number of sequences generated in the algorithm
and R € Ny is the number of diflferent sequences with last bit 1. We have
R < S <wy(m)—1.

Average case and examples. We fix some k € N. Then @ = {m € N:m <
251 is a probability space. Interprete D as in Remark 3.33. For a randomly
chosen element of () the tree is expected to be balanced (see Yacobi 1991). The
question is: What is the number S of generated sequences on the average?

First we have to estimate the number of zeros (Step 3) that appear before
a new sequence S starts (Step 4). In a random sequence both ‘1" and ‘0’ occur
with probability 1. Therefore j times ‘0" in front of a new sequence has the
probability it for j =0,1,.... We get the expected number of ‘0" in front of
a new sequence with Z;:é 5270+ <1,

Any node of the tree represents one sequence and we have 2° nodes at depth
¢ representing sequences of length ¢+ + 1. Together with the leading zero and
not counting the root node, we get A — 1 = 2?21 (t+2)- 2 — (h+1) M9,
where £ is the depth of the tree. We get S = 2"*! — 2 nodes (without root)
and A — 1 = (S + 2) log, (S + 2) — 2. According to Yacobi (1991) we have

S = log/\”(l + 0(1)) on average. Because on average R = %S we get the result:

LEMMA 3.35. Let m € N and p = log, m. On the average Algorithm yacobi
computes an addition chain for m with

U)

Doye = A=14+95=|p]+ 1 4+ o(1)) doublings and
1)+ 1 4 0(1)

Age = SH+R 3_p (14 o(1)) star steps.

B 510%2#

Finally we give some examples:

28

EXAMPLE 3.36. 1. m = 2% —1: Then there are h — 1 sequences sy,...,55_1
with length |s;| = i+1 and therefore we have %' s; = 24 4+ h < A —
1=k—1. But withA—1> " i="(h—1)~1 wegeth < 14+1/T+38X
and R =5 = h. Therefore A = 2h <14+ +V1+8X =1+ +1-+8k and
D < logym|+ 2+ LT+ N =k — 1+ L1 +/T+8k).

2. m = 2%: Then no sequence is generated and R = S = 0. Tt follows A = 0
and D = k.

3. (m)y = (1)2(2)2(3)2... (2% — 1)o: The tree has depth h = k — 1 (not
counting the root node) and A\—1 = Y% i-2=1 —1 = 2%(k—1). Because
there are S = 2811 — 2 nodes (without root) we have R = 2¥=! — 1 and

R+S = 3(2F1-1). Evaluating k()\) with A—1 = 28(k—1) = 2(k—1)-2%-!

we have with k' = k — 1 and X' = 234 k = K + 1 > 0 +
log, &’ o logQ(k'Qk/) _ logy N
logy (k'+logy k')~ log, log2(k’2kl) T log, logy A Then
A = S+R=3(2"-1)
A—1
= 3z —1
GE—y Y
)\I
< 3(? -1)

)\l
< 3 (f -1
ogo _ 1
log, logy, A

! !
< 3 M log, log, A and
logy, A — log, log, A

D = M—1+85=2"k—-1)4+2"-2

= 2fp -2 \
= /\—1+22<T__]1)—1
<)\+2k—:—2
At 2 X log, log, N _q

log, ' — log, log, X

Worst case. The worst case for yacobi is given if the number of sequences
S is as large as possible because R < S. But there can only be 2i~! sequences
of length 1 for «+ = 1,2,.... 5 gets smaller is there are leading zeros. The
last sequence has to be a new sequence. But then the worst case is given by

29

(m)y = (1)2(2)2(3)2... (2% — 1),. We already have found an upper bound in
this case in Example 3.36 which leads to the following corollary:

COROLLARY 3.37. Let m € N and A = [log,m| + 1 and X' = % Algorithm

yacobi computes an addition chain for m of length at most

X log, log, N log, X' Alog, log, A

A5

5
! < A 140(1)).
log, X' (+10g2 A —log, log,)\I) N +2 log, A — log, log,)\(to(1))

PRrROOF. VVehaveL:A—I—D=S+R+)\—1+S<)\—I—ngecauseS=QR.
But

- A—1
S = 2(2 _1):22(k'—1)_2
A/
= 2? -2
- ANlogylogy A
log, A" — log, log, A
2/\’ log, log, N (14 log, A)

log, A log, A — log, log, A

Using the fact that log, A" = log, % < log, A — 1 completes the proof. O

3.8. Addition chain algorithms with proper sets.

The basic idea. Algorithm yacobi concentrates on analyzing a given bit-
string from left to right. But it could be helpful to skip the dependence between
scan direction and (pre)computation. This idea can be realized using an al-
gorithm that was developed by Tunstall (1968). The algorithm uses so called
‘variable—to—fized’ length codes and is given due to Bocharova & Kudryashov
(1995). Therefore this section has two parts: the first one introduces the pars-
ing algorithm for (m), that was developed by Tunstall (1968). The second one
uses this parsing of (m)z to create an addition chain for m. In the following we
concentrate on the binary representation of m again.

Tunstall’s parsing algorithm. We will give a modified version of Tunstall’s
algorithm. The original is reprinted in the work of Jelinek & Schneider (1972).
Originally Tunstall’s algorithm was developed to compute a so called complete
and proper set (for definitions see Jelinek & Schneider 1972).

30

ALGORITHM 3.38. tunstall

Input: m,r € N,r > 2, with (m); = (my_1,...,mg), and A = [log, m| + 1 and
r a selectable parameter.

Output: D C N a set with the following properties: #D = r, 1 € D and
0¢D. Ifd €D with (d); = (dy-1,...,d1,dy) with A > 1 then d' € D with
(d')y = (dxi—1,...,d1) and d' is the most probable element in D\ {2d',2d' 4+ 1}

according to (m)s,.

1. Set dy = 1 and compute d = dy+dy and d" = d'+d'. Set D = {dy,d',d"}

and r' = 2.
2. While (r' < r) repeat Steps 3-5.

3. Let (m); = (m;,0™,...,my, 0%) with m; specified as follows: For
1 <4 < k there exists d € D with (d); = m; and 2d,2d + 1 ¢ D.
For my, exists d € D with (d), = my, and if z; > 0 then 2d ¢ D.

4. Let d € D be the element of D for which (d), appears most often in
mi,...,mg. If there are two or more elements of D that satisfy this
condition then choose the one of maximal value.

5. Compute d = d+d and d" = d' 4+ dy. Set D = DU {d,d"}. Set
=7+ 1.

6. Return D.

The algorithm above calculates parts of an addition chain for m. There are
r — 1 doublings and also r — 1 star steps. Indeed the algorithm adds two new
elements every round in Step 5 and there are r — 2 rounds. Therefore at most
2(r — 2) + 3 = 2r — 1 elements are generated.

An example. We illustrate Algorithm tunstall by giving an example for
m = 5541, r = 3 in Figure 3.3. Within the example we use a tree for D.

Generating an addition chain from a given set D. We are now ready
to give an algorithm that computes an addition chain for m if the elements
d;,1 € D, have already been computed.

ALGORITHM 3.39. bocharova

Input: m € N with m = (my_y,...,mg), and X = |log,m| + 1 and D as
calculated in Algorithm tunstall.

Output: 1 = aq,...,ar, = m, an addition chain for m.

31

Algorithm: Tunstall-Bocharova
(5541),=(1010110100101)

Part Tunstall:

Round 0: compute initial values
Initial parameter: Initial tree [stored values]:

(=3 oy [1,23]

Round 1: count the number of known sequences in the bitstring
and compute new elements

010110200101 HEF T T w o)
[1,2,3,4,5]

No further round because we precomputed 2r-1=5 elements.

Figure 3.3: A schematic illustration of Algorithm tunstall on input m = 5541.

1. Let § = (mu_1,...,mu_y,) with sy = max{s:3d € D with (d), =
(ma,...,mr_gip1)}. Set ag =d withd € D and (d); =S. Set i =X — s
and y = 1.

2. While1 > 0 do

3. If m; = 0 then evaluate a; = a;_1 +a;_y. Set j =j+1andi =1i—1.
4. else the next sequence & beginning with ‘1’ has been detected: Let
this sequence be & = (my,...,mi_sy1) with s = max{s':3d €
D with (d)y = (my,...,mi—g41)}. Do Steps 5-6.
5. Compute aj4p = Gjyp—1 + ajpp—1 for all k =0,...,s — 1. Set
j=j7+sandi=1—s+1.
6. [Comment: Calculate the next element of the addition chain.]
Let d € D with (d); = S. Compute a; = aj_; + d and set
j=73+1land i =101—1.

7. Return the addition chain built by concatenating ao,...,a;—y and D.

32

Continued example. We continue the example given in Figure 3.3. The
second part computes an addition chain by using D. The bitstring for m is
parted into the sequences given by D. This is illustrated in Figure 3.4.

Algorithm: Tunstall-Bocharova
(5541),=(1010110100101)

Part Bocharova:

Input given by Part Tunstall:
precomputed tree: sequences that are already computed:
A 1,10,11,100,101
Lo [1,2 3, 4, 5]

Partition of the bitstring according to the known sequences
and computing the addition chain using the precomputed values

>101<>0<>11<>0<>100<>101<

>5,<>10,<>20,40,43,<>86,<>172,344,688,692,<>1384,2768,5536,5541<

Figure 3.4: A schematic illustration of Algorithm bocharova on input m =
5541 and D = {1,2,3,4,5}. The computation of D is illustrated in Figure 3.3.

Correctness.

LEMMA 3.40. Algorithm bocharova calculates an addition chain for m cor-
rectly.

PROOF. The proof is similar to the given proof of Algorithm yacobi when
we use the fact that D can be ordered in a binary tree according to Remark

3.33. O

Number of steps. There are A — s; doublings, where s; is the length of the
first sequence in (m)q, because we do a doubling for all n; except for the bits of
the first sequence. Let S be the number of sequences in (m), according to the
algorithm. We have S < vy(m) because every sequence starts with ‘1’. Then
there are S — 1 additions with elements of D because we concatenate only the
second to the last sequence with given elements of the addition chain.

33

LEMMA 3.41. Let m € N and XA = [log, m| 4+ 1. Then Algorithm bocharova
in connection with Algorithm tunstall produces an addition chain for m with
D =r+4+X—1—s; doublings and A = r + S — 2 star steps where S € Ny is
the number of sequences in (m), and s, is the length of the first sequence of
(m)s. r € N is a selectable parameter to determine the number of elements
(pre)computed by Algorithm tunstall. We have S < vy(m) and s; < A,

Average Case. Because our results depend on the special form of (m), we
analyze the average case to be able to compare with yacobi.

Fix k € N and let Q = {m € N:m < 2*} be a probability space. For an
arbitrary chosen m € € the probability for one bit in () to be ‘17 is % Let D
and r as above and p = log, m. Then — according to Bocharova & Kudryashov

(1995) — we have

7

A =
e 2 + log, 7“*]'1052 % + "
v

log,r+1 +r
and with r = _(log‘;wzj we get

1 1

A{J,’UE S +
logy (g) +1 (logy p)?

H n H
log, 1 — 2log, logy p1+ (log, p1)?
ko n log, log, n 1
log, p log, pp — 2log, log, i+ logy

7
= o)

With this choice of r we get the average number of doublings as

Dave - T+)\—1—81

]
< LWJ+WJ
<+t

(logQ N)Q.

34

LEMMA 3.42. Let m € N and y = log, m. On the average Algorithm bocha-
rova-tunstall computes an addition chain for m with

7

Daye < + ———— doubling steps and
)+ Tog, e duPling

k_ log, log, p 1

4
log, p logy = 2logy log, i~ log, p

= H (14 o(1)) star steps.

log,
Worst case. In the sequel we use the short form bocharova instead of

Aave -

bocharova-tunstall. To estimate the worst case for bocharova we first fix r.
We have D < r 4+ X —1. So we can concentrate on A =r 4+ 5 —2. To get an
upper bound for A we have to estimate S(r).

Algorithm bocharova tries to use the longest sequences that can be found in
D. There are 2r — 1 elements in D. Let k be the length of the longest sequence.
There are at most 2°=% elements of length 7 in D for i = 1,2,.... Minimizing k
we get the equation Zle 0270 =28k —1)+1=2r — 1 and with 7' =r — 1

and ¥ = k — 1 we have r' = 2¥k/. Then we have k' > % (see Example
2 2

3.36). We have S < (%-‘ and therefore A=r+5—-2<r+ % <r4)\ log, log, '

log, r’

COROLLARY 3.43. Let m,r € N and p = log, m. Then Algorithm bocharova
computes an addition chain for m of length at most

ptlog, log, p
+ ————(2+4 o(1)).
2208205 1 o)
Proofr. Choose r = _mj again. We have A = [log,m| +1 <+ 1 and

A < +)\logQ logQ(r B 1)

= logy(r —1)
< H S (it 1)10g2 log, p — log,(2log, log, 1)
(log, 1) log, i1 — 2log, log, 1 — 1
. Mlog,log, p 1 pt1 log,)
log, 11 log, 11 log, log, p o logy p — 2log, log, pp — 1
plogy logy
< —=2£ 220 (24 0(1)) and
£ (2 4 of1)
D < r4+x-1
7
< p+
(log, p1)?
— a4+ f11og, log, 1 0

log, pu log, pulog, log, p1-

35

3.9. A new algorithm based on data compression.

Basic idea. The basic idea of this new algorithm is to detect the longest
bitstring in front of the actual position that has already been calculated. This
idea can also be found in Algorithm yacobi. But in this new algorithm we
do not add a new bit to the known bitstring and store it. We store the con-
catenation of the bitstring already scanned and the detected bitstring. To find
regularities within the bitstring we concatenate parts of the bitstring already
stored and the detected bitstring and store it. To avoid unnecessary calcula-
tions we evaluate and add only those elements to the addition chain which are
known to be reused. To realize this we need two scans of ().

The algorithm.

ALGORITHM 3.44. lookahead
Input: m € N with (m)y = (ma_1,...,mg) and X = |log, m| + 1.
Output: 1 = aq,...,ar, = m, an addition chain for m.

Part A: First scan to find the bitstrings that are used more than once.

1. Let (m)2 = (my-1,0%,1...). Set & = (mx-1,0?) and S, = S;. Set
Y ={my_1} and ¥' = X.

2. While §, # m repeat
3. Let (m); = (S4,8,,0%,1...) with S, specified as follows: S,, € &
and S, = max{S’' € Y:m = (S,,8,0%,1...)}.
4. Set ¥ =¥'US, and £ =X U{(S,,5,),(S,Sn)}-
5. Set Sy = (84, S, 07) and S = (S, 0%).
6. [Comment: Evaluate the bitstrings of ¥/ which are reused.] Set D =
{1} U{d € N:35,8" € {0,1}* not the empty word with (S,8") €
Y and (d); = (S,0) or (d); = (S,1)}. Compute all d € D.

Part B: Second scan and evaluation of the addition chain

7. Let S = (mc1,...,my_s,) with s; = max{s":3d € D with (d); =
(rma,...,mr—giy1)}. Set ag = d with d € D and (d); = S. Set
1= X—sy and 7 = 1.

8. While: > 0 do

9. If m; = 0 then evaluate a; = aj_y + aj—y. Set 3 = 5+ 1 and
1 =1—1.

36

10. else the next sequence S beginning with ‘1’ has been detected:

Let this sequence be S = (my, ..., mi_sy1) of length s = max{s":
3d € D with (d); = (mi,...,mi—g41)}. Do Steps 5-6.
11. Compute ajip = ajpp—1+ a4k forallk =0,...,s—1. Set

j=j+sandi=1—s+ 1.

12. [Comment: Add a element to the addition chain.] Let d € D
with (d); = S. Compute a; = aj_1 + d and set j = j+ 1
and 1 =1 — 1.

13. Return the addition chain built by concatenating ao,...,a;—; and

D.

An example. The algorithm works as follows: in Part A only bitstrings are
scanned to detect a new sequence. A sequence S, is a bitstring that has already
been stored in ¥ followed by 07 with z > 0. The algorithm then concatenates
S, and the previous sequence &) and adds it to X. It also adds the whole
bitstring (S.,S,) to X. X' stores only those bitstrings that are used twice or
more. Only those bitstrings are worth while calculating. At the end of Part
A all bitsequences that have been found twice or more are evaluated (Step 6).
This 1s the proper set D used in Part B. We illustrate Part A of the algorithm
for m = 5541 in Figure 3.5.

Part B is just Algorithm 3.39. We therefore illustrate Part B of Algorithm
lookahead in Figure 3.6 in the same way as Algorithm 3.39.

D can then be viewed as a binary tree again according to Remark 3.33.

Correctness.

LEMMA 3.45. Algorithm lookahead computes an addition chain for m € N
correctly.

PROOF. To show partial correctness we first have to show that D # 0, 1 € D
and the elements of D form an addition chain.

We have 1 € D according to Step 6 and hence D # (). The fact that
the elements of D form an addition chain can be shown by induction over
A = |log,d] +1, d € D. We prove by induction that for any d € D with
(d)2 = (dr=1,...,d1,dy) we can form an addition chain using only elements of D
of bitlength at most A —1 and (d'); = (dr-1,...,d1,0),(d")2 = (dr-1,...,d1,1)
with d',d" € D.

A=1: We have 1 € D and 0 € D according to Step 6. But 1 is an addition
chain for 1.

A= A+ 1: Let d € D with (d), = (d(A+1)—1,---,d1,d0) with dy = {0,1}.

37

Algorithm: lookahead
(5541),=(1010110100101)

First scan:
sequences sequences
Bitstring: aready found to evaluate

2 2
>1<010110100101 1, 1,

10>1<0110100101 101,

last
sequence sequence

1010>1<10100101 10101,

sequence sequence

10101>1Q4<00101 1101,10101101, {10,100},

SaGStI]UEHCe ggqlYJmce 101

1010110100>101< 10100101,
e 1010110100101

Figure 3.5: A schematic illustration of Part A of Algorithm lookahead on input
m = 5541: all found bitstrings are stored in X, bitstrings that are found twice
are stored in X',

Then for (d'); = (d,,...,dy) we have d" € D according to the definition of D
in Step 6. But [log,d'| + 1 = A. By induction hypothesis we can form an
addition chain for d' using the elements of D with bitlength at most A — 1
and (dy,...,d2,0),(dy,...,ds,1). But then the following holds: If dy = 0 then
d' + d = d and we get an addition chain for d. If dy = 1 then a = d’ + d’ and
a+1 = d and we get also an addition chain for d. Because (a); = (dy, ..., d;,0)
we have a € D according to Step 6. So in both cases we get an addition chain
satisfying the requirements of the induction hypothesis.

Because #D < oo the elements of D form an addition chain.

Part B is just Algorithm 3.39 for which correctness has already been shown.
Because the concatenation of two addition chains form also an addition chain
partial correctness has been shown.

Therefore only termination of Part A is left to show: If (m), = (1,07),

38

Algorithm: lookahead
(5541),=(1010110100101)

Second scan and evaluation:

Input given by first scan:

precomputed tree: sequences that are already computed:
< 1,10,100,101
0 [1,2, 4, 5]

Partition of the bitstring according to the known sequences
and computing the addition chain using the precomputed values

>101<>0<>1<>101<>00<>101<

>5,<>10,<>20,21,<>42,84,168,173,<>346,692,<>1384,2768,5536,5541<

Figure 3.6: A schematike illustration of Part B of Algorithm lookahead on
input m = 5541 and D according to ¥’. The evaluation of ¥’ is given in Figure

3.5.

termination is clear. In the other case all sequences S,, start with first bit ‘1’
and (1), € ¥. Therefore any sequence contains at least one bit. But there are
only A bits and thus termination follows. O

Number of steps. We denote the number of sequences by S and the length of
the first sequence found in the second scan by s;. If we have already computed
all d € D in Part A (Step 6) we have the following number of steps in Part B:

We have to scan through (m), (Step 9411) starting at position A — 1 — sy
(Step 7). Therefore Dy = A — s1. Any sequence except for the first one means
one star step (Step 12). Therefore A; = S — 1.

If we have to do A’ star steps and D’ doublings in Step 6 to evaluate all
d € D, we can summarize:

LEMMA 3.46. Let m € N and XA = |log, m]| 4+ 1. Then Algorithm lookahead
produces an addition chain for m with D = A — 1 — s; + D' doublings and
A =S —1+4 A star steps where S € Ny is the number of sequences in (m),
found in Part B and s, is the length of the first sequence of (m), in Part B.

39

A", D" € Ny denote the number of star steps and doublings that are necessary
to evaluate all elements of the proper set D.

Average case. Fix k € Nand let Q = {m € N:m < 2*} be a probability
space. For an arbitrary chosen m €) the probability of a bit in (m); to be ‘1’
is 1. Let D,m, S, s1, A", D' as above.

We assume that the tree built in Step 6 is balanced. The last layer has only
leaves that contain d € D with d = 1 mod 2. Let h denote the depth of the

tree and k the number of nodes not counting the root node. Then we have

2h
k:2h—2+?:3-2h‘1—2. (3.5)

Assume that any node of the tree represents one sequence according to the
rules of Part A. Then we have 2°=! nodes on depth 7 representing sequences of
length ¢ + 1. As in the proof to Lemma 3.34 we assume a further zero after
every sequence on the average. Because the tree only includes the sequences
found twice it represents only one half of (m),. We get:

h h—1
A . : . :
R N F TSR (RSN
=1 =0
h—1 h—1
= D (i+2)-2+) 2=h-2"—242"—1
2=0 =0

= (h+1)-2"=3>h-2" 3.
We then have (cf. proof of Lemma 3.34)

A
A 1A

2 (1 of1) = G (14 o).

log, A

Because the tree is balanced we have A’ = D': every node has two sons or
only the son that contains d € D with d = 1 mod 2. If a node has both sons
we can evaluate both by using one doubling and one star step. In the other
case we also have to compute one doubling and one star step.

But A’ is exactly the number of nodes containing d € D with d = 1 mod 2.
We have QhT_Q + % =92/=1 _ 1 421 = 92" _ 1 such nodes and therefore

1 A
D=A=9" 1< = 1 1)).
<210g2A(+o(1))

40

We now analyze Part B: Because the tree given in Step 6 is balanced we
can assume that all sequences found in Step 10 except for the last one end at
the layer h or h — 1 of the tree. This is true because if we found a sequence
S, = (mi,...,mj—s41)2 ending in layer j < h —1 and t — s + 1 # 0 then we
have (S,,0)2 and (S,, 1) ending at layer j + 1 because the tree is balanced.
Therefore we have 2"~! possible sequences of length h at layer h — 1 and %
possible sequences of length h + 1 at layer h. We expect the average length of

a sequence to be 27Tt (h41) gt (h+h+1)= %T’H =h+ % Therefore

2-2P—1 2h
we have
ht L clog, LA (1 4 o(1)) <1
81 = — <log, ——— 0 og.
! 2 = %2500, 82750\

and A = S(h + %) which means

A A

7= T S logy A —logy log, X

We can summarize:

LEMMA 3.47. Let m € N and p = log, m. On the average Algorithm look-
ahead computes an addition chain for m with

Dayve < |p| + 210/; Iu(l + o(1)) doubling steps and
2
3
Agre < §1Og2”(1 + o(1)) star steps.

Proor. Using the results above we get:
Dye = A=1—s5,4+D <X+ D
1
< A+

2T0g, L T el)
Aa,’ue = S—-1 + A/
A LA
— 1 1

< g Tomlom T aogat o)

3 A
= = 1 1)).

210g2/\(+o(1))

Using A = |p| we have:
7
Dye < p+ 1+o0(1
2log,(p — 1)(L)

3
Aa’ue < #(1+0(1)> O

41

Worst case. The problem to fix the worst case for Algorithm lookahead is
that we haven’t found a relation between the number of sequences S and the
number of star steps A’ in the worst case. In the worst case the sequences are
as short as possible to get a big S. Simular to the arguments given for the
worst case of bocharova we have to assume a complete binary tree. But then
S < m as in the average case. If we only have a look at A’, the
worst case can be found easily: For mn = 2*1 —1 and A = 2%,k € N we have to
do %/\ star steps computing D in Step 6 of the algorithm. Because we assume
two different situations to find an upper bound for S and A’ respectively, we
only can give an unsharp upper bound.

COROLLARY 3.48. Let m € N and u = log, m. An upper bound on the length
of the addition chain for m computed by Algorithm lookahead is given by

2X + A
ProOOF. We have S < m and A’ < % But then D’ < % according

to Step 6 of the algorithm. We therefore get

A N A
log, A — log, log, A = 2’

A= S—-14+A<

D =)\—1—51+D’</\—|—D’<;/\.

Because of L = A+ D we get the upper bound. O

REMARK 3.49. Algorithm lookahead can probably be improved by defining
D ={d € N:(d); € X'} in Step 6. But this has not been analyzed yet.

3.10. Summarizing survey. The following tables show the results of this
section. m € N is the integer for which an addition chain has to be computed.
We only consider the case ¢ = 2 to facilitate comparison of all algorithms.

For the algorithms based on the idea of using the ¢"-ary representation of m
we give the worst case as an upper bound (Table 1). We use the same notations
as above with input m and p = log, m.

For the algorithms based on data compression we concentrate on the average

case (Table 2).

Algorithm binary brauer bgmw
(reference) (Alg. 3.13) (Alg. 3.17) (Alg. 3.25)
#steps L le] + v2(m) =1 | vor(m)+2" =3 (r+1)[E]+27 -2
+r(2] = (= log, | 7))
#doublings D L] TL%J — (r — |log, [zr—{"%T“) TL%J
#further steps A | vo(m) —1 var(m) 427 =3 I_%J + 27 =2
Upper bounds
Parameter r L2 logy 4] + 1 [logy p# — 2log, logy 1] + 1
Lworst <2p S 255 (14 0(1) Spt (1 +0(1)
Duworst = |u] <uw <
Auvor =fu] -1 <2ln (4) < togza !
+ logologg p 2)

logo p—2logglogo p = loggp

Description: u = log, m

Table 1: Theoretical comparison between the classical addition chain algo-
rithms.

Algorithm yacobi bocharova lookahead

(reference) (Alg. 3.31) (Alg. 3.39) (Alg. 3.44)

#steps L lu]+25+ R lu]+2r—S8—s5 -2 lu] —s1+ D’
+S—14 A

#doublings D | [u| + S r+ (] =5 lu] =51+ D’

#further steps A| R+ S r4+S—-2 S—1+4 A’

Average case

Parameter r L 10g2 m 2J

Lawe < L) + S (14 o(1))+ g0+ o)) | L)+ 25 1)

Dave < L) + e (14 0(1) i) + s L) + L (14 0(1))

Aune < 3 (14 o(1)) S (14 o(1)) 3 (14 o(1))

Upper bounds

Parameter r |_ 10g2) 2J

Lworst < i 5 gty (14 0(1)) |+ 25522 R (14 0 (1)) | 20 4 i (14 0(1))

Duworst < BB (14 0(1) |kt e Su+1)

Aworst < B (14 0(1) |24 SE2 (1 4 o(1)) Lit (14 0(1))

Description: S: #sequences, R: #sequences with last bit ‘1’, s;: length of first sequence, p = log, m,
A’,D’: #tstar steps/doublings in Part A

Table 2: Theoretical comparision between addition chain algorithms based on
data compression.

43

4. Fast exponentiation

4.1. The relation between addition chains and exponentiation.

A homomorphism. We briefly mentioned the relation between addition
chains and exponentiation already: because exponents are additive we con-
centrated on addition chains so far. We will now transfer the results of the
previous section to exponentiation.

DEFINITION 4.1. Let GG be any multiplicative group and b € G. We define a
map
p: Ny — G
i o= b
Then ¢ defines a homomorphism between cornmutative monoids since ¢(0) =

=1 and Lp(t +_]) =bti =p. b = Lp(t) - L,D(_]) for all 1,7 € Ny.

REMARK 4.2. 1. Let 1 = ag,...,ar, = e be an addition chain of length
L for e € N. Then b = ¢(ag),...,p(ar) = b° is a prescription how to
compute b® with L multiplications and squarings, respectively.

2. A doubling step i becomes a squaring under ¢ because b* = ¢(a;) =
olaj + a;) = p(aj)e(a;) = b - b% = (b")* with 0 < j < i.

3. If we have a g-generalized addition chain then a g-step i becomes b* =
vla;) = ¢(q-a;) = b¥% = (b%)? which means that raising to the qth
power is only one operation when computing b°.

Because of the definition of ¢ we can easily transform the algorithms for
addition chains by computing ¢(a;) instead of a; for any element a; and 0 <
1 < L of the addition chain.

An algorithm. These ideas can also be expressed in an algorithmic way:

ALGORITHM 4.3. addition chain to exponentiation

Input: 1 = ag,...,ar, = e an addition chain for ¢ € N and an element b € G
where (i is a multiplicative group.

Output: b° € G.

1. Set by = b* =b.
2. Fori =1 to L do

44

3. Let 0 < 3,k <1 be indices with a; = a; + ay, according to the given
addition chain for e. Compute b; = b = b%+% =% . p* = b, - by.

4. Return by,.

In fact, this is actually a ‘compiler’ that transforms addition chains for e
into algorithms for computing b° from b, for any b in any group G.

Because we have an explicit function ¢ it is clear how to get an exponen-
tiation algorithm if an addition chain is given. But what about the other way
round? Downey et al. (1981) write that it is an “observation that computations
involving multiplication and a single variable x are isomorphic to computations
involving addition and the integer 1.”

But this “isomorphism” does not have an inverse in general way. If G
is finite, we can compute b#¥¢ = 1 due to Lagrange’s Theorem without any
multiplication nor squaring. But an addition chain for #G has Q(log(#G))
elements.

Memory requirements. Another question has not been answered yet: how
many elements of the addition chain are used to generate not only the imme-
diately following but also further elements of the addition chain? This can be
reformulated for exponentiation algorithms: How many powers of b evaluated
during the computation have to be stored if we are only interested in evaluating
b® € G7 We will pay attention to the demand of storage when transferring the
results of the addition chain heuristics to exponentiation.

4.2. Results transferred from addition chains. According to the prac-
tical part of this Diplomarbeit we concentrate on G = Fp, with n € N. We
can assume without loss of generality that 0 < e < #G = #F;. = ¢" — 1 for a
given exponent e € Nj.

Binary method.

COROLLARY 4.4. For given ¢ € N and b € Fjn we can compute b° € Fyn with
D = |log, €] squarings and A = vy(e) — 1 further multiplications according to
Algorithm binary.

We only have to store the input b and one intermediate result.

Proo¥. The number of multiplications and squarings follows directly from
Lemma 3.14. The demand on storage is clear because in Algorithm 3.13 we only
have to do doublings — which means that we have to square the intermediate
result — and star steps with dy as second summand — which means that we
have to multiply the intermediate result with . O

45

COROLLARY 4.5. For any e € N,b € F;n we can compute b° € Fyn with
A < nlog, ¢ multiplications and D < nlog, q squarings.

Proor. Use Corollary 3.15 and ¢ < ¢". O

¢"-ary method.

COROLLARY 4.6. For given e,r € N and b € Fy. we can compute b° € Fy,
with at most Q = r—1+4r[log,. e] gth powers and A = ¢" —¢"~' — 1+ [log,. €]
further multiplications according to the ¢"-ary method.

We have to store ¢" — 1 elements of Fp. and one intermediate result.

PrROOF. A and @) can be found in Lemma 3.22. The ¢"-ary method uses only
g-steps and star steps with second summand d; € {1,...,q" — 1}. This can be
easily derived from Algorithm 3.17 generalized for ¢ € N. O

COROLLARY 4.7. For any ¢ € N and b € Fj we can compute b € F with

AL qlog” n(l +o(1)) multiplications and @ < n+ i logq n qth powers. This can

be done storing q/n elements of F, and one intermediate result.

PRrOOF. Choose r = _élogq nj + 1. Then we can estimate A and () as in
Corollary 3.23.
And finally we have to store ¢" — 1 = gla'8a"I¥1 _ 1 < g/n elements of
F5.. O
g

The algorithm of Brickell et al.

COROLLARY 4.8. For given e,r € N and b € F}, we can compute b° € Fy,
with at most @ = r|log, ¢] qth powers and A = ¢" + |log,- ¢] — 2 further
multiplications according to Algorithm bgmw.

We have to store _logqr eJ + 1 elements of [F;,,, and two intermediate results.

Proor. Lemma 3.27 gives A and (). The demand of storage can be easily
seen from Algorithm 3.25. O

COROLLARY 4.9. For any ¢ € N,b € F;. we can compute b° € Fy. with
A = 2—(1+ o(1)) multiplications and () < n qth powers. This can be done

log, n

storing at most ——(1 + o(1)) elements of IF‘;”.

log, n

46

PrOOF. With r = [log, n — 2log, log, n| + 1 we can estimate A as in the
proof of Corollary 3.28. With e < ¢" we have) < Zlog, ¢" = n. Finally we
have to store log,, € elements of F;,. With r as above we get the upper bound

of =2 (1+0(1)). O

n
log, —2log, log, n log, n

This corollary was first proven for ¢ = 2 by Stinson (1990) and Agnew el
al. (1988); von zur Gathen (1991) has shown it for all finite fields.

Yacobi’s algorithm.

COROLLARY 4.10. For given ¢ € N and b € Fy. we can compute b° € Fy. with
D = |log, ¢] + S squarings and A = R+ S further multiplications according
to Algorithm yacobi. S denotes the number of sequences generated in the
algorithm and R is the number of different sequences with last bit 1.

We have to store at most S elements of Fy. and the intermediate result.

Proor. A and D are given by Lemma 3.34. Algorithm 3.31 shows that only
di, k € D have to be stored. But #D = 5. O

log, e

COROLLARY 4.11. The expected number of elements of Fy. to store is oz logs

(14 o(1)).

PRrOOF. We have to store S elements of]F;N. According to Lemma 3.35 we

expect S = 1og1;)i2>g62e(] +0(1)). O

COROLLARY 4.12. Lete € Nand b e Fy.. Let A = [logye] +1. Then b € F};,

can be computed in at most A < 2 Alog, log, A (14 o(1)) multiplications and

2 log, A—log, logy A
Q<A+ %(1 +o(1)) qth powers. This can be done storing at most

Alog, logy A X
Toms A—log, Iog; (14 o(1)) elements of Fon .

Proor. This follows directly from Corollary 3.37 and the fact that we have
to store at most S elements of Fy.. O

Bocharova’s idea.

COROLLARY 4.13. For given ¢, € N and b € F}, we can compute b° € F,
with D = |log, €| + r — s1 squarings and A = r + S — 2 further multiplications
according to Algorithm bocharova. S is the number of sequences generated in
the algorithm and s, is the length of the first detected sequence of (e€),.

We have to store 2r — 1 elements of Fy., and the intermediate result.

47

PrOOF. Lemma 3.41 shows the correctness of A and D. The number of
elements that have to be stored are given by the output of Algorithm 3.38. O

COROLLARY 4.14. Let n = nlog, q. For any e € N, b € F;. we can compute
b € [F;n with A < 2%(1 +o(1)) and D < (1 + This can be

i N/ E—
done storing at most 2(10g2 e 1 elements.

1
(log, 1)?)

Proor. With r = _(log;:’ligjgzwj = _mj we can estimate A and @ as

in the proof of Corollary 3.43. We have to store 2r — 1 = Qtac)gj;?ligjgjwj —1

elements. O

The new algorithm.

COROLLARY 4.15. For given ¢ € N and b € F» we can compute b° € F, with
D = |log,e| — s1 + D' squarings and A = S — 1 + A’ further multiplications
according to Algorithm lookahead. S € Ny is the number of sequences in (€),
found in Part B and s; is the length of the first sequence of (€); in Part B.
A", D" € Ny denote the number of star steps and doublings that are necessary
to evaluate all elements of the proper set D.

We have to store #D elements of Fy,, and the intermediate result.

Proor. Lemma 3.46 proves the correctness of A and D. The elements to
store can be seen in Algorithm 3.44: We have to store one value dj for any

keD. O

COROLLARY 4.16. The expected number of elements of Fy. to store is <
3 _logae (1 1 o(1)).

4log, log, e

ProoOF. Remember the tree we used to analyze the average case of Algorithm
3.44. Then #D is just the number of nodes in this tree. But in Equation (3.5)
we have shown that & = 3 -2"71 — 2 where A is the depth of this tree and
oh < A (I+0(1)) with A = |log, €|+ 1. Then we get k < 3__A (1+o0(1)) =

2logy A 2 2logy A
!
%log:l%)Qng(l +0<1>) U

COROLLARY 4.17. Let e € N and b € IF;”. Let A = |log,e] + 1. We can

compute b € Fy, with A < m + % multiplications and Q) < 2\ qth
2 2 2

powers.

ProoOF. Can be seen directly from Corollary 3.48. O

48

Algorithm | #elements |expected worst parameter r/
to store demand case remarks
binary 1 1 1 store b
g-ary q" -1 qYn L% log,n| +1
bgmw [log,re] +1 $(1 + 0(1)) [log, n — 2log, log, n| + 1
: ~ log, e
yacobi S m(l-l— o(1))
nlogy g nlogs, g

bocharova|2r — 1 ZL(Ingnlogzq)zj -1 L(logznlogz q)QJ

3 logge \
lookahead |#D < Zm(l + 0(1))

Description: S: #sequences, D: precomputed set

Table 3: Memory requirements for exponentiation algorithms.

A summarizing table. In Table 3 we finally summarize the demand on
X

storage for Fy..

49

5. Inversion in Fyn

We now apply the results about addition chains to an interesting problem over
finite fields: inversion. In the literature “two different methods for finding the
inverse algorithmically are well-known” (Brunner et al. 1993, p. 1010): the first
is based on Fermat’s Little Theorem and uses exponentiation with a very special
exponent. The second one is based on the Extended Fuclidean Algorithm. In
the following the method using exponentiation is shown in detail. Then it is
compared to the Euclidean method.

5.1. Inversion based on Fermat’s Little Theorem.

The main idea. From Fermat’s Little Theorem we have a? ~!' = 1 mod ¢
for ¢ € N prime, a € Fyn \ {0} = F. and n € N. We therefore can calculate
the inverse of @ € Fo as ™' =1-a7! -1

Tl/_ n_
=ao? 1. a7t = a?" 7% But we have

" =2=¢"—q+q—2=(¢""~1)g+(¢—2) (5.1)

and (¢"~' = 1), =(¢g—1,...,g— 1) is a very special exponent.

REMARK 5.1. The fact that b¥“ = 1 for any b € G,b # 0 and G any finite
group is known as Lagrange’s theorem. But in the special case given above
we have a consequence of Fermat’s Little Theorem. Because Fermat found his
theorem first, we denote this method to invert as Fermat’s method, which is
common in the literature (cf. e.g. Brunner et al. 1993).

The basic algorithm. The following algorithm reduces the problem of cal-

culating the inverse of an element o € Fy. to addition chains. It uses the idea
of Equation (5.1).

THEOREM 5.2. Let o € F., g € N prime, and an addition chain for n — 1 of
length L, and, if ¢ > 2 an addition chain for ¢ — 2 of length L, be given. Then

we can evaluate a™' € Fyn with
1. Ly 4+ Ly + 2 multiplications in Fyn if ¢ > 2, and
2. Ly multiplications in Fyn if g = 2.

Let bj, + by, = b; for 0 < j; < k; < 1 according to the first addition chain. Then
we have to compute 1 + Zlel b;, gth powers in Fyn.

20

PrOOF. We prove this by giving an algorithm. For reasons of comfort this
algorithm is divided into three parts which are analyzed separately.

ALGORITHM 5.3. inverse

Input: o € Fy. with ¢ € N prim, n € N and two addition chains: 1 =
bo,...,b, = n—1 forn—1 of length Ly and 1 = aq,...,ar,, = q— 2 for
q— 2 of length L.

Output: o' € Fyn.

Part A: Calculating y = a?7* € Fyn.

1. Set Plag] = «a.

2. For 1 <1 < Ly compute Pla;] = Pla;] - Play], where j, k € Ny, 0 <
J < k < with a; = a; + a according to the given addition chain
for ¢ — 2. [Comment: the following invariant holds: Pla;] = a®.

3. Set y = Plag,].
Part B: Calculating © = a?" ™' =" € Fn.

4. Compute N[by] = a - y.

5. For 1 <4 < Ly do [Comment: the invariant is given by N[b;)] =
a1 for all 0 <i< L]

6. Let j,k € Ny,0 < j <k <1 with b; =b; + by.
7. Compute x = N[bk]qb].
8. Compute N[b;] = x - N[b;].

9. Set x = N[by,].

Part C: Calculating %y = o~ € Fyn.

10. Return z? - y.

LEMMA 5.4. Part A of the algorithm computes y = a?~? € Fyn and needs L,
multiplications in Fyn.

Proor. We assume Pla;] = a® for all 0 <7 < L, as an invariant. In Step
1 the initial step is done by calculating Plag] = P[1] = o' = a®, because
ag = 1. Therefore the invariant holds before entering the loop in Step 2.
In Step 2 the main work is done: let Pla;] = a® be already calculated for

51

Jyk < i. Then Pla;] = Pla;] - Play] = a% - a® = a®** = a% because of the
choice of j,k. After the loop Plas,] = a®2 = a?* has been evaluated and
therefore y = a?~% € F,» in Step 3. Since there is one multiplication for any
i€ {l,..., Ly} in Step 2, Part A needs L, multiplications at all. O

LEMMA 5.5. Part B of the algorithm computes © = o~ ~! € Fyn. It needs
1 + L, multiplications in Fyn.

PROOF. We first prove the invariant N[b;] = a1 for all 0 < i < Ly
again in Step 4 initial work is done by calculating N[bg] = N[1] = a - a?™? =

a?=! = o?°~1 Therefore the invariant NIb] = a?"=1 holds before entering
the loop in Step 5. By induction hypothesis we may assume that N[b;] =
a?” =1 for all 5,k < 1. Then z = N[bj]qbk — 7 -a% — Gd R g
N[b] = ot Nby] = Q=1+ =1 00" =1 unq the invariant holds

after running through the loop for 7. Therefore in Step 6 the algorithm returns
N[br,] = Nn — 1] = a?"7 =1 The number of multiplications can directly be
seen from Step 4 and Step 8: because there are [; rounds of Step 5 we get
1 + L; multiplications. O

LEMMA 5.6. Part C of the algorithm computes 2y = a~' € Fyn and needs
one multiplication in Fyn .

PRrROOF. Because z? = (ozqn_l_l)q = o’ "% and y = a?"? the algorithm returns
a?"71. 0?72 = o772 = o7, This last part can be calculated using one further
multiplication. O

Concatenating the three parts we have built an algorithm that calculates
a™! € Fyn for given a € Fy» if two addition chains for n — 1 and ¢—2 (if ¢ > 2)
have been given. If ¢ = 2, then a?~? = 1 and therefore we can skip Part A
of the algorithm and also the multiplications in Step 4 (Part B) and Step 10
(Part C). Therefore we get the result: if ¢ =2 we need L; + 1 multiplications
in Fon. If ¢ > 2, there are Ly + 1 4+ Ly + 1 multiplications in Fyn. The number
of gth powers that have to be evaluated can be directly seen from Part B (Step
7) and Part C (Step 10). O

A corollary. We are now ready to formulate the summarizing theorem:

COROLLARY 5.7. Let a € Fy., ¢ > 2 prime. Then the inverse of o in Fyn can
be evaluated using

52

L log,(n —1)(1+ o 10g2 =y \/logQ o=) =log,(n —1)(1 4+ o(1)) multipli-

cations in Fyn if ¢ = 2, or

2. 10%2(” -+ log210g22(1) + oty ()) +logy(q = 2)(1 + logzlogz(q 2) +

)+ 2 = (logy(n — 1)(g — 2))(1 + o(1)) multiplications in Fyn if

logg(q 2)

q# 2

The computation needs n — 1 further qth powers.

PrOOF. Use Lemma 5.2 with the addition chains generated by the algorithm
brauer (Alg. 3.17) to prove the number of multiplications. The number of gth
powers can be seen from Step 7 and Step 10: there are 1+ Zf:ll b;, gth powers.
We note that the algorithm brauer computes an addition chain where all steps
including the doublings can be regarded as star steps. Then the following
Lemma 5.8 gives the number of ¢gth powers because 1 + by, —1 =0b,, =n — 1.

LEMMA 5.8. Let 1 = bg,...,b,, = n —1 be an addition chain only containing
star steps. Let j; € N with 0 < j; <1 and b; = bj, + bi—y for all 1 < < 4
according to the addition chain. Then we have for all 1 <[< L;:

l
D b =b—1
=1

Proor. (by induction on /)

1
I=1 : 14 b =1+b, =1+by=b =b because by = 1,b, =2.
i=1
I+1 {
P= 141 0 14> b=+ b)) +bi,, =b+bj,, =bu. O

Remarks. The algorithm given above is a generalization of an idea of Ttoh &
Tsujii (1988). They describe an algorithm that is just Algorithm 5.3 for ¢ = 2
and an addition chain generated by a variation of the binary method (first do
all doublings, then compute the star steps). When using the binary method
to generate an addition chain for n — 1 we get the following corollary which is
just Theorem 2 in the paper of Itoh & Tsujii (1988):

33

COROLLARY 5.9. Let 1 = by,...,br, = n — 1 an addition chain according to
Algorithm binary. Let a be a non-zero element in Fyn. Then, there exists an
algorithm for computing a~', which requires

[log,(n —1)] +vo(n —1) — 1 < 2[log,(n — 1)| multiplications and

n — 1 squarings in Fyn.

PrROOF. Algorithm binary (Algorithm 3.13) generates an addition chain of
length Ly = [log,(n —1)] +vo(n—1) —1 (Corollary 3.21). Using Algorithm 5.3
with this addition chain we proved the claim for the number of multiplications.
To prove the number of squarings we need Lemma 5.8 again because Algorithm
binary computes an addition chain where all steps including the doublings can
be regarded as star steps. According to this lemma we have by, — 1 squarings
in Part B. Together with a further squaring in Part C (Step 10) we get a total
number of b, — 1+ 1 =bz, =n — 1 squarings. O

In Corollary 5.7 we have already shown that Algorithm 5.3 is better than
the algorithm of Itoh & Tsujii (1988) in the worst case. We finally give an
example to illustrate this:

EXAMPLE 5.10. Let n = 61 and o €]F;m. Then we can calculate a™! using
the algorithm of Itoh & Tsujii (1988) with 8 multiplications and 60 squarings
in Fyer. The evaluations are just the same as running Algorithm 5.3 with the
addition chain 1,2,4,8,16,32,48,56,60 for n — 1 = 60. But Algorithm bgmw
(Algorithm 3.25) calculates an addition chain for n — 1 = 60 of length only 7:
1,2,4,8,16,20,40,60. We therefore can evaluate o' using Algorithm 5.3 with
7 multiplications and 22'7=1 b, =1+2+44+8+4+ 20+ 20 = 59 squarings.

5.2. Calculating the Inverse with Euclid.

The basic idea. Because F;» = F,[2]/(f), where f is an irreducible poly-
nomial of degree n over F,, any a € Fy. can be identified with a polynomial
a € F,[z] of degree less than n. With the Extended Euclidean Algorithm
s,t € F,[z] can be found with sa + tf = ged(e, f). Because f is irreducible
and 0 < dega < deg f ged(e, f) = 1 and therefore s = 1 mod f, we have
smod f=a™' € Fy[z]/(f) = Fypn.

Using the classical Extended Euclidean Algorithm we have to calculate all
remainders although we are only interested in s and ¢. But “Euclid’s algorithm
2_1 operations irrespective of the efficiency of multiplication in the

[given] domain” (Moenck 1973, p. 143) because of the output size. We therefore

. n2
requires

o4

have to find a modified algorithm to evaluate s and t.

The basic idea to speed up the evaluation of s,¢ is to avoid evaluating
unnecessary remainders: Let £ be the length of the Euclidean scheme for a, f

and
aiy1 = ;-1 — Q;q;
Si41 = Si—1 — Siq;
tiv1 = lion — g

be the ith step (1 <1 < /) of the Euclidean scheme for «, f. Then we have to
calculate s = s4,t = t,. But this can be done by evaluating only the quotients

qi:

REMARK 5.11. Let @Q); = < ? ; > Ry = Hle Q; and Ry = ((]) ? > for

. ; t; .
1<i,j<{. ThenRj:< St 1<j<
Sj+1 it
PROOF. Because sy = 1,31 = 0,1y = 0,#; = 1, the remark is clear for j = 0.
So let 7 > 0:

R; = HQ'ZHQi'Q;’

- (7))
B : 1 g
t
(Sj-1 + 5;q; lji-1 T 1545)

- (2 t]+1>'D
o (4= (1) (1) () -0(5)

The Fast Euclidean Algorithm. A divide-and-conquer algorithm for inte-
gers based on this idea was developed by Knuth (1981) and Schénhage (1971).
Moenck (1973) has generalized it to any Euclidean domain. A presentation of
the so called Fast Fuclidean Algorithm can be found in the article of Strassen
(1983). We concentrate on the results here. In order to abstract from the
underlying multiplication algorithm, we introduce the following function (cf.

von zur Gathen & Gerhard 1995).

3D

DEFINITION 5.12. Let R be a ring. A function M:N — Ry is called a mul-
tiplication time for R[z] if polynomials in R[x] of degree less than n can be
multiplied using O(M(n)) operations in R.

THEOREM 5.13. The ged of two univariate polynomials over a finite field Fy»
can be computed in O(M(n)log n) operations in F, where M(n) denotes the
number of operations in F, to multiply two elements of Fyn. It is assumed that

M(n) > n and M(2n) > 2M(n).

PROOF. See Moenck (1973). O

With the argumentation above we get

COROLLARY 5.14. For given a € Fy. the inverse a=' € FY can be calcu-

lated with O(M(n)log n) operations in F, where M(n) denotes the number of
operations in F, to multiply two elements of Fyn.

5.3. Comparison. We have introduced two methods to invert o € Fy.. The
method based on Fermat needs O(M(n))log(n)(1 + o(1)) operations in F, if
raising to the gth power is for free. This assumption can be made using a
normal basis representation of Fy» (see Section8.1). Euclid’s algorithm uses
O(M(n)log(n)) operations in F, as well and works on a power basis represen-
tation of Fyn. (We deal with the topic of representation of finite fields in the
next section.) But we found no reference about the constant hidden behind the
O-notation in literature. It can be estimated that the constant is greater than
the one for Fermat’s method due to the results of an implementation of the
Fast Euclidean Algorithm given in citegatger96a where the constant is about

3.

26

6. Finite fields

6.1. Introduction. Up to now we examined ways to reduce the number
of multiplications which are needed for the computation of b° € G for given
b e G,e € N, and (G an arbitrary multiplicative group. The second point to
deal with is to speed up the time needed for a single multiplication or raising
to a determined power, respectively.

We concentrate on the special case of finite fields in the following, i.e. G =
FY. where ¢ = p' with p = char[F, is a prime, t € N, and n € N. The results of
the previous parts distinguished between multiplication on the one hand and
squaring and raising to the gth power on the other hand. We will continue this
separation when discussing how to speed up basic arithmetic operations in Fyn.

6.2. Definitions. We recall some definitions that are needed in the sequel:

DEFINITION 6.1. Let f € F,[z] with deg f =n and [=3 ,..c, fiz'. Then a
field extension E of F, is called a splitting field of f over F, if

1. there exist elements 6y,...,0, € E such that f(z) = fu]l c;c,(z — 0:)

and
2. E=F,(6,...,0,).

01,...,0, are called the roots of f.

DEFINITION 6.2. Let Fyn be an extension of F, and let o € Fyn. Then the
n—1

elements o, a?, a7 ..., a?""" are called the conjugates of a with respect to .

DEFINITION 6.3. Let E be the splitting field of 2" —1 over F, and ged(n, q) = 1.
Then the roots (y,...,¢, of 2" — 1 are called the nth roots of unity over F,.

ResurLt 6.4. The set of all nth roots of unity over F, } is a cyclic subgroup of
the splitting field of 2™ — 1 over F, with respect to multiplication.

Proor. Cf. Lidl & Niederreiter (1983), Theorem 2.42. O

DEFINITION 6.5. Let (be an nth root of unity over F,. If (generates a
multiplicative subgroup of order n in the splitting field of 2™ — 1 € F,[x] then
¢ is called a primitive nth root of unity over F,.

57

NOTATION 6.6. Let GG be a group, and ¢1,...,¢9, € G. A subgroup U < G
generated by ¢i,...,g, is written U = (g1, ..., gn)-

DEFINITION 6.7. Let g a prime power, and r € N with ged(q,r) = 1. Let
¢ € Fyr be a primitive rth root of unity in Fyr. Then the polynomial

ofa)= [] @-¢)eR)
gcél(siif);l

is the rth cyclotomic polynomial over F,.

6.3. The representation of finite fields. One crucial point when exam-
ining basic arithmetic operations in Fy» in detail is the representation of the
elements of a finite field.

We can regard Fy» as a vector space of dimension n over F,. Thus F,» can
be identified with Fy. If ag, ..., a1 € Fyn form a basis of F} over Fy, a € Fyn
can be uniquely written as a = ZO<Z—<” a;a; =: (ag,...,an—1) (see Menezes et
al. 1993). -

There are three special kinds of bases commonly used to implement efficient
arithmetic in finite fields:

1. Remember the following:

THEOREM 6.8. Let f be an irreducible polynomial in F,[z] of degree n.
Then the splitting field of f over F, is given by Fyn.

ProoOF. See Lidl & Niederreiter (1983), Corollary 2.15. O

Because of this theorem we have Fy» & F,[z]/(f) and any o € Fyn can
be represented by a polynomial of degree at most n — 1 over F,. So
arithmetic here means polynomial arithmetic in F,[z] modulo f. We call
this a polynomial representation of Fyn. If @ = z mod f in F,[z]/(f),

then B = (1,a,...,a" ") is a basis for F;» over F,.
2. DEFINITION 6.9. A normal basis N = (ag, ... an_1) of Fyn over F, is a
basis with
q gn!
o, X1 = O,y ..., Qp_1 = O

In this case, oy € Fyn is called a normal basis generator or a normal
element over ;.

This is called a normal basis representation of Fyn.

a8

3. Let ¢ € F,;n be primitive. Then we can represent a € Fy, \ {0} by
log, o € N, with 0 < log,a < ¢" — 2. This can be used to implement
arithmetic efficiently in small finite fields, with the help of exp— and log—
tables stored in main memory. We do not discuss this primitive element

representation of Fy» in the sequel.

So we have two possible ways to represent the elements of F;». We examine
the differences of these representations for the three basic arithmetic operations
we are mainly interested in: addition, multiplication, and exponentiation, in
particular raising to the gth power.

39

7. Polynomial representation

7.1. Irreducible polynomials. IfF,[z]is the polynomial ring in one variable
over F, and f € F,[z] is a monic irreducible polynomial of degree n, then

F» = F,[z]/(f) (see Theorem 6.8) where F,[z]/(f) is the residue class ring.

THEOREM 7.1. Let f € F,[z] be irreducible and monic and 6 a root of f with
f(0) =0. Then F,/(f) = F,(0) and B = (1,6,...,0"") is a basis of F;u over
F,.

Proor. Cf. Lidl & Niederreiter (1983), Theorem 1.86. O

So every g € Fy» can be represented by a polynomial of degree at most
n — 1 in F,[z] and polynomial arithmetic can be used. This is the polynomial
representation of a finite field.

Addition. Addition is component-wise: Let g,h € F,[z]/(f). Then we have
9= Docicn 9T = (90;-- -+ Gn-1) and h = Zogz’<n hiz* =: (ho, ..., hy-1) and
g+h :_E(KKH(QZ- + hi)x" = (go + ho,- -, gn=1 + hyn_1). We therefore need n
additions in F, to do one addition in F,[z]/(f).

Multiplication. Let g =3, , giz' h = Y o<icm hix' € F,[z] be two poly-
nomials of degree less than n and m, respectively. The ‘classical method’ to
multiply g, h € F,[z]/(f) proceeds in two steps (cf. Brunner et al. 1993):

L. gh = (Eogkngixi)(ZogKm hilﬂ.) = 20§i<mn—1(2j+k:i g; + hk)xi €
F,[z]. This can be done using ©(mn) additions in F,.

2. Calculate gh = uf 4+ v with u,v € F,[z] and v =0 or 0 < degv < deg f.
Then v = gh € F,[z]/(f).

This way to multiply two polynomials in F, [z]/(f) needs O(n*) operations in F,.
We now introduce faster algorithms to multiply two polynomials g,k € F,[z].
We assume deg g = deg b which is the worst choice.

7.2. Fast multiplication for polynomials.

The algorithm of Karatsuba & Ofman. The first algorithm beating the
asymptotical bound of O(n?) was given by Karatsuba & Ofman (1962). Tt is
based on the divide—and-conquer strategy.

60

Let g,h € F,[z] as before with n = m = 2/t € Ny. Then we divide g,h
into two polynomials of degree at most 7+ — 1 each:

g = E gir' + % E girma' = G + 22 Gy,
0<i< 0<i< 3

h = E hiat + 27 E hH_%wi =H, +z2 H,.
0<i< 0<i< F

Then deg Gy, deg Gy, deg Hy,deg Hy < 5 and we have

g-h = (G1+$%G2)(H1+$%H2)
= G H, +(G1H2+G2H1>ZU% + Gy Hyx™
= G1H1+((G1+G2)(H1 +H2)—G1H1 —G2H2)$%+G2H2$m

So the problem of multiplying two polynomials of degree < m is reduced to
three multiplications of polynomials of degree < 7 and 4m additions in F,.

LeEMMA 7.2. Two polynornials in F,[z] of degree less than m = 2,1 € Ny, can
be multiplied with O(m!°®23) operations in F,.

Proor. (cf. von zur Gathen & Gerhard 1995) Let T'(m) denote the number
of operations in F, to multiply two polynomials of degree less than m. If
T(l) =1 and T(Qt) < 3T(2t_1) + ¢2' with some constant ¢ for ¢+ > 0, then
T(2") < (14 2¢)3" —2¢- 2" for t > 0. This can be shown by induction on ¢.
But Karatsuba & Ofman’s algorithm satisfies exactly the conditions on T'
and therefore needs < (1 + 2c)ml°g23 —2cm = O(ml°g23) operations in F,. O

Fast multiplication using the Fast Fourier Transformation. We usu-
ally represent a polynomial [= 7 . fizt € F,[z] by its coefficient list
(fos- -y fm—1) € F,. Another way is given by the value representation (see
von zur Gathen & Gerhard 1995): f is given by f(u;) € F,(ug,..., tm_1)
for ug, ..., ume1 € Fy(ug, ... tm-1). If g,h € F,[z] are represented by values
with g(ug), ..., g(uam=-1), h(ug), ..., h(uzm_1) then multiplication is quite easy:
(g-h)(u;) = g(u;) - h(u;) for all 0 < i < 2m. So two polynomials of degree
less than m represented by 2m values can be multiplied using 2m multipli-
cations in F,(ug,...,us,—1). Hence, one possibility to speed up polynomial
multiplication is to concentrate on a fast transformation between coefficient
representation and value representation. This idea was first used for fast mul-
tiplication by Schonhage & Strassen (1971). Our exposition follows von zur

61

Gathen & Gerhard (1995) and Aho et al. (1974).

Let ¢ be_ a primitive mth root of unity in a field extension of F, and f =
Do<icm Jit' € Fylz].
DEFINITION 7.3. The map
DFT,: Fr— F, (O™
(foreoosfnmr) = (F(D) F(Q)s- - F(CMTY)

which evaluates a polynomial at the powers of (is called the Discrete Fourier

Transformation (DFT).
DFT¢ is the transformation we search for because the following holds:

LEMMA 7.4. For polynomials g, h € F,[z] of degree less than % we have
DFT¢(g #m h) = DFT¢(g) - DFT,(h)

where - denotes the pointwise multiplication of vectors and *,, denotes the
multiplication of two polynomials modulo (z™ — 1).

= m. Therefore

PrROOF. We have g*,,h = gh mod (2™ —1) and deg(h) < 2% =
g(CHR(C)+s(¢) (¢~

Gkmh = gh+§($m—1) with s € F,[z] and (g#,, h)((") =
1) = g(¢")h(¢") for 0 <i<m. O

NOTATION 7.5. Let V; = (Cij)0§¢,j<m € F,(()™*™. V; is called the Vander-

IIlOIlde matrix.

LEMMA 7.6. The inverse of V; € F,({)™*™ exists and is given by
o1 1
Ve = (EC Nogijem = EVc-l-
PrOOF. Cf. Aho et al. (1974), Lemma 7.1. O
Using the fact that

DFT(f) = ((f(1), f(Os---n FIC™T))

OSSR Y A S T

0<i<m 0<i<m 0<i<m

= VC(t<f0’ - "fm—1>>

we obtain the following corollary.

62

COROLLARY 7.7. DFTC‘1 = LDFT-.

T m

Proor. Let f € F,[z]. Then we have
1
DFT(LDFT ()

1
= —VVerr ((for s fnet)
= En("(for s fn1)) = f

and so %DFch = DFTC_I. O

Therefore the inverse DF'T can be calculated quickly if we find an algorithm
to compute the DFT quickly.

If we evaluate DFT, using V; directly then we need O(m?) operations in
F,(¢) for arbitrary m (cf. Aho et al. 1974). But we can do better for m = 2!,
t E NO. Let

o=) i@y +e Y fon(a®Y = Be?) +aFy(e?) (T1)

0<j<3 0<j<F

with Iy, Iy € F,[z] and deg Iy, deg F;, < %. But because (is a primitive mth
root of unity we have

("m=1land (*H =(5¢ =~ for 0<j< %

and
FE*3) = B(CHCT) + HER(CIC) = R(C) - GR(CY). (12)

To evaluate DFT(f) where deg f < m and is a primitive mth root of unity
we have to evaluate DFT > (F;) with deg F; < % and (% a primitive Zth root of
unity for ¢ = 1,2. Using this idea recursively we get an algorithm known as the
Fast Fourier Transformation. This algorithm is due to Schonhage & Strassen

(1971). We describe it according to von zur Gathen & Gerhard (1995).

ALGORITHM 7.8. FFT
Input: m = 2"t € No, f = D gcicr fix' € Fy[2], and the powers ¢, ¢, ... ¢t
of a primitive mth root of unity ¢ in a field extension of .

Output: DFTc(f) = (f(1), (), F({™) € Fy ().

63

1. If m =1 then return (fy).
2. Let [= Fy(a?) 4 a F3(2?) with F\, F; € F,[z],deg Fy,deg F, < 2.

3. Recursively compute (Gi)ogk% = FFT(Z, I, (%, (%, ..., (™) and
(Hz>0§2<% - FFT(%; F27 (27 (:47 sy Cm)

4. Compute FO) = G; + ('H; and FUt%) = G, — ("H,; for all 0 < i < .
5. Return (F© ... p(m=1),

LEMMA 7.9. Algorithm FFT computes DFT, as specified. It uses O(mlogm)
operations in F,(¢) for m = 2,1 € Ny.

PRrOOF.

1. Correctness (by induction on t): For ¢ = 0 correctness is clear. Assume
now that Algorithm FFT works correctly for m = 2' and let ¢ be a primi-
tive 2mth root of unity. Then (? is a primitive mth root of unity and we
have G; = Fl(fzi) and H; = Fg(ﬁm) for all 0 <7 < m by induction hy-

7.1)

pothesis. For 0 < ¢ < m we have FO) = Fl(QZi) + §2F2(§22> i f(gl) and

Fltm) — py(¢20+m)y — TRy () (2 f(¢'*t™). Thus FFT works correctly.

2. Number of operations: Let T'(m) denote the number of operations in
F, (¢) for Algorithm FFT on input m. Then Steps 142 need no operations,
Step 3 needs 27(%) and Step 4 % multiplications and m additions (by
first evaluating (*H;). We have T'(1) = 0 and thus the recursion for

m = 2%
T(Qt) = 21T(2t_1)—|—gm
3m 3 3
52 t—2 12 S 92 t—2 2
= 2°T'(27%) + 2 551 T 5™ 2°T(2)+22m

= 2'T(1) + ;mt = gmlog2 m € O(mlogm)

We are now ready to give an algorithm for fast polynomial multiplication:

ALGORITHM 7.10. polynomial multiplication using FFT

Input: g, h € F,[z],degg,degh < m = 2',t € Ny, and (a primitive 2mth root
of unity in a field extension of F,.

Output: gh € F,[z].

64

1. Compute (?,..., (™' € F,(¢).

2. Compute G = DFT,(g) and H = DFT(h) € F,(¢).
3. Compute F = G - H € F,(¢).

4. Return DFT;'(F) = ;= DFT - (F)

m

LEMMA 7.11. Algorithm polynomial multiplication using FFT computes
gh € F,[z] and uses at most 9m log,(2m) + 6m — 2 operations in F,(().

Proor. Correctness follows directly from Lemma 7.4. The cost is given by
at most 2m — 2 multiplications in Step 1, 23(2m)log,(2m) operations in Step
2, 2m multiplications in Step 3 and 3(2m) log,(2m) 4 2m operations in Step 4.
O

COROLLARY 7.12. Let m = 2"t € Ny and q odd. In a field extension of T,
containing a primitive 2mth root of unity, two arbitrary polynomials of degree
less than m can be multiplied using O(mlogm) operations in this extension of

F,.

Fast multiplication over arbitrary finite fields. The given algorithm for
fast polynomial multiplication works only if there exists a primitive 2'th root
of unity in a field extension of F,. If ¢ = 2 there exists no such root because
14+ 1 = 0. But the idea can be generalized to all finite fields.

THEOREM 7.13 (SCHONHAGE 1977). Let m = 3" and (be a primitive 3rnth
root of unity in a field extension of F,. Two arbitrary polynomials of degree
less than m can be multiplied with O(mlog mloglogm) operations in F,(().

PROOF. See Schénhage (1977). O

THEOREM 7.14 (CANTOR 1989). Two polynomials of degree less than m over
F,[z] can be multiplied using O(m(log m)?) operations in F,.

PROOF. See Cantor (1989). This multiplication algorithm uses an analogue

to the Fast Fourier Transformation for additive subgroups. O

THEOREM 7.15 (CANTOR & KALTOFEN 1991). The product of two polyno-
mials of degree less than m with coeflicients in F, can be computed using
O(mlog mloglogm) additions/subtractions and O(mlog m) multiplications in

F,.
PROOF. See Cantor & Kaltofen (1991). O

65

7.3. Modular composition. We have concentrated on fast polynomial mul-
tiplication so far. But to speed up exponentiation we also have to concern with
algorithms for raising to a determined power. Shoup (1994) suggests an algo-
rithm using modular composition based on fast matrix multiplication.

The ‘classical’ algorithm for matrix multiplication. Tet m,n,k € N
and A = (a;5) € [F‘;”X”,B = (b) €]FZXIC be two matrices. Then we can
compute AB = C = (¢;) € F{TX’“ according to the definition:

Cij = Z aisbsj forall 1 <o <m,1 <5<k,
1<s5<n

We need n multiplications and n — 1 additions in F, for each 7 and j and hence
a total number of m(2n — 1)k operations in F,.

We can concentrate on square matrices A, B € Fy*" in the following because
padding by zeros reduces the general problem to this special case, as follows:

ALGORITHM 7.16. matrix to square
Input: m,n,k € N and A = (a;;) € F7*", B = (b;;) € Frxk,
Output: C' = (¢;;) = AB € IF;”X]“.

1. Let s,t e Nwith (s —1)n <m < snand (t —1)n <k < in.

ai;j 1<i<mandl1<j3<n

"
2. Define ai; = { 0 else

and b, = bij 1§Z§nand1§]§k.
4 0 else

3. For alli' € {1,...,s} and j' € {1,...,1} define Ay, By, Cynjr € F*™ by

. !
Ay = (az'j)(i’—l)n<i§i’n,1<j§na
. /
Bj' = (bij)1<i§n,(j’—1)n<j§j’n7
. !
CZ'I]‘I = (CZ'J')(i’—l)n<i§i’n,(j’—1)n<j§j’n'

4. Compute Cyjo = Ay Bji for all i' € {1,...,s} and j' € {1,...,t}.
5. Return C' = (c};)1<i<m1<j<k-

DEFINITION 7.17. Let R be a ring. A real number w € Ry is called a matrix
multiplication exponent if matrices in R*** can be multiplied using O(n*)
operations in R.

66

LEMMA 7.18. The algorithm matrix to square works correctly. The algo-

rithm uses
BIBEES

operations in I, .

Proor. Correctness is clear. The number of operations can be seen directly
connecting Step 1 and Step 4. O

Strassen’s algorithm. Strassen (1969) uses a divide-and-conquer algorithm
to multiply two square matrices. For convenience we assume m = 2,1 € Ny.

THEOREM 7.19 (STRASSEN 1969). Two square matrices A, B € FJ"*™ with
m = 2"t € Ny can be multiplied with O(m*) operations in F, with w =
log, 7 ~ 2.80735492.

To proof this theorem we need the following lemma:

LEMMA 7.20. IfT(1) = and T(Qt) <TT(2'7") + ¢(2")? with some constant ¢
for t >0, then T(2") < (1 +) 3¢ (2"‘))

PRrROOF. (by induction on t) ¢ = 0 is clear. For ¢ > 0 we have
T(2Y) < TT(27Y) 4 ¢(2')?
4 4
< (1 4+ §0)7t_1 - gc(2f—1)2) + ¢(2)?

I
—~
—_
+
|
O
~—
\]
|
[N}
[Sv]
-
+
O,
[N}
[Sv]
-

Il
—~
—_
+
|
o
S—
~
-
|
|
O
~—
[N]
=
SN—
(e}
O

We can now prove Theorem 7.19.
Proor. Let A,B,C €]th“b and write

A Anp By B Cii Chz
A= B = = :
< Agr Ay > (By By > (Ca1 Co >
where A;;, B;j, Cij € M(2"=%F,) for i,j = 1,2. Then compute

M, = (Ay + Ap) (B + Ba),
M2 (AQI + A22>Blla

67

Ms = Ay (Bia — By),

My = Axn(By — Bu),

Ms = (A1 + Ag2) By,

Ms = (A — An)(Bii + Bi2),

M; = (A3 — Ay)(Bar + Baa),

and Cyy = My + My — Ms + My,

Cia = My+ My,

Co = Ms+ Ms,

Coa = My + Ms— M;+ M.
It can be easily shown that we have indeed C' = AB. We use 7 multiplications
and 18 additions of matrices in]th_lxw_l.
(2'=1)2 additions in F,. For m = 2° = 1 we have only one multiplication in F,.

If T(m) denotes the number of operations in F, to multiply two matrices in
F;*™ we get the recursion

One addition can be done using

T(1) = 1 and T(2') = TT(2'7") + ¢(2'7")? for ¢ > 0.

According to Lemma 7.20 we have T(m) < (1 + %c)nlog27 — %an € O(n1°g2 7).
O

A slightly better version of Strassen’s algorithm is given by Winograd
(1971). This version uses only 7 multiplications and 15 additions. The identi-
ties can be found in Aho et al. (1974).

Strassen’s result for w has been improved by other authors. An overview
about the early history of fast matrix multiplication is given by Pan (1984).
The currently best known value for w is w < 2.376 (cf. Coppersmith & Wino-
grad 1990). “Because of the hidden constants involved, however, none of the
algorithms found after Strassen’s is of much practical use.” (Brassard & Bratley

1988, p. 243)

Exponentiation and modular composition. A basic tool in the algo-
rithm of Shoup (1994) is the calculation of modular compositions as intro-
duced in the iterated frobenius algorithm of von zur Gathen & Shoup (1992).
Let f,g,h € F,[z] with deg f = n and deg g,degh < n. The modular composi-
tion of g and h is given by g(h) mod f.

Let f,g € F, and R = F,[z]/(f). In the following we have to distinguish
between the image of ¢ in R and the polynomial in F,[z] obtained as the

63

remainder on dividing g by f. This leads to the following notation (cf. von zur

Gathen & Shoup 1992):

NOTATION 7.21. Let f, g, R as above.

1. The image of g in R is denoted by (g mod f), and the remainder on
dividing g by f is denoted by (g rem f).

2. For a € R, the canonical representative of « is the unique polynomial

a € F,[z] of degree less than n such that (a mod f) = a.

LEMMA 7.22. Let f,g,h € F,[z], r € N with h = 27 rem f. Then g* =
g(h) mod f.

Proor. Let without loss of generality g be reduced modulo f and degg < n =
deg f, that is g = > o<icn gz-;vi? gos - gn-1 € Fy. Then g(h) = Pocicn g:h' =
20§i<n gi(z")' = 20§i<n gi(2")" = (20§i<n giz')" =g” mod f. O

Hence we can use modular composition to raise to the ¢"th power in F,[z]/(f)

for any r € N.

A fast algorithm for modular composition. Because we have deg f = n
and we can assume deg g, deg b < n, we have to evaluate the first n coefficients

of g(h) rem f. Let g = 20§i<n gizt h = 20§i<n hix' with ¢; = 0 for degg <
i <nand h; =0 for degh <i <n. Let k = [\/n |. Then I = {%-‘ < [%w =
[v/n] = k. Then

9 = Z giv' = Z («*)! Z Girkjt'

0<i<n 0<j<l 0<i<k
= Z (;vk)jGj with G; = Z g¢+kj:vi. (7.3)
0<j<k 0<i<k

Brent & Kung (1978) used this grouping of g as the basic idea of their modular
composition algorithm.

ALGORITHM 7.23. modular composition
Input: f,g,h € F,[z] with n = deg f and degg,degh < n.
Output: g(h) rem f.

1. Let k=[y/n] and G; = Eo<j<k Gikrjo? for 0 <1 < k.

69

2. Set HY) = h. Compute HO = hHU=Y) rem f for all2 <i < k.

3. Set P = H®) . Compute P = H® PC=1) rem f for all 2 < i < k.
4. Compute G1) = G4(h) = ZOSKI« Girni HO) for 0 <i < k.

5. Compute R = Zogi<k GOPE rem f.

6. Return R.

THEOREM 7.24 (BRENT & KuNG 1978). The algorithmmodular composi-
tion works correctly. It computes g(h) rem f using O(y/nM(n) + /n “t1))

operations in .

Proor. Correctness can be seen directly with Equation (7.3) noting that
H® = h rem f, and P®) = h* rem f. The number of operations in F, can be
seen as follows: There are no operations in Step 1. Steps 2 can be done with
k — 1 multiplications modulo f. Step 3 can be done with k& — 2 multiplications
modulo f. Step 5 uses k multiplications modulo f. Steps 2, 3 and 5 jointly
need O((3k — 3)M(n)) operations in F,.

Step 4 can be computed using fast matrix multiplication because if for all

0 <7<k wehave H = 20<J-<n Hj(i)xj then G;(h) = Zo<]’1<k Gkitj, HU) =

20§j2<n(20§j1<kgj1+kiHj(jl)>'rj2 remm f Let A = (CLZ'J'> E E?Xk, B = (b”> E
IF";X]“ with

ai; = Giy; forall0 <1< n,0<7 <k and
by = HY forall0<i,j<k.

Then (AB)ij = > ic.ch gspin HY.
This can be done with [2]O(k“) operations in F, according to Lemma 7.18.
Step 4 needs k 4 1 further calculations modulo f using O(kM(n)) operations.
We therefore get a total number of O(k’M(n) +]_%-‘k‘“) operations with
k = O(y/n) which completes the proof. O

REMARK 7.25. Modular composition can be done with

1. O(n%) operations using classical arithmetic, i.e. M(n) = O(n?) and w =

3.

2. O(y/n(n'8234/n o827y = O(n%‘"k’g2 %) operations using the algorithms of
Karatsuba & Ofman and Strassen, i.e. M(n) = O(n'#2*) and w = log, 7.

70

3. O(y/n(nlognloglogn + /n “)) = O(n'%®) operations with w < 2.376
using the results of Schénhage & Strassen (1971), Schonhage (1977) and
Cantor & Kaltofen (1991) for M(n) and Coppersmith & Winograd (1990)
for w, i.e. M(n) = O(nlognloglogn) and w < 2.376.

Another model for counting operations. To compare algorithms more
exactly we have to evaluate the constant hidden behind the ‘O’-notation. But
it is often difficult to compute the constant. For our purposes we count only
block operations.

NOTATION 7.26. We use the following block operations:
M(n) the number of operations in F, to multiply two polynomials in
F,[z] of degree less than n.
S(n) the number of operations in F,
o to add n elements of F, to n elements of F, or
o to sum up n elements of F, or
o to multiply n elements of F, with one element of T,.

We can estimate the cost for one multiplication of two polynomials modulo
a fixed polynomial f of degree n with 3M(n)+S(n) ignoring the precomputation
of the inverse of the reverse of f modulo " (c¢f. von zur Gathen & Gerhard
1995). We can assume S(kn) = kS(n) and kM(n) < M(kn) < k*M(n) for
k € N. A cyclic shift of coefficients is assumed to be free.

COROLLARY 7.27. Modular composition can be done using at most

9\AM(n)(1 + o(1)) + 3v/aS(n)(1 + o(1) + [Via 10(vT *)

operations in F,. If classical matrix multiplication is used we have w = 3 and
[Vn 10(nz) = 2nS(n)(1 + o(1)).

PROOF. Let k = [y/n]. We have 3k — 3 modular multiplications regarding
Step 2, 3 and 5. Hence we have 3(k—1)(3M(n)+S(n)) operations in F,. Step 5
uses (k—1)S(n) additional operations. The number of operations used in Step
4 can be seen from the proof of Theorem 7.24 for arbitrary w. For classical
matrix multiplication we have w = 3 using 25(n) operations for each entry of the

resulting matrix. We therefore have (%-‘ 2k*S(k) < [V -2[vr 1*S([Vr]) <
ot 1'S([v 1) = 20S(n)(1 + o(1). O

71

7.4. Shoup’s algorithm. We are now ready to give an algorithm for expo-
nentiation using modular composition due to Shoup (1994). Shoup invented
the algorithm for the special case ¢ = 2. We give a generalization for all ¢ € N
with ¢ a prime power.

ALGORITHM 7.28. exponentiation with composition

Input: f,b € F,[z] with degb < degf = n, ¢ € N with 0 < ¢ < ¢" and a
parameter r € N,

Output: y = b° rem f.

PART 1: Precomputation
1. Let (€); = (exz1,...,€0) be the ¢"-ary representation of e with
A= |logre|+1and 0 <e <q forall0 << A
2. (Pre)Compute and store all values b% rem f for 0 <i < .

PART 2: Horner’s rule

3. Compute h = 7 rem [.
4. Let y = b~ rem f. For 1 = A\ — 2 downto 0 do
5. Compute y = y(h) rem f by Algorithm modular composition
according to Brent & Kung (1978).

6. Compute y = yb* rem f using precomputed values.

7. Return y.

LEMMA 7.29. Algorithm exponentiation with composition works as spec-
ified.

Proor. We have y(h) = y? mod [in Step 5 by modular composition
according to Lemma 7.22. Then the algorithm above is just the ¢"-ary method:
Step 6 is Horner’s rule (cf. Equation (3.3)) because after round ¢ we have y =
pller-1a"+erz)a’+teip)a’ e The p% (0 < 4 < A used in Step 6 are precomputed
in Step 2. O

LEMMA 7.30. Algorithm exponentiation with composition can be done
with O(M(n)(# +r)+ ”Tﬂ\/ﬁ “) operations in F,. We have to store @(1 +
o(1)) + LH elements of Fn

72

PROOF. The first part can be done using Algorithm bgmw (Algorithm
3.25) and Corollary 3.29. We have e¢; < ¢ for all 0 < ¢ < A. Denote
the chooseable parameter in Algorithm bgmw with »* € N. Then we can
compute b mod f,...,b*-t mod f with Q = Uogqr/ q"| gth powers and
A<M+ [log,» ¢"] —2) multiplications. Because raising to the gth power can
be done with less than 2|log, ¢| multiplications we have at most A+2|log, ¢|Q
multiplications for PART 1 (Steps 1-2).

If we choose r’ = |log, r—2log, log, | +1 according to Corollary 4.9 we get
A< 210;5% and @ < r. Hence we have at most A4+2(log, ¢)Q < 2(-——+rlog, q)

log, r
multiplications modulo f in the PART 1. N
PART 2 (Steps 3-6) uses rlog, ¢ multiplications modulo f if we compute
z? rem f with Algorithm binary (Algorithm 3.13) in Step 4. Step 5 can be
done with A — 1 multiplications modulo f. In Step 6 we have A — 1 modular

compositions modulo f.

Using the result of Theorem 7.24 PART 2 of the algorithm can be done using

r(log,)O(M(n)) + (A= 1)(O(M(n)) + O(iM(n) + /' ™)) = O(Ay/n(M(n) +
\/n ¥)) operations in F,.
The whole algorithm can be done with

(o + M) + OOWAM(n) + V)
= OME)OW + ot 7)o+ (Vi “))
Because A = Uogqr ej +1= _%logq ej +1< _%logq q”J +1= _%j + 1 we have

OM()A7 + o +7) + (Vi “) A7)

T

= oM 4) (i)
_ O(M(n)(”r”)+ ":). O

For PART 1 we have to store at most log . (140(1)) elements of F;n according
to Corollary 4.9. The output of PART 1 has to be stored for PART 2. As can be
seen in Step 2, the output of PART 1 contains A = [log,,] +1 < _% log, ¢"| =

_%j elements of F-. O

COROLLARY 7.31 (SHOUP 1994). Let b € Fyn and 0 < e < ¢". Then b° can

be evaluated with -

O(M(n)—— + v/ “*'log n)

log n

73

operations in F,. Using fast polynomial arithmetic we have
O(n*loglogn)
operations in F,. We have to store O(%) elements of Fyn.

ProOF. Let f € F,[z] with deg f = n be irreducible. Then F;n = F,[z]/(f)
and we can use polynomial arithmetic.

Select r = [@W as input for Algorithm exponentiation with composi-
tion. According to Lemma 7.30 b° rem f can be computed using

oM™ 4) 4 (v) Y2
")+ (Vi))

logn

logn

logn
= O(M(n)(v/nlogn + @) +v/m “log n)
n w+1

= O(M(n) +n 2 logn).

ogn

We can use fast multiplication with M(n) = O(nlognloglogn) according
to Theorem 7.15. Fast matrix multiplication can be done with w = log, 7 using
Theorem 7.19 which leads to the number of operations. The demand of storage

can be easily seen from Lemma 7.30 because lo; - = O(logg’l) = O(—(]O;n)2>
q log n
and O(%) = O(logn) € O(—(lo;n)2)' O

COROLLARY 7.32. Algorithm exponentiation with composition computes
b® € Fyn for b € Fyn,e € N using at most

(9008 0)* (oo + o)M ()1 + o{1)
+ (3(logy q)—"— 4 —2nlog, n)S(n)(1 + o(1))

logyn ~ log, q

operations in .

Proor. We only have to translate the proof of Lemma 7.30 using block
loggn |-

Step 2 can be done with at most —= (1 + 0(1)) + 2rlog, q < 2rlog, q(] +

log, r

operations and r = [

74

0(1)) = 210g —log, q(1 + o(1)) modular multiplications. Step 3 uses rlog, ¢ =

log —log, q(l + o(1)) further modular multiplications.

Step 5 and 6 are repeated A — 1 = [log,-e| +1 -1 < _%logq q"] < log,n
times. Step 6 uses one modular multiplication. According to Corollary 7.27 we
have 9/nM(n)(1 4 o(1)) + 2rS(n)(1 + o(1)) operations in F, for one modular
composition with classical matrix multiplication.

Counting all operations of Steps 1-6 and estimating 3M(n) + S(n) for one
modular multiplication, we have (9(log, q)zlog"2 —+ 10: ; Vnlogy n)M(n)(140(1))
1+

o(1))

operations for multiplying and (3(log, q)QIO;n + Tom qn10g2 n)S(n)(1 +

further operations in F,. O

Number of operations. We summarize the results of this section in the
following theorem:

THEOREM 7.33. Let g,n € N. Then the following holds using the polynomial
representation for Fyn

1. Addition of two elements can be done with n additions in F,.

2. Multiplication of two elements can be done with O(nlog(n)loglog(n))
operations in [, .

3. Exponentiation of an element can be done with O(n*loglog n) operations
in F, with an algorithm which needs to store O(W» elements of Fyn

PRrOOF.
1. Clear.

2. Theorem 7.15.

3. The number of operations in F, is given by Corollary 7.31. The demand
on storage can also be seen in Corollary 7.31.

75

8. Normal bases

8.1. Definition and basic arithmetic operations.

Definition and existence. We examine a normal basis representation in the
following:

Recall Definition 6.9: A normal basis N' = (ag,...,an_1) of Fgn over F, is
a basis with

q qn—l
Qp, 0] = Qg,y...,0n_1 = O

This is called a normal basis representation of Fyn.

Fact 8.1 (NORMAL BAsis THEOREM). For any prime power q and n > 1,
F,» has a normal basis over .

Proor. See e.g. the proof of Theorem 2.35 or Theorem 3.73 in Lidl &
Niederreiter (1983). O

The elements of the normal basis determined by a are just the conjugates
of a. For discussing the algebraic operations using a normal basis we recall the
Frobenius automorphism:

DEFINITION 8.2. Let Fyn be a finite field. Then the map

o Fpn — Fypm
a — of

is called the Frobenius automorphism of F,» over F,.

1

REMARK 8.3. The inverse map is given by o+ o and the following hold:
I. Va,B € Fpn: o(a+ 8) =o(a) 4+ o(f),

2. Vo, 3 € By o(0f) = o(a)o(B),

3. Ya € F,: o(a) = a.

Therefore o is indeed an automorphism.

76

Addition. Let N = (ag,...,a,_1) be a normal basis of F,» over F, and 3,v €
Fpr with (8)n = (Docicn bidi)x = (bos - bn1), (Vv = (Pocicn Gty =

(coy...,cn—1). Then addition is component—wise as it is for any basis repre-
sentation of F,» over F, and we have (8 + v)y = (ZOSi<n(bi +)iy =
(bo + coy- -y by—1 + ¢ne1). Therefore one addition in Fyn needs n additions in
F,

-
Raising to the gth power. We know that the Frobenius automorphism is a
linear operator on Fyn, as a Fy-vector space. Therefore we have for an arbitrary

ﬂ = 20§i<n bZOZ7 -]Fqn Wlth (ﬁ)]\[= (bo, . -;bn—]> that
/Gq = 0'(/3) = O'(Z bzaz> = Z bZO'((,YZ> = Z biai-l-l-
0<i<n 0<i<n 0<i<n

Thus (8Y)x = (bn-1,b0, - - .,bs—2). This is just a cyclic shift of the coordinates
of B. Tt is therefore customary to neglect the cost of raising to the gth power
(cf. Agnew et al. 1988, Stinson 1990, Jungnickel 1993, von zur Gathen 1991)

because no arithmetic operation in I, has to be done.

Multiplication. Unfortunately, multiplication is more difficult and expen-
sive. To illustrate this (see e.g., Menezes et al. 1993, Chapter 5) let (§)y =
(doy....dn—1) = (B-7v)x € Fyn. Then, expressing the di’s in terms of b;’s and
¢;’s, we have

= Z dkozk = (Z bz“z)(Z C]'(X]') = Z biCj(XZ'(X]'.

0<k<n 0<i<n 0<j<n 0<i,5<n

We define the multiplication tensor Ty, = (tz(-;c))ogi,xn € F,*" by

0<k<n
Then we get
B g T
D bicityy) =d=3-Ti-4" forall 0 <k <n. (8.2)
0<i,j<n

This method works, in fact, for an arbitrary basis B = (ag,...,a,-1), and
stores n matrices Ty, ..., T,—1 € F;*", i.e. n® elements of F,. One multipli-
cation in F» then requires 2n - n? = 2n® multiplications in F,, plus O(n?)

additions.

77

A substantial simplification is possible when ' = (ay, ..., a,_1) is a normal
basis of F,» over F,. Raising both sides of Equation (8.1) to the ¢~'th power
we have

W e = e =0 ageg) = o7(Y 1)
0<k<n 0<k<n
k) - k
Y = Y W
0<k<n 0<k<n
- Y
0<k<n
= tz(-o_)m_l = tx-) forall [€ {0,...,n —1}.

Consequently, we only have to store one matrix Ty € F;*" and can generate
Ty,0 < k < n, by simple shifts. Writing Ty = (i;)o<ij<n € F;*", we have

Massey & Omura’s algorithm for multiplication. Using these results
we have the following algorithm for multiplication of two elements in a normal
basis representation of F,» over F,:

ALGORITHM 8.4. Massey-Omura multiplier

Input: 3,7 € Fyn with (8)y = (bo,- .-, buz1),(¥)x = (coy...,¢n1) and Ty =
(tij)o<ij<n € %" for a normal basis N.

Output: (&)a = (G- v)xv = (do, .., dn_1).

1. Fork=0ton—1 do

2. Set d;, = 0.

3. Forall0 <i,5 <n do
4. Set 0 < z,s <n withz = (i—j) mod n and s = (k — j) mod n.
5. Ift,; # 0 then compute d = dj, + b; - 1,5 - ¢;.

6. Return (dy,...,d,_1).

LEMMA 8.5. The algorithm Massey-Omura multiplier works as specified.

78

PrROOF. Correctness of the algorithm is clear because of Equation (8.2) and
Equation (8.3). O

As it can be seen in Step 5 the number of non—zero entries in Ty determines
the number of multiplications in F, for one multiplication in the given normal
basis representation of Fyn.

For ¢ = 2 this algorithm can be directly used to construct hardware devices
performing multiplication in Fyn (see the example given in Jungnickel 1993,

Chapter 3). This technique was first proposed by Massey & Omura (1981).
Density of T)y.

NOTATION 8.6. Ty is called the multiplication table of the normal basis N,
and the number of non-zero entries in Ty is the density cy of .

Ash et al. (1989) call ¢y the ‘complexity’ of A, but since this incorrectly
suggests a connection to the usual notion of ‘complexity’,in this case of the com-
plexity of multiplication in F;», we prefer the above terminology (cf. Schlink

1996h).

LemMMA 8.7. Multiplying two elements of Fyn given in a normal basis represen-
tation can be done with 2ncy multiplications in F,. Additionally, ¢y elements
of F, have to be stored.

PRrROOF. This is clear because of Algorithm Massey-Omura multiplier. O

Obviously cy < n?. There are n” entries in Ty and every entry has g
possible values with ¢ — 1 non-zero values. If we assume a binomial distribution
for the number of non-zero entries in Ty we expect a density F(cy) = %nQ.
But of course, the entries of T are not independent uniform random elements
of F,. It depends on the chosen normal basis M. For the topic of a randomly
chosen normal basis see von zur Gathen & Giesbrecht (1990). A lower bound
for ¢y is given by the following theorem:

THEOREM 8.8. If NV is a normal basis for Fyn then ¢y > 2n — 1.

PROOF. See Mullin et al. (1989), Theorem 2.1. O

DEFINITION 8.9. A normal basis N with density ¢y = 2n—1 is called optimal.
We therefore have a new task in our goal to speed up multiplication:

PrROBLEM 8.10. For which q,n € N exists an optimal normal basis of Fyn over
F,?

79

8.2. Normal bases generated by Gaufl periods.

Gaufl periods. To find ‘good’ normal bases, i.e. normal bases N for Fyn
over [F, with low density cy, we introduce Gaufl periods.

DEFINITION 8.11. Let n,k € N such that r = nk + 1 is a prime. Let K < Z)
be the unique subgroup of Z) of order k, and let { be a primitive rth root of

unity in Fynx. Then
-y

is called a GauB period of type (n, k) over F,.
We have the following theorem based on Gauf} periods:

THEOREM 8.12. Let r = nk + 1 be a prime not dividing q, e the order of ¢
modulo r, K be the unique subgroup of order k of the multiplicative group of
Z,, and ¢ be a primitive rth root of unity in Fy». Then the GauBl period

azZ(“

generates a normal basis N' = (a,af,... ,oﬂn_l) of Fyn over F, if and only if

gcd(”?k,n) =1.

PROOF. See Gao et al. (1995a), Theorem 2.1. Further proofs can be found
in Menezes et al. (1993), Theorem 5.5 and Geiselmann (1994), Theorem 2.19.
In the special case ¢ = 2 a proof was given by Ash et al. (1989), Theorem 2.2.
O

Determination of all optimal normal bases. This construction was first
used by Ash et al. (1989) for ¢ = 2. But only a reviewers comment cited in the
paper mentioned the connection to GauB periods. Mullin et al. (1989) showed
that for k& € {1,2} one obtains a optimal normal basis.

COROLLARY 8.13 (MULLIN et al. 1989). Supposen+1 isa primeand Z | =
(q) with g = p', where p is a prime, { € N. Then N' = {¢ € Fpu: ("' — 1 =
0 and ¢ # 1} forms an optimal normal basis of F» over F,.

COROLLARY 8.14 (MULLIN et al. 1989). Let 2n + 1 be a prime and assume
that either

80

1. (2)=75,,,, or

2. 2n+1 = 3mod4 and (2) = {a € Zapy1: Iz € Zopy : z? = a mod
2n+1}.

Then there exists a primitive (2n + 1)st root of unity (€ Fyn and N =
(C+ ¢, ..., ("4 (™) is an optimal normal basis of Fan over .

Gao & Lenstra (1992) proved that these are the only optimal normal bases.

ExampLe 8.15. 1. Let ¢ =2 and n = 24. Then Fy24 has no optimal normal
basis over Fy because neither n +1 = 25 nor 2n + 1 = 49 are prime.

2. Let ¢ = 2" and n = 2. We have 2-2+4 1 = 5 is a prime and (2) =
{2,4,3,1} = Z. Therefore Fy:« has an optimal normal basis over Fy.

Therefore, there are finite fields F,» for which no optimal normal basis
exists.

Density of normal bases generated by Gauf3 periods.

FacT 8.16. Let N be a normal basis constructed according to Theorem 8.12.
Then
ey < (n— 1k +n.

PROOF. See e.g. Geiselmann (1994) or Menezes et al. (1993). O

There are further results for special values of ¢ = p' with p a prime, ¢t € N.

FAcT 8.17. Let N be a normal basis constructed according to Theorem 8.12
with density cy and let p = char[F,.

1. If p|k, then we have cyy < kn — 1.
2. If ¢ =2, then we have

o nk—k+1—(k—2)2§cN§nk—k+lforkEOmon,

on(k+1)—2k+1—(k2—k+2)Sc/\/gn(k—l—l)—Qk—l—lfor
k=1 mod 2.

PRrooOF.

1. See Menezes et al. (1993), Theorem 5.5.

81

2. For the upper bounds cf. Beth et al. (1991), Corollary 8. The lower
bounds are given in Ash et al. (1989), Theorem 2.3.

The above theorem gives a new parameter k in the estimation of the density
cy- To construct ‘good” normal bases we therefore have to examine if there
exists k small enough for given ¢,n € N.

We have to check for given ¢, n
1. the existence of a k satisfying the assumption of Theorem 8.12,
2. an upper bound on the smallest such &,
3. the density ¢y of the corresponding normal basis V.
Existence of k. The question whether there exists a k for given ¢,n and

which upper bound can be given leads to the following definition (see Schlink
1996b):

DEFINITION 8.18. A pair (n, k) is called a GauB pair if and only if the Gauf
period of type (n, k) is a normal element in Fyn over F,. Define

K (n) = { infk : (n,k) is a special GauB$ pair, if such a k exists,

4 oo : 1if no such k exists.

Fact 8.19. Let ¢ = p', p a prime, t € N with the notations above. Then
ty(n) < oo if and only if the following conditions hold

I. ged(n,t) =1 and

2. (a) 2p fn, if p=1mod 4,
(b) 4p fn, if p=2,3 mod 4.

PROOF. See Wassermann (1993), Satz: 3.3.4. O

In Ash et al. (1989) we can find the hint of a reviewer that for ¢ = 2 we

have &/ (n) = oo if 8|n. This is caused in the fact that 2 is a quadratic residue
modulo r if 8|(r — 1).

82

Upper bounds on «)(n). If /(n) < oo, i.e. there exists a k for given ¢,n
satisfying the conditions of Theorem 8.12, we are interested in an upper bound

on n;(n) to have bounds on ¢y that only depend on ¢, n.

o Schlink (1996b) searched #y(n) experimentally and considered that £ (n)
is, if finite, fairly small. Indeed the computational results lead to the
conjecture that y/n is an upper bound for &/ (n).

o Geiselmann (1994) did also empirical examinations for n < 2 -10* and
g < 32. He states that & < n can be assumed for cryptographically
interesting n and ¢. In Beth et al. (1991) we find the assumption that
k€ O(n).

o Ash et al. (1989) listed k for some Mersenne primes 2” — 1. This confirms
the conjecture that k € O(n).

Finally we point to an exhausted table in Gao et al. (1995b) not only on
#y(n) but on GauBl periods of type (n, k).

A bound for KZ;(TL) proven so far needs the Frtended Riemann Hypothesis
(ERH):

FacT 8.20. Let ¢ = p' a prime power and n € N. If n and g satisfy the
conditions of Fact 8.19 the following holds, assuming the ERH:

) (n) € O(n* log*(np).

Proor. Cf. Bach & Shallit (1989). O

8.3. Construction of the multiplication table 7).

Basic ideas. If we want to multiply two elements 3,7 € F,n given in the
normal basis representation according to Theorem 8.12 we can use Algorithm
Massey-Omura multiplier (Algorithm 8.4). Then we have to compute the
multiplication table Ty = (tij)0§i7j<n of a normal basis A/ generated by Gauf}
periods.

One way to do so is to transfer aa; = ZOSj<n l;;; into a special polynomial
representation first and then to compute all ¢;;,0 <,7 < n.

But we can compute T also directly. The algorithm was first given by
Wassermann (1993) and independently by Beth et al. (1991) and Geiselmann
(1994). Tt is explicitly based upon the fact that the normal element o =
Y ek (¢ is generated by a GauBl period.

83

The constructive lemma. We have ao; = ZOSKH tiat = ZOSj<” tija.
To compute Ty = (tij)ogz‘,j<n we just need to know the normal basis represen-
tation of aa; for all 0 < i < n.

NOTATION 8.21. Let K; = {ag:a € K} =: Kq' for 0 < i < n where K < Z)
is the unique subgroup of order k. Let 0 < iy < n with —1 € K;,. If k is even
then 19 = 0, and if k is odd then iy = %. For 0 <i < n let

6 :{ 0 ifi# o,

1 i = i,

be the Kronecker symbol.

We have @i = at' = (Sex () = Coer (7 = Sper, ¢ for 0 < < .
We therefore have (Cf. Gao et al. 1995a)

aa; = (Y)Y =020 ¢

a€k beK; a€K bek

_ Z Ca+bqi _ Z <a(1+bqi)
a,beX a,beX

= YN el (8.4)
bek aek

For each b € K, either 1 +b¢' = 0 mod r, or 1 + bg' € K; for a uniquely
determined j € {0,...,n —1}. If 1 4+ b¢" = 0O mod r, then i = iy and
S e €0 = S (0 = #K = kmod &, I 1+ by’ € Kj, then i # i
and) o ¢oli+be’) = Y ouek (7 = Eaelcj (* = a; mod ®,. ¢, denotes the rth

cyclotomic polynomial over F, as defined in Definition 6.7.

We summarize this in the following lemma:

LEMMA 8.22. Let Ty = (ti)o<i,j<n be the multiplication table corresponding
to a normal basis N' generated by GauB period according to Theorem 8.12,
and let 1{; = #((1 + K;) N K;) for all 0 < i, 5 < n be the so—called cyclotomic
numbers. Let iy and §;;, be as before. Then we have for 0 <1 < n that

tﬁ'j = t;]- —]{Z(SZ‘J'O.

84

ProoF. We have aa; = ZOSKH l;;05 and

aq; = ZZ@(Hbqi)

beK aeK
— E (a(l-l—bqi) + § Ca(l-l—bqi)
a,beEX a,bek
14bg* =0 mod r 1+bqielc]

= kb + Y, e

a,bEK,1+bg €K
= kb, + E UTeTs
0<j<n

. fL‘T—l _ Z _
Since ¢ is a primitive rth root of unity and == = ZOSiSnk x', we have (0 =

Zogignk (tand —1 = ElgiSnk (= ZOSKH a;. Therefore we have

k=Y (=k)ay, (8.5)

0<j<n

and ZOSKH Lija; = 20$j<n<t;j — kd; ;,)er; which proves the claim. O

Our proof is based on Gao et al. (1995a), where a generalization of Lemma
8.22 can be found (cf. their Theorem 2.3).

An algorithm. We can now formulate an algorithm to compute the multipli-
cation table Ty of a normal basis N generated by GauB period (cf. Wassermann
1993, Algorithm 3.2.1).

ALGORITHM 8.23. multiplication table
Input: ¢, k,n € N such that the conditions of Theorem 8.12 are satisfied: r =

nk + 1 is a prime, r [q, gcd(orgk(q),n) =1.

Output: Ty € F;*", the multiplication table for the normal basis N given by
Theorem 8.12.

1. Let K < Z) be the unique subgroup of order k. Compute an element u
of order k in Z) and K = {u:0 <4 < k}. Compute ¢’ and K; = K¢’ for
all0 < j < n.

2. Initialize Ty = (1ij)o<i,j<n = 0.

3. If'k is even then set ip = 0 else set 19 = 7.

85

4, Fori =0ton—1 do

5. Ifi =1y then set t;; = t;; — k for all 0 < j < n.
6. For all b € K do

7. If 14+bq" £ 0 mod r thenlet j € {0,...,n—1} with 1+bq* € K},
and set tij = tij + 1.

8. Return Tly.
LEMMA 8.24. Algorithm multiplication table computes Ty correctly.

Proor. This is clear because of Lemma 8.22. O

LEMMA 8.25. Algorithm multiplication table computes Ty with at most
3nk + n — k — 2 multiplications and nk additions in Z, and n(k + 1) additions
in F,. At most n(k + 1) — 2 elements of Z have to be stored.

ProoF. In Step 1 an element u € Z of order k has to be found to compute
K =Ko = {u:0 < i < k}. This can be done with < nk multiplications in
Z}. (n — 1)k further multiplications are needed to compute K; for 1 < j < n.
Finally there are n — 2 multiplications to compute ¢/,2 < 7 < n. Therefore
Step 1 needs < 2nk + n — k — 2 multiplications in ZX. In Steps 243 there
are no operations to count. In Step 5 there are n additions in F, because 14 is
uniquely determined in {0,...,n —1}. In Steps 6+7 we have k multiplications
and k additions in Z, and k additions in F,. The total number of operations
in Steps 4-7 is therefore nk multiplications and nk additions in Z, and nk +n
additions in F,.

The demand on storage can be seen as follows: We have to store K; C
ZX,0 < j < n with k elements each and ¢?%,...,¢"™' € ZX. Therefore the
algorithm has to store nk +n — 2 = n(k + 1) — 2 elements of Z. O

Number of operations. We summarize the results of this section in the
following theorem:

THEOREM 8.26. Let g,n,k € N satisfy the conditions of Theorem 8.12. Then
using the normal basis representation for Fyn the following hold:

1. The addition of two elements in Fgn can be done with n additions in [F,.

2. The multiplication of two elements in Fyn can be done with O(n*k) op-
erations in .

86

3. The exponentiation of an element in Fy,. can be done with O(%) oper-
ations in F,. O(@) elements of Fyn and cy elements of F, have to be

stored.
PRrOOF.
1. Clear.

2. Lemma 8.7 in connection with Result 8.16.

3. According to Algorithm bgmw (Algorithm 3.25) we need —2—(1 + o(1))

log, n
multiplications in F,» (Corollary 4.9) because raising to the gth power is
just a cyclic shift. This method stores ——(1+0(1)) elements of Fyn. The

log, n
number of elements of F, to store is due to the number ¢y of non—zero

entries in the multiplication table T)y.

COROLLARY 8.27. The exponentiation of an element in Fy,. can be done with
271§6g2 Q%S(n)(l +0(1)) operations in F,. S(n) is used as given in Notation

Proor. We examine a modified version of Algorithm Massey-Omura multi-
plier (Algorithm 8.4) according to the idea of Jungnickel (1993), Chapter
3: If we use Ty instead of Ty (Ty can be computed given Ty without any
operations in F,, cf. Equation 8.3 and Beth et al. 1991), then we can compute
dp = BTy('y) by computing ﬁqkTO(t’y)qk. Set 'C' := (’yqo,’yql,...,’yqn_l). If
Z(-?) € F, and one
addition with the previous result according to row j has to be done. Hence
we can compute ‘y; = To(t*y)qk for all 0 < k < n with 2¢yS(n) operations in
F,. But then we can compute d; = B (*y;) with 25(n) further operations for
k€ {0,...,n —1}. So we have a total number of 2(cy + n)S(n) operations
for Algorithm Massey-Omura multiplier. According to Corollary 4.9 we can
compute an exponentiation using Algorithm bgmw (Algorithm 3.25) with at

tE?) # 0 then one multiplication of row j in C' with the scalar ¢

n
log, n

most (14 o(1)) multiplications which completes the proof. O

87

9. Using fast multiplication within normal basis
representation

9.1. The basic idea. Gao et al. (1995a) suggest a way to connect fast mul-
tiplication (using polynomial basis representation) and free raising to the gth
power in Fyn (using normal basis representation). Their idea is based on nor-
mal bases generated by Gauf} periods of type (n, k) according to Theorem 8.12
and the fact that £ = z mod ®, € F,[z]/(®,) is a primitive rth root of unity.
®, is the rth cyclotomic polynomial as defined in Definition 6.7.

9.2. The residue class ring F,[z]|/(®,).

The rth cyclotomic polynomial over F,. We now introduce a special
residue class ring in F, [z] for r € N. We regard cyclotomic polynomials @, over
F,. An introduction on cyclotomic polynomials for arbitrary r € N is given in
Lidl & Niederreiter (1983), Chapter 2.4. We concentrate on the special case
when r = nk + 1 is a prime for n,k € N. Then 1 and r are the only divisors of
r and therefore the following hold:

LEMMA 9.1. Let r = nk + 1 be a prime and F, be a field with ged(q,r) = 1.
Then:

' =1
1 ==

2. ®,(x) is irreducible in F,[z] if and only if ord,(q) = nk.

_ _) .
=, (z) = Zogignk x' is monic of degree nk,

PRrROOF.

1. ged(g,r) = 1 implies that char F, [r. According to Lidl & Niederreiter
(1983), Theorem 2.45, we have z" — 1 = Hd|7‘ Qy(z) = O4(2)P,(2) =
(x — 1), (z).

2. This follows directly from Lidl & Niederreiter (1983), Theorem 2.47.

Two polynomial bases for F,[z]/(®,). The following is due to Gao el al.
(1995a):

REMARK 9.2. Let R = F,[z]/(®,) and £ = x mod ®, € R. Then R has two
bases By = (1,&,..., &™) and By = (£,...,£") over F,.

88

PROOF. We have R = (1,¢,...,£"1) because every element of R can be
represented by a polynomial of degree at most nk —1. But dimp, R = deg @, =
nk and hence B, = (1,£,...,£""1) is a basis of R over F,.

We have 2™ = ®,(x) -1 — Y o<i<n 2t and " = — Y o<icn ¢ mod ®, so
that 1 = ¢V = —¢F — Y i <icnk ¢ mod @, and every element of By is a linear
combination of the elements of By = {£,...,£"%}. Since their number is the
same, also B, is an F,-basis. O

It is easy to go from one basis to another:

Z a;é = —ant® + Z i —)€ and

1<i<nk 1<i<nk
Z (lifi = Z (az’ - ao)fi - aofnk-
0<i<nk 1<i<nk

We therefore have to do nk — 1 subtractions in F, to go from B; to B and vice
versa.

9.3. A transformation. We can choose ¢ = z mod ®, as a primitive rth
root of unity with ®, the rth cyclotomic polynomial. Let ¢,n,k satisfy the
conditions of Theorem 8.12. Then

a:ZS(J

1=1,9

is a normal element in F,» over F, according to Theorem 8.12 and N =
(a0, ..., au_1) is a normal basis of F» over F,.

We can now change between this normal basis representation of Fy» and a
polynomial representation of R by defining a map ¢ from F,» with basis N to
R with basis By. If necessary we can easily change between the two polynomial

bases By and By of R.
Define

©: Fpr — R _
Docicn biti 30 i UGET with B = b if 5 € K.

@ is well-defined since Z} = U0<j<n/C

LEMMA 9.3. 1. ¢ is an injective ring homomorphism which fixes F,.

2. @(p) is invertible in R for all 3 € Fyn \ {0}.

89

PROOF.
1. o is injective: Let g = EO<i<n bia;, v = 20<i<n cioy € Fpn with
B # . Then there exist 1+ € {0,...,n — 1} with b; # ¢; and thus
by # ¢ for j € Ky, i.e. ©(B3) # ¢(7). Because ¢(0) = 50(20SZ-<” 0-
i) = D 1 cjenk 0§ = 0 and ¢ injective we have ker ¢ = {0}.

o We have 99(042) = @(Zae)@ fa) = ZQE}C faqi and 1 = — Zo§i<n a; =
—Yicicnk &’ Hence we have for b € Fy: o(b) = (b 1) =
‘P(Eogkn _bo‘i) = Z1§jgnk —bgh =b-1=0.

o Obviously ¢ is additive. Because of

plasaj) = pla”a”) |
= p(a® (@) = p((aa;_i)")
(84) Z 5a(1+bqj—i)qi _ (Z an")(z quﬂ)
abek a€k beK
= plai)p(a)

@ 1s also multiplicative and hence a ring homomorphism.

2. ¢ is not surjective for k > 1: #F,;n = ¢" but #R = #F,[z]/(®,) = ¢**
with deg @, = nk. But we have (see Gao el al. 1995a)

R ={) V& ecR:b €F, and b}, =) for j,j' € K;i,0 <i < n}

1<j<nk

a subring of R because R’ = im ¢. Thus ¢(3) is invertible in R for all
e Fpn \ {0},

9.4. Fast multiplication based on Gaufl periods. We are now ready to
present the algorithm of Gao et al. (1995a) to use fast multiplication within
a normal basis representation. The normal basis N is generated by a Gauf
period according to Theorem 8.12.

ALGORITHM 9.4. fast normal basis multiplication

Input: ¢,n,k € N which satisfy the conditions of Theorem 8.12. Let N' =
(g, ..., au—1) be the normal basis of Fy» over F, generated by a Gaul$ period ac-
cording to Theorem 8.12 and (83)y = (Zo<z’<n biai)y = (bo, ... bu1),(V)v =
(Cogion N = (c01-vrent) € B

Output: (6)a = (6y)x = (doy- -, dyp—1) € Fyn.

90

1. [Transformation from Fyn into R':] Compute 3',4" € R' with ' = p(3) =
Elgjgnk Vel y = e(v) = Z15j5nk i with b, = b;, ¢k = ¢; if j € K.

2. [Fast polynomial multiplication:] Compute 6, = 3'-+' = Zl§j§2nk d;l)fj.

3. [Reduction modulo " —1:] Set 63 = Y ..o\ d;Q)fj = §; mod (z™*! —1)

by computing d§-2) = d;-l) + d;'}}-)nk-l-l for all 0 < 7 < nk.
4. [Transformation into R':] Compute &' = 37, ;s d;¢ € R' with d; =
d? —d?) for all 1 < j < nk.

5. [Transformation from R' into Fyn:] Set d; = d; for j € K;,0 <1 < n,
Compute § = Z(KK” dia; = (do, ..., dpq)n

LEMMA 9.5. Algorithm fast normal basis multiplication works as spec-
ified. It uses M(nk) multiplications and at most 2nk additions in F, to multiply
two arbitrary elements of Fyn given in the normal basis representation corre-

sponding to a Gauf} period of type (n,k). We have to store 2nk elements of
F

-
PrOOF. The correctness of the algorithm is clear from the arguments given
above.

Step 145 can be done without any operations in F,. Step 2 needs M(nk)
multiplications in F, because ¢(3), () are polynomials of degree at most nk.

Step 3 can be done with nk additions in F,. Step 4 also needs nk additions in
F

.-
The algorithm needs to compute ¢(3) and ¢(v). This uses a demand on

storage of at most 2 - nk elements of F,. O

COROLLARY 9.6. Algorithm fast normal basis multiplication computes
the product of two elements in Fyn given in normal basis representation using

M(kn) + 2S(kn) = M(kn) + 2kS(n) operations in F,.

Number of operations. We summarize the results of this section in the

following Theorem (cf. Gao et al. 1995a, Theorem 3.1):

THEOREM 9.7. Let q,n,k € N satisfy the conditions of Theorem 8.12. Then

the following holds for the normal basis representation of elements of Fyn :

1. Addition of two elements can be done with n additions in T,.

91

2. Multiplication of two elements can be done with O(nk log(nk)log log(nk))
operations in .

3. Exponentiation of an element uses at most O(%log(nk) log log(nk))
operations in F,. The algorithm needs to store O(@) elements of Fyn .

Proor.
1. Clear.

2. Lemma 9.5 in connection with Theorem 7.15.

3. According to Corollary 4.9 we need —2—(1 + o(1)) multiplications in Fyn

log, n
for one exponentiation using Algorithm bgmw (Algorithm 3.25) because
raising to the gth power is just a cyclic shift of coefficients. Algorithm
bgmw stores at most logLn(l + 0(1)) elements of Fyn.
q

COROLLARY 9.8. Exponentiation of an element of Fy» can be done with

n

M(kn)(1 + o(1)) + 2k log, g——S(n)(1 + o(1))

log, ql
08y 1 23

operations in .

PROOF. Using Algorithm bgmw (Algorithm 3.25) we have to do at most
log”qn(l + o(1)) multiplications according to Corollary 4.9. Using Algorithm
fast normal basis multiplication (Algorithm 9.4) we have M(kn)4+2kS(n)
operations in F, per multiplication (see Corollary 9.6) which completes the

proof. O

9.5. A summarizing table. Before we introduce the results of our imple-
mentations we give a theoretical comparison of the three exponentiation algo-
rithms for F,n we have analyzed. We restrict to the case ¢ = 2 and k < 2,
i.e. the following Table 4 is only true for field extensions over Fy for which a
optimal normal basis exists.

We use the following short names:

NoOTATION 9.9. o onb: Algorithm bgmw (Algorithm 3.25) in connection
with normal basis representation for Fyn and Algorithm Massey-Omura
multiplier (Algorithm 8.4) for multiplication.

Algorithm ggp shoup

O-notation O(n?loglogn) | O(n?loglogn)

(w < 3)

block operations

em - M(n) (1 +o(1)) em < kQIO; — ey = QIOgj
+

cs - S(n)(1 4 o(1)) cs = 'Zk@ cs = 2nlogy n

(w=3)

storage 0(%) O(W)

(only TFan)

o shoup: Short for Algorithm exponentiation with composition (Algo-
rithm 7.28) for polynomial representation of Fyn.

o ggp: Algorithm bgmw (Algorithm 3.25) in connection with normal basis
representation for Fyn and Algorithm fast normal basis multiplica-

tion (Algorithm 9.4) for multiplication.

Table 4: Theoretical comparision between three exponentiation algorithms over

Fyn for n,k € N and (n,k) is a GauB pair.

93

10. Practical results for addition chain heuristics

10.1. The experiment.
Numerical results in the literature. Brickell et al. (1993), de Rooij (1995)

and Bocharova & Kudryashov (1995) give some numerical results for original
addition chains. They examine the number of steps and the number of elements
to store for some of the algorithms binary (Algorithm 3.13), brauer (Algorithm
3.17), bgmw (Algorithm 3.25) and bocharova (Algorithm 3.39). A summary on
their results is given in Table 5. They concentrate on average and worst case
values for inputs of length 160 bit and 512 bit. We do not know of more detailed
results for this four algorithms. We found no numerical results for Algorithm
yacobi (Algorithm 3.31) in the literature. We now compare all five algorithms
given in the literature and the new Algorithm lookahead (Algorithm 3.44) in
detail.

input|algorithm |reference param.| #steps |#non-doub.| storage

A r |aver max| aver max|aver max
160|binary Brickell et al. (1993) 237 318

bgmw Brickell et al. (1993) log, 12 50.25 54| 45 45

log, 19 43.00 45| 76 76

de Rooij (1995) ? 50 45 47

brauer de Rooij (1995) 197 9 9
512|binary Brickell et al. (1993) 765 1022

bgmw Brickell et al. (1993) log, 26 127.81 132|109 109

log, 45 111.91 114] 188 188

de Rooij (1995) ? 128 109 111

brauer de Rooij (1995) 611 17 17

Bocharova & Kudryashov (1995) 111 62 62

bocharova|Bocharova & Kudryashov (1995) 102 16 16

Description: ‘7’ no parameter is specified

Table 5: Some numerical results on addition chain algorithms in the literature

Input parameters. Due to the numerical results that can be found in the
literature we concentrate on original addition chains (i.e. ¢ = 2) and examine

inputs of length A = 160 bits, A = 512 bits and A = 1024 bits. We also dis-

tinguish between different Hamming weights v. For each length A we consider
inputs with low Hamming weight (v & %), medium Hamming weight (v & %)

and high Hamming weight (v &~ %) We run all 9 combinations with 1000 ran-
domly chosen inputs m. Explicit formulas for the chooseable parameter r in

94

the algorithms brauer, bgmw and bocharova have already been given. We use
these formulas with A instead of log, m. The parameter r in bgmw is computed
according to the formula r = [log, A — 2log, log, A| + 2. The additional con-
stant 2 is chosen to obtain better results for the concrete length. This doesn’t
influence the asymptotical behaviour and gives also comparable results to the
numerical results of Brickell et al. (1993).

number of bits A =160 A =512 A =1024

Hamming weight VR T VR A VAR I

number of computations | 1000 randomly chosen bitstrings
for any combination

parameter r according to the theoretical results

Table 6: Input parameter for addition chain algorithms

Output parameters. For each input m we get the total number of steps, the
number of doublings and the number of further steps (called non-doublings).
We also count the number of elements that have to be stored during the com-
putation (without intermediate results). The results are given in Table 7 (for
A = 160), Table 8 (for A = 512) and Table 9 (for A = 1024). We analyze
these results by first comparing the classical algorithms: binary, brauer and
bgmw. Then we give a survey on the algorithms using data compression tech-
niques: yacobi, bocharova and lookahead. Finally, we compare both groups
of algorithms.

10.2. The classical algorithms. The algorithm binary computes addition
chains that are only acceptable for low hamming weight (v ~ 1X). These addi-
tion chains contain nearly the same number of doublings as the addition chains
produced by brauer and bgmw. But the number of star steps is 2-4 times as
high as using brauer or bgmw for high Hamming weight (v ~ 3X). The advan-
tage of binary is that we have to store only the input.

brauer and bgmw both need more storage — to reduce the number of non—
doubling—steps! The trade—off between the number of non—-doublings and stor-
age 1s worth while — even for relatively low hamming weight. The number of
non—doublings can be reduced clearly comparing with binary. The number of
doublings is constant.

brauer and bgmw differ only in two points conspicuously: For low Hamming

weight (v & 1)) bgmw computes shorter addition chains. But brauer beats

95

Hamming |algorithm #steps #doublings |#non-doublings storage
min aver max min aver max|min aver max|min aver max|min aver max
25 40 5H8|binary 183 198 216 159 24 39 57 1
brauer 187 196 206 156 31 40 50 15
bgmw 184 194 206 159 25 35 47 54
yacobi 190 202 215|169 173 179 19 28 39| 15 20 26
bocharova| 181 191 204 159 22 32 45 3
lookahead| 179 194 218|159 167 188 18 26 36| 14 19 25
63 80 103|binary 221 238 261 159 62 79 102 1
brauer 201 206 209 156 45 50 53 15
bgmw 204 210 216 159 45 51 57 54
yacobi 213 224 2331176 180 185 35 43 51| 23 27 32
bocharova| 201 212 222 159 42 53 63 3
lookahead| 200 215 237|165 174 190| 33 40 511 20 25 30
104 120 141|binary 262 278 299 159 103 119 140 1
brauer 206 208 209 156 50 52 53 15
bgmw 213 216 217 159 54 57 58 54
yacobi 219 231 241]177 182 186| 40 49 55| 23 27 31
bocharova| 220 227 235 159 61 68 76 3
lookahead| 205 228 266|166 180 200| 35 47 66| 16 21 28
Table 7: Output parameters for A = 160 bit
Hamming |algorithm Ftsteps #doublings |#non-doublings storage
min aver max min aver max|min aver max|min aver max|min aver max
93 128 163|binary 603 638 673 511 92 127 162 1
brauer 600 614 628 507 93 107 121 31
bgmw 590 608 625 508 82 100 117 128
yacobi 607 630 652|543 551 559| 61 78 94| 45 54 64
bocharova| 571 589 607|511 512 515 60 77 93 11
lookahead| 586 615 653|524 542 5H68| 56 73 90| 40 51 60
216 256 294|binary 726 766 804 511 215 255 293 1
brauer 629 635 639 507 122 128 132 31
bgmw 631 641 647 508 123 133 139 128
yacobi 668 684 706|560 567 575|104 116 132 68 72 78
bocharova| 620 630 641|513 513 514|106 116 127 11
lookahead| 648 673 706|544 561 584 99 111 129| 56 65 72
353 384 415|binary 863 894 925 511 352 383 414 1
brauer 636 638 639 507 129 131 132 31
bgmw 645 648 649 508 137 140 141 128
yacobi 678 696 712|564 571 577|113 125 136 63 70 76
bocharova| 622 634 646|511 512 515|108 121 133 11
lookahead| 668 709 760|556 580 611]107 129 151| 47 56 65

Table 8: Output parameters for A = 512 bit

96

Hamming |algorithm #steps #doublings |#non-doublings| storage
min aver max min aver max| min aver max|min aver max|min aver max
199 257 302|binary 1221 1279 1324 1023 198 256 301 1

brauer 1202 1219 1236 1018 184 201 218 63
bgmw 1183 1205 1223 1020 163 185 203 205
yacobi 1208 1239 1264|1085 1096 1107|121 143 162| 85 99 110
bocharova|l139 1165 1181|1024 1028 1031|114 137 152 19
lookahead (1185 1220 1260({1061 1085 1118|111 134 152| 77 93 105
459 512 563|binary 1481 1534 1585 1023 458 511 562 1
brauer 1240 1247 1250 1018 222 229 232 63
bgmw 1239 1247 1254 1020 219 227 234 205
yacobi 1314 1334 1356(1115 1125 1134195 209 224|123 130 140
bocharova|l218 1230 1242|1028 1028 1029|189 201 213 19
lookahead|1285 1324 1366(1098 1120 1152(182 203 222[109 117 127
728 768 815|binary 1750 1790 1837 1023 727 767 814 1
brauer 1248 1249 1250 1018 230 231 232 63
bgmw 1249 1253 1254 1020 229 233 234 205
yacobi 1328 1351 1376(1120 1130 1140|207 221 2371117 124 132
bocharova|1210 1231 1244|1024 1028 1031|186 203 215 19
lookahead|1331 1392 1478(1124 1156 1203|207 235 275 88 100 111

Table 9: Output parameters for A = 1024 bit

bgmw if the Hamming weight is v > % The other point to emphasize is the
demand on storage: brauer stores only 3 to 3 of the number of elements of

bgmw. But bgmw only stores powers of 2. brauer stores all elements of the set

{1,...,27 =1},

Results. Algorithm binary should only be used for relatively low Hamming
weight (v &~ 1A). In the other case brauer and bgmw produce addition chains
with much fewer elements. For v > % and according to the choice of r brauer
and bgmw produce addition chains of nearly the same length. The decision
which of both algorithms should be used depends on the storage: normally
brauer should be prefered. But if these algorithms are transformed to create
exponentiation algorithms and the cost for squaring is negliglible, bgmw is the
right choice. In this case bgmw requires no memory because all powers of 2 can
be computed for free.

10.3. Algorithms based on data compression. The three algorithms ya-

cobi, bocharova and lookahead use data compression techniques to generate

addition chains. We take a look at the average case in the following:
Comparing the total numbers of steps we find that 1lookahead is not useful

97

for high Hamming weight (v ~ 2)). yacobi and lookahead create much
longer addition chains than bocharova if we have A = 512 or A = 1024. All
three algorithms need more doublings than the binary method to evaluate an
addition chain. It can be generally noticed that bocharova is the only one of
the three algorithms based on data compression with a nearly constant number
of doubling steps for given A. For the other two algorithms the doublings
depend on the Hamming weight. On the other hand the number of star steps
is relatively small. bocharova is best in the case of v > %

The demand on storage is fixed for bocharova due to the chosen param-
eter. But for yacobi and lookahead the demand on storage depends on the
Hamming weight of the input. The worst case seems to be v ~ %

All three algorithms beat the binary method by using storage. But there is no
typical ‘winner’. Perhaps bocharova gives the best results. lookahead can be
used for v & %.

10.4. Comparison between the two methods. Concentrating on the total
number of steps the classical algorithms are better than yacobi and lookahead.
But bocharova seems to be quite as good as brauer or bgmw — depending on
the chosen parameter. The addition chain algorithms based on data compres-
sion have one nice property: they need less star steps but more doublings than
the classical algorithms. This can be interesting if doublings do not count (cf.
the problem of squaring in Fyn given in normal basis representation). But there
is one point left that has to be emphazised: The length of an addition chain
computed by one of the algorithms yacobi, bocharova or lookahead can be
scattered in a wide range to the average length. For the classical algorithms
the length is close to the average length. Therefore for an arbitrary input the
classical algorithms brauer and bgmw should be prefered.

10.5. Addition chains: theory vs. practice. In theory and practice the
binary method has been shown to be unacceptable for long bitstrings and high
Hamming weight. The other five algorithms can be divided into two groups:
brauer, bgmw and bocharova need a parameter. The theoretical values for r
are optimal in an asymptotical sense. In practice the parameter r has to be
chosen carefully to get good results (cf. the numerical results in Brickell et
al. 1993). yacobi and lookahead cannot be optimized by a parameter. They
produce long addition chains on average and in the worst case — both in theory
and practice. The number of doublings is a little bit higher than for the other
algorithms — according to the theoretical results. But it is generally noticed
that the number of non—doublings is lower than for the algorithms brauer and

98

bgmw. We assume two reasons for this discrepancy:

1. The estimations are asymptotically. But the examined values are fairly

small — only 160 to 1024 bit.

2. For theoretical results we assume that the stored values in yacobi and
lookahead can be ordered in a balanced binary tree according to the
literature. For our experiments of only 1000 values this assumption may
not be correct.

In theory bocharova and bgmw have the same asymptotical number of non—
doubling steps: A < @(1 + o(1)). Due to our theoretical results an upper

bound on A for brauer can be given by A < 2@(1 +0(1)). In practice brauer
is a little bit better than bgmw and bocharova comparing the number of non—
doubling steps. Indeed brauer is the ‘winner’ of our experiments comparing
only the total length of the computed addition chains. There are some reasons
for this:

1. All estimates are upper bounds: In theory we give the estimate vy-(m) <
Llog, . This isn’t a good upper bound if the Hamming weight is low
according to the 2"-ary representation of m.

2. The parameter r is chosen according to the theoretical results. But these
results are given mainly for asymptotic purposes. Therefore a (slightly)
different choice of r for bgmw or bocharova could give shorter addition
chains.

The demand on storage given by theoretical results is validated by our prac-
tical experiments. Summarizing the results our experiments show that the
best algorithms in theory are also most useful in practice: brauer, bgmw and
bocharova.

99

11. Practical comparison of exponentiation algorithms

11.1. The experiment.

Implementation. Because we compare the running times of three exponen-
tiation algorithms for Fy» over F, and various n € N, we describe briefly our
implementation.

We implemented the three algorithms onb, ggp and shoup (cf. Notation
9.9) on a Sun Sparc Ultra 1 computer, rated at 143 MHz. The software is
written in C+4. The coefficient lists of both the polynomial and the normal
basis representation are represented as arrays of 32-bit unsigned integers, and
32 consecutive coeflicients are packed into one machine word. For normal ba-
sis representation we built a C++ class over Fy offering standard operations
like cyclic shifting, and arithmetic operations like addition and multiplication
according to Algorithim Massey-Omura multiplier (Algorithm 8.4) using the
multiplication table T)y. We also implemented Algorithm fast normal basis
multiplication (Algorithm 9.4) transforming from normal basis representa-
tion to polynomial representation according to Gao et al. (1995a).

For polynomial arithmetic we used the software library written in C4++ by
J. Gerhard that is described in von zur Gathen & Gerhard (1996), Section
10. This library offers fast polynomial arithmetic over Fy including several
algorithms for polynomial multiplication over Fy: the classical method, Karat-
suba & Ofman’s algorithm and the method introduced by Cantor (1989). The
algorithm of Schénhage (1977) has not been implemented. The different multi-
plication algorithms are used in the following way: Two polynomials of degree
less than 576 are multiplied by the classical method. Polynomials of degree
between 576 and 35840 are multiplied using Karatsuba & Ofman’s algorithm.
For polynomials of degree at least 35840 Cantor’ algorithm is used.

The library also contains an implementation of Algorithm modular com-
position (Algorithm 7.23) according to Brent & Kung (1978) using classical
matrix multiplication. We used this algorithm implementing modular com-
position within Algorithm shoup/exponentiation with composition (Algo-

rithm 7.28).

Chosen input. We concentrate on field extensions over Fy of degree n for
which an optimal normal basis exists, i.e. the normal basis corresponds to a
GauB period of type (n, k) with k£ € {1,2}. We use two different series of values
for n:

100

o We choose n € N;n a2 200-1,1 <1i <50 (see Table 10) as test series I to
examine in detail practical aspects of the three exponentiation algorithms.
In cryptography values for n between 512 and 1024 are often used for
cryptosystems (cf. the remarks in Brickell et al. 1993 and Odlyzko 1985).
We also want to show for which n cryptosystems based on exponentiation
can be used within a CPU-time of about 60 seconds.

normal basis by irreducible normal basis by irreducible
Gauf} period polynomial f Gaufl period polynomial f
of type (n, k) with Fon = Fa[z]/(f) of type (n, k) with Fon = Fo[2]/(f)
n k n = deg f n k n = deg f
209 2 205 || 5199 2
398 2 393 || 5399 2 5402
606 2 587 || 5598 2
803 2 798 || 5812 1
1018 1 1037 || 6005 2
1199 2 1201 || 6202 1
1401 2 1476 || 6396 1
1601 2 1607 || 6614 2 6563
1791 2 1824 || 6802 1 6756
1996 1 1898 || 7005 2
2212 1 2197 || 7205 2 7245
2406 2 2355 || 7410 1
2613 2 2665 || 7602 1
2802 1 2825 || 7803 2 7891
3005 2 3066 || 8003 2
3202 1 3165 || 8218 1
3401 2 3364 || 8411 2 8325
3603 2 3590 || 8601 2
3802 1 3831 || 8802 1
4002 1 3924 || 9006 2 9085
4211 2 4099 || 9202 1
4401 2 4273 || 9396 1
4602 1 4629 || 9603 2 9659
4806 2 9802 1
5002 1 9998 2 10001

Table 10: Input values for n < 10000 (test series 1)

o The other series (fest series 2) consists of n € Nyn &~ 20,10 < ¢ < 16
and some intermediate values (see Table 11). Using this input we want
to give an idea of the asymptotic behaviour of the three exponentiation
algorithms.

101

normal basis by irreducible normal basis by irreducible
Gauf} period polynomial f Gauf} period polynomial f
of type (n, k) with Fan = Fa[z]/(f) of type (n, k) with Fon = Fo[2]/(f)
n k n = deg f n k n = deg f
1034 2 1037 || 23903 2 23894
2141 2 2141 || 32075 2 32071
4098 1 4099 || 43371 2 43371
8325 2 8325 || 51251 2 51251
16679 2 16881 || 61709 2 61709

Table 11: Input values for n ~ 2°,10 < i < 16 (test series 2)

The exponents are randomly chosen and uniformly distributed between
{1,...,2" — 1}. We combine Algorithmonb and Algorithm ggp with the ad-
dition chain algorithm bgmw according to the theoretical results. Algorithm
shoup includes a special combination of bgmw and Horner’s rule according to
Shoup (1994).

We had to cope with two difficulties:

o We had to find irreducible polynomials of degree ~ n. One possibility is
to choose such a polynomial randomly and then verify that it is indeed ir-
reducible, using a probabilistic algorithm (cf. Cantor & Zassenhaus 1981;
Knuth 1981, Section 4.6.2). Ben-Or (1981) suggests to test a randomly
chosen monic polynomial for irreducibility by showing that it has no fac-
tors of low degree. We appropriate the idea of factorization in another
way: we used the polynomial factorization software described in von zur
Gathen & Gerhard (1996) and the irreducible polynomials computed by
it. Most of the polynomials we used for computation are mentioned in

von zur Gathen & Gerhard (1996), Table 10.6.

o We want to use optimal normal bases. The tables which are given in the
literature (e.g., Menezes et al. 1993, Table 5.1; Jungnickel 1993, Table
3.1; Gao et al. 1995b, Appendix) contain only values up to n = 2000. We
use the criteria given in Theorem 8.12 to check if there exists an optimal
normal basis generated by a Gaufl period for Fy» over F, (cf. Schlink
1996a, Section 7).

Although we have some differences for both test series due to these prob-
lems, our chosen inputs can be used to compare the three exponentiation algo-
rithms in the sequel.

102

11.2. Remarks on the algorithms.

Shoup’s algorithm. We have already mentioned that our implementation
of Algorithm shoup uses classical matrix multiplication, i.e. the multiplication
exponent w = 3. But this can be neglected comparing the three exponentiation
algorithms because of two reasons:

o We have implemented a fast matrix multiplication algorithm according
to Strassen (1969) using the version of Winograd (1971). Figure 11.1
shows that the crossover point in this implementation is about n = 1000
rows/columns. But using matrix multiplication within modular compo-
sition according to Brent & Kung (1978) means that we can use classical
matrix multiplication in our implementation for field extensions over F,
of degree n < 1000000 because we multiply only matrices in FV™V" for
given n € N.

700 T

; classical method ——
! method of Strassen -+--

600

500 |

400

300 |

time in seconds

200

100 -

0 i ~ Il Il Il Il Il Il

0 200 400 600 800 1000 1200 1400 1600
of columns/rows

Figure 11.1: Comparison of classical matrix multiplication and a la Strassen

o The library used for polynomial arithmetic uses Karatsuba & Ofman
to multiply polynomials of degree 576 < n < 35840 which is caused
in the crossover points of the implementation (cf. von zur Gathen &

103

Gerhard 1996). But then the (theoretical) running time is dominated
by polynomial multiplications and not by matrix multiplication (cf. also

the remark of Shoup 1994). For Karatsuba & Ofman we have M(n) =

O(n'°#2%) (Lemma 7.2) and hence a total of 0(1”02?) for Algorithm shoup.

This corresponds to our practical results.

Optimal normal bases. We concentrate on optimal normal bases A for
practical tests. Therefore the density of Ty doesn’t depend on k, because
cy = 2n — 1. The multiplication matrix Ty is sparse and so we used a list
structure for implementation only storing the positions with non—zero entries.

Our implementation confirms the customary (theoretical) assumption that
the cost of raising to a power of 2 can be neglected using a normal basis repre-
sentation over Fy. The running—times for cyclic shifts are nearly unmeasurable
and very close to zero. Figure 11.2 shows that raising to a 2nd power is indeed
for free compared to the time needed for multiplication using the multiplication
matrix Ty .

multiplication —-—

80 | 2nd powers -+-- |

70

60 |

50 |

time in seconds

10

N
O [

2000 4000 6000 8000 10000 12000
degree of field extension

Figure 11.2: Running times for multiplication using T and raising to a 2nd
power for a normal basis representation. This multiplication is used in Algo-
rithm onb.

104

Polynomial multiplication within normal basis representation. In
theory Algorithm fast normal basis multiplication depends not only on
the degree n of the field extension over Fy but also on k£ € N with n, k satisfying
the conditions of Theorem 8.12. Figure 11.3 shows that this is also true for
practical results: for optimal normal bases with & = 2 we have a multiplication
time of about 2-3 times the multiplication time for £ = 1. In theory we have
EM(n) < M(kn) < k*M(n) and hence it is important to find £ € N as small
as possible for given n independent of the search for normal bases N with low
density cy.

03 H T T T T T T T T T
: multiplication (ggp,k=1) <
X multiplication (ggp,k=2) +
i 2nd powers (ggp) O
i multiplication (onb) -
025 F | E
02 E
2]
°
c
Q
@
7} 0.15 | E
£ X
]
£
i +
0.1 + E
: Lt
.
+ o+
i +
0.05 | : N s+t 6 ©° <]
+ o oo °
X JRT o 6 ©9
+ + o 4
; L tteo o © ©
O R e e
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
degree of field extension

Figure 11.3: The dependence of the multiplication time in ggp on k

To eliminate the dependence on k for asymptotic results we selected normal
bases with k = 2 for test series 2 (except for n = 4098, where k = 1). Finally
we emphazise one further point: because the crossover point within the library
between the multiplication algorithm of Karatsuba & Ofman and Cantor is
about degree nk = 35840 we use Cantor’s method for field extensions of degree
more than n = 17920. Examining the asymptotical behaviour (test series 2) of
ggp we therefore mainly use Cantor’s algorithm for polynomial multiplication.
Algorithm shoup uses mostly the algorithm of Karatsuba & Ofman. For field

105

extensions of degree n < 10000 (test series 1) both ggp and shoup contain
Karatsuba & Ofman for polynomial multiplication.

11.3. Results.

Field extensions of degree at most 10*. The results of our practical com-
parison for Fyn,n < 10000 are clear with respect to normal basis representation
(cf. Figure 11.4): using a multiplication matrix — even with low density —
for multiplication is too slow. A software based implementation of Algorithm
Massey-Omura multiplier is only useful for small field extensions over F,.

For degree n > 1000 this is too time—consuming. This corresponds to our the-
3

l:gn
2.6 .

and shoup both use about O(lzgn) operations because for deg f = n < 10000

Karatsuba & Ofman’s algorithm is implemented for polynomial multiplication

with M(n) = O(nlog??’).

oretical results: onb uses O(:%—) operations in F, (Theorem 8.26), but ggp

T T T T T
onb —<—
700 ggp +
shoup -8--
600 | E
=
500 |]
o
@
2] ;
e jai
3 400 o E
@ o
c o
£ o
E 300} [|
o
5
/B
200 | ot E
= +
o} +
BB' +
- o T
100 =9 L+ -
zaY Lo+t L+
fals + + + +
E,B'D‘E'B++ v oot T r
0 E-E}ma}@-@-mﬁ,@'@@m,E%fffﬁlﬁ, R]
0 2000 4000 6000 8000 10000
degree of field extension

Figure 11.4: Comparison of the three exponentiation algorithms for n < 10000

On the other hand Algorithm ggp beats Algorithm shoup. But as discussed
in the previous section this depends on the normal basis of Fyn over Fy for given
n € N. If there exists a normal basis generated by a Gauf period with & = 2

106

onb ggp shoup

n |k t/sec n| k| t/sec n| t/sec
209 | 2 24471 209 | 2 0.09 205 0.06
398 | 2 14.30 || 398 | 2 0.26 393 0.23
606 | 2 43.47 || 606 | 2 0.6 587 0.50
803 | 2 92.86 || 803 | 2 1.0 798 0.89
1018 | 1 203.79 || 1018 | 1 0.9 1037 1.80
1199 | 2 307.07 || 1199 | 2 2.18 1201 2.87
1401 | 2 500.96 || 1401 | 2 3.08 1476 4.53
1601 | 2 720.60 || 1601 | 2 3.95 1607 5.40
1791 | 2 1049.14 || 1791 | 2 4.75 1824 7.05
1996 | 1| 1251.76 || 1996 | 1 3.19 1898 7.65
2212 | 1 1738.70 || 2212 | 1 4.04 2197 10.90
2406 | 2 2256.20 || 2406 | 2 8.81 2355 13.02
2613 | 2| 2921.65 | 2613 | 2 | 1045 | 2665 | 17.39
2802 | 1| 3332.23 || 2802 | 1 6.28 || 2825 | 19.90
3005 | 2| 4138.09 || 3005 | 2 | 13.41 || 3066 | 25.97
3202 | 1| 5037.51 | 3202 | 1 8.28 || 3165 | 28.30
3401 | 2| 6088.73 || 3401 | 2 | 17.23 || 3364 | 33.26
3603 | 2| 7314.72 | 3603 | 2 | 19.18 || 3590 | 38.45
3802 | 1 8296.18 || 3802 | 1 11.54 3831 44.38
4002 | 1| 9513.86 || 4002 | 1 | 12.39 || 3924 | 46.85
4211 | 2| 11348.90 || 4211 | 2 27.27 4099 54.42
4401 | 2 | 13025.20 || 4401 | 2 31.61 4273 61.20
4602 | 1| 15209.50 || 4602 | 1 18.78 4629 75.85

4806 | 2 | 16138.80 || 4806 | 2 | 37.40

5002 | 1| 17545.40 || 5002 | 1 | 20.93

5199 | 2 | 20449.90 || 5199 | 2 | 43.70
5399 | 2 | 21961.90 || 5399 | 2 | 46.92 || 5402 | 109.23

5598 | 2 | 24424.30 || 5598 | 2 | 50.62

5812 | 1 | 27082.60 || 5812 | 1 | 27.56

6005 | 2 | 30688.90 || 6005 | 2 | 57.39

6202 | 1 31.13

6396 | 1 | 33.18
6614 | 2 | 69.76 || 6563 | 165.39
6802 | 1 | 44.12 || 6756 | 177.16

7005 | 2 | 77.96
7205 | 2 82.39 7245 | 207.50

7410 | 1| 43.63

7602 | 1 | 45.60
7803 | 2 | 94.78 || 7891 | 248.36

8003 | 2 | 97.88

8218 | 1 52.80
8411 | 2| 117.90 8325 | 318.92

8601 | 2 | 127.33

8802 | 1 | 65.49
9006 | 2 | 145.43 || 9085 | 415.14

9202 | 1 72.45

9396 | 1 | 76.56
9603 | 2 | 169.51 || 9659 | 488.38

9802 | 1 | 83.83
9998 | 2 | 183.65 | 10002 | 531.11

Table 12: Running times for test series 1

107

or even k = 1, ggp is faster than shoup. In theory both algorithms need about

0(1226”) operations. But a closer look at the hidden constants shows that in
ggp for k = 2 we have ¢y = k'°g23$ = 3]0gnzn (Corollary 9.8) and for shoup

n
log, n

we have ¢y = 9 (Corollary 7.32). This factor of 3 is also valid in practice

(cf. Table 12): ggp is about 2-3 times faster than shoup for £ = 2. Using our
theoretical results this will change for & > 4 because 9 < k823 for k& > 4; then
shoup should be faster than ggp. But ggp is best if an optimal normal basis
exists for a field extension of degree n over F,. Using Definition 8.18 we get
the following result:

REMARK 11.1. If k(n) < 4 then Algorithm ggp should be used for exponen-
tiation in Fyn. Otherwise Algorithm shoup should be prefered.

Exponentiation in huge field extensions. Algorithm onb should not be
used for field extensions of high degree over Fy. For degree n = 4098 onb has a
running time of 2h 53’ (see Table 13) — which is of no practical use. Algorithm

onb ggep shoup

n |k t/sec n| k t/sec n t/sec
1034 | 2 205.36 || 1034 | 2 1.63 || 1037 1.67
2141 | 2 1595.74 2141 | 2 7.28 2141 9.47
4098 | 1 | 10401.90 4098 | 1 14.5 4099 51.98
8325 | 2 | 78019.00 | 8325 | 2 | 127.76 | 8325 302.86
16679 | 2 | 565.89 || 16881 | 1759.61

23903 | 2 | 1064.7 || 23894 | 4489.31

32075 | 2 | 1856.83 || 32071 | 7545.09

43371 | 2 | 3593.04 || 43371 | 15530.10

51251 | 2 | 4990.81 | 51251 | 22039.70

61709 | 2 | 6973.74 || 61709 | 34297.50

Table 13: Running times for test series 2

ggp beats shoup clearly for bigger n € N when fixing k = 2 (see Figure 11.5).
There are some reasons for this result:

o ggp uses the multiplication algorithm of Cantor (1989) for n > 17920.
But then M(n) = O(n(logn)?) and M(kn) ~ k(log k)*M(n). For Karat-
suba & Ofman we have M(kn) ~ k'°&23M(n). Hence in ggp we have
ey < 22— for n > 17920 insteed of ¢y = 32— for smaller n.

log, n log, n

o shoup uses Cantor’s method for n > 35840. But then the classical matrix
method dominates the number of operations in the theoretical estimates.

108

40000 T T T T T T
onb ——
hggp .
35000 | shoup .
'D
30000 K .
25000 A g
[2] K
g .
o
] g
® 20000 | o -
£ P
(]
E .
15000 | A -
10000 - L 4
- - -
5000 |- = P .
.- -
U [
0 . .,;;m-:p'l’—:/—*"'F”'Ti_/k 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000
degree of field extension

Figure 11.5: Comparison of the three exponentiation algorithms for n =~
21,10 <7 < 16

We have already shown that in our implementation this plays no crucial
role because the crossover point between classical matrix multiplication
and Strassen’s algorithm is about /n = 1000 which means n = 1000000.
But for large field extensions modular composition is nevertheless time—
consuming.

Finally we can summarize:

o ggp is a very good exponentiation algorithm if there exists an optimal
normal basis (or even a normal basis with small k) for a given field exten-
sion Fyn over Fy. We easily can compute the necessary map to go from
normal basis representation to polynomial representation and vice versa.

o shoup can be used for all n € N. If k,(n) > 4 and hence no normal basis
with small k exists then this algorithm beats ggp.

Both algorithms can be used even for exponentiation in huge field extensions
over FF,.

109

12. Conclusion

At the end we want to outline the main properties for a fast exponentiation
algorithm in Fyn,n € N:

1. The algorithm should use fast matrix multiplication. We have shown that
multiplication by multiplication tensors doesn’t work efficiently. Classical
polynomial arithmetic isn’t either fast enough even for relatively small n.

2. The algorithm should be based upon an addition chain for the exponent
e with a small number of total steps and a small number of non—doubling
steps. This 1s illustrated in Figure 12.1 where ggp based upon binary is
compared to ggp using bgmw.

35000 T T T T T T
binary with fast normal basis multiplication ~—
bgmw with fast normal basis multiplication -+--
30000 B
/70»
25000 | E
2] //
2 20000 [J
o /
8 ,
[0}
w
£ L,
£ 15000 -
10000 | .
5000 B
0 Loo—omaces i 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000
degree of field extension

Figure 12.1: Comparison of the algorithms binary and bgmw using fast
normal basis multiplication

3. The algorithm should offer a cheap way to compute a?” € Fyn for m € N
and a € Fyn. A very efficient way is using the properties of a normal
basis representation. Then raising to a power of 2 is just a cyclic shift of
the coefficients.

110

The most important point for a fast exponentiation algorithm is to combine
these three properties.

REFERENCES 111

References

G. B. AgneEw, R. C. MuLLiN, AND S. A. VANSTONE, Fast exponentiation in
GF(2"). In Advances in Cryptology—EUROCRYPT ’88,ed. C. G. GUNTHER, vol.
330 of Lecture Notes in Computer Science, 251-255. Springer, Berlin, 1988.

A. V. AHo, J. E. HopcroFT, AND J. D. ULLMAN, The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading MA, 1974.

D.W. AsH, I.F. BLAKE, AND S.A. VANSTONE, Low complexity normal bases. Dis-
crete Applied Mathematics 25 (1989), 191-210.

E. BAcH AND J. SHALLIT, Factoring with cyclotomic polynomials. Math. Comp.
52 (1989), 201-219.

M. BEN-OR, Probabilistic algorithms in finite fields. In Proc. 22nd IEEE Symp.
Foundations Computer Science, 1981, 394-398.

J. BERSTEL aND S. BRLEK, On the length of word chains. Inform. Process. Lett.
26 (1987), 23-28.

T. BeTH, W. GEISELMANN, AND F. MEYER, Finding (good) normal bases in fi-
nite fields. In Proceedings of the 1991 International Symposium on Symbolic and
Algebraic Computation / ISSAC’91, ed. S. WATT, 1991, 173-178.

I. BocHarROVA AND B. KubpRvasHov, Fast exponentiation in cryptography. In
Applied algebra, algebraic algorithms and error correcting codes: proceedings / 11th
International Symposium AAECC, ed. G. COHEN, Lecture notes in computer science
948, Berlin, 1995, Springer, 146-157.

G. BrassarD AND P. BRATLEY, Algorithmics - Theory & Practice. Prentice Hall,
1988.

A. BRAUER, On addition chains. Bull. Amer. Math. Soc. 45 (1939), 736-739.

R. P. BRENT AND H. T. KuUNgG, Fast algorithms for manipulating formal power
series. J. Assoc. Comput. Mach. 25 (1978), 581-595.

E. BrRICKELL, D. GORDON, K. MCCURLEY, AND D. WILSON, Fast exponentiation
with precomputation. In Advances in cryptology: Proceedings / EUROCRYPT ’92,
ed. R. RUEPPEL, Lecture notes in computer science 658, Berlin, 1993, Springer,
200-207.

H. BRUNNER, A. CURIGER, AND M. HOFSTETTER, On computing multiplicative
inverses in GF'(2™). IEEE Transactions on Computers 42(8) (1993), 1010-1015.

112 REFERENCES

D. G. CANTOR, On arithmetical algorithms over finite fields. Journal of Combina-
torial Theory, Series A 50 (1989), 285-300.

D. G. CanTOR AND E. KALTOFEN, On fast multiplication of polynomials over
arbitrary algebras. Acta. Inform. 28 (1991), 693-701.

D. G. CANTOR AND H. ZAssENHAUS, A new algorithm for factoring polynomials
over finite fields. Math. Comp. 36 (1981), 587-592.

D. CoPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithmetic pro-
gressions. J. Symb. Comp. 9 (1990), 251-280.

W. DIFFIE AND M. HELLMAN, New directions in cryptography. IEEFE ‘Itans. Inform.
Theory 22 (1976), 644-654.

P. DownNEY, B. LEONG, AND R. SETHI, Computing sequences with addition chains.
SIAM J. Comput. 10(3) (1981), 638-646.

T. ELGAaMAL, A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on information theory IT-31(4) (1985), 469-472.

S. Gao aND H. W. LENSTRA, Optimal normal bases. Designs, Codes, and Cryp-
tography 2 (1992), 315-323.

S. Gao, J. voN zur GATHEN, AND D. Panario, Gauss periods and fast exponen-
tiation in finite fields. In Proc. Latin ’95, Valparaiso, Chile, Springer Lecture Notes
in Computer Science 911, 1995a, 311-322.

S. Gao, J. voN zUR GATHEN, AND D. Panario, Gauss periods, primitive nor-
mal bases, and fast exponentiation in finite fields. Technical Report 296-95, Dept.
Computer Science, University of Toronto, 1995b.

J. voN 7ZUR GATHEN, Efficient and optimal exponentiation in finite fields. Comput
complexity 1 (1991), 360-394.

J. VON ZUR GATHEN, Processor-efficient exponentiation in finite fields. Inform.
Process. Lett. 41 (1992), 81-86.

J. vVON zUR GATHEN AND J. GERHARD, Skript Computeralgebra I, 1995.

J. VON ZUR GATHEN AND J. GERHARD, Arithmetic and factorization of polynomials
over Fy. Technical Report tr-rsfb-96-018, University of Paderborn, Germany, 1996.
43 pages.

J. VON zZUR GATHEN AND M. GIEsBRECHT, Constructing normal bases in finite
fields. J. Symb. Comp. 10 (1990), 547-570.

REFERENCES 113

J. VON ZUR GATHEN AND V. SHOUP, Computing Frobenius maps and factoring
polynomials. Computational complexity 2 (1992), 187-224.

W. GEISELMANN, Algebraische Algorithmenentwicklung am Beispiel der Arithmetik
in endlichen Kdrpern. Dissertation, Universitdt Karlsruhe, Aachen, 1994.

T. ITon anp S. Tsui, A fast algorithm for computing multiplicative inverses in
gf(2™) using normal bases. Information and Computation 78 (1988), 171-177.

F. JELINEK AND K. SCHNEIDER, On variable-length-to-block coding. IEEE Trans-
actions on Information Theory IT-18(6) (1972), 765-774.

D. JUNGNICKEL, Finite Fields: Structure and Arithmetics. Bl Wissenschaftsverlag,
Mannheim, 1993.

A. KARATSUBA AND Y. OFMAN7 YMHOKEHEe MHOTO3HAUHBIX YMCEN Ha aBTOMATaxX.
Dokl. Akad. Nauk USSR 145 (1962), 293-294. Multiplication of multidigit numbers
on automata, Soviet Physics—Doklady 7 (1963), 595-596.

D. E. KNnuTH, The Art of Computer Programming, Vol.2, Seminumerical Algo-
rithms. Addison-Wesley, Reading MA, 2 edition, 1981.

R. LipL. AND H. NIEDERREITER, Finite Fields, vol. 20 of Encyclopedia of Mathe-
matics and its Applications. Addison-Wesley, Reading MA, 1983.

M. LoTHAIRE, Combinatorics on Words. Addison—Wesley Reading, MA, 1983.

J. L. Massevy AND J. K. OMURA, Computational method and apparatus for finite
fields arithmetic, 1981. U. S. Patent Application.

ALFrRED J. MENEZES, IAN F. Brake, XuHonc Gao, RonaLp C. MULLIN,
ScoTT A. VANSTONE, AND TOMIK YAGHOOBIAN, Applications of finite fields.
Kluwer Academic Publishers, Norwell MA, 1993.

R. MoENCcK, Fast computation of ged’s. In Proc. 5th Ann. ACM Symp. Theory of
Computing, 1973, 142-151.

R. C. MuLLIN, I. M. ONYSZCHUK, S. A. VANSTONE, AND R. M. WiLsoN, Optimal
normal bases in GF(p”). Discrete Applied Math. (1989), 149-161.

A. OpLYZKO, Discrete logarithms and their cryptographic significance. In Advances
in Cryptology, Proceedings of Eurocrypt 1984. Springer-Verlag, 1985, 224-314.

V. Pan, How to multiply matrices faster, vol. 179 of Lecture Notes in Computer
Science. Springer Verlag, New York NY, 1984.

114 REFERENCES

R. L. RivesT, A. SHAMIR, AND L. ADLEMAN, A method for obtaining digital
signatures and public-key cryptosystems. Comm. ACM 21 (1978), 120-126.

P. pE Roow, Efficient exponentiation using precomputation and vector addition
chains. In Advances in cryptology: proceedings / EUROCRYPT 94, ed. A. Dg-
SANTIS, Lecture notes in computer science 950, Berlin, 1995, Springer, 389-399.

S. ScHLINK, Normalbasen mit hilfe von verallgemeinerten gaufi-perioden, 1996a.
Diplomarbeit.

S. ScHLINK, Normal bases via Gauf periods. Technical report, FB 17 Mathematik—
Informatik, Universitdit—GH Paderborn, 1996b.

A. SCHONHAGE, Schnelle Berechnung von Kettenbruchentwicklungen. Acta Infor-
matica 1 (1971), 139-144.

A. SCHONHAGE, Schnelle Multiplikation von Polynomen iiber Kérpern der Charak-
teristik 2. Acta Inf. 7 (1977), 395-398.

A. SCHONHAGE AND V. STRASSEN, Schnelle Multiplikation groler Zahlen. Com-
puting 7 (1971), 281-292.

V. SHoup, Exponentiation in GF(2") using fewer polynomial multiplications.
preprint, 1994.

D. R. STiNsON, Some observations on parallel algorithms for fast exponentiation in

GF(2™). SIAM J. Comput. 19 (1990), 711-717.

V. STRASSEN, Gaussian elimination is not optimal. Numer. Mathematik 13 (1969),
354-356.

V. STRASSEN, The computational complexity of continued fractions. SIAM J. Com-
put. 12 (1983), 1-27.

B. P. TUNSTALL, Synthesis of noiseless compression codes. Ph.d. dissertation, Geor-
gia Inst. Technol., 1968.

A. WASSERMANN, Zur Arithmetik in endlichen Korpern. Bayreuther Math. Schriften
44 (1993), 147-251.

S. WINOGRAD, On multiplication of 2 x 2 matrices. Linear Algebra and Appl. 4
(1971), 381-388.

Y. Yacosi, Exponentiating faster with addition chains. In Advances in cryptology:
proceedings / EUROCRYPT 90, ed. I. DAMGARD, Lecture notes in computer science
473, Berlin, 1991, Springer, 222-229.

REFERENCES 115

J. 7Z1v AND A. LEMPEL, Compression of individual sequences via variable-rate cod-
ing. IEEE Trans. Inform. Theory IT-24(5) (1978), 530-536.

Erklarung
Ich versichere, dafl ich die Arbeit ohne fremde Hilfe und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe und dafl die Arbeit in
gleicher oder dhnlicher Form noch keiner anderen Priifungsbehorde vorgele-
gen hat und von dieser als Teil einer Priifungsleistung angenommen wurde.
Alle Ausfithrungen, die wortlich oder sinngemafl iibernommen wurden, sind als
solche gekennzeichnet.

Paderborn, den 28.10.1996

