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A Multi-use Uni-dire
tional Proxy Re-Signature S
heme 11. Introdu
tion1.1. Motivation. Digital signatures are mathemati
al s
hemes demonstrat-ing the authenti
ity of a do
ument. A valid signature suggests that the authen-ti
ated do
ument belongs to a known signer, and it also assures the integrityof the do
ument. Although in pra
ti
e there are a variety of types of digitalsignatures, generally we 
an say that, a digital signature 
an be used to provethe originality of a do
ument while also providing a me
hanism to prote
t thesigned do
ument against alteration. In the age of information and with the in-
reasing availability of high speed internet, users 
ome in 
onta
t with a largevariety of digital media su
h as musi
, books, arti
les, photos, and so on. Alsothe popularity of smart phones, portable multi-media players and next genera-tion gaming 
onsoles has turned the digital world into a big trading and sharingpla
e, spread all over the world. The demand for digital media has made thetrading of digital 
ontent a very lu
rative business. Sensing this opportunitymany 
ompanies started to o�er digital media, some of the well known examplesare Apple's iTunes, Mi
rosoft Windows Media and Napster. These 
ompaniesuse 
ontent prote
tion systems to prote
t their �les against illegal distributionbut also to authenti
ate them. Sin
e di�erent 
ompanies use di�erent 
ontentprote
tion me
hanisms the users 
annot use the digital 
ontent on devi
es oftheir 
hoi
e. This la
k of interoperability gives reasons for the illegal usage anddistribution of digital media and also slows down the growth of the industry.To a
hieve interoperable 
ontent prote
tion me
hanisms, but also for e-
ashand e-passport systems, a spe
ial type of digital signature is required. As inthe real world, when a user sells his CD to another user, the banderol on theCD proves its originality to the new owner. In this selling pro
ess whi
h 
ouldtake pla
e for example on a �ea market, the users do not need any intera
tionwith the re
ord 
ompany or with the bank that issued money. As in this simpletrading example we require a digital signature that 
an be given away easily.This means that, as in the real world, the users who want to ex
hange their�les with a 
urren
y should only need to intera
t with ea
h other and not withthe 
ontent providers or the 
urren
y owner. A good approa
h to a
hieve thiskind of digital trading is the 
on
ept of proxy re-
ryptography spe
ially proxyre-signatures.1.2. Con
ept. In this thesis we will analyze in detail the proposal of Libert& Vergnaud (2008a), a multi-use unidire
tional proxy re-signature. We 
hooseto analyze this signature s
heme be
ause of its translation property and itspossible usages in pra
ti
e su
h as digital 
ontent prote
tion systems and ele
-troni
 
ash systems. Our aim was to introdu
e the signature s
heme step by



2 T. Jonas Özganstep for a 
omprehensive understanding of its stru
ture and relations to be ableto analyze its se
urity and its e�
ien
y.1.3. Contributions. In this work we provide a new se
urity de�nition foruni-dire
tional proxy re-signatures. The short
omings of the original se
urityde�nition from Ateniese & Hohenberger (2005) su
h as the arti�
ial splittingof the se
urity de�nition and the unnatural limitation of the adversaries, mo-tivated us to 
onstru
t a new game based se
urity de�nition. In Shao et al.(2010) the authors also point out the short
omings and the unne
essary 
om-plexity of the old se
urity de�nition and provide another se
urity de�nitionfor uni-dire
tional proxy re-signatures with 
ertain probabilities. Similar toour proposal the authors 
onsider a generi
 adversary with a

ess to as mu
hinformation as possible to over
ome the short
omings of the old se
urity def-inition. Di�ering from their proposal, we provide a simple graph algorithmto keep tra
k of the adversary's queries and to dete
t trivial forgeries. As weshow in Part III, simple modi�
ations to the graph algorithm seem to makeour de�nition also valid for di�erent types of proxy re-signatures. Therefore,we believe that our new se
urity de�nition provides the ne
essary �exibility tobe adapted and used for di�erent types of proxy re-signatures with di�erentproperties.Further we 
an list the following:
◦ We explained the idea behind the 
onstru
tion of the signature by ex-tending a short signature (Boneh et al. 2004) into a multi-use proxy re-signature step by step. We used the additive notation for the signatures
heme instead of the multipli
ative one. We 
hanged the numberingof the indi
es of the signature elements and as well as the used 
oe�-
ients to provide a more intuitive understanding of the signature s
heme.We showed how the veri�
ation equations are related to the elementsof the signature. This allowed us to develop a graphi
al notation todemonstrate the relation between signature elements. We also expressedthe 
onstru
tion of the signature s
heme by de
omposing it into simplebuilding blo
ks.
◦ We tried to analyze the e�
ien
y of the signature s
heme from two dif-ferent angles: (1) The amount of randomness and (2) the length of thesignature. Unfortunately there was no hint or dis
ussion in the originalpubli
ation we 
ould make use of. To be able to analyze the length ofthe signature we introdu
ed a new problem 
alled the 
hain shorteningproblem. We provided some insight what would it mean to have a shorter



A Multi-use Uni-dire
tional Proxy Re-Signature S
heme 3signature or even if this was possible. We also analyzed the amount ofrandomness used by the signing and re-signing algorithms and pointedout the impli
ations of using lesser or related 
oe�
ients.
◦ We put together the possible usages of proxy re-signatures whi
h weresuggested in di�erent publi
ations. We fo
used our attention on Tabanet al. (2006) to point out the pra
ti
al importan
e of proxy re-signaturesin 
ontent prote
tion systems.1.4. Related Work. The 
on
ept of proxy re-
ryptography was �rst intro-du
ed in Blaze, Bleumer & Strauss (1998) as atomi
 proxy 
ryptography, inwhi
h a semi trusted proxy 
an 
onvert signatures of Aylin into the signaturesof Boris on the same message. However, in this pro
ess the proxy 
an notsign arbitrary messages on behalf of both parties Aylin and Boris. This 
ryp-tographi
 primitive re
eived renewed interest with the publi
ation Ateniese &Hohenberger (2005) in whi
h the authors provided useful se
urity de�nitionsand introdu
ed two new proxy re-signature s
hemes, (1) multi-use bidire
tionaland (2) single-use unidire
tional. The se
urity of both of these s
hemes wasproven in the random ora
le model (Bellare & Rogaway 1993). The authors leftopen the 
hallenge to �nd a multi-use unidire
tional s
heme whi
h was also se-
ure in the standard model. In Libert & Vergnaud (2008a) the authors proposedthe �rst multi-use unidire
tional proxy re-signature s
heme whi
h is also se
urein the standard model, after a slight modi�
ation. This s
heme was based onbilinear maps, unlike the later proposal of a multi-use unidire
tional s
heme inSunitha & Amberker (2009) whi
h is based on fa
toring. Note that a proxy re-signature is not the same as a proxy signature. In the proxy re-signature s
hemea proxy �translates� a valid and publi
ly veri�able signature σA(m) of Aylinon a message m into σB(m) one from Boris on the same message. However,proxy signatures allow Aylin to delegate her signing rights to Boris but only ifProxy 
ooperates. The general idea is to divide Aylin's se
ret into two shares.Boris and Proxy only re
eive one share ea
h so they 
an jointly generate sig-natures on behalf of Aylin on the same message. Clearly proxy signatures havea 
ompletely di�erent appli
ation area than proxy re-signatures.1.5. Stru
ture of the Thesis. In the following se
tions we will introdu
ethe signature s
heme step by step with its theoreti
al ba
kground and designidea. This thesis is divided into �ve main parts.
◦ In Part I, we start with the foundations of ellipti
 
urve based 
ryptog-raphy. Remembering the de�nition of an ellipti
 
urve, we show that



4 T. Jonas Özganthe points on an ellipti
 
urve with the point of in�nity form an abeliangroup. After de�ning pairings and how to 
al
ulate them, we dis
usssome ellipti
 
urve based digital signatures.
◦ In Part II, we start with the dis
ussion of possible methods of transfer-ring a signature of user Aylin to user Boris. Sin
e the trivial methodsshow fatal de�
its we formulate our requirements to a transferable signa-ture. We then build up step by step the signature s
heme from Libert &Vergnaud (2008a) by transferring a short signature (Boneh et al. 2004)on
e and generalize this idea into a multi-use s
heme. In this pro
ess wealso see the relations of the signature elements in a graphi
al form whi
henables us to de�ne the signature with building blo
ks. We �nish this
hapter with formally writing down the signature s
heme.
◦ Part III begins with the introdu
tion to the 
ryptographi
 assumptionsunderlying the signature s
heme. We 
ontinue with dis
ussion of the ad-versary model and the two environments in whi
h the adversary is simu-lated. We then introdu
e our new se
urity de�nition for uni-dire
tionalproxy re-signatures. This allows us to 
ompare our new se
urity de�nitionto the original one after re
alling the se
urity de�nition from Ateniese &Hohenberger (2005) and outlining its limitations. We then prove that thesignature s
heme is se
ure for the new se
urity de�nition in the randomora
le model. After modifying the signature s
heme slightly we also provethe se
urity of the signature s
heme in the standard model.
◦ In Part IV we analyze the e�
ien
y of the signature from two angles.First, we introdu
e a new problem 
lass 
alled the 
hain shortening prob-lem, whi
h helps to understand the length of the signature. Se
ond, weanalyze the amount of used randomness to build the signature and dis
ussthe results of using lesser or related 
oe�
ients.
◦ In Part V we put together the possible appli
ations of proxy re-signaturesespe
ially fo
using on the interoperable digital rights management pro-posal from Taban et al. (2006).
◦ Finally in Part VI we outline and 
on
lude the results a
hieved in thisthesis.



A Multi-use Uni-dire
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heme 5Part IEllipti
 
urve 
ryptographyEllipti
 
urves have a ri
h history and have been studied by mathemati
iansover a 
entury before they have be
ome popular in 
ryptographi
 resear
h andappli
ations in the last thirty years. In 1985, Neal Koblitz and Vi
tor Millerindependently proposed to use ellipti
 
urves for publi
-key 
ryptographi
 sys-tems. However, the a

eptan
e of ellipti
 
urve based 
rypto-systems 
ame inthe late nineties when a

redited standard organizations su
h as the Ameri-
an National Standards Institute (ANSI) spe
i�ed proto
ols based on ellipti

urves. At present there are numerous appli
ations and publi
ations on ellipti

urves. This shows that there has been an extensive amount of resear
h 
ar-ried out in this area. The aim of this 
hapter is give an introdu
tion to ellipti

urves and pairing based ellipti
 
urve 
ryptography.2. Ellipti
 CurvesThere are many di�erent ways of introdu
ing ellipti
 
urves su
h as startingwith the 
anon ball problem as Washington (2008) or starting more algebrai
like Werner (2002). We start right away with the de�nition:Definition 2.1. An ellipti
 
urve E over a �eld F is de�ned by an equationin the form(1.1) E : y2 = x3 + ax+ bwhere a, b ∈ F and ∆ 6= 0. Here, the dis
riminant ∆ = −16(4a3 + 27b2) of the
urve is used to ex
lude singular 
ases.This equation is 
alled the simpli�ed Weierstrass equation or just the Weier-strass equation. Note here that usually in literature the ellipti
 
urves areintrodu
ed by what is known as the generalized Weierstrass equation. Howeverone 
an show that the generalized Weierstrass form of an ellipti
 
urve 
analways be transformed into the simpli�ed Weierstrass equation above if the
hara
teristi
 of F, is neither 2 nor 3. The generalized Weierstrass equation aswell as the simpli�
ation pro
ess are explained in detail in Washington (2008)and Werner (2002). For any extension K of the �eld F , K ⊇ F we 
an 
onsiderthe set of K-rational points(2.2) E(K) := {O} ∪ {(x, y) ∈ K×K| y2 = x3 + ax+ b}.
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Figure 2.1: Ellipti
 Curves E : y2 = x3 − 2x+ αFigure 2.1 shows di�erent ellipti
 
urves given by y2 = x3 − 2x+ α.The point O is 
alled the point at in�nity whi
h, allows us to prove thegroup stru
ture of points on the 
urve. One 
an imagine this point sittingsomewhere up high on top of the y-axis. Visually, 
onsider a two dimensionalplane (like a sheet of paper) on whi
h an ellipti
 
urve is drawn. Starting froma point on the 
urve, an ant 
ould walk in two dire
tions on the 
urve. In ea
hdire
tion the ant would fall o� the plane and 
ome to some �unde�ned� pla
e.The algebrai
 nature of these pla
es (points) is all the same whi
h is O, thepoint at in�nity. Understanding the algebrai
 nature of this point requires anintrodu
tion to proje
tive spa
e whi
h 
an be found in Werner (2002).3. The group lawWe 
an a
tually introdu
e a group stru
ture on an ellipti
 
urve. This, inturn,is used to 
onstru
t ellipti
 
urve based 
ryptosystems.Definition 3.1. Let E be an ellipti
 
urve over a �nite �eld F given in the
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heme 7Weierstrass form, and P1 = (x1, y1) and P2 = (x2, y2) two di�erent points on
E. To add P1 and P2 we draw a line passing through P1 and P2. This lineinterse
ts E in a third point whi
h we 
all P3 = (x3, y3). Then P3 is re�e
tedalong the x-axis by 
hanging the sign of the y-
oordinate and this is P1 + P2.

.....
b

b

b

b

P1

P2

P3

P1 + P2

L1

L2

O

Figure 3.1: P1 + P2 on an ellipti
 
urveLet us �rst assume that P1 6= P2 and none of them is O. The slope of L1 is(3.2) m =
y2 − y1
x2 − x1

.In 
ase where x1 = x2, the line L1 will be verti
al and for now we assume thatthis is not the 
ase. The equation of L1 is
y = m(x− x1) + y1.Now substituting this in the Weierstrass equation of E we obtain

m(x− x1) + y1)
2 = x3 + ax+ b.The resulting equation will be in the form

0 = x3 −m2x2 + · · ·This 
ubi
 polynomial has three roots and we know two of them, namely x1and x2. Sin
e (x1 + x2 + x3) = m2 we obtain
x3 = m2 − x1 − x2 and y3 = m(x3 − x1) + y1.



8 T. Jonas ÖzganRe�e
ting this a
ross the x-axis yields P1 + P2 = P4 = (x4, y4) with
x4 = m2 − x1 − x2 and y4 = m(x1 − x3)− y1.Now 
onsider the 
ase where P1 = P2 = (x1, y1). This means that the line L1is tangent to E at P1. Sin
e P1 = P2 we use impli
it di�erentiation to �nd outthe slope m of L1(3.3) dy

dx
= m =

3x2
1 + a

2y1
.Again two roots, or better one double root, of the 
ubi
 polynomial

0 = x3 −m2x2 + ...are known and we 
an �nd out the third root. The same te
hnique as abovegives us for P1 + P1 = P4 = (x4, y4) the values
x4 = m2 − 2x1, y4 = m(x1 − x4)− y1.this is 
alled point doubling (Figure 3.2).

..... b

b

b

O

P
P ′

2PFigure 3.2: Point DoublingNow 
onsider two points P1 and P2 where x1 = x2 and y1 6= y2. The linethrough P1 and P2 is parallel to the y-axis thus the third point of inter
eption
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heme 9is O. Re�e
ting O a
ross the x-axis is again O sin
e the algebrai
 nature of�all� O's are the same as mentioned above. Therefore here we get P1+P2 = O.Finally, assume that one of the points is O. Similar to last the 
ase above,the line through P1 and O is verti
al. The third point of inter
eption is there�e
tion of P1 a
ross the x-axis, re�e
ting it again will result ba
k in P1. Thus
P1 +O = P1. Here we 
an see that with this de�nition of an addition over E,the point O is behaving as a neutral element.Now we summarize the addition 
ases from above to de�ne an addition onan ellipti
 
urve.Definition 3.4. Let E be an ellipti
 
urve in Weierstrass form: y2 = x3 +
ax+ b. Given two points P1 = (x1, y1) and P2 = (x2, y2) on E, P1, P2 6= O and
m is the slope of the line through P1 and P2 (see equations (3.2) and (3.3)).De�ne an addition by P1 + P2 := P4 = (x4, y4) where:(i) x4 = m2 − x1 − x4 and y4 = m(x1 − x4)− y1, if x1 6= x2.(ii) P4 = O if x1 = x2 but y1 6= y2, ie. P1 and P2 are symmetri
 with respe
tto the x-axis.(iii) x4 = m2 − 2x1 and y4 = m(x1 − x4) − y1, if P1 = P2 and y 6= 0, ie. thepoint P1 is a double.(iv) P4 = O if P1 = P2 and y = 0, ie. the point P1 is a double root on the

x-axis.The de�nition De�nition 3.4 allows us to formulate the following theorem.Theorem 3.5. The points on an ellipti
 
urve E form an abelian group withthe addition operation as de�ned above with O as the neutral element. Inparti
ular,(i) (P1 + P2) + P3 = P1 + (P2 + P3) for all P1, P2, P3 on E (the group isasso
iative),(ii) P +O = P for all P on E (O is the group's neutral element),(iii) for any P on E there is a P ′ on E whi
h satis�es P + P ′ = O (existen
eof inverses),(iv) P1 + P2 = P2 + P1 for all P1, P2 on E (the group is 
ommutative).We already pointed out above how O behaves as a neutral element. For adetailed proof of the group properties see Washington (2008) or Werner (2002).



10 T. Jonas Özgan 4. PairingsIn this se
tion we want to make a proper introdu
tion to pairings whi
h will besu�
ient for understanding the later se
tions. A pairing is a fun
tion mappinga pair of points from two groups G1 and G2 to another group GT . In manyappli
ations all three groups are usually of prime order n. This mapping,often noted as e(·, ·), has some properties whi
h are espe
ially attra
tive in
ryptographi
 settings. We study the appli
ations of pairings in 
ryptographi
settings in the next se
tion.Definition 4.1 (Torsion points). Consider an ellipti
 
urve E de�ned over
Fq and an integer n not divisible by the 
hara
teristi
 of Fq. The set E[n] of
n-torsion points is given by

E[n] = {P ∈ E(Fq)|nP = O},where Fq is the algebrai
 
losure of Fq. In other words the set of n-torsionpoints 
onsists of all points P ∈ E(Fq) whi
h have order dividing n.Now we introdu
e a bilinear pairing in a basi
 setting.Definition 4.2 (Pairing). Let E(Fq) be an ellipti
 
urve de�ned over Fq, G1and G2, GT three groups usually of prime order n. Typi
ally G1 and G2 aresubgroups of E[n] andGT is a subgroup of F×
qk
, where k is 
alled the embeddingdegree if n is the minimal integer dividing qk − 1 . Then there exists a map:

e : G1 ×G2 −→ GT ,whi
h satis�es the following 
onditions.(i) The map e is bilinear:
◦ e(P1 +Q1, P2) = e(P1, P2)e(Q1, P2),
◦ e(P1, P2 +Q2) = e(P1, P2)e(P1, Q2),for all P1, Q1 ∈ G1 and P2, Q2 ∈ G2.(ii) The map e is non-degenerate:
◦ e(P1, P2) 6= 1,for some P1 ∈ G1 and P2 ∈ G2.
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ti
al reasons we require that e is e�
iently 
omputable withrespe
t to the input size whi
h is Θ(log q) bits sin
e P,Q ∈ E(Fq).An example of this is the Weil pairing whi
h has the form(4.3) en : E[n]×E[n] −→ µnfor an ellipti
 
urve E(Fq) where
µn = {x ∈ Fq|x

n = 1}denotes the set of nth roots of unity in Fq. The Weil pairing satis�es thefollowing 
onditions1. en is bilinear:
◦ en(P +Q,R) = en(P,R)en(Q,R),
◦ en(P,Q+R) = en(P,Q)en(P,R)for all P,Q,R ∈ E[n].2. en is non-degenerate: If en(P,Q) = 1 for all Q ∈ E[n], then P = O.Noti
e that di�ering from De�nition 4.2 we use here only one additive group

E[n] instead of two, whi
h is 
alled the symmetri
 
ase. For the de�nition ofthe Weil pairing and a proof of the listed properties above see Washington(2008).Based on the Weil pairing it is possible to 
onstru
t other pairings, anexample of this is the modi�ed Tate-Li
htenbaum pairing whi
h has theform(4.4) τn : E(Fq)[n]×E(Fq)/nE(Fq) −→ µn ⊆ F×
q ,for an ellipti
 
urve E(Fq) with n | q−1. Here E(Fq)[n] denotes the elements of

E with 
oordinates in Fq and of order dividing n, where µn is again the groupof the nth roots of unity as de�ned above.The modi�ed Tate-Li
htenbaum pairing 
an be 
onstru
ted from the Weilpairing by
τn(P,Q) = en(P,R− φqR),where P ∈ E(Fq)[n], Q ∈ E(Fq),R ∈ E(Fq) and nR = Q. Here

φq :
Fq −→ Fq,
x 7−→ xq
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alled the q-th power of the Frobenius endomorphism.In 
ontrast to (4.4) the original Tate-Li
htenbaum pairing has the fol-lowing form:(4.5) 〈·, ·〉n : E(Fq)[n]× E(Fq)/nE(Fq) −→ F×
q /(F

×
q )

n,Note that sin
e we obtain here a 
oset in F×
q mod n-th powers by takingthe n-th root of µn, the modi�ed Tate-Li
htenbaum pairing is more suitable forpra
ti
al appli
ations than the original one and these pairings 
an be 
al
ulatedqui
kly (Washington 2008).We mentioned above that for pra
ti
al appli
ations we require that thepairing is e�
iently 
omputable. However, we require a basi
 understanding ofdivisor theory before dis
ussing the 
omputation of pairings. The following ismostly taken from Joux (2002); Me�ert (2009); Nüsken (2010) and Washington(2008).4.1. Divisors. In this se
tion we will make a brief introdu
tion into divisortheory. Roughly speaking a divisor D is an element of the group generatedby the points of the 
urve E. It is used to keep tra
k of poles and zeros. Thefun
tion f is said to have a zero at point P if it takes the value 0 at P , similarlyit has a pole at P if it takes the value O at P . Then D 
an be written as a�nite sum D :=

∑

i ai(Pi) where ea
h Pi is a point on E and ea
h ai is aninteger. Given a fun
tion f from the set of rational maps in the 
oordinates ofpoints x, y we build a divisor div(f) from the zeros and poles of f by formingthe formal sum of zeros and poles with their multipli
ity.Remember Se
tion 3 where we introdu
ed the addition of points on ellipti

urves. We used a line passing through two points P1 and P2 on the 
urve Eand 
on
luded that this line has to interse
t E at a third point P3 ( Figure 3.1).We a
tually used the solutions to the fun
tion 0 = mx− y + c to 
al
ulate the
oordinates of the point P3. Now 
onsider a non-trivial fun
tion f = ax+by+cand assume that it passes through three points P1, P2 and P3. If b 6= 0 then
P1, P2, P3 6= O and f has a triple pole in O. Thusdiv(ax+ by + c) = [P1] + [P2] + [P3]− 3[O].On the other hand if b = 0 then the line passes through P3, −P3 and O. Weobtain div(x− x3) = [P3] + [−P3]− 2[O].In Figure 3.1 this is L2 
onne
ting P3 and P1 + P2. Now if we rewrite −P3 =
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P1 + P2 we get(4.6) div(ax+ by + c

x− x3

)

= [P1] + [P2]− [P1 + P2]− [O],where x3 is the x-
oordinate of P3. Equivalently, we have
[P1 + P2] + [O] + div(ax+ by + c

x− x3

) = [P1] + [P2].Sin
e we 
an always draw a line through two given points P1, P2 ∈ E we 
anrepla
e a divisor [P1] + [P2] with [P1 + P2] + [O] plus the divisor of some otherfun
tion.We observe that the sum of points of a divisor is O and the degree of thedivisor is 0. However proving this requires more theory than introdu
ed here,for a proper introdu
tion to divisor theory we refer to Washington (2008).4.2. Cal
ulation of pairings. In this se
tion we will introdu
e the algo-rithm from Miller (1986) for the 
omputation of pairings. We start with thede�nition of the Tate-Li
htenbaum pairing and 
ontinue with its 
al
ulation.Definition 4.7 (Tate-Li
htenbaum pairing). Let E(Fq) be an ellipti
 
urveand �x a prime n whi
h is not divisible by the 
hara
teristi
 of Fq. Further,let k be the smallest integer su
h that n | qk − 1 (embedding degree). Alsoassume that fP is a fun
tion with divisor n[P + R] − n[R] for some R, and
Q1 − Q2 = Q su
h that P + R, R, Q1, Q2 are all di�erent and non-zero. Wede�ne the Tate-Li
htenbaum pairing by

〈·, ·〉n :
E(Fq)[n]× E(Fqk)/nE(Fqk) −→ F×

qk
/(F×

qk
)n,

(P,Q) 7−→ 〈P,Q〉n = fP (Q1)
fP (Q2)

.and the modi�ed Tate-Li
htenbaum pairing by
τn :

E(Fq)[n]× E(Fqk)/nE(Fqk) −→ µn ⊆ F×
qk
,

(P,Q) 7−→ 〈P,Q〉n
qk−1

n

.Here E(Fq)[n] denotes the elements of E with 
oordinates in Fq and of orderdividing n and µn the set of nth roots of unity as de�ned above. The group
E(Fqk)/nE(Fqk) is the set of equivalen
e 
lasses of points of E(Fq) where twopoints are 
onsidered equivalent if their di�eren
e is another point of order n.The group F×

qk
/(F×

qk
)n isomorphi
 to µn is the set of equivalen
e 
lasses of theelements of Fq where two elements 
onsidered to be equivalent if they are thesame up to the multipli
ation with an nth power.
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e the �nal exponentiation with qk−1
n


an be handled, the main goal is a
-tually to �nd that fun
tion fP and 
al
ulate the pairing
〈P,Q〉n =

fP (Q1)

fP (Q2)
,su
h that the divisor of fP and the divisor DQ := [Q1]− [Q2] are disjoint.Now we want to make a 
onne
tion between n and the fun
tion fP whi
hwill allow us to 
al
ulate this pairing. We �rst de�ne a fun
tion fi for i ≥ 0su
h that(i) div(fi) = Di := i[P +R]− i[R]− [iP ] + [O]with P,Q,R ∈ E as above. We observe here thatdiv(fn) = n[P +R]− n[R]− [nP ]

︸︷︷︸

[O]

+[O] = div(fP )sin
e P is a torsion point and thus nP = O. This means if we 
an 
omputethe value(4.8) fn(Q1)

fn(Q2)
=

fP (Q1)

fP (Q2)
= 〈P,Q〉nwe have rea
hed our goal.We note that for i = 0 we get

f0(Q1)

f0(Q2)
= 1sin
e

D0 := 0[P +R]− 0[R]− [0P ] + [O] = 0.For i = 1 we have
D1 := [P +R]− [R]− [P ] + [O].Now assume that ℓ = ax + by + c is the line through P and R, v = x + d theverti
al line through P +R and O. Then we obtain

f1(Q1)

f1(Q2)
=

ax+by+c

x+d
|(x,y)=Q1

ax+by+c

x+d
|(x,y)=Q2

.
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al
ulate the values f2, f3, . . . , fn su
h thatwe 
an 
ompute the desired value (4.8). Therefore, assuming that the values
fj(Q1)

fj(Q2)
and fk(Q1)

fk(Q2)are already 
al
ulated for some integers j, k, we want to derive a solution for
fj+k(Q1)

fj+k(Q2)
.As de�ned in (i) above fj and fk have the divisorsdiv(fj) = Dj := j[P +R]− j[R]− [jP ] + [O],(1) div(fk) = Dk := k[P +R]− k[R]− [kP ] + [O].(2)Let ℓ = ax+ by + c the line through jP and kP , and let v = x+ d the verti
alline through (j + k)P . Re
alling equation (4.6) we get(3) div(ax+ by + c

x+ d

)

= [jP ] + [kP ]− [(j + k)P ]− [O].Adding (1),(2) and (3) we getdiv(fjfk ax+ by + c

x+ d

)

= Dj+k := (j+k)[P +R]− (j+k)[R]− [(j+k)P ]+ [O].Consequently, we obtain
fj+k(Q1)

fj+k(Q2)
=

fj(Q1)

fj(Q2)
·
fk(Q1)

fk(Q2)
·

ax+by+c

x+d
|(x,y)=Q1

ax+by+c

x+d
|(x,y)=Q2as the evaluation of fj+k at Q1 and Q2 whi
h is the required value. This meansthat to 
al
ulate the value of fj+k at Q1 and Q2 we we only need the values of

fj and fk there and the points jP and kP .The following algorithm from Miller (1986) starts with f1 and su

essivelyuses point doubling and adding to rea
h up to fn.Miller's Algorithm.Input: Points P,R,Q1, Q2 ∈ E and the �nal index n where nP = O.Output: The value of 〈P,Q〉n = fP (Q1)
fP (Q2)

where div(fP ) = n[P + R] − n[R] −

[nP ] + [O].



16 T. Jonas Özgan1. Compute ℓ = ax+ by + c the line through P and R.2. Compute v = x+ d the verti
al line through P +R and O.3. Compute f1 ←
ax+by+c

x+d
|(x,y)=Q1

ax+by+c
x+d

|(x,y)=Q2

.4. Let f ← f1, J ← P .5. Write n = (nr−1, . . . , n1n0) in base 2.6. For i = r − 2, . . . , 0 do 7�177. Let ℓ = ax+ by + c be the tangent at J .8. S ← 2J .9. Let v = x+ d be the verti
al line through S.10. f ← f 2 · ℓ
v
|Q1 ·

v
ℓ
|Q2.11. J ← S.12. If ni = 1 then13. Let ℓ = ax+ by + c be the line through J and P .14. S ← J + P .15. Let v = x+ d be the verti
al line through S.16. f ← f · f1 ·

ℓ
v
|Q1 ·

v
ℓ
|Q2.17. J ← S.18. Return f .The runtime of Miller's Algorithm is determined by the point adding anddoubling steps whi
h depend on the group order n. Re
all that the inputsize is Θ(log q) then the algorithm makes O(k log q) point operations whi
h is
onsidered to be too slow for pra
ti
al purposes. This results from the 
hoi
eof qk whi
h is qk ≈ 21024 bits (or even qk ≈ 22048) and is related to the se
urityof the signature s
heme. We will dis
uss the 
hoi
e of qk in the 
ontext of these
urity of the signature s
heme later in Part III.Miller's Algorithm is used as a basis for the 
al
ulation of pairings and therehave been numerous proposals to speed up and optimize it for spe
i�
 groupsand di�erent pairings. For example, the re
ent publi
ation Costello & Stebila(2010) proposes a pre
omputation based modi�
ation of Miller's Algorithmthat is 37% faster than the original one and 19, 5% faster than other pre
om-putation based approa
hes. For a detailed dis
ussion we refer to some of thepubli
ations in this area su
h as Costello & Stebila (2010); Galbraith, Harrison& Soldera (2002); Ian Blake & Xu (2004)5. Ellipti
 
urve based 
ryptosystemsHaving introdu
ed ellipti
 
urves and bilinear pairings we now look at someexamples of ellipti
 
urve based 
ryptosystems. Sin
e we later aim to analyze
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heme in the rest of this thesis, we will 
on
entrate on signatures
hemes based on ellipti
 
urves and pairings.5.1. El-Gamal type signature s
heme. In El-Gamal (1985) the El-Gamalsignature s
heme was introdu
ed. It is based on the hardness of the dis
retelogarithm problem in 
ertain groups. We explain here an ellipti
 
urve variantof the El-Gamal Signature S
heme.Given an ellipti
 
urve E over a �nite �eld Fq (where the dis
rete log prob-lem is hard) and a point P ∈ E(Fq) with a large (prime) order n. Let also
H : {0, 1}∗ → Zn be a hash fun
tion and f : E(Fq) → Zn be a fun
tion map-ping the points on E to integers. Boris wants to verify a signature σm(s, R)whi
h was signed by Aylin on a message m. He �rst retrieves Aylin's publi
key A = aP ∈ E(Fq) (where a is the private key). After that his verifyingalgorithm does:1. Compute v1 ← f(R)A+ sR.2. Compute v2 ← H(m)P .3. Che
k whether v1 ?

= v2.We dedu
e the signing pro
ess from the verifying equation. Consider that
R = rP where r is a random element with g
d(r, n) = 1 and we also know thatfor a valid signature we must have v1 = v2. Thus

v1 = f(R)A+ sR

= f(R)aP + srP

= (f(R)a+ sr)P

= (f(R)a+ sr)P
?
= v2 = H(m)P.This means that f(R)a+sr = H(m) whi
h dire
tly gives us the signing equationas

s = r−1(H(m)− af(R)).Altogether we have:EC El-Gamal sign. Aylin signs.Publi
 input: The group E(Fq), the base point P and its order n, the fun
tions
H : {0, 1}∗ → Zn and f : E(Fq)→ Zn.Input: Aylin's private key a ∈ Z×

n , the message m ∈ {0, 1}∗.Output: Signature σm(s, R).



18 T. Jonas Özgan1. Choose a random r ←− Z×
n with g
d(r, n) = 1.2. Compute R← rP .3. Compute s← r−1 (H(m)− af(R)) mod n.4. Return σm ← (s, R).EC El-Gamal verify. Boris veri�es.Publi
 input: The group E(Fq), the base point P and its order n, the fun
tions

H : {0, 1}∗ → Zn and f : E(Fq) → Zn and the publi
 key A ofAylin.Input: The message m ∈ {0, 1}∗ and a signature σm(s, R).Output: {ACCEPT, REJECT}.1. Compute v1 ← f(R)A+ sR.2. Compute v2 ← H(m)P .3. If v1 = v2 then4. Return ACCEPT.5. Else6. Return REJECT.For se
urity reasons we require that the fun
tion f whi
h 
onverts points intointegers in the �eld Zn allows preimage 
omputation. A simple example of thisfun
tion would be just to take the x-
oordinate of a given point, ie f((x, y)) = x.This would result in at most two points yielding the same output under f whi
his a

eptable.An atta
ker Charly 
an forge the signature if he 
an 
al
ulate the dis
retelogarithm a from A = aP or by �nding a 
ollision in the hash fun
tion su
has H(m) = H(m′). Both of them are assumed to be hard problems. HoweverAylin needs to be 
areful when signing messages. Assume that Charly obtainstwo signatures (m,R, s) and (m′, R, s′) signed with the same r. Then the twoequations for s and s′ are
rs ≡ H(m)− af(R),

rs′ ≡ H(m′)− af(R).Subtra
ting these would give Charly r(s−s′) ≡ H(m)−H(m′) mod n. Charly
an now 
ompute r and with that he 
an obtain the private key a of Aylin.
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urve digital signature algorithm (ECDSA). The El-Gamal signature s
heme in the raw form above is rarely used in pra
ti
e. TheNational Institute of Standards and Te
hnology (NIST) proposed a variant ofthis s
heme in 1991 whi
h was 
alled the Digital Signature Algorithm (U.S.Department of Commer
e / National Institute of Standards and Te
hnology2000). A more re
ent version of it uses ellipti
 
urves instead of multipli
ativegroups in �nite �elds. The algorithm is a
tually an El-Gamal type signatures
heme with tiny modi�
ations.The main di�eren
e to the El-Gamal s
heme above is in the veri�
ationpro
edure. Although the signature in the ECDSA s
heme is 
omputed exa
tlythe same way as in the El-Gamal s
heme, here a valid signature is veri�ed by
rP

?
= s−1H(m)P − s−1f(R)A.

= s−1(H(m)− f(R)a)PNote that the El-Gamal system requires a total of three integer times point
omputations (whi
h are expensive) in its veri�
ation equations v1 = f(R)A+
sR and v2 = H(m)P where the ECDSA system only needs two in s−1H(m)Pand f(R)A.Note that there are again no spe
ial requirements to the fun
tion f . Alsoas above the signer has to be 
areful about signing di�erent messages with thesame random element r.5.3. Short signatures. Boneh, Lynn & Sha
ham (2004) introdu
es Shortsignatures from the Weil pairing. The se
urity of this signature s
heme is basedon the 
omputational Di�e-Hellman assumption whi
h is to �nd abP from agiven triple (P, aP, bP ), more in Part III. Compared to the ECDSA above, ithas the same level of se
urity but half of the length: 170 bits instead of 320.This is of 
ourse a signi�
ant improvement for low bandwidth systems and alsofor systems where humans are required to type in the signature.Given an ellipti
 
urve E over Fq and a point P ∈ E(Fq) generating thegroupG. Further �x a hash fun
tion H : {0, 1}∗ → E(Fq) that maps bit stringsto points on the ellipti
 
urve. Most importantly, 
hoose a non-degeneratebilinear pairing e : G×G→ F×

q satisfying De�nition 4.2.Suppose that Boris wants to verify Aylin's signature σ on a message m.After retrieving her publi
 key A = aP his verifying algorithm does1. Compute u← e(H(m), A).



20 T. Jonas Özgan2. Compute v ← e(σ, P ).3. Che
k whether v = u.Sin
e we know that
u = e(H(m), A) = e(H(m), aP ) = e(H(m), P )a = e(aH(m), P ),we 
an satis�y v = u by assuming aH(m) = σ. Altogether we obtainBLS sign. Aylin signs.Publi
 input: The Group E(Fq), the base point P and its order n, the hashfun
tion H : {0, 1}∗ → E(Fq), the bilinear pairing e : G ×G →

F×
q .Input: Aylin's private key a ∈ Z×

q , the message m ∈ {0, 1}∗.Output: Signature σm.1. Compute σm ← aH(m).2. Return σm.BLS verify. Boris veri�es.Publi
 input: The Group E(Fq), the base point P and its order n, the fun
tion
H : {0, 1}∗ → E(Fq), the bilinear pairing e : G×G→ F×

q .Input: Aylin's publi
 key A, the message m ∈ {0, 1}∗, the signature σm.Output: {ACCEPT, REJECT}.1. Compute u← e(H(m), A).2. Compute v ← e(σm, P ).3. If v = u then4. Return ACCEPT.5. Else6. Return REJECT.The se
urity of this signature s
heme is shown in the random ora
le modelintrodu
ed in Bellare & Rogaway (1993). Note that the 
onstru
tion of a hashfun
tion mapping to the points on the ellipti
 
urve is not trivial. A detailedexplanation of 
onstru
ting su
h hash fun
tions 
an be found in the originalpubli
ation.
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heme 215.4. Multi-designated veri�ers signature. In the mid 90's Jakobsson,Sako & Impagliazzo (1996) introdu
ed the 
on
ept of Designated veri�er sig-natures whi
h was independently patented by Chaum (1996) as private signa-tures. In these proposals a signature 
ould only be veri�ed by a unique user
hosen by the signer. The idea was that no one ex
ept the designated veri�er
ould be 
onvin
ed by a signature be
ause the designated veri�er 
ould alsoprodu
e the signature by himself. The authors suggested also an extension oftheir s
heme to a set of designated veri�ers. Later in Laguillaumie & Vergnaud(2007) this 
on
ept was formalized and multi-designated veri�ers signatureswere introdu
ed. In their publi
ation the authors introdu
ed a bi-designatedveri�ers signature s
heme whi
h only 
an be validated by two designated ver-i�ers (Boris and Charly) 
hosen by the signer Aylin. The idea behind thesignature is that for a fourth party David, the signature states that eitherAylin produ
ed the signature or Boris and Charly together produ
ed thesignature.Consider an ellipti
 
urve E, two groups G and H of large prime order
n and P ∈ E a generator for G. Chose a non-degenerate bilinear pairing
e : G×G→ H and a hash fun
tion H : {0, 1}∗ ×H→ G.Aylin (the signer) 
hooses her private key as a←− Z×

n where her publi
 key
PA = aP . Boris (veri�er #1) 
hooses his private key as b ←− Z×

n where hispubli
 key PB = bP . Charly (veri�er #2) 
hooses his private key as c ←− Z×
nwhere his publi
 key PC = cP .As before suppose that Boris wants to verify a signature σm = (QA, R, ℓ)whi
h was generated by Aylin for Boris and Charly the designated veri�erson a message m. Now Boris retrieves the publi
 keys PA and PC . Then theverifying algorithm does1. Compute u← e(PA, PC)

b.2. Compute M ← H(m, uℓ).3. Compute PBC ← PB + PC .4. Che
k whether e(QA, PA)e(R,PBC) = e(M,P ).If Charly instead of Boris veri�es the signature he just repla
es PB with PCand b with c. A signature σm is valid i� the equation e(QA, PA)e(R,PBC) =
e(M,P ) holds. As before we 
onstru
t R = rP with a random integer r.Assuming that ℓ is another random integer, we 
an dedu
e the signing pro
ess
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e(M,P ) = e(QA, PA)e(R,PBC)

= e(QA, aP )e(rP, (b+ c)P )

= e(aQA, P )e(r(b+ c)P, P )

= e(aQA + r(b+ c)P, P ).This is satis�ed if
M = aQA + r(b+ c)P, or
QA = a−1(M − r(b+ c)P ).Now we summarize both pro
esses.MDVS sign. Aylin signs.Publi
 input: Two groups G and H, the base point P and its order n, the non-degenerate bilinear pairing e : G × G → H, the hash fun
tion

H : {0, 1}∗ ×H→ G.Input: Aylin's private key a ∈ Z×
n , the message m ∈ {0, 1}∗, Publi
 keys PBand PC of Boris and Charly.Output: Signature σm.1. Choose two random integers r, ℓ←− Z×

n .2. Compute PBC ← PB + PC .3. Compute u← e(PB, PC)
a.4. Compute M ← H(m, uℓ).5. Compute QA ← a−1(M − rPBC)6. Set σm ← (QA, R, ℓ).7. Return σm.MDVS verify. Charly veri�es.Publi
 input: Two groups G and H, the base point P and its order n, the non-degenerate bilinear pairing e : G × G → H, the hash fun
tion

H : {0, 1}∗ ×H→ G.Input: Publi
 keys PA and PB of Aylin and Boris, the message m ∈ {0, 1}∗,the signature σm.Output: {ACCEPT, REJECT}.1. Compute u← e(PA, PB)
c.
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heme 232. Compute M ← H(m, uℓ).3. If u = M then4. Return ACCEPT.5. Else6. Return REJECT.Taking into 
onsideration the examples above one 
an still see the �tou
h�of El-Gamal in the equation QA = a−1(M − rPBC). This s
heme is also se
urein the random ora
le model, as proven by the authors.There have been numerous other publi
ations about designated veri�ers sig-nature s
hemes. These suggest universal designated veri�ers signature s
hemesand 
onstru
ting designated veri�ers signatures from any non-degenerate bi-linear mapping for details see Laguillaumie & Vergnaud (2004); Saeednia et al.(2003); Steinfeld et al. (2003).5.5. Proxy re-signatures. In Blaze, Bleumer & Strauss (1998) introdu
ed anew 
ryptographi
 primitive 
alled atomi
 proxy 
ryptography, in whi
h a semitrusted proxy 
onverts signatures of Aylin into signatures of Boris on the samemessage. However, in this pro
ess the proxy 
an not sign arbitrary messagesfor both parties. Until the publi
ation of Ateniese & Hohenberger (2005), this
ryptographi
 primitive was widely ignored by the 
ryptographi
 
ommunity.The authors revised the primitive and provided appropriate se
urity de�nitionsfor the random ora
le model. They also introdu
ed two new proxy re-signatures
hemes (1) multi-use bidire
tional and (2) single-use unidire
tional.5.5.1. Multi-use bidire
tional s
heme. Given the se
urity parameter k�x two groups G1 and G2 of prime order n, a generator P for G1, a non-degenerate bilinear mapping e : G1×G1 → G2 and a hash fun
tionH : {0, 1}∗ →G1.In this type of s
hemes we have three parties to 
onsider. Aylin the dele-gator with publi
 key A = aP , the proxy who 
onverts the signatures of Aylininto signatures of Boris identi�ed by his publi
 key B = bP . The proxy isable to do this with the re-signature key RAB = b
a
whi
h by assumption theproxy already has. Note that there are many se
ure ways of 
omputing RAB,an example is mentioned in Ateniese & Hohenberger (2005).As before we will begin with the veri�
ation of a signature σ whi
h wasgenerated by Aylin. Let us assume that Charly wants to verify σ. Afterretrieving A = aP the verifying algorithm 
he
ks if the equation

e(σ, P )
?
= e(H(m), A)
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e a valid signature σ ful�lls this equation we have
e(σ, P ) = e(H(m), aP )

= e(aH(m), P ).So ensuring σm = aH(m) yields a valid signature. This is exa
tly the sign-ing algorithm. Considering that the proxy has RAB = b
a
, the resigning of asignature σ into σ′is quite trivial as

σ′
m = RAB · σm = bH(m).Now we give an overview of all three algorithms.Algorithm. Aylin signs.Publi
 input: The groups G1 and G2 , the base point P and its order n,the bilinear pairing e : G1 × G1 → G2 and the hash fun
tion

H : {0, 1}∗ → G1.Input: Aylin's private key a ∈ Z×
n , the message m ∈ {0, 1}∗.Output: Signature σ.1. Compute σ ← aH(m).2. Return σ.Algorithm. The proxy re-signs.Publi
 input: The groups G1 and G2 , the base point P and its order n,the bilinear pairing e : G1 × G1 → G2 and the hash fun
tion

H : {0, 1}∗ → G1.Input: The re-signature key RAB = b
a
, the message m ∈ {0, 1}∗ and the signa-ture σ.Output: σ′.1. Compute σ′ ← RAB · σ.2. Return σ′.Algorithm. Boris veri�es.Publi
 input: The groups G1 and G2 , the base point P and its order n,the bilinear pairing e : G1 × G1 → G2 and the hash fun
tion

H : {0, 1}∗ → G1.Input: Aylin's publi
 key A, the message m ∈ {0, 1}∗ and the signature σ.
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heme 25Output: {ACCEPT, REJECT}.1. Compute U ← e(H(m), A).2. Compute V ← e(σ, P ).3. If V = U then4. Return ACCEPT.5. Else6. Return REJECT.5.5.2. Single-use unidire
tional s
heme. Again �x two groups G1 andG2 of prime order n and also generators P and Q for G1. Choose a non-degenerate bilinear mapping e : G1×G1 → G2 and a hash fun
tion h : {0, 1}∗ →
Z×
n .In this s
heme we again 
onsider three parties Aylin, Boris and the proxy.The di�eren
e here is that the users have publi
 key pairs instead of just onepubli
 key. This means that, for Aylin we say that she has a publi
 key pair

A = aP,A′ = 1
a
Q where a is her strong se
ret and aQ her weak se
ret. SimilarlyBoris has a publi
 key pair B = bP,B′ = 1

b
Q where b is his strong se
ret and

bQ the weak one.Again we assume that the proxy already has the re-signature key RAB = b
a
Qwhi
h enables him to 
onvert signatures of Aylin into signatures of Boris.Sin
e this s
heme allows the proxy to 
onvert a signature only on
e, we aredistinguishing between a lavel 0 signature and a level 1 signature. Now assumethat Charly wants to verify the level 0 signature σ(0) = (s, R) generated byAylin on a message m ∈ {0, 1}∗. His veri�
ation algorithm 
he
ks if theequation(5.1) e(P, sQ)

?
= e(A,R)e(A, h(m||R)Q)holds. Similarly as above we 
onstru
t R = rQ for a random integer r. Sin
ea valid signature ful�lls the equation (5.1) we obtain

e(P, sQ) = e(A,R)e(A, h(m||R)Q)

= e(aP,R + h(m||R)Q)

= e(P, a(R + h(m||R)Q))

= e(P, a(h(m||R) + r)Q).Now we 
an see that a level 0 signature 
an be signed by
σ(0) = (s, R) = (a(h(m||R) + r), rQ).
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onvert this signature σ(0) = (s, R) into σ(1) = (s′, R)with the re-signature key RAB = b
a
Q he 
omputes

σ(1) ← (sRAB, R) = (s
b

a
Q,R) = (b(h(m||R) + r)Q,R).This slightly 
hanges the veri�
ation pro
ess for a level 1 signature. If Charlywants to verify a level 1 signature σ(1) = (S,R) with the publi
 key B of Borishe 
he
ks if the equation

e(P, S)
?
= e(B,R)e(B,H(m||R)Q).holds. Noti
e that Aylin 
an also dire
tly produ
e a level 1 signature as

σ(2) = (a(H(m||R) + r)Q, rQ).The di�eren
e between the veri�
ation of a level 0 and a level 1 signature 
anbe seen 
learly in the overview of all three algorithms.Algorithm. Aylin signs.Publi
 input: The groups G1 and G2 , the generators of P and Q G1, thenon-degenerate bilinear pairing e : G1 ×G1 → G2 and the hashfun
tion h : {0, 1}∗ → Z×
n .Input: Aylin's private key a ∈ Z×

n , the message m ∈ {0, 1}∗, ℓ ∈ {0, 1} thesigning level.Output: Signature σ(ℓ).1. Choose a random r ←− Z×
n .2. Compute R← rP .3. If ℓ = 0 then4. s← a(h(m||R) + r).5. σ(0) ← (s, R).6. Else if ℓ = 2 then7. S ← a(h(m||R) + r)Q.8. σ(1) ← (S,R).9. Return σ(ℓ).Algorithm. Proxy Re-signs.Publi
 input: The groups G1 and G2 , the generators of P and Q G1, the non-degenerate bilinear pairing e : G1×G1 → G2, the hash fun
tion

h : {0, 1}∗ → Z×
n .
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a
Q, the message m ∈ {0, 1}∗ and a level 0signature σ(0) = (s, R)Output: A level 1 signature σ(1).1. Compute S ← sRAB.2. Set σ(1) ← (s′, R).3. Return σ(1).Algorithm. Boris veri�es.Publi
 input: The groups G1 and G2 , the generators P and Q of G1, the non-degenerate bilinear pairing e : G1×G1 → G2, the hash fun
tion

h : {0, 1}∗ → Z×
n .Input: Aylin's publi
 key A, the message m ∈ {0, 1}∗ and a signature σ(ℓ) validfor A.Output: {ACCEPT, REJECT}.1. If ℓ = 0 then

u← e(P, sQ).2. Else if ℓ = 1 then
u← e(P, s).3. Compute v ← e(A,R)e(A, h(m||R)Q).4. If v = u then5. Return ACCEPT.6. Else7. Return REJECT.Note that in both s
hemes we 
ould require the proxy to verify the inputsignature before translating it. The se
urity of these s
hemes was shown in therandom ora
le model for details see ??.The left open 
hallenge was to �nd a uni-dire
tional multi-use proxy re-signature s
heme. This in Libert & Vergnaud (2008a). This s
heme will beanalyzed in detail in this thesis.5.6. Proxy re-en
ryption. Similar to proxy re-signatures a proxy re-en
ryptions
heme allows a semi trusted entity 
alled proxy to translate a 
iphertext en-
rypted with the publi
 key PKA into a 
iphertext en
rypted with a distin
tother publi
 key PKB. However the proxy 
annot learn anything about themessages en
rypted under either key. Also based on the publi
ation of Blaze,Bleumer & Strauss (1998), there have been numerous proposal for proxy re-en
ryption s
hemes (Ateniese, Fu, Green & Hohenberger 2006; Canetti & Ho-



28 T. Jonas Özganhenberger 2007; Chow, Weng, Yang & Deng 2010; Libert & Vergnaud 2008b).Although all these s
hemes have very interesting properties and appli
ations,a sophisti
ated analysis is not within the limits of this thesis. For more infor-mation on proxy re-signatures and proxy re-
ryptography see Shao (2009).5.7. Tripartite Di�e-Hellman key ex
hange. In Joux (2004), anotheruseful appli
ation of pairings was introdu
ed. The author suggested a one roundproto
ol for tripartite Di�e-Hellman whi
h allows three parties to ex
hange asession key in just one round. The natural variant of the Di�e-Hellman keyex
hange proto
ol (Di�e & Hellman 1976) needs two rounds.Again, let E be an ellipti
 
urve over Fq, P ∈ E(Fq) a generator for thegroup G and e : G×G→ F×
q a non-degenerate bilinear pairing.The parties Aylin, Boris and Charly want to agree on a session key. Thus,they do the following:3-Party Diffie-Hellman Proto
ol. Aylin.Publi
 Input The group G, the base point P and its order n, the bilinearpairing e : G×G→ F×

q .Input: Aylin's private key a, B publi
 key of Boris, C publi
 key of Charly.Output: Session key K.1. Compute K ← e(B,C)a.2. Return K.3-Party Diffie-Hellman Proto
ol. Boris.Publi
 Input The group G, the base point P and its order n, the bilinearpairing e : G×G→ F×
q .Input: Boris' private key b, A publi
 key of Aylin, C publi
 key of Charly.Output: Session key K.1. Compute K ← e(A,C)b.2. Return K.3-Party Diffie-Hellman Proto
ol. Charly.Publi
 Input The group G, the base point P and its order n, the bilinearpairing e : G×G→ F×
q .Input: Charly's private key c, A publi
 key of Aylin, B publi
 key of Boris.Output: Session key K.
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heme 291. Compute K ← e(A,B)c.2. Return K.In the end all parties have the session key K = e(P, P )abc. Note we needa pairing with e(P, P ) 6= 1. Naturally we require that the dis
rete logarithmproblem is both hard in the group G and in F×
q , a detailed se
urity dis
ussion 
anbe found in the original publi
ation. Note also that despite this looks somehowni
e on paper, in pra
ti
e it is not really e�
ient be
ause of the nature ofpairings. Sin
e they map points to elements of a multipli
ative �eld, one hasto in
rease the size of the �eld for se
urity whi
h again e�e
ts the 
omputationof a pairing. The 
urrent 
ommuni
ation speed on digital 
hannels neutralizesthe �gain� of this key ex
hange s
heme.5.8. Other uses of pairings. The last example above shows that pairingsare not only interesting in digital signatures. There are numerous other 
ryp-tographi
 settings where pairings are used. Some very interesting topi
s inpairing based 
ryptography are:

◦ Identity based 
ryptography
◦ Authenti
ation
◦ Threshold 
ryptosystems
◦ Traitor tra
ing
◦ Hierar
hi
al 
ryptosystems
◦ ...The pairing based 
rypto lounge Barreto (2009) provides an ex
ellent resour
efor further information and resear
h on areas based on pairings.
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hemeSuppose that you are the holder of a do
ument m whi
h has been issued and
erti�ed in the form of a signature by a spe
i�
 domain A. After a while youwant or need to 
hange your membership to another domain B and want to takeyour do
uments with you without loosing their originality. For example, this
an be the true for digital rights management (DRM) systems, or for publi
key 
erti�
ates validated by di�erent 
erti�
ation authorities (CA), or even forfuture e-passport systems. In short, the valid signature σA(m) whi
h ensuresthe authenti
ity of the do
ument m for domain A has to be somehow 
hangedinto σB(m), a valid signature on the same do
ument m for the domain B. Thedetailed form of these 
ases will be dis
ussed in Part V.6. The trivial solutionsThe �rst trivial solution to the problem above would be removing the signatureof Aylin (owner of domain A) from the do
ument and repla
ing it with a sig-nature of Boris (owner of domain B). This solution, however, is not a

eptablesin
e the do
ument 
an be altered during the re-signing pro
ess. This solutionwould also require intera
tion between domains and the do
ument holders, maybe even for terabytes of data. Considering that there are hundreds of thousandsof users, an atta
ker 
ould expose Aylin's and maybe also Boris' se
ret.The se
ond trivial solution for 
hanging the signature from a spe
i�
 domainto another would be, that the holder Os
ar of the do
ument m, asks Boristo over-sign the do
ument m with the signature of Aylin on it. This meansthat Boris just adds his signature on the do
ument as depi
ted in Figure 6.1.However, this simple solution has signi�
ant disadvantages. First of all Borismust either sign all the do
uments himself or he has to delegate his signingrights to some other entities. For Boris this means the following:
◦ It is very ine�
ient. For example in the 
ase of the DRM platforms,there are many users and many �les, whi
h would mean that Boris hasto verify the authenti
ity of terabytes of data and over-sign them all.
◦ This 
ould also be a se
urity risk, sin
e atta
kers 
ould impose as falsedomains and atta
k Boris or his delegatees during signing pro
esses.On the other hand this means for Os
ar:
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σA

m m

σA

σB

m′

OverSign(m, ·)

Figure 6.1: Trivial OverSign() pro
ess
◦ Boris knows dire
tly that Os
ar has his do
ument from Aylin whi
h
ompromises Os
ar's priva
y.
◦ Ea
h translation 
auses the a
tual do
ument m to grow sin
e the newdo
ument m′ would also in
lude the signature of Aylin. Using a shortsignature of Boneh et al. (2004) as introdu
ed in Part I, the signatureof Aylin on m is σA(m) = aH(m) then Boris over-signs it as σB(m

′) =
bH(m||σA(m)). The new do
ument would be m′ = m||σA(m) whi
h hasthe signature σA(m) of Aylin appended to the original do
ument m.Let us also 
onsider another pra
ti
al 
ase, where in a 
ompany users areseparated into independent working groups and ea
h one of them is mandatedby a supervisor. The out
ome of a proje
t of some 
ooperating working groupshas to be signed by the private key of the 
ompany. The trivial solutions wouldreveal the internal stru
ture of the 
ompany as well as the working groups.This is 
learly not in the best interest of the 
ompany.7. RequirementsWe 
on
lude here that for some appli
ation areas as mentioned above anddis
ussed later in Part V, the trivial solutions are not appropriate. Thus, theamount of data and the unavailability of the domain owners' private keys skAand skB, another entity is required to translate a signature from one domain(Aylin) into another (Boris). We require that:1. This entity, 
alled, proxy is only semi-trusted and the information (the re-signature key) that he is granted is limited. This means that a 
orruptedproxy 
annot expose se
rets of the domain owners.
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tional, multi-use. The re-signature key, available to theproxy allows him only to translate signatures from Aylin to Boris andnot vi
e versa.3. Private proxy. The re-signature keys available to the proxy 
an be keptse
ret.4. Non-transitivity. The re-signature key RAB whi
h allows the proxy totranslate signatures from Aylin to Boris and the re-signature key RBCwhi
h allows the proxy to translate signatures from Boris to Charly,does not give him the ability to 
al
ulate the re-signature key RAC fortranslating signatures from Aylin to Charly dire
tly.5. Non-intera
tive. The re-signature key RAB 
an be 
al
ulated withoutthe intera
tion of Aylin.6. Transparen
y. Users do not need to know that a proxy translated thesignature.7. Unlinkability. The translated do
uments 
an not be linked to the pre-vious signer Aylin, ie. the new signature has no 
onne
tion with Aylinand it is a perfe
tly valid signature of Boris.8. Key optimal. The domain owners do not need to store more informationthan their se
ret key sk.Obviously we also need that this signature s
heme is se
ure against 
hosenmessage atta
ks, desirably in the standard model. This requires a bullet proofse
urity de�nition and proof of the se
urity whi
h we dis
uss in Part III. Nowwe introdu
e the multi-use uni-dire
tional proxy re-signature s
heme from Lib-ert & Vergnaud (2008a), step by step, for a 
omprehensive understanding.8. A multi-use uni-dire
tional proxy re-signatureAs in Part I, instead of writing down all the formal de�nitions, we will try toexplore this signature s
heme step by step for a 
lear understanding. Assumethat we have a signature σA(m) from an entity Aylin on a do
ument m andwe want this do
ument to be authenti
 for another entity Boris. Sin
e at thispoint this signature σA(m) 
an be an arbitrary signature s
heme, we rememberthe short signature from Boneh, Lynn & Sha
ham (2004) introdu
ed in Part I.It is safe and also pra
ti
al to assume that we have a short signature of Aylinon the message m.



34 T. Jonas ÖzganMore formally, for a generator P of the groupG, a hash fun
tionH : {0, 1}∗ →G and a non-degenerate bilinear mapping e : G×G→ Z×
p :

◦ The publi
 and private key pair of Aylin is (XA, xA) with xA ∈ Z×
p and

XA = xAP .
◦ The valid signature σA(m) of Aylin on m ∈ {0, 1}∗ is 
omputed as
σA(m) = σ0 = xAH(m).
◦ A signature is veri�ed by 
he
king e(σ0, P )

?
= e(H(m), XA).Note that as in every signature s
heme the publi
 key is needed for veri�
a-tion. This means that the short signature is a
tually a four tuple σA(m) =

(xAH(m), XA, H(m), P ) with the publi
 key XA, the hash value of the mes-sage H(m) and the generator P of the group G. To understand the relationof these 4 elements, we graphi
ally 
onne
t them to a big �H� as shown on theleft side of Figure 8.1.
σ0

P

H(m)

XA

e(σ0, P ) = e(H(m), XA)
σ0

P
=
H(m)

P
·
XA

P

Figure 8.1: The H-representationThis H tells us that, pairing of the signature σ0 and the base point P equalsthe pairing of the hash value H(m) of the message and the publi
 key XA,depi
ted in the middle of Figure 8.1. Equivalently the dis
rete logarithm tobase P of σ0 is equal to the dis
rete logarithm of H(m) to base P times thedis
rete logarithm of XA to base P . This is expressed in a slightly unusualdis
rete logarithm notation on the right hand side of Figure 8.1.Now we want the proxy to re-sign this signature into one whi
h is valid forthe publi
 key XB = xBP of Boris. To do so, the proxy has to blind out the xAin the signature to assure unlinkability to Aylin and use the information thathe has, namely the re-signature key, in 
onstru
ting the translated signatureappropriately. We want the signature(8.1) σ0

P
=

H(m)

P
·

XA

P
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hanged into another signature like
σ0

P
=

H(m)

P
·

σ1

P
,where the en
ir
led element of equation (8.1) is 
hanged into an element σ1

P
.Sin
e σ1 
annot beXB be
ause for that transformation the private key of Aylinis needed, it has to ful�ll another relation like

σ1

P
=

σ−1

P
·
XB

P
.The translated signature has three elements (σ0, σ1, σ−1) and is related to thepubli
 key XB of Boris. They ful�ll the following relations:

σ0

P
=

H(m)

P
·
σ1

P
,

σ1

P
=

σ−1

P
·
XB

P
.Converting these dis
rete logarithm relations into pairing equations we get

e(σ0, P ) = e(H(m), σ1),

e(σ1, P ) = e(σ−1, XB).Graphi
ally speaking, from these two equations we get two H s whi
h are
onne
ted to ea
h other. This means that the proxy extended the signature byadding one H with two new elements to the original H as shown in Figure 8.2.Now we want to determine the relations between the elements of the orig-inal signature and the elements of the translated signature to understand thetranslation pro
ess. First, we know that the publi
 key of Boris is XB = xBPand σ−1 = tP where xB, t ∈ Z×
p . Thus, to ful�ll the relations from above wehave σ1 = txBP and σ0 = txBH(m). Consider Figure 8.3, the original signa-ture of Aylin on the left side is translated into a signature of Boris on theright hand side.Sin
e t 
annot be xA

xB
be
ause the proxy is only semi trusted we know that

t = r · xA

xB
for some r ←− Z×

p . Therefore σ1 = rXA and σ−1 = r · xA

xB
P . Now we
an 
learly see what happens in the translation pro
ess, the proxy, on re
eivinga valid signature σ = xAH(m) for the publi
 key XA = xAP , 
hooses a random

r ←− Z×
p and re-signs the signature as:



36 T. Jonas Özgan
σ0

P

H(m)

XA

σ0

P

H(m)

σ1

P

σ−1

XBFigure 8.2: Extending the �H�.
σ0 = xA ·H(m) σ0 = t · xB ·H(m)

XA = xA · P σ1 = t · xB · P

σ−1 = t · P

XB = xB · PFigure 8.3: Translation of the Signature xAH(m)

σ = (σ0, σ1, σ−1) = (r · σ0, r ·XA, r ·
xA

xB
P ) = (r · xAH(m), r · xAP, r · RAB).Setting t = r xA

xB
yields:(8.2) σ = (σ0, σ1, σ−1) = (txBH(m), txBP, tP ).One veri�es the signature by 
he
king the two H relations:

e(σ0, P )
?
= e(H(m), σ1) ∧ e(σ1, P )

?
= e(σ−1, XB).Note that we assume that the proxy already has the re-signature key whi
his RAB = xA

xB
P . This re-signature key 
an be 
al
ulated as (xB)

−1XA = xA

xB
Pand given to him by Boris without intera
ting with Aylin (non-intera
tivity).Note also that RAB allows the proxy to 
onvert signatures only from Aylinto Boris and not the other way around (uni-dire
tionality).In equation (8.2) we see that Boris 
an also 
onstru
t this signature byhimself. This means that one 
annot distinguish between a translated signatureand signature whi
h was signed like that (transparen
y).
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tional Proxy Re-Signature S
heme 37The idea behind this is to exploit the Di�e-Hellman assumption that given
tP for some t ∈ Z×

p it is hard to generate txBP without knowing the se
ret
xB ∈ Z×

p of Boris. The valid short signature σ = xAH(m) is re-randomizedand blinded into σ = (txBH(m), txBP, tP ) with a random element t ∈ Z×
p .Now we want use this idea of re-randomizing and blinding by adding twonew elements iteratively to extend the translation pro
ess into a multi-uses
heme. To obviate 
onfusion we 
all the short signature of Boneh et al. (2004)a level 0 signature and the translated one a level 1 signature, thus a signaturewhi
h was translated ℓ times, will be 
alled a level ℓ signature. Now 
onsiderthe level ℓ signature with 2ℓ+1 elements valid for the publi
 key Xi representedin the �H� form shown in Figure 8.4.

σ0

P

H(m)

σ1

P

σ−1

σ2

P

σ−2

σ3

P σ−ℓ+1

σℓ

P

σ−ℓ

XiFigure 8.4: An level ℓ signatureAs we know ea
h H 
orresponds to one bilinear veri�
ation equation as
e(·, ·)

?
= e(·, ·), 
ounting a total of ℓ + 1 for a level ℓ signature. Using thedis
rete logarithm notation from above we observe that for a valid signature



38 T. Jonas Özganthe following equations hold:
σ0

P
=

H(m)

P
·
σ1

P
,

σ1

P
=

σ−1

P
·
σ2

P
,

σ2

P
=

σ−2

P
·
σ3

P
, . . .

σℓ

P
=

σ−ℓ

P
·
Xi

P
.We also observe that, all these equations are 
onne
ted to ea
h other like 
hains.For example in the �rst equation we 
an repla
e σ1

P
using the se
ond equationto obtain

σ0

P
=

H(m)

P
·
σ−1

P
·

σ2

P
.Repeating this for all equations results in ℓ+ 1 equations

σ0

P
=

H(m)

P
·
σ−1

P
·
σ−2

P

σ−3

P
· · · · · ·

σ−ℓ+1

P
·
σ−ℓ

P
·
Xi

P
,(0)

σ1

P
=

σ−1

P
·
σ−2

P
· · · · · · · · · · · · · · · · · · ·

σ−ℓ

P
·
Xi

P
,(1)

σ2

P
=

σ−2

P
·
σ−3

P
· · · · · · · · · · · ·

σ−ℓ

P
·
Xi

P
,(2)

σ3

P
=

σ−3

P
·
σ−4

P
· · · · · ·

σ−ℓ

P
·
Xi

P
,(3) ... ...(...)

σℓ−1

P
=

σ−ℓ+1

P
·
σ−ℓ

P
·
Xi

P
,(ℓ− 1)

σℓ

P
=

σ−ℓ

P
·
Xi

P
.(ℓ)
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tional Proxy Re-Signature S
heme 39Now we want to interpret these equations. We know that Xi = xiP and wewrite the elements σ−k = rkP for k ∈ {1, . . . , ℓ} with rk ∈ Z×
p . This meansthat

σ−ℓ = rℓP, σ−ℓ+1 = rℓ−1P, · · · , σ−2 = r2P, σ−1 = r1P.One 
an verify the valid level ℓ signature σ(ℓ)(m) on message m for thepubli
 key Xi by 
he
king the following ℓ+ 1 equations:
e(σ0, P )

?
= e(H(m), σ1),(0)

e(σk, P )
?
= e(σk+1, σ−k) k ∈ {1, . . . , ℓ− 1},(k)

e(σℓ, P )
?
= e(σ−ℓ, Xi).(ℓ)Thus a level ℓ signature valid for the publi
 key Xi has the form as in Figure 8.5whi
h also shows the signing pro
ess at level ℓ. In short ℓ random 
oe�
ients

rk ←− Z×
p for k ∈ {1, ..., ℓ} are 
hosen and multiplied as in Figure 8.5.

σ
(ℓ)
0 = (rℓ · · · r1)xiH(m),

σ
(ℓ)
1 = (rℓ · · · · · · · · ·r1)xiP, σ

(ℓ)
−1 = r1P,

σ
(ℓ)
2 = (rℓ · · · · ·r2)xiP, σ

(ℓ)
−2 = r2P,

σ
(ℓ)
3 = (r1 · · · r3)xiP , σ

(ℓ)
−3 = r3P,... ...

σ
(ℓ)
ℓ = rℓxiP, σ

(ℓ)
−ℓ = rℓP .Figure 8.5: Coe�
ient RepresentationTo understand the translation pro
ess, we now want the proxy to translatethis signature into a level ℓ + 1 signature valid for the publi
 key Xj = xjPof user j. Similar to Figure 8.2, the proxy has to add one H at the end ofFigure 8.4 for blinding out the publi
 key Xi. We assume that user j has already
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σℓ

P

σ−ℓ

Xi

σℓ

P

σ−ℓ

Xi

P

xi

xj
P = Rij

XjFigure 8.6: Appending one H to a level ℓ signaturedelegated the re-signature key Rij =
xi

xj
P = x−1

j Xi to the proxy. As before theproxy adds one H at the end of the signature as shown in Figure 8.6. Theresulting signature is perfe
tly valid for Xj the publi
 key of user j. However,the elements Xi and Rij are visible and allow an atta
ker extra
t to the re-signature key from it. Thus the proxy wants to blind out the re-signature key
Rij and the publi
 key Xi of user i. To do so, the proxy 
hoses a random
tℓ+1 ←− Z×

p and re-randomizes Xi and Rij as tℓ+1Xi and tℓ+1Rij respe
tively.
σ−ℓ+1

P

σℓ−1

σℓ

P

σ−ℓ

Xi

σℓ−1

P

σ−ℓ+1

σℓ

P

σ−ℓ

tℓ+1Xi

P

tℓ+1Rij

XjFigure 8.7: The re-randomization of the level ℓ+ 1 signature
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tional Proxy Re-Signature S
heme 41Now 
onsider Figure 8.7, we observe that the equation of the H inside the(green) dashed frame will not hold if σℓ = σℓ and σ−ℓ = σ−ℓ. Therefore theproxy multiplies σℓ with tℓ+1 su
h that σℓ = tℓ+1σℓ. Sin
e all the H-s are 
on-ne
ted to ea
h other the multipli
ation σℓ = tℓ+1σℓ, 
learly breaks the equationsof the upper H-s. To reassure the equations of ea
h H the multipli
ation with
tℓ+1 has to ripple all the way up to σ0 = tℓ+1σ0.However this is not the only problem whi
h o

urs while translating thesignature. Sin
e at this point the proxy did not do anything to σ−k for k ∈
{1, . . . , ℓ}, the signature is easily linkable to its prede
essor be
ause σ−ℓ = σ−ℓ, σ−ℓ+1 = σ−ℓ+1 ,..., σ−1 = σ−1. Thus, the proxy 
hooses another random
oe�
ient tℓ ←− Z×

p and re-randomizes σ−ℓ as σ−ℓ = tℓσ−ℓ. Again the relationof the H inside the (green) dashed frame is broken. So, the proxy has to multiply
σℓ with tℓ to reassure the integrity of this H and sin
e we have σℓ = tℓ+1tℓσℓthe multipli
ation with tℓ also has to ripple all the way up to σ0 whi
h is now
σ0 = tℓ+1tℓσ0.Now 
onsider the H inside the (blue) dotted frame, we have σℓ = tℓ+1tℓσℓ,also to avoid linkability here, the proxy 
hooses another random 
oe�
ient
tℓ−1 ←− Z×

p and multiplies σ−ℓ+1 with it whi
h means that σ−ℓ+1 = tℓ−1σ−ℓ+1.The multipli
ation σℓ−1 = tℓ+1tℓtℓ−1σℓ−1 then reassures that the equation ofthe H inside the (blue) dotted frame holds. But to reassure the integrity of theupper H-s this multipli
ation with tℓ−1 has also to ripple all the way up to σ0whi
h is then σ0 = tℓ+1tℓtℓ−1σ0. Following this pro
ess up to the top, we getthe translated level ℓ+ 1 signature as
σ0 = (tℓ+1 · · · t1)σ0

σ1 = (tℓ+1 · · · · · · t1)σ1, σ−1 = t1σ−1,

σ2 = (tℓ+1 · · · · ·t2)σ2, σ−2 = t2σ−2,

σ3 = (tℓ+1 · · · t3)σ3, σ−3 = t3σ−3,... ...
σℓ = tℓ+1tℓσℓ, σ−ℓ = tℓσ−ℓ,

σℓ+1 = tℓ+1Xi, σ−ℓ−1 = tℓ+1Rij .Setting r̃ℓ+1 = tℓ+1
xi

xj
and r̃k = tkrk for k ∈ {1, . . . , ℓ} gives us similar toFigure 8.5 that the level ℓ + 1 signature is valid for the publi
 key Xj on the



42 T. Jonas Özgansame message m

σ
(ℓ+1)
Xj

(m) = (σ
(ℓ+1)
0 , σ

(ℓ+1)
1 , · · · , σ

(ℓ+1)
ℓ+1 , σ

(ℓ+1)
−ℓ−1, · · · , σ

(ℓ+1)
−1 )with 2ℓ+ 3 elements as:

σ
(ℓ+1)
0 = (r̃ℓ+1 · · · r̃1)xjH(m),

σ
(ℓ+1)
1 = (r̃ℓ+1 · · · · · · · · ·r̃1)xjP, σ

(ℓ+1)
−1 = r̃1P,

σ
(ℓ+1)
2 = (r̃ℓ+1 · · · · · · ·r̃2)xjP , σ

(ℓ+1)
−2 = r̃2P,

σ
(ℓ+1)
3 = (r̃ℓ+1 · · · r̃3)xjP , σ

(ℓ+1)
−3 = r̃3P,... ...

σ
(ℓ+1)
ℓ = r̃ℓ+1r̃ℓxjP, σ

(ℓ+1)
−ℓ = r̃ℓP,

σ
(ℓ+1)
ℓ+1 = r̃ℓ+1xjP, σ

(ℓ+1)
−ℓ−1 = r̃ℓ+1P.Note that we already explained the relation between the veri�
ation equa-tions and the elements of the signature with the H notation. In the next se
tionwe de�ne a set of tools whi
h help us to understand the signing an re-signingpro
esses explained above.9. Building blo
ks of signature s
hemeIn this se
tion, we de
ompose the signature s
heme into simple building blo
ks.These simple building blo
ks will make it easier to understand the followingse
tions.9.1. The building blo
ks. Re
alling the previous se
tion, we 
an dividethe building blo
ks into two main 
ategories. In the �rst 
ategory we have thebuilding blo
ks whi
h lengthen the signature. In the se
ond 
ategory we havethe building blo
ks whi
h randomize the signature elements.9.1.1. Lengthening the signature. We 
an extend a level ℓ signature byone H in two di�erent ways. Namely, by adding a trivial H or by adding are-signature H, whi
h are both explained below.
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tional Proxy Re-Signature S
heme 43Building blo
k ADD TRIVIAL H . This building blo
k on input a level ℓsignature valid for the publi
 key Xi extends the signature by one H as shownin Figure 9.1. Despite the redundan
y of the last H, the result is a level ℓ + 1

σℓ

P

σ−ℓ

Xi

σℓ

P

σ−ℓ

Xi

P

P

Xi

ADDTRIVIALH
Figure 9.1: Adding a trivial H to a level ℓ signaturesignature still perfe
tly valid for the publi
 key Xi.Building blo
k ADD RE-SIGN H . This building blo
k on input a level ℓsignature valid for the publi
 key Xi, a re-signature key Rij =

xi

xj
P and anotherpubli
 key Xj extends the signature by one H as shown in Figure 9.7. The

σℓ

P

σ−ℓ

Xi

σℓ

P

σ−ℓ

Xi
xi

xj
P = Rij

P Xj

ADDRE-SIGNH
Figure 9.2: Adding a re-signature H to a level ℓ signatureresulting level ℓ+ 1 signature is now valid for the publi
 key Xj.



44 T. Jonas Özgan9.1.2. Randomization of the signature elements. Re
all the previousse
tion where we observed that a multipli
ation of a signature element ripplesall the way up to reassure the integrity of ea
h upper H. We start with theintrodu
tion of the building blo
k RE-RANDOM i whi
h starts randomizing ata 
ertain height i of the input signature with only one 
oe�
ient.Building blo
k RE-RANDOM i . This building blo
k on input a level ℓ ≥ isignature 
hooses a random 
oe�
ient ri ←− Z×
p and multiplies the elements

σ0, . . . , σi and σ−i with ri as shown in Figure 9.3. The resulting new signature
σ0

P

H(m)

σ1

σi

P

σ−i

σi+1

σℓ σ−ℓ

P Xi

RERANDOM i

riσ0

P

H(m)

riσ1

riσi

P

riσ−i

σi+1

σℓ σ−ℓ

P XiFigure 9.3: Re-randomizing σ(ℓ) at height iis still perfe
tly valid for the publi
 key Xi.Building blo
k RE-RANDOM . This building blo
k on input a level ℓ sig-nature 
hooses ℓ random 
oe�
ients r1, . . . , rℓ ←− Z×
p and multiplies themas shown in Figure 9.4. Note that RE-RANDOM =
ℓ∏

i=1

RE-RANDOM i where



A Multi-use Uni-dire
tional Proxy Re-Signature S
heme 45the produ
t means that all RE-RANDOM i are applied one after another. Theresulting signature is still perfe
tly valid for the publi
 key Xi.
σ0

P

H(m)

σ1

σi

P

σ−i

σi+1

σℓ σ−ℓ

P Xi

RERANDOM
rℓ · · · r1σ0

P

H(m)

rℓ · · · r1σ1

rℓ · · · riσi

P

riσ−i

rℓ · · · ri+1σi+1

rℓσℓ rℓσ−ℓ

P XiFigure 9.4: Re-randomizing σ(ℓ) 
ompletelyWe observe that lengthening and re-randomizing the signature is easy. Nowwe want to explain the signing and re-singing pro
esses using these buildingblo
ks.9.2. Signing at level ℓ. Re
all that a level 0 signature σ(0) valid for thepubli
 key xAP = XA of user A in the H representation looks like Figure 9.5.After 
omputing this σ(0) user A uses the building blo
k ADD TRIVIAL H on
σ(0) ℓ times and obtains an extended level 0 signature as depi
ted on the left sideof Figure 9.6. User A then uses building blo
k RE-RANDOM on this extendedsignature and obtains σ(ℓ) whi
h is depi
ted on the right hand side of Figure 9.6.Summarizing this, a user A with publi
 key XA �rst 
omputes a level 0signature σ(0) and uses the building blo
k ADD TRIVIAL H ℓ times to lengthenthe signature. Using the building blo
k RE-RANDOM on this extended signature
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xAH(m)

P

H(m)

XAFigure 9.5: A level 0 signature
xAH(m)

P

H(m)

XA

XA

P

P

XA

XA P
P XA

RERANDOM
rℓ · · · r1xAH(m)

P

H(m)

rℓ · · · r1XA

rℓ · · · riXA

P

riP

rℓ · · · ri+1XA

rℓXA rℓP

P XAFigure 9.6: Re-randomizing the extended σ(0)gives A proper a level ℓ signature.9.3. Re-signing a level ℓ signature. Now suppose that a proxy is askedto re-sign the level ℓ signature valid for the publi
 key XA of user A from aboveinto a level ℓ + 1 signature valid for the publi
 key XB of user B. Assumingthat user B already delegated the re-signature key xA

xB
P = RAB to the proxy,the re-signing pro
ess 
an be explained in two steps.Step 1. The proxy uses the building blo
k ADD RE-SIGN H to append a newH 
onsisting of the re-signature key RAB and the new publi
 key XB to the
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heme 47level ℓ signature from above as shown in Figure 9.7. The result is a level ℓ+ 1

σ0

P

H(m)

σ1

σℓ

P

σ−ℓ

XA ADDRE-SIGN H

σ
(ℓ)
0

P

H(m)

σ1

σℓ

P

σ−ℓ

xAP

P

RAB = xA

xB
P

XB

Figure 9.7: Step 1: adding the re-sign H
signature perfe
tly valid for the publi
 key XB.
Step 2. Now the proxy uses RE-RANDOM to re-randomize the signature andblind out the elements. As shown in Figure 9.8 RE-RANDOM 
hooses ℓ + 1random 
oe�
ients (rℓ+1, . . . , r1) ←− Z×

p and multiplies them a

ordingly.Summarizing the results from above we now write down everything in a formalnotation.



48 T. Jonas Özgan
σ0

P

H(m)

σ1

σℓ

P

σ−ℓ

xAP

P

RAB

XB

RERANDOM
(rℓ+1 · · · r1)σ0

P

H(m)

(rℓ+1 · · · r1)σ1

rℓ+1rℓ σℓ

P

rℓ σ−ℓ

rℓ+1XA

P

rℓ+1RAB

XB

Figure 9.8: Step 2: Re-randomization of the re-signature10. Formal de�nitionFirst we re
all the formal de�nition of a proxy re-signature s
heme from Ate-niese & Hohenberger (2005).Definition 10.1. A (uni-dire
tional) proxy re-signature s
heme for N signersand L levels 
onsists of the following six randomized algorithms:1. Setup(λ): On input of the se
urity parameter λ, this randomized al-gorithm produ
es the publi
 system parameters cp. It will be run by atrusted party.2. KeyGen(cp): On input of the publi
 parameters cp this probabilisti
algorithm outputs a users' publi
 and private key pair (pk, sk).3. ReKeyGen(cp, pki, skj): On input of the publi
 parameters cp, signer
i's publi
 key pki and user j's private key skj this (non-intera
tive) algo-rithm outputs a re-signature key Rij that allows translating signatures ofuser i into signatures of user j.4. Verify(cp, m, ℓ, σ

(ℓ)
i , pki): On input of the publi
 parameters cp, a mes-sage m ∈ {0, 1}∗, a level ℓ signature σ(ℓ) and a publi
 key pki, this de-
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heme 49terministi
 algorithm outputs 1 if σ(ℓ) is a valid signature for pki or 0 ifotherwise.5. Sign(cp, m, ℓ, ski): On input of the publi
 parameters cp, a messagem ∈
{0, 1}∗ and the signers private key ski this randomized algorithm outputsa signature σ(ℓ)

i (m) of user i on the message m at level ℓ ∈ {0, ..., L}.6. Re-Sign(cp, m, ℓ, σ
(ℓ)
i , Rij , pki, pkj): Given the publi
 parameters cp, amessage m ∈ {0, 1}∗ , a level ℓ signature σ

(ℓ)
i of user i, the re-signaturekey Rij, this randomized algorithm produ
es σ(ℓ+1

j a level ℓ+1 signaturefor user j if σ(ℓ)
i is valid for the publi
 key pki.Here λ is the se
urity parameter and both the number N of users and thenumber L of allowed translations (levels) are polynomial in λ. We require thatfor all λ ∈ N all system parameters cp produ
ed by Setup(), for all publi
and private key-pairs (pki, ski), (pkj, skj) produ
ed by KeyGen() and for any

ℓ ∈ {0, ..., L} and messages m ∈ {0, 1}∗:
Verify (cp, m, ℓ,Sign(cp, m, ℓ, ski), pki) = 1 .

Verify(cp, m, ℓ,ReSign(cp, m, ℓ,Sign(cp, m, ℓ, ski),
ReKeyGen(cp, pki, skj)), pkj) = 1 .Now we will spe
ify the implementation of the multi-use uni-dire
tional proxyre-signature s
heme from Libert & Vergnaud (2008a).The multi-use uni-dire
tional s
hemeSetup(λ): On input of the se
urity parameter λ ∈ N, this algorithm 
hoosesbilinear groups (G,GT ) of prime order p > 2λ, a generator P ∈ G and a hashfun
tion H : {0, 1}∗ → G. The publi
 system parameters are

cp := {G,GT , P,H}.Keygen(cp): User i's publi
 and private key pair is (Xi, xi) with a random
xi ←− Z×

p .ReKeygen(cp, Xi, xj): This algorithm outputs the Re-Signature key asRij =
1
xj
Xi =

xi

xj
P whi
h allows the proxy to translate signatures of user i into signa-tures of user j.



50 T. Jonas ÖzganVerify(cp, m, ℓ, σ(ℓ), Xi): The validity of an level ℓ signature
σ(ℓ)(m) = (σ0, σ1, . . . , σℓ, σ−ℓ, . . . , σ−1) ∈ G2ℓ+1on a message m ∈ {0, 1}∗ for the publi
 key Xi is veri�ed if the ℓ+1 equations
e(σ0, P )

?
= e(σ1, H(m)),(10.2)

e(σk, P )
?
= e(σk+1, σ−k) for k ∈ {1, . . . , ℓ− 1},(10.3)

e(σℓ, P )
?
= e(Xi, σ−ℓ)(10.4)all hold. For ℓ = 0 this spe
ializes to the following:
e(σ(0), P )

?
= e(Xi, H(m)).Sign(cp, m, ℓ, xi): On input a message m ∈ {0, 1}∗ and a private key xi, thisalgorithm signs signatures at level ℓ for user i. It �rst 
omputes

σ(0)(m) = xiH(m).Then appends ℓ trivial H-s and re-randomizes the result. During the 
ompu-tation the algorithm 
hooses r1, . . . , rℓ ←− Z×
p and 
omputes and outputs thegroup elements as

σ
(ℓ)
0 = rℓ · · · · · · r2 · r1 · xiH(m),

σ
(ℓ)
k = rℓ · · · rk · xiP for k ∈ {1, . . . , ℓ},

σ
(ℓ)
−k = rk · P for k ∈ {ℓ, . . . , 1}.Note that this is pre
isely as in Figure 8.5.Re-Sign(cp, m, ℓ− 1, σ(ℓ−1), Rij , Xi, Xj): On input a message m ∈ {0, 1}∗, avalid level ℓ− 1 signature

σ(ℓ−1)(m) = (σ0, σ1, σ2, . . . , σℓ−1, σ−ℓ+1, . . . , σ−1) ∈ G2ℓ−1on m, the re-signature key Rij = xi

xj
P and the publi
 keys Xi, Xj, this algo-rithm re-sings σ(ℓ−1) to σ(ℓ) valid for Xj . It �rst appends the re-signature H andthen re-randomizes the result. During the 
omputation the algorithm 
hooses

ℓ random elements t1, t2, . . . , tℓ ←− Z×
p then it translates σ(ℓ−1) into a level ℓ
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heme 51signature valid for Xj by 
omputing and outputting
σ
(ℓ)
0 = tℓ . . . . . . t2t1 · σ

(ℓ−1)
0 ,

σ
(ℓ)
k = tℓ . . . tk · σ

(ℓ−1)
k for k ∈ {1, . . . , ℓ− 1},

σ
(ℓ)
ℓ = tℓXi,

σ
(ℓ)
−ℓ = tℓRij = tℓ

xi

xj
P,

σ
(ℓ)
−k = tk · σ

(ℓ−1)
k for k ∈ {ℓ− 1, . . . , 1}.We observe that:

σ(ℓ)(m) = (σ0, σ1, σ2, . . . , σℓ, σ−ℓ, . . . , σ−2, σ−1)

= (rℓ . . . . . . .r1xjH(m),

rℓ . . . . . . r1xjP,

rℓ . . . r2xjP,...
rℓxjP,

rℓP, . . . , r2P, r1P ) ∈ G2ℓ+1.If we set rℓ = tℓ
xi

xj
and rk = tkrk for k ∈ {1, . . . , ℓ− 1}. Sin
e

σ(ℓ−1)(m) = (σ0, σ1, σ2, . . . , σℓ−1, σ−ℓ+1, . . . , σ−1)

= ( rℓ−1 · · · · · · r1xiH(m),

rℓ−1 · · · · · · r1xiP,

rℓ−1 · · · r2xiP,...
rℓ−1xiP,

rℓ−1P, . . . , r2P, r1P ) ∈ G2ℓ−1.
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e the slight 
hange of the order of the elements in (10.2) and (10.4) inthe veri�
ation pro
ess. This notion is formally more 
orre
t be
ause we 
anuse two di�erent groups G1 and G2 instead of one to 
onstru
t the signatures
heme. Re
all the H representation of a level ℓ signature as in Figure 8.4, inea
h H we then would have the diagonal elements in the same groups. This is
alled the asymmetri
 
ase and the 
hoi
e of using two groups instead of one ishighly related to the se
urity of the signature s
heme whi
h we dis
uss in thenext 
hapter. We also observe the following:
◦ Uni-dire
tional: The re-signature key Rij allows the proxy to translatesignatures in one dire
tion.
◦ Multi-use: Signatures in this s
heme 
an be translated polynomiallymany times, in fa
t a signer 
an limit the number of translations to nby signing the signature at level L− n where at most L translations areallowed.
◦ Private-proxy: An honest proxy 
an keep the re-signature key Rij se
retbe
ause while translating the signature, Rij is blinded out by a randomelement tℓ ←− Z×

p .
◦ Transparen
y: Sin
e the signatures 
an also be signed at some arbitrarylevel ℓ ∈ {0, . . . , L} the user does not even know that a proxy exists.
◦ Unlinkability: A signature translated from level ℓ−1 has the same distri-bution of the 
oe�
ients as a signature whi
h was signed at level ℓ, thusa user has no way of linking it to its prede
essor.
◦ Non-intera
tive: Trivially, the re-signature key Rij = xi

xj
P 
an be 
al-
ulated without the intera
tion of the delegatee i. As mentioned beforesigner j 
an 
al
ulate Rij by 1

xj
Xi and make it available to the proxy forexample with an intera
tive se
ure proto
ol.

◦ Non-transitive: The proxy 
annot re-delegate his signing rights. Thismeans that even if he is in possession of RAB and RBC he is not able toprodu
e RAC for some users A,B and C. Note that in this 
ase the proxy 
an�rst translate the signatures of A into ones of B and then translate theminto signatures of C but he is not able to translate signatures dire
tly.
◦ Key-optimal: Signers only have to store a 
onstant amount of data, ie.one private key for Aylin is enough for all signatures and delegations shemakes.
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urityIn this 
hapter we will dis
uss the se
urity issues of the signature s
heme. Wewill start with reviewing the underlying 
ryptographi
 assumptions and afterthat we formulate an adversary model and 
ompare the two di�erent environ-ments in whi
h the adversaries are simulated. We will 
ontinue with formu-lating a new se
urity de�nition and 
ompare it the original se
urity de�nitionde�ned in Ateniese & Hohenberger (2005) and also used in Libert & Vergnaud(2008a).Using this new se
urity de�nition we �rst prove that the signature s
hemeis se
ure in the random ora
le model (Bellare & Rogaway 1993). Then wemodify the signature s
heme with a tri
k from Waters (2005) and prove thatthe signature s
heme is also se
ure in the standard model after this slightmodi�
ation. 11. Cryptographi
 assumptionsWe �rst re
all the de�nition of a bilinear pairing from Part I.Definition 11.1. For prime order groups G and GT a bilinear map e : G ×G→ GT is a mapping with the following properties(i) e is bilinear: e(aP, bQ) = e(P,Q)ab for all (P,Q) ∈ G×G and a, b ∈ Z×
p .(ii) e is non-degenerate: e(P, P ) 6= 1 for some P ∈ G.(iii) e is e�
iently 
omputable.The symmetri
 setting Although we de�ned pairings in Part I generallyin an asymmetri
 setting, here we use the symmetri
 setting for the signatures
heme as we did in Part II. In pra
ti
e the se
urity of the signature s
hemeis highly related to the embedding degree k of the ellipti
 
urve E(Fqk) onwhi
h the target group GT is de�ned. The se
urity level β is measured inbits whi
h means that 
al
ulating the relevant dis
rete logarithm should takeapproximately 2β basi
 operations. The National Institute of Standards andTe
hnology (NIST) re
ommends until the end of year 2010 an 80 bit se
uritylevel (Barker, Barker, Burr, Polk & Smid 2007). This implies that in RSA based
ryptosystems the key size has to be at least 1024 bits (after 2010 even 2048
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h 
orresponds approximately to a key size of at least 160 bits (after2010 at least 224 bits) in ellipti
 
urve based systems (Barker, Burr, Jones,Polk, Rose, Dang & Smid 2009). Thus, with an 80 bit se
urity requirementin the symmetri
 setting we need the prime order q of the group G at leastto be 160 bits, ie. q ≈ 2160. Now 
onsider the target group GT . Sin
e this isa multipli
ative subgroup of Fqk we need 1024 bits to a
hieve 80 bit se
uritythere. Therefore to a
hieve 80 bits of se
urity we need qk ≈ 21024. This meansthat to meet the re
ommendation of NIST for an 80 bit se
urity level we needat least k = 6. Unfortunately in the symmetri
 setting, for k = 6 there arenot many 
urves available. And if we try to work the opposite way aroundfor a smaller embedding degree, let's say k = 2, we end up with ine�
ientgroups of size q ≈ 2512 whi
h is mu
h higher than the required value 2160.Consequently the situation gets worse for 128 bit and 256 bit se
urity levels,but we 
an modify our signature s
heme into an asymmetri
 setting in whi
hthere are more 
urves available for k ≥ 6. A good family of 
urves 
an befound in Barreto & Naehrig (2005). We 
an modify our signature s
heme intoan asymmetri
 setting by allowing two groups G1 and G2. The elements of alevel ℓ signature are then distributed as follows:
σ
(ℓ)
i ∈ G1 for all i ∈ {0, . . . , ℓ},

σ
(ℓ)
−i ∈ G2 for all i ∈ {1, . . . , ℓ} and

H(m), P ∈ G2.Consider Figure 11.1, in ea
h H the diagonal elements must be from the samegroup. However, to simplify things for the theoreti
al approa
h we only 
onsiderthe symmetri
 setting throughout this 
hapter.The signature s
heme relies on the generi
 Computational Di�e-Hellman(CDH) assumption and on another 
urrent generalization of it, 
alled the ℓ-�exible Di�e-Hellman (ℓ-�exDH) problem. Re
alling the de�nition of thewell known generi
 
omputational Di�e-Hellman problem we introdu
e the
ℓ-�exDH problem. We assume that the dis
rete logarithm problem is hard inthese groups.Definition 11.2. The 
omputational Di�e-Hellman (CDH) problem is,given P, aP, bP ∈ G to 
ompute abP ∈ G. The 
omputational Di�e-Hellmanassumption is that this problem is hard to solve.To introdu
e and understand the ℓ-�exDH problem, we start with the de�nitionof the 1-�exDH problem.
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σ
(ℓ)
0

P

H(m)

σ
(ℓ)
1 σ

(ℓ)
−1

P σ
(ℓ)
2

σ
(ℓ)
−ℓ

P

σ
(ℓ)
ℓ

XiFigure 11.1: A level ℓ signature σ(ℓ) valid for XiDefinition 11.3. The 1-�exible Di�e-Hellman (1-�exDH) problem is, given
P, aP, bP ∈ G to 
ompute a triple (abC, aC, C) ∈ G3 su
h that C is not theneutral element of the group. The 1-�exible Di�e-Hellman assumption is thatthis problem is hard to solve.The 1-�exDH problem is very similar to what is known as 2-out-of-3 Di�e-Hellman problem whi
h states that, it is already hard to 
ompute a pair
(abC, C) ∈ G2 from the same triple (P, aP, bP ) ∈ G3. Now we extend thede�nition of the 1-�exDH problem to the ℓ-�exDH.Definition 11.4. The ℓ-�exible Di�e-Hellman (ℓ-�exDH) problem is, given
P, aP, bP ∈ G to �nd a (2ℓ+ 1)-tuple

(abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1) ∈ G2ℓ+1su
h that logP Dj =
∏j

i=1 logP Ci for all i ∈ {1, . . . , ℓ}, where Ci is not theneutral element of the group G.



56 T. Jonas ÖzganTheorem 11.5. The ℓ-�exDH problem as de�ned above is hard to solve.Proof. A proof of hardness of the ℓ-�exDH in generi
 groups 
an be foundin Libert & Vergnaud (2008a). The proof uses the family of 
omputationalproblems provided in Kunz-Ja
ques & Point
heval (2006) whi
h allow the studyof the variants of the CDH in the generi
 group model. �For explanatory purposes we also introdu
e another variant of the CDH whi
his 
alled the modi�ed 
omputational Di�e-Hellman (mCDH) problem.Definition 11.6. The modi�ed 
omputational Di�e-Hellman (mCDH)problem is, given P, aP, 1
a
P, bP ∈ G to 
ompute abP ∈ G. The modi�ed
omputational Di�e-Hellman assumption is that this problem is hard to solve.12. Adversary modelWe now pi
k up the se
urity dis
ussion whi
h we skipped at the end of Part II.The general se
urity notion for signatures 
onsiders an adversary against thes
heme and addresses two issues:1. the 
apabilities of the adversary, in parti
ular, how mu
h informationdoes the adversary have,2. and the adversary goal.We 
onsider the se
urity of the signature s
heme as existentially unforgeableagainst an adversary with adaptive 
hosen message atta
k 
apabilities (EUF-CMA). This means that we 
onsider an adversary A with full a

ess to thesigner who is idealized as a signing ora
le and to the publi
 key of the signer.More 
on
retely, A is allowed to query the signing ora
le to obtain valid sig-natures σ1, . . . , σn on arbitrary messages m1, . . . , mn. Sin
e A 
an adaptivelyask for signatures on di�erent messages this is 
alled an adaptive 
hosen mes-sage atta
k. As an example for an adversary with a lot less 
apabilities, we
ould limit the adversary to have no information at all ex
ept the publi
 key.This would result in an key only atta
k (KOA) whi
h is the unavoidable 
aseanyway.In the endA is 
onsidered to be su

essful if he 
an 
ome up with a signature

σ∗ on a message m∗ /∈ {m1, . . . , mn} within reasonable time. Noti
e that A isrequired 
reate a new message m∗ and a new signature σ∗ by himself and this is
alled existentially unforgeability of the signature s
heme. This is a very strong



A Multi-use Uni-dire
tional Proxy Re-Signature S
heme 57se
urity requirement sin
e the goal of the adversary is very �easy�. This isbe
ause we require A to 
al
ulate only one forgery. As an example of a weakerse
urity requirement than EUF, thus a harder goal for A, we 
ould require
A to produ
e a forgery σ∗ for a given message m∗. This is 
alled sele
tiveunforgeability (SUF). The weakest se
urity requirement and thus the hardestgoal for an adversary in this sense is that we require him to re
over the se
retkey sk from the given publi
 key pk. This is 
alled unbreakability (UB).12.1. Strong unforgeablity. A slightly stronger se
urity requirement thanEUF is the strong unforgeability (SEUF) as de�ned in An, Dodis & Rabin(2002). Here we require the atta
ker not only be unable to forge a signature ofa �new� message, but also that he is unable to generate even a di�erent signaturefrom an already signed message, ie. we only require σ∗ /∈ {σ1, . . . , σn}. In thissense we observe that the signature s
heme 
onsidered in this thesis is notSEUF, sin
e any level ℓ ≥ 1 signature 
an be publi
ly re-randomized. It seemsthat in this setting we 
annot have SEUF if we want unlinkability. This resultsfrom the fa
t that the unlinkability is a
hieved through the re-randomizationstep in the re-singing pro
ess. Therefore, this is not a weakness of the signatures
heme, on the 
ontrary it allows the desired unlinkability property.12.2. The adversary. Translated into daily language EUF-CMA se
uritymeans that, even if an atta
ker Charly has a

ess to his vi
tim Aylin's 
om-puter for a while and produ
es many valid signatures of her on arbitrary mes-sages of his 
hoi
e, he is still unable to produ
e a valid message signature pair
(m∗, σ∗) on a fresh message m∗ by himself. In SEUF-CMA se
urity, Charlywould even be unable to produ
e a new message signature pair (m∗, σ∗) fromthe signatures he obtained from Aylin's 
omputer. The di�eren
e is that inEUF-CMA se
urity we do not allow Charly to query the message of m∗ atany time. In the SEUF-CMA se
urity however, Charly is allowed to query asignature for m∗ but is required to 
reate a new signature for m∗ in that 
ase.In Goldwasser, Mi
ali & Rivest (1988) the highest se
urity level is 
on-sidered as EUF-CMA. This means that an adversary who 
annot produ
e anexistential forgery with adaptive 
hosen message atta
k 
apabilities is also notable to forge signatures on weaker se
urity notions with lesser 
apabilities, forexample SUF-KOA. Thus it is desirable to prove the se
urity with respe
t toEUF-CMA. To formalize this we de�ne the following gameEUF-CMA Game.Input: An atta
ker A, a signature ora
le OSign, the list (pk) of publi
 keys ofall possible vi
tims.



58 T. Jonas ÖzganOutput: { WIN , LOOSE }.1. (pk∗, m∗, σ∗)← A ((pk),OSign).2. If σ∗ is valid for pk∗ on m∗ then3. If m∗ was queried from OSign thenLOOSE .4. Else WIN .5. Else LOOSE .The adversary A has a

ess to the publi
 keys pk of all possible vi
tims and asignature ora
le OSign whi
h returns signatures on behalf of the vi
tims to A.After a while A outputs a message signature pair (m∗, σ∗) valid for the publi
key pk∗ (step 1). Obviously we do not allow A to ask OSign for a signature on
m∗ (step 3). We require that A has at most advantage ε of winning the game,ie.

Pr[A wins EUF-CMA Game] ≤ ε.A proof of se
urity states that if there exists an atta
ker A who 
an break EUF-CMA se
urity then this also implies breaking the underlying 
ryptographi
assumptions whi
h in our 
ase is the ℓ-�exDH assumption. Su
h a proof isa
tually a redu
tion from the atta
ker A to the underlying assumption, ie. ifan atta
ker A exists we 
an use it as a bla
kbox and solve the 
ryptographi
problem by manipulating A's input and ora
les.In the following se
tions we will show that the signature s
heme is se
ureby 
onstru
ting algorithms whi
h use EUF-CMA atta
kers with advantage εto solve the ℓ-�exDH instan
es. We will also allow these atta
kers to havea

ess to more information through di�erent ora
les. There are two di�erentenvironments (models) used in se
urity proofs for simulating the atta
kers whilemanipulating their inputs and ora
les. These are:1. the random ora
le model,2. and the standard model.Ea
h model has its advantages and disadvantages whi
h we will brie�y dis
ussnow.12.3. Random ora
le model versus standard model. The random or-a
le model was introdu
ed in Bellare & Rogaway (1993) and has been a usefultool for proving the se
urity of many signature s
hemes ever sin
e (over 2400
itations on Google s
holar). In the random ora
le model the atta
ker has an-other ora
le OHash whi
h he 
an query for hash values on arbitrary messages of
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hoi
e. This idealization of the hash fun
tion as an ora
le in this environ-ment results from the assumption that the hash fun
tion used in the signatures
heme is truly random and 
onsequently that the atta
ker is independent ofthe hash fun
tion. However, when moving from the theoreti
al s
heme to apra
ti
al implementation, the idealized hash fun
tion has to be implementedas a 
ertain 
ryptographi
 fun
tion su
h as SHA-1 or MD5 (Barker et al. 2009;Eastlake & Jones 2001; Rivest 1992). This means that there are signaturess
hemes whi
h are se
ure in the random ora
le model but have no se
ure im-plementation in a real world without random ora
les (Canetti, Goldrei
h &Halevi 2004). The weakness of the random ora
le model is that the atta
ker
an also be dependent of the hash fun
tion, su
h that he is exploiting spe
i�
�aws in the a
tual implementation of the hashing ora
le. This would mean thatthe modi�
ations made to the hashing ora
le would also 
orrupt the output ofthe atta
ker whi
h would also make the redu
tion invalid in this model.In the standard model there are no idealizations ex
ept the signing ora
lewhi
h is realisti
 as des
ribed above. More importantly this makes the s
hemeonly stronger. This means that, in this environment, the hash fun
tion has a
ertain implementation and therefore a 
ertain probability distribution of itsoutputs. When manipulating the hash fun
tion we have to assure that after themanipulations the distribution of the outputs is still the same. In 
ontrast tothe random ora
le model this 
ompli
ates a redu
tion in the standard model.In fa
t later we even modify the a
tual signature s
heme slightly to a
hieveprovable se
urity in the standard model. Thus, even though the random ora
lemodel is a powerful tool for the theoreti
al approa
h it is still desirable tohave a se
urity proof in the standard model. For more information about the
apabilities and a detailed dis
ussion of the short
omings of the random ora
lemodel we refer to the link farm Lipmaa (2010).13. Se
urity de�nitionIn this se
tion we provide a new se
urity de�nition for the signature s
heme
onsidering a generi
 adversary A who has a

ess to as mu
h as informationpossible. We allow A to have a

ess to four di�erent ora
les and keep tra
k of
A's ora
le 
alls in a query list Q-list. When A outputs a forgery we 
onstru
ta dire
ted graph from the query list. The idea is to rule out the 
ombinationof A's queries whi
h lead to a trivial forgery.13.1. The ora
les. There are four di�erent ora
les available to A.1. OSkey(i). When queried with i, the private key ora
le returns the private



60 T. Jonas Özgankey ski of user i. The entry [OSkey, i] is added to Q-list.2. OReKey(i, j). When queried with (i, j) the re-signature key ora
le returns
Rij the re-signature key from user i to j. The entry [OReKey, (i, j)] isadded to Q-list.3. OSign(i,m, ℓ). When queried with (i,m, ℓ), the signature ora
le returns alevel ℓ signature σi on m valid for pki the publi
 key of user i. The entry
[OSign, (i,m)] is added to Q-list.4. OReSign(σi, i, j,m). When queried with (σi, i, j,m), the re-signature ora
lereturns σj a re-signature of σi on m valid for pkj the publi
 key of user
j. The entry [OReSign, (i, j,m)] is added to Q-list.When A outputs a forgery, the entries in Q-list 
onsists of tuples [ora
le, query].13.2. The query graph. The query graph GQ is 
onstru
ted from the querylist after A 
omes up with a forged message signature pair (m∗, σ∗) valid for

pki∗ the publi
 key of user i∗. Consider the following algorithm:Query-graph.Input: A user i∗, a message m∗ and a query list Q-list,Output: A dire
ted graph GQ = (V,E).1. M := {m | ∃ i, j : [OSign, (i,m)] ∈ Q-list or [OReSign, (i, j,m)] ∈ Q-list}.2. V ← {[0], [i∗, m∗]}, E ← ∅.3. For ea
h entry [ora
le, query] ∈ Q-list Do 3-15.4. If ora
le = OSkey && query = i then5. V ← V ∪ {[i,m]} for all m ∈M .6. E ← E ∪ {([0], [i,m])} for all m ∈ M .7. Else if ora
le = OReKey && query = (i, j) then8. V ← V ∪ {[i,m], [j,m]} for all m ∈M .9. E ← E ∪ {([i,m], [j,m])} for all m ∈M .10. Else if ora
le = OSign && query = (i,m) then11. V ← V ∪ {[i,m]}.12. E ← E ∪ {([0], [i,m])}.13. Else if ora
le = OReSign && query = (i, j,m) then14. V ← V ∪ {[i,m], [j,m]}.15. E ← E ∪ {([i,m], [j,m])}.16. Return GQ ← (V,E)
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heme 61In the beginning the algorithm de�nes a set M 
ontaining all queried mes-sages m from the Q-list (step 1). The algorithm then initializes the set of nodes
V with a start node [0] and the �nal node [i∗, m∗], at this point the set of edges
E is empty (step 2). Ea
h private key ski queried fromOSkey, allows an atta
ker
A to 
reate signatures on behalf of user i on any message m ∈ M , espe
iallyon m∗ ∈ M . Therefore the nodes labeled [i,m] with edges ([0], [i,m]) for all
m ∈M are added to the graph (steps 5 and 6). Similarly ea
h re-signature key
Rij allows an atta
ker to translate a signature σi of user i into a signature σjof user j independent of the signed message m. Thus, the algorithm adds thenodes [i,m], [j,m] and the inter
onne
ting edges ([i,m], [j,m]) for all m ∈ Mto the graph (steps 8 and 9). For ea
h signature query of user i on m thenode [i,m] and the edge ([0], [i,m]) are added to the graph (steps 11 and 12).Also for ea
h re-signature query from user i to user j on a message m the node
([i,m]), ([j,m]) with the inter
onne
ting edge ([i,m], [j,m]) are added to thegraph (steps 14 and 15). In the end if there is a path from [0] to [i∗, m∗] weknow for sure that A has obtained some information whi
h allows him to 
reate
(m∗, σ∗) trivially.Note that in view of generality we 
ould also label the nodes additionallywith the queried signatures ie. [i,m, σ]. However this does not make sense inour 
ase be
ause the signature s
heme is not strongly unforgeable (SEUF). Thismeans that even if we use su
h a labeling of nodes, we are not interested in theadditional information σ sin
e the adversary is able to transform σ into σ′ byhimself. Thus 
onsidering only the queried users i and the queried messages
m is enough for us to know if A has some information whi
h leads to a trivialforgery. Further, we 
ould also only treat the queries 
ontaining m∗ sin
e inthe end we are only interested in a path from [0] to [i∗, m∗].13.3. The 
hallenge. Now we de�ne the following game:Game 13.1.Publi
 input: A list (pki) of publi
 keys of all users i ∈ {0, . . . , N − 1}.Input: An atta
ker A, a private key ora
le OSKey, a signature ora
le OSign, are-signature ora
le OReSign and a re-signature key ora
le OReKey.Output: { WIN , LOOSE }.1. (i∗, m∗, σ∗)← A ((pki),OSKey,OReKey,OSign,OReSign).2. If Verify(·, pki∗, m∗, σ∗) = 0 then LOOSE .3. GQ ← Query-graph(i∗, m∗, Q-list).4. If there is a path from [0] to [i∗, m∗] in GQ then LOOSE .5. Else WIN .
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ker A is allowed to have a

ess to all the publi
 keys (pki) of users
i ∈ {0, . . . , N−1} and all the ora
les de�ned above (step 1). A is then requiredto 
ome up with a forged message signature pair (m∗, σ∗) valid for pki∗ thepubli
 key of user i∗ ∈ {0, . . . , N − 1} (steps 1 and 2). Then the query graph
GQ is 
onstru
ted from the Q-list with respe
t to i∗ and m∗ (step 3). If thereis no path from [0] to [i∗, m∗] in GQ, A wins Game 13.1.13.4. The new se
urity de�nition. We 
all the signature s
heme se
ureif for any atta
ker A the probability Pr[A wins Game 13.1] = f(λ) is neg-ligible in the se
urity parameter λ. Re
all that f is negligible in λ i� ∀p ∈poly+(λ) ∃L ∀λ > L : f(λ) ≤ 1

p(λ)
, where poly+(λ) denotes the set of positivepolynomials in λ.In our new se
urity de�nition we 
onsider a generi
 atta
ker A who hasa

ess to four di�erent ora
les. We keep tra
k of A's ora
le queries in a querylist Q-list where the ora
le 
alls and mat
hing query values are re
orded to-gether as entries in the form of [ora
le, query]. The graph GQ generated by thealgorithm Query-graph from Q-list allows us to determine if A queried someinformation whi
h leads to a trivial forgery, ie. if A 
heated. This means that Ais not restri
ted in anyway and has a

ess to as mu
h as information possible.Now we re
all and 
ompare the old se
urity de�nition from Ateniese &Hohenberger (2005) whi
h was also used in Libert & Vergnaud (2008a) withour new se
urity de�nition.13.5. The se
urity de�nition from Ateniese & Hohenberger (2005).This se
urity de�nition for uni-dire
tional proxy re-signature s
hemes distin-guishes between internal and external se
urity.13.5.1. Internal se
urity. This notion 
aptures that an honest party insidethe system is se
ure against 
olliding delegation partners. There are three dif-ferent se
urity notions de�ned inside the system depending on whi
h delegationpartner an atta
ker, ie. a 
orrupt user, 
an impersonate.Limited proxy se
urity. This notion 
aptures the inability of the proxy tosign messages on behalf of the delegatee (who's signature is translated) and alsohis inability to 
reate signatures for the delegator unless they were �rst signedby the delegatee. In this de�nition the adversary is allowed to have a

ess to allpubli
 keys, all re-signature keys and a signature ora
le whi
h returns level 0signatures on behalf of any user. In the end the adversary is required to 
omeup with any level ℓ signature σ∗ valid for some user i∗ ∈ {0, . . . , N − 1} of his
hoi
e. The adversary fails if he queried the signature ora
le for a signature on
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heme 63the forged message m∗ before. The proof uses this adversary with advantage εto solve a given ℓ-�exDH instan
e with a su

ess probability Ω( ε
qs
) where qs isthe number of signature queries.In 
omparison to our new se
urity de�nition and the other adversaries inthis se
urity de�nition this adversary seems to be the most �natural� one. Wenote that this adversary A1 has a

ess to all re-signature keys and therefore
an 
reate re-signatures on his own. We also note that A1 has not a

ess toany se
ret key information. Thus, we 
an redu
e A1 to our generi
 adversary

A by limiting A's a

ess to the ora
les OReKey, OSign and OReSign.Delegatee se
urity. This notion states that an honest delegatee (who's sig-nature is translated) is prote
ted against a 
olliding delegator and proxy. Thismeans that an atta
ker impersonating as the proxy and the delegator has verylittle 
han
e of 
oming up with a forgery on behalf of the targeted delegatee.In this de�nition the adversary is allowed to have a

ess to all publi
 keys, allse
ret keys ex
ept the se
ret key of the targeted delegatee i∗, all re-signaturekeys ex
ept Rii∗ , and a signature ora
le whi
h returns level 0 signatures onbehalf of targeted delegatee. In the end the adversary is required to 
ome upwith a level ℓ signature σ∗ on behalf of the targeted delegatee i∗. The adversaryfails if he queried the signature ora
le for a signature on the forged message
m∗ before. The proof uses this adversary with advantage ε to solve a given
ℓ-�exDH instan
e with a su

ess probability Ω( ε

qs
) where qs is the number ofsignature queries.This adversary A2 is not allowed to 
hoose freely whi
h user he wants to
orrupt, in 
omparison to our generi
 adversary A this seems like a very un-natural limitation of the se
urity notion EUF-CMA. We 
an redu
e A2 to Aby requiring A to 
ome up with a signature σ∗ valid for the publi
 key pki∗of a user i∗ who is �xed in the beginning. The a

ess to all se
ret keys ski ofusers i ∈ {0, . . . , N −1}\{i∗} allows A2 to 
reate signatures for users i 6= i∗ byhimself. Further the a

ess to all re-signature keys Rij where j 6= i∗ allows himalso to 
reate re-signatures of his 
hoi
e. Note that in the new se
urity de�ni-tion the query for the se
ret key ski∗ would 
reate a path from [0] to [i∗, m∗] inthe query graph GQ. However, the query for the re-signature key Rii∗ would
reate an edge ([i,m∗], [i∗, m∗]) but not ne
essarily a path from [0] to [i∗, m∗]be
ause the simple knowledge of Rii∗ does not lead to a trivial forgery. Thismeans that in the old se
urity de�nition this permissible query is ruled outand not 
onsidered be
ause the adversary A2 has a

ess to all se
ret keys skiex
ept ski∗ . Thus, the di�eren
e between A and A2 is not only the free 
hoi
eof targeted delegatee i∗ but also the allowed queries for re-signature keys Rii∗
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h do not ne
essarily lead to a trivial forgery.Delegator se
urity. This notion 
aptures that a 
ollision between the del-egatee and the proxy is harmless for an honest delegator. This means thatthe atta
ker who is impersonating the delegatee and the proxy has very little
han
e of 
oming up with a forgery on behalf of the targeted delegator. Inthis de�nition the adversary is allowed to have a

ess to all publi
 keys, allse
ret keys ex
ept the se
ret key of the targeted delegator i∗, all re-signaturekeys and a signature ora
le whi
h returns level 0 signatures on behalf of targetdelegatee. In the end the the adversary is required to 
ome up with a level 0signature σ∗ for the targeted delegator i∗. The adversary fails if he queried thesignature ora
le for a signature on the forged message m∗ before. The proofuses this adversary with advantage ε to solve the given mCDH instan
e (seeDe�nition 11.6) with a su

ess probability Ω( ε
qs
) where qs is the number ofsignature queries.As in the previous 
ase this adversary is also not allowed to 
hoose freelywhi
h user he wants to 
orrupt. Another additional restri
tion here is that hehas to 
ome up with a level 0 signature. We 
an redu
e this adversary A3 toour generi
 adversary A by requiring A to 
ome up with a level 0 signature σ∗on behalf of a spe
i�
 user i∗ who is �xed in the beginning.13.5.2. External Se
urity. This notion 
aptures that an atta
ker who isoutside of the system is not able to 
orrupt users inside the system. In thisde�nition the adversary is allowed to have a

ess to all publi
 keys, a signatureora
le returning level 0 signatures on behalf any user and a re-signature ora
lewhi
h returns re-signatures as de�ned above. In the end the adversary is re-quired to 
ome up with a level ℓ signature σ∗ valid for a user i∗ ∈ {0, . . . , N−1}of his 
hoi
e. The adversary fails if he queried one of the ora
les for a signa-ture on behalf of user i∗ on the forged message m∗ before. The proof uses thisadversary with advantage ε to solve a given ℓ-�exDH instan
e with a su

essprobability Ω( ε

N(qs+qrs
)) where qs is the number of signature queries and qrs isthe number of re-signature queries. Di�ering from the other proofs above thefa
tor 1

N

omes from the initial guess of the user i∗ whi
h will be 
orrupted bythe adversary.Compared to our generi
 adversary and the other adversaries in this se
urityde�nition this adversary is the most limited one. We 
an redu
e this adversary

A4 to our generi
 adversary A by limiting A's a

ess to the ora
les OSign and
OReSign.Note 13.2. As the authors Libert & Vergnaud (2008a) point out 
orre
tly,
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tional Proxy Re-Signature S
heme 65the notion of external se
urity �only makes sense if the re-signature keys arekept private by the proxy�. This means that the private proxy property isessential for the se
urity de�nition of Ateniese & Hohenberger (2005). Thiswas later also pointed out by Chow & Phan (2008) and Shao et al. (2010), seeRemark 13.3 later.13.6. Results. The se
urity de�nition from Ateniese & Hohenberger (2005)seems 
orre
t in pra
ti
e be
ause intuitively it 
overs all atta
k s
enarios. How-ever both Ateniese & Hohenberger (2005) and Libert & Vergnaud (2008a) la
kof an argumentation of how this de�nition was 
onstru
ted. Formally speakingthis means that it is not 
lear if there are other atta
k s
enarios or not. Asalready pointed out in the 
ase of delegatee se
urity there are some 
ases whi
hare not 
onsidered in the original se
urity de�nition. For example, in the 
aseof external se
urity adversaries who have a

ess to more information su
h assome re-signature keys are also not 
onsidered.On the other hand, using the query graph te
hnique with a generi
 adversaryallows us to avoid these arti�
ial limitations of adversaries and splitting these
urity de�nition. Therefore it is safe to assume that our se
urity de�nitionis not equivalent to the original one. It rather en
ompasses the old one andalso the un
onsidered atta
k s
enarios. Consequently we only need one proofinstead of four.As mentioned above, another point of 
ritique is that the adversaries in the
ases of delegatee se
urity and delegator se
urity are not allowed to 
hoose thetargeted user i∗ freely. It seems that this determination of the targeted user
i∗ in these 
ases is somehow similar to the 
ase of external se
urity. Sin
e inthe proof external se
urity the 
orrupted user i∗ is guessed initially, the su

essprobabilities of delegatee se
urity and delegator se
urity should at least di�erfrom the su

ess probability of limited proxy se
urity be
ause in that 
ase theadversary is allowed to 
hoose i∗ freely.13.7. Observations. This new se
urity de�nition in
ludes all requirementsfrom Part II as we are going to show in the following.13.7.1. Uni-dire
tionality. Suppose that we have a signature s
heme wherethe re-signature key Rij 
an be used to translate signatures σi valid for user
i into signatures σj valid for user j and vi
e versa. A generi
 adversary witha

ess to the ora
les from above 
an do the following:1. Query OSign(i,m∗) to obtain a valid signature σi on m∗ on behalf of user

i.



66 T. Jonas Özgan2. Query OReKey(i∗, i) to get the re-signature key Ri∗i.3. Return σi∗ ← ReSign(m∗, ·, σj, Ri∗i, Xi∗ , Xi) whi
h is a forged signatureon m∗ on behalf of user i∗.This is a perfe
tly valid forgery in the sense of our new se
urity de�nition. Thisresults from the dire
ted edges of the graph GQ 
onstru
ted from Q-list. The�rst query will 
reate a path from [0] to [i,m∗] the se
ond query will 
reate apath from [i∗, m∗] to [i,m∗] but there will be no path from [0] to [i∗, m∗]. Usingan undire
ted graph instead, seems to make this se
urity de�nition also validfor bi-dire
tional s
hemes. However, it is not 
lear what impa
ts the usage ofan undire
ted graph has on the other requirements.13.7.2. Private proxy. Suppose that we have a signature s
heme where there-signature key Rij is easily re
overed from the signatures σi(m) and σj(m).An adversary with a

ess to the ora
les from above 
an do the following:1. Query OSign(i,m) to get a valid signature σi(m) on a message m on behalfof user i.2. Query OReSign(σi, i, i
∗, m) to get a valid re-signature σi∗(m) on m on be-half of user i∗ re-signed from σi(m).3. Re
over Rii∗ from σi(m) and σi∗(m).4. Query OSign(i,m∗) and get a valid signature σi(m

∗) on m∗ on behalf ofuser i.5. Return σ∗
i∗(m

∗) ← ReSign(m∗, ·, σi(m
∗), Rii∗ , Xi, Xi∗) whi
h is a forgedsignature on the message m∗ on behalf of user i∗.As above this pro
ess is also a perfe
tly valid forgery in the sense of the new se-
urity de�nition be
ause there will be no entry [OReKey, (i, i∗)] in Q-list. There-fore the graph algorithm will not be able to 
reate an edge from the node [i,m∗]to [i∗, m∗]. This means that our new se
urity de�nition and also the originalone only make sense if the proxy keeps the re-signature keys Rij private (Chow& Phan 2008). However, we 
an modify the algorithm Query-graph su
h that itadds edges ([i,m], [j,m]) for all messages m ∈ M for every re-signature queryentry [OReSign, (i, j,m)] ∈ Q-list (step 15 in algorithm Query-graph). Thismeans that the algorithm would then treat every entry [OReSign, (i, j,m)] in

Q-list additionally as a re-signature key query, ie. [OReKey, (i, j)]. This seemsto make the se
urity de�nition also valid for signature s
hemes with the publi
proxy property.
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heme 6713.7.3. Transparen
y. Suppose that we have signature s
heme where anadversary 
an distinguish between signed and re-signed signatures on the samelevel. This means that an algorithm isTransformed(·) is impli
itly in
ludedin the system parameters whi
h answers 1 if a signature was generated bythe ReSign(·) algorithm (Chow & Phan 2008). Now we 
onsider an adversarymaking the following queries:1. Query OSign(i,m) to obtain a valid signature σi(m) on a message m onbehalf of user i.2. Query OReSign(σi, i, j,m) to get a valid re-signature σj(m) on m on behalfof user j re-signed from σi(m).If the adversary 
an somehow now extra
t some information from σi(m) and
σj(m) that allows him to 
al
ulate the re-signature key Rij , he 
an outputvalid forgery as shown above in the private proxy property. Besides that justthe knowledge of isTransformed(σ) = 1, should be �safe� for the se
urity of thesignature s
heme. Therefore, our new se
urity de�nition also seems to applyfor non-transparent proxy re-signature s
hemes.13.7.4. Unlinkability. Similar to the transparen
y property this propertyis also highly related to the private proxy property. This means that the mereability to link a re-signature to its prede
essor does not seem to 
ompromisethe se
urity of the signature s
heme.13.7.5. Non-transitivity. Suppose that we have transitive signature s
hemewhere the re-signature key Rii∗ 
an easily be produ
ed from Rij and Rji∗ . Con-sider the following atta
k from Chow & Phan (2008):1. Query OSign(i,m∗) to get σi on a message m on behalf of user i.2. Query OReKey(i, j) to get Rij the re-signature key from user i to j where

i 6= j.3. Query OReKey(j, i∗) to get Rij the re-signature key from user i to j where
i 6= j 6= i∗.4. Compute Rii∗ from Rij and Rii∗ .5. Return σ∗ ← ReSign(m∗, ·, σi(m

∗), Rii∗ , Xi, Xi∗).This is a valid forgery for the se
urity de�nition of Ateniese & Hohenberger(2005). However, this is not the 
ase in our new se
urity de�nition. We 
onsider



68 T. Jonas Özganthe query graph GQ for this atta
k. The signature query OSign(i,m∗) will 
reatea path from [0] to [i,m∗] and the re-signature key queries for Rij and Rji∗ will
reate paths from [i,m∗] to [j,m∗] and from [j,m∗] to [i∗, m∗] respe
tively. Sin
ethere is a path from [0] to [i∗, m∗] in GQ, this is not a valid forgery in the senseof our new se
urity de�nition. Therefore our new se
urity should also applyfor transitive proxy re-signature s
hemes.13.8. Multi-use and single-use. It seems that this new se
urity de�nitionis valid for both single-use and multi-use s
hemes sin
e the algorithm Query-graph makes no distin
tion between signed and re-signed signatures. The nodes
reated by the algorithm only 
onsider the ability of the adversary to generateany signature on a message m on behalf of user i and if he is able to translateany signature into his �nal output σ∗ valid for user i∗ on a message m∗. Thismeans that in a single-use s
heme a trivial forgery will be dete
ted by the al-gorithm Query-graph but the new se
urity de�nition may limit the adversary's
apabilities.13.9. Con
lusions. The results and the observations from above lead us tothe 
on
lusion that our new se
urity de�nition seems also to apply to proxyre-signatures with di�erent requirements. The generi
 adversary and the querygraph te
hnique allow the ne
essary �exibility to prove the se
urity of proxyre-signatures with transitivity, transparen
y and linkability properties. Slightmodi�
ations to the algorithm Query-graph seem to make our new se
urity def-inition also useful for proxy re-signatures with publi
 proxy and bi-dire
tionalityproperties.Remark 13.3. In the re
ent publi
ation of Shao et al. (2010), the authorspoint out a ��aw� of the se
urity de�nition of Ateniese & Hohenberger (2005)for uni-dire
tional proxy re-signatures. The authors 
onstru
t a uni-dire
tionalproxy re-signature s
heme without the private proxy property whi
h 
an beproven se
ure in the se
urity de�nition of Ateniese & Hohenberger (2005) butsu�ers from an atta
k similar to the one above. The authors 
on
lude thatprivate proxy property is essential for the se
urity de�nition of Ateniese &Hohenberger (2005), however as noted above this was already pointed out inLibert & Vergnaud (2008a) and also mentioned in Chow & Phan (2008) later.The authors Shao et al. (2010) also mention that the de�
ien
y of the se
uritymodel of Ateniese & Hohenberger (2005) is that this model �tried to modelall types of atta
ks on all types of proxy re-signatures� and therefore is more
omplex than the se
urity de�nitions for other types of signatures. The au-thors provide another se
urity de�nition for uni-dire
tional proxy re-signatures
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heme 69with the private proxy property. However, the a
hieved results in this thesislet us believe that our new se
urity de�nition for proxy re-signature s
hemesover
omes the mentioned 
omplexity and is more simpler than both proposals.We also believe that our new se
urity de�nition provides the ne
essary �exibil-ity to be adapted for di�erent types of proxy re-signature s
hemes as we havedis
ussed in this se
tion.14. Proof of se
urity in the random ora
le modelUsing the new se
urity de�nition we now prove that the signature s
heme isse
ure in the random ora
le model.Theorem 14.1. The proxy re-signature s
heme with L levels and N users isse
ure under the ℓ-�exDH assumption. More pre
isely, given an atta
ker A toGame 13.1 with advantage ε we 
an 
onstru
t an algorithm B that solves an
ℓ-�exDH instan
e for given P, aP, bP ∈ G with probability

Ω

(

qsk · qrk ·
(N − |I∗|)3

N |I∗|+3(qs + qrs)
· ε

)

.where a, b ∈ Z×
p , qsk is the number of private key queries, qrk is the numberof re-signature key queries, qs is the number of signature queries and qrs thenumber of re-signature queries made by A. Here |I∗| denotes the 
ardinalityof the set I∗ ⊂ {0, . . . , N − 1} whi
h is 
hosen in advan
e by B as des
ribedbelow in the proof sket
h.Proof sket
h: We 
onstru
t an algorithm B whi
h takes 
ontrol of A's ora-
les, OSkey, OReKey, OSign and OReSign. We allow A to have a

ess to a hashingora
le OHash whi
h is also 
ontrolled by B. All queries to OHash are stored inthe QHash-list while all other queries are stored in the Q-list whi
h allows us to
reate the query graph GQ. Figure 14.1 shows algorithm B using A.Note that in our new se
urity de�nition A is allowed to forge a signature σ′on m∗ on behalf of user i′ ∈ {0, . . . , N − 1} and then transform σ′ many timeswith the 
orresponding re-signature keys into a signature σ∗ on behalf of user

i∗ ∈ {0, . . . , N − 1} before outputting it. If this is a valid forgery then thereis no path from [0] to [i′, m∗], but a path π from [i′, m∗] to [i∗, m∗]. Therefore,when B is 
hallenged with (P, aP, bP ) ∈ G, he guesses in advan
e a set ofusers I∗ ⊂ {0, . . . , N − 1} whi
h 
ontains all users on the path π from [i′, m∗]to [i∗, m∗]. B sets the publi
 keys Xi of users i ∈ I∗ as ziaP , for some zi ←− Z×
p
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B (Xi∗ = zi∗aP ,Xi = xiP )

Guess a set of users I∗ = {i∗}
Q-list

[ora
le, query]...
Q−Hash-list
[m,H, µ, c]...

OSkey
OReKey
OHash
OSign

OReSign
A

[m∗, σ∗]

(m∗, H∗, µ∗, c∗)

(abDℓ, aDℓ, · · · , aD1, C1, · · · , Cℓ)Figure 14.1: Algorithm B using Aand all other publi
 keys are set as Xi = xiP for some xi ←− Z×
p and madeavailable to A. In the end when A 
omes up with a valid message signaturepair (m∗, σ∗) valid for the publi
 key Xi∗ , B 
onstru
ts the query graph GQfrom the Q-list and if this is a non-trivial forgery there will be no path from

[0] to [i∗, m∗] in GQ.Proof. After guessing the set of users I∗ and setting the publi
 keys asdes
ribed above B answers the ora
le 
alls of A as follows:Private key ora
le OSkey queries: When A asks OSkey for the se
ret keyof user i, B does the following:algorithm OSkey.Input: A user i ∈ {0, . . . , N − 1}.
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tional Proxy Re-Signature S
heme 71Output: The se
ret key xi of user i or B aborts.1. If i ∈ I∗ then B aborts.2. Add [OSkey, i] to Q-list.3. Return xi.Re-signature key ora
le OReKey queries: When A queries OReKey for re-signature keys, B does the following:algorithm OReKey.Input: Two users i, j ∈ {0, . . . , N − 1}.Output: The re-signature key Rij or B aborts.1. If i /∈ I∗ then2. If j ∈ I∗ then B aborts.3. Else Rij ←
xi

xj
P .4. Else5. If j ∈ I∗ then Rij ←

zia
zja

P = zi
zj
P .6. Else Rij ←

zia
xj
P .7. Add [OReKey, (i, j)] to Q-list.8. Return Rij .Hashing ora
le OHash queries: When A asks for the hash value of a mes-sage m, B runs the following algorithm using the global hash list QHash-list.This list 
onsists of 4-tuple entries [m,H, µ, c], where m is the message, H theanswer to the query, µ←− Z×

p a randomly 
hosen parameter and c←− {0, 1} arandom bit with probability Pr[c = 0] = ζ for a ζ ∈ (0; 1) to be adopted later.algorithm OHash.Input: A message m ∈ {0, 1}∗.Output: A hash value H .1. If m ∈ QHash-list then2. [m,H, µ, c]← QHash-list.3. Else4. Generate a bit c←− {0, 1}.5. Choose a random µ←− Z×
p .6. If c = 1 then



72 T. Jonas Özgan7. H ← µbP .8. Else H ← µP .9. Add [m,H, µ, c] to QHash-list.10. Return H .Signature ora
le OSign queries: When A queries OSign for a signature ofuser i on a message m, B runs the following algorithmalgorithm OSign.Input: A message m ∈ {0, 1}∗, a user i ∈ {0, . . . , N − 1}, a desired level
ℓ ∈ {0, . . . , L− 1}.Output: A level ℓ signature σ(ℓ) on m valid for the publi
 key Xi or B aborts.1. Run algorithm OHash(m).2. [m,H, µ, c]← QHash-list.3. If c = 1 then B aborts.4. If i ∈ I∗ then σ(0) ← µziaP .5. Else σ(0) ← xiH .6. If ℓ > 0 then7. For k = 1, . . . , ℓ do8. σ(k) ← ADD TRIVIAL H ◭ σ(k−1).9. σ(ℓ) ← RE-RANDOM ◭ σ(ℓ).10. Add [OSign, (i,m)] to Q-list.11. Return σ(ℓ).Re-signature ora
le OReSign queries: When A queries OReSign for the re-signature of σ(ℓ−1) valid for Xi from user i to j, B ignores this and uses OSignto 
reate σ(ℓ) a level ℓ signature for user j. The resulting signature is thenreturned to A. Namely:algorithm OReSign.Input: Two users keys (i, j), a message m and a level ℓ− 1 signature σ(ℓ−1) on
m valid for Xi.Output: A level ℓ signature σ(ℓ) on m valid for Xj or B aborts.1. σ(ℓ) ← OSign(m, j, ℓ).2. Add [OReSign, (i, j,m)] to Q-list.3. Return σ(ℓ).
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tional Proxy Re-Signature S
heme 73Note that the 
all of algorithm OSign in step 1 
an 
ause an abort whi
h is nothandled here sin
e B is in 
ontrol and knows when to abort.Final output: Finally A outputs a message signature pair (m∗, σ∗) where
σ∗ = (σ∗

0, . . . , σ
∗
ℓ , σ

∗
−ℓ, . . . , σ

∗
−1) is a valid level ℓ signature on m∗ on behalf ofuser i∗ ∈ I∗. If initially B guessed the set I∗ 
orre
tly and did not have to abortbefore, he runs the algorithm Finalize below. Here B 
reates the query graph

GQ from the Q-list with this algorithm and �nds the path π in GQ starting at
[i′, m∗] and ending at [i∗, m∗] to determine the initially forged user i′ ∈ I∗ andall the re-signature keys leading to the �nal forgery σ∗. To understand whathappens at the �nal step 
onsider the following example shown in Figure 14.2.

σ∗
ℓ−1

P

σ∗
−ℓ+1 = rℓ−1P

rℓXi′ rℓ
zi′

zi∗
P = rℓRi′i∗

P Xi∗(a) Forged and transformed signature σ∗

[0] .

[·, m∗]

[·, m∗]

[·, m∗]

[i∗, m∗]

[i′, m∗]

Ri′i∗π

(b) The query graph GQFigure 14.2: A forged signature with the 
orresponding query graphIn this example A forged a signature on behalf of user i′ ∈ I∗ and trans-formed it only on
e into σ∗ on behalf of user i∗ ∈ I∗ with the re-signature key
Ri′i∗ . Figure 14.2(a) shows the the appended H where σ∗

ℓ is rℓzi′aP and σ∗
−ℓis rℓRi′i∗ . Now, B needs to remove zi′ from σℓ and zi′

zi∗
from σ−ℓ to a
hieve a�regular� signature on behalf of user i∗. For this B �nds the path π from [i′, m∗]to [i∗, m∗] in the 
orresponding query graph GQ shown in Figure 14.2(b). Herein this example B determines the length of the path |π| as 1 and knows thatthe output signature was only transformed on
e. Therefore B determines theorder of the users π0 = i′ and π1 = i∗ and 
al
ulates the elements 1

zπ0
= 1

zi′
and

1
zπ1

= 1
z∗i
. This allows him to remove the unwanted elements and treat σ∗ as ifit was never transformed. Now 
onsider the following algorithm:



74 T. Jonas Özganfinalize.Input: A message m∗, a signature σ∗ valid for the publi
 key Xi∗ on m∗, thehash list QHash-list and the general query list Q-list.Output: An ℓ-�exDH instan
e (abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1) or B aborts.1. Create the query graph GQ ← Query-graph(i∗, m∗, Q-list).2. If there is a path from [0] to [i∗, m∗] in GQ then B aborts.3. Run algorithm OHash(m∗).4. [m∗, H∗, µ∗, c∗]← QHash-list.5. If c∗ = 0 then B aborts.6. Find the path π from [i′, m∗] to [i∗, m∗] with length |π| = k.7. Determine the order of users π0 = i′, . . . , πk = i∗ on the path π.8. Cal
ulate the elements 1
zπ0

= 1
zi′
, 1
zπ1

, . . . , 1
zπk

= 1
zi∗
.9. Return (( 1

zπ0µ
∗

)

σ∗
0 , (

1
zπ0

)σ∗
1, . . . , (

1
zπ0

)σ∗
ℓ−k,

(
1

zπ1

)

σ∗
ℓ−k+1,

(
1

zπ+2

)

σ∗
ℓ−k+2, . . . ,

(
1

zπk

)

σ∗
ℓ ,

(
zπk

zπk−1

)

σ∗
−ℓ,
(

zπk−1

zπk−2

)

σ∗
−ℓ+1,

(
zπk−2

zπk−3

)

σ∗
−ℓ+2, . . . ,

(
zπ1
zπ0

)

σ∗
−ℓ+k,

σ∗
−ℓ+k+1, . . . , σ

∗
−2, σ

∗
−1

).Re
all that B initially guessed a set of users I∗ ⊂ {0, . . . , N} whose publi
keys he set as Xi = ziaP for some zi ←− Z×
p . In the example from Figure 14.2,the set I∗ 
ontains the two users {i′, i∗} and thus, the algorithm Finalizewould return

((
1

zπ0µ
∗

)

σ∗
0 , (

1

zπ0

)σ∗
1, . . . , (

1

zπ0

)σ∗
ℓ−1,

(
1

zπ1

)

σ∗
ℓ ,

(
zπ1

zπ0

)

σ∗
−ℓ, σ

∗
−ℓ+1, . . . , σ

∗
−2, σ

∗
−1

)in step 9. Where this value 
an be written as
(abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1),whi
h is a valid ℓ-�exDH instan
e be
ause for all j ∈ {1, . . . , ℓ} we havelogP Dj =

∏j
i=1 logP Ci and further Cj is not the neutral element of the group

G. In the simplest 
ase where I∗ = {i∗}, A outputs a forged signature whi
hwas not transformed. In this 
ase the return value is
((

1

zi∗µ∗

)

σ∗
0, (

1

zi∗
)σ∗

1 , . . . , (
1

zi∗
)σ∗

ℓ , σ
∗
−ℓ, σ

∗
−ℓ+1, . . . , σ

∗
−1

)

=
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=

((
1

zi∗µ∗

)

(rℓ · · · r1)zi∗µ
∗abP, (

1

zi∗
)(rℓ · · · r1)zi∗aP, . . . , (

1

zi∗
)rℓzi∗aP, σ

∗
−ℓ, . . . , σ

∗
−1

)

.Here we 
an easily see that this is a valid ℓ-�exDH instan
e as
(abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1),with Di = rℓ · · · riP and Ci = riP and for all j ∈ {1, . . . , ℓ} we have logP Dj =∏j

i=1 logP Ci. Thus, the return value in step 9 of algorithm Finalize is a valid
ℓ-�exDH instan
e as

(abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1),where for all j ∈ {1, . . . , ℓ} we have logP Dj =
∏j

i=1 logP Ci and further Cj isnot the neutral element of the group G.Note that it is possible that di�erent paths π exist whi
h may even have
ommon edges. In this 
ase B has to try out all paths π until he �nds a valid
ℓ-�exDH instan
e. For simpli
ity reasons we assume that there is only one su
hpath π.The su

ess probability of B. We use an analysis similar to that in Coron(2000) to determine a lower bound for the su

ess probability of B. Rememberthat initially B takes a guess of the set of users I∗ ⊂ {0, . . . , N − 1}. Theprobability that B guesses the 
orre
t set I∗ is

1

N
·

1

N − 1
· · ·

1

N − |I∗|+ 1
=

1
(

N

|I∗|

) .

A asks for the private key of user i ∈ I∗ with probability |I∗|
N
, thus the proba-bility that B does not abort for qsk many private key queries of A is

qsk
N − |I∗|

N
.

B aborts the simulation for any re-signature key query Rij of A if i /∈ I∗ and
j ∈ I∗. This happens for a single re-signature key query of A with probability

N − |I∗|

N
·
|I∗|

N − 1
.Thus, the probability that B does not abort for qrk many re-signature keyqueries of A is

qrk
1

R
:= qrk

(

1−
N − |I∗|

N
·
|I∗|

N − 1

)

.



76 T. Jonas ÖzganRe
all that a query to OReSign triggers a
tually a signature query to OSign.Re
all also that OSign uses OHash to answer the signature queries. When OHashgenerates a 4-tuple [m,H, µ, c], OSign 
auses B to abort if c = 1. Thereforethe probability that B answers to all signature and re-signature queries of Aand does not abort here is ζqs+qrs sin
e the probability Pr[c = 0] = ζ . In theend when A outputs a valid message signature pair (m∗, σ∗) the bit c∗ = 1happens with probability Pr[c∗ = 1] = 1 − ζ . This means that, if B guessedthe set of users I∗ 
orre
tly and did not have to abort be
ause of a se
ret keyor a re-signature key query of A, the probability that he outputs an ℓ-�exDHanswer is at least
α(ζ) = ζqs+qrs · (1− ζ).The fun
tion α(ζ) is maximal for ζmax = 1− 1

qs+qrs+1
whi
h gives us

α(ζmax) =
1

qs + qrs
·

(

1−
1

qs + qrs + 1

)qs+qrs+1

.Then the su

ess probability of B is
Pr[B is su

essful ] ≥ ε·qsk

N − |I∗|

N
·

1
(

N

|I∗|

) ·
qrk
R
·

1

qs + qrs

(

1−
1

qs + qrs + 1

)(qs+qrs+1)

.Now we noti
e that
1
(

N

|I∗|

) ≥
1

N |I∗|and also
qrk

1

R
≥ qrk ·

(N − |I∗|)2

N2
.This gives us the announ
ed bound of

Ω

(

qsk · qrk ·
(N − |I∗|)3

N |I∗|+3(qs + qrs)
· ε

)

.

�14.1. Results. We emphasize here that the partitioning I∗ ⊂ {0, . . . , N − 1}of the users is ne
essary be
ause we allow A to translate his a
tual forgery be-fore outputting it. This results from the fa
t that in our new se
urity de�nitionwe grant A a

ess to re-signature keys whi
h do not ne
essarily lead to a trivialforgery. Consequently in this redu
tion the size of I∗ e�e
ts the su

ess proba-bility of B. Now we analyze how the size of I∗, the number of se
ret key queries
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qsk and the number of re-signature key queries qrk e�e
t the su

ess probabilityof B. Firstly, we noti
e that the fa
tor

(N − |I∗|)3

N |I∗|+3
an grow very fast and is the strongest de
isive fa
tor in this redu
tion. There-fore we require the size of I∗ to be bounded and note this in the following
orollary.Corollary 14.2 (Size of |I∗|). In order to have a non-negligible su

ess prob-ability of B, N |I∗|+3 is required to be polynomial in N . Therefore, we require
|I∗| ∈ O(1).We note the following 
orollary for the smallest size of I∗.Corollary 14.3 (Case: |I∗| = 1). In the 
ase where I∗ = {i∗} we have theinitial probability of 1

N
. The probability that B does not abort for a single se
retkey query N−1

N
. The probability of B not aborting for a single re-signature keyquery is also N−1
N

. This gives us the su

ess probability of B as
Ω

(

qsk · qrk ·
(N − 1)2

N3(qs + qrs)
· ε

)

.In this 
ase we 
an omit the fa
tor related to the se
ret key queries of A be
auseeven if B 
ould answer query for the se
ret key of user i∗ this would 
reate apath from [0] and [i∗, m∗] in GQ and 
ause B to abort anyway.Corollary 14.3 leads us to the 
on
lusion that if B initially 
hoose the �
orre
t�set I∗ su
h that all the users of I∗ are on the path π, the abortion for se
retkey queries is �justi�ed� and the fa
tor related to qsk many se
ret key queriesof A 
an be omitted, sin
e these would lead to a trivial forgery anyway. Wenote this in the following 
orollary.Corollary 14.4 (|I∗| = |π|+ 1). We require that B initially 
hooses the 
or-re
t set I∗ su
h that all users in I∗ are on the path π, ie. |I∗| = |π|+ 1. Thenwe 
an omit the fa
tor related to qsk many se
ret key queries of A sin
e thequeries for se
ret keys of users i ∈ I∗ would ne
essarily lead to a trivial forgeryand 
ause the simulation to abort anyway. This gives us the su

ess probabilityof B as
Ω

(

qrk ·
(N − |I∗|)2

N |I∗|+2(qs + qrs)
· ε

)

.



78 T. Jonas ÖzganWe also noti
e that the fa
tor related to the re-signature key queries of Ais another de
isive fa
tor for the su

ess probability of B. In this 
ontext wenote the following 
orollary.Corollary 14.5 (Case OReKey abortions forbidden). If the adversary is for-bidden to ask for re-signature keys Rij of users i /∈ I∗ and j ∈ I∗ the su

essprobability of B is 
ompletely independent of the fa
tor
qrk

1

R
:= qrk

(

1−
N − |I∗|

N
·
|I∗|

N − 1

)

.Therefore the su

ess probability of B would be
Ω

(
ε

N |I∗|(qs + qrs)

)

.Re
alling Se
tion 13.5, we now want use the adversaries A1,A2,A3,A4 fromthe original se
urity de�nition in our redu
tion and 
ompare the results.Corollary 14.6 (Limited proxy se
urity). The adversary A1 in 
ase of lim-ited proxy se
urity has a

ess to all re-signature keys and a signing ora
le andreturns a valid level ℓ signature on behalf of a user i∗ ∈ {0, . . . , N − 1}. B 
anprovide A1 with this information by setting |I∗| = N . This means that all pub-li
 keys Xi are set as ziaP for some zi ←− Z×
p for all users i ∈ {0, . . . , N − 1}.This allows B to answer all re-signature key queries Rij of A1 without abort-ing the simulation. B handles the signature queries of A1 with his signaturealgorithm OSign. In the end when A1 
omes up with a level ℓ forgery σ∗, Btreats σ∗ as if it was never translated and retrieves the ℓ-�exDH instan
e from

σ∗. The su

ess probability of B is the same as it is in the original se
urityde�nition. Namely,
Ω

(
ε

qs

)

.Note here that A1 does not make any se
ret key and re-signature queries su
hthat the fa
tors qsk and qrs are omitted.Corollary 14.7 (Delegatee se
urity). The adversary A2 in 
ase of delegateese
urity targets a spe
i�ed delegatee i∗ and has a

ess to a signing ora
le whi
hprovides him with signatures on behalf of i∗. A2 has also a

ess to all se
retkeys xi for users i ∈ {0, . . . , N − 1} \ {i∗} and to all re-signatures keys Rijex
ept Rii∗ for any i 6= i∗. B 
an provide A2 with this information by 
hoosing
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I∗ = {i∗}. Sin
e A2 targets a spe
i�ed user i∗ this 
an be done with any user
i ∈ {0, . . . , N − 1}, therefore this is not an initial guess as it is in our se
urityde�nition. This means also that all the se
ret key and all the re-signature keyqueries made by A2 
an be answered be
ause by assumption A2 is not allowedto ask for the se
ret key of user i∗ or any re-signature key Rii∗ . The signaturequeries of A2 are handled by B as usual. In the end when A1 
omes up with alevel ℓ forgery σ∗, B retrieves an ℓ-�exDH instan
e with a su

ess probabilityof

Ω

(
ε

qs

)

.This is the same as it is in the original se
urity de�nition in the 
ase of delegateese
urity. Again, the fa
tor qrs is omitted sin
e A2 does not ask for re-signatures.Corollary 14.8 (Delegator se
urity). The adversary A3 in the 
ase of dele-gator se
urity targets a spe
i�ed delegator i∗ and has a

ess to a signing ora
lewhi
h provides him with signatures on behalf of i∗. A2 has also a

ess to allse
ret keys xi for users i ∈ {0, . . . , N − 1} in
luding Ri∗i and Rii∗ . In the end
A3 
omes up with a level 0 signature on behalf of user i∗. B 
an answer thesignature and se
ret key queries of A3 after spe
ifying I∗ = {i∗} for a user
i∗ ∈ {0, . . . , N − 1} but he 
annot answer the re-signature key queries Rii∗ of
A3 in this setting. In the end when A3 
omes up with a level 0 forgery witha slight modi�
ation to B's algorithm Finalize, the su

ess probability of Bwould then be

Ω

(

qrk ·
ε

Nqs

)

,for qrk many re-signature key queries of A3. However, we note that the redu
-tion in the original se
urity de�nition is done under the mCDH assumption(De�nition 11.6) where an additional element 1
a
P is available to B. A slightmodi�
ation to the re-signature key algorithm OReKey of B with the element

1
a
P would allow him to answer all re-signature key queries of A3 in
luding Rii∗ .This then gives us the su

ess probability of

Ω

(
ε

qs

)

,whi
h is the same as it is in the original se
urity de�nition.



80 T. Jonas ÖzganCorollary 14.9 (External se
urity). The adversary A4 in the 
ase of exter-nal se
urity has a

ess to a signature and a re-signature ora
le, and returns avalid level ℓ signature on behalf of a user i∗ ∈ {0, . . . , N − 1}. B 
an provide
A4 with this information by initially guessing a user i∗ and setting I∗ = {i∗}. Bthen 
an answer all signature and re-signature key queries of A4 with algorithm
OSign and algorithm OReSign, respe
tively. In the end when A4 outputs a level
ℓ forgery on behalf of user i∗, B retrieves an ℓ-�exDH instan
e with a su

essprobability of

Ω

(
ε

N(qs + qrs)

)

.This is the same as it is in the original se
urity de�nition in the 
ase of externalse
urity. Note that A4 does neither ask for se
ret keys nor for re-signature keys.As we 
an see there is a �huge� gap between the su

ess probabilities of ourredu
tion and the redu
tions done with the adversaries to the original se
urityde�nition. A strategy to over
ome this gap would be to for
e our generi
adversary to output a non-transformed signature σ∗ whi
h would be the 
asedis
ussed in Corollary 14.3. This 
an be done for example by a

essing theadversaries memory and retrieving the a
tual forgery σ′ but this requires thatthe adversary keeps σ′ in his memory until it outputs σ∗. Similarly we 
ouldstop the adversary at the time of the a
tual forgery by monitoring its memoryand retrieve σ′. However, both 
ases require a

ess to the adversary's memory.Ideally, if we 
ould for
e the adversary to output a non-transformed signatureand forbid its a

ess to re-signature keys whi
h 
ause B to abort, we 
ouldobtain a 
ombination of the 
ases dis
ussed in Corollary 14.3 and Corollary 14.5.This would give us the same su

ess probability as in Corollary 14.9 but itseems that we 
annot limit the adversary su
h that it does not ask for �bad�re-signature keys.Another strategy to redu
e this gap would be to to set all publi
 keys
Xi as ziaP for some zi ←− Z×

p for all users i ∈ {0, . . . , N − 1} as we did inCorollary 14.6. B then 
an answer all re-signature key queries but he is not ableto provide the adversary A with any se
ret key information. Therefore B wouldhave to abort for any se
ret key query of A whi
h 
an be avoided if A's a

essto se
ret keys is forbidden. In this 
ase the su

ess probability of B wouldbe Ω
(

ε
(qs+qrs)

) whi
h is similar to the results in the 
ases of Corollary 14.6,Corollary 14.7 and Corollary 14.8.A di�erent strategy to redu
e this gap would be to 
hange the underlying
ryptographi
 assumption. As in Corollary 14.8, if the additional element 1
a
Pwas also available to B, he 
an answer all re-signature key queries of A. In this
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ase the su

ess probability of B would be
Ω

(
ε

N |I∗|(qs + qrs)

)

,sin
e we 
an omit the fa
tor related to qsk many se
ret key queries. Then theunderlying 
ryptographi
 assumption would be a 
ombination of the mCDHand the ℓ-�exDH problem. We 
all this the modi�ed ℓ-�exible Di�e-Hellman(m-ℓ-�exDH) problem and note this in the following de�nition.Definition 14.10. The modi�ed ℓ-�exible Di�e-Hellman (m-ℓ-�exDH)problem is, given P, aP, 1
a
P, bP ∈ G to �nd a (2ℓ+ 1)-tuple

(abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1) ∈ G2ℓ+1su
h that logP Dj =
∏j

i=1 logP Ci for all i ∈ {1, . . . , ℓ}, where Ci is not theneutral element of the group G.Although it seems that the m-ℓ-�exDH problem is hard to solve, an adapta-tion of the proof of hardness for the ℓ-�exDH problem provided by Libert &Vergnaud (2008a) does not seem to work here. Thus, we 
annot be 
ertain thatthe redu
tion would be valid in this 
ase.We 
on
lude from these results that the huge gap between the su

ess prob-abilities results primarily from the generi
 adversary in our se
urity de�nition.It seems that there is no strategy to over
ome this gap between the su

essprobabilities without arti�
ially limiting our generi
 adversary's 
apabilities.On the other hand, these arti�
ial limitations of the adversaries in the originalse
urity de�nition motivated us to 
onstru
t a new se
urity de�nition in whi
hthe adversary has a

ess to as mu
h information as possible. It seems that ournew se
urity de�nition is more �stri
t� 
ompared to the old one and thereforewe end up with a smaller su

ess probability in the redu
tion. However, we�rmly believe that this redu
tion in our new se
urity de�nition provides a more
on
rete estimation of the su

ess probability.15. The signature s
heme in the standard modelIn this se
tion we use a tri
k from Waters (2005) to eliminate the randomora
le and instantiate the hash fun
tion H by a 
ertain 
ollision resistant hashfun
tion. A slight modi�
ation of the signature s
heme will allow us to provethe se
urity of the signature s
heme also in the standard model. Note here thatthe 
ommon publi
 parameters have to be generated by a trusted third partywhi
h remains o�-line after the setup phase.



82 T. Jonas ÖzganSetup(λ, n): On input of the se
urity parameter λ and the length n of themessages to be signed, this algorithm 
hooses bilinear groups (G,GT ) of primeorder p > 2λ, two generators P,Q←− G and a random ve
tor ~u = (U ′, U1, . . . , Un)
←− Gn+1 ve
tor of length (n+ 1).The ve
tor ~u de�nes a fun
tion H : {0, 1}n → G whi
h maps n-bit strings
m = m1, . . . , mn to G as H(m) = U ′ +

n∑

i=1

miUi where mi ∈ {0, 1}.The publi
 parameters are:
p = {λ, n,G,GT , P,H, ~u}.Keygen(
p): This algorithm outputs user i's publi
 and private key pair
(Xi, xi) for a random xi ←− Z×

p and Xi = xiP .ReKeygen(
p, Xi, xj): Given the publi
 key Xi of user i and the private key
xj of user j this algorithm outputs the re-signature key as Rij =

1
xj
Xi =

xi

xj
P .Verify(cp, m, 0, σ,Xi): The validity of a level 0 signature σ = (σ0, σ∞) on amessage m ∈ {0, 1}n for the publi
 key Xi is veri�ed if the following equationholds(15.1) e(σ0, P )

?
= e(Xi, Q) · e(σ∞, H(m)).The algorithm returns 1 if the input signature is valid and 0 otherwise.Verify(cp, m, ℓ, σ(ℓ), Xi): The validity of a level ℓ signature

σ(ℓ)(m) = (σ0, σ1, . . . , σℓ, σ−ℓ, . . . , σ−1, σ∞) ∈ G2ℓ+2on a message m ∈ {0, 1}n for the publi
 key Xi, is veri�ed by the following
ℓ+ 1 equations

e(σ0, P )
?
= e(σ1, Q) · e(σ∞, H(m)),(15.2)

e(σk, P )
?
= e(σk+1, σ−k) for k ∈ {1, . . . , ℓ− 1},(15.3)

e(σℓ, P )
?
= e(Xi, σ−ℓ).(15.4)The algorithm returns 1 if the input signature is valid and 0 otherwise.
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heme. Before 
ontinuing tothe signing and re-signing algorithms we want to make a graphi
al 
onne
tionbetween the signature elements and pi
ture them in the H-notation as we did inPart II. The veri�
ation equation (15.1) states that the elements of a modi�edlevel 0 signature valid for the publi
 key Xi on a message m are 
onne
ted asshown in Figure 15.1.
σ0

P

Q

Xi

H(m)

σ∞Figure 15.1: A modi�ed level 0 signatureWe dedu
e from Figure 15.1 the signing pro
ess at level 0 as follows.Sign(
p, m, 0, xi): On input of a message m ∈ {0, 1}n and the private key
xi of signer i, this algorithm 
hooses a random t←− Z×

p and outputs a level 0signature as
σ(0)(m) = (σ0, σ∞) = (xiQ+ tH(m), tP ).Using Figure 15.1 as a basis and interpreting the veri�
ation equations(15.2), (15.3) and (15.4) we 
onne
t the elements of a modi�ed level ℓ signaturevalid for Xi on m as show in Figure 15.2.Now we dedu
e from Figure 15.2 the signing pro
ess at level ℓ as follows.Sign(
p, m, ℓ, xi): On input a message m ∈ {0, 1}n and the private key xi ofsigner i and ℓ ∈ {1, . . . , L} the level of the signature, this algorithm 
hooses

ℓ+ 1 random 
oe�
ients t, r1, r2, . . . , rℓ ←− Z×
p and outputs

σ(ℓ)(m) = (σ0, σ1, . . . , σℓ, σ−ℓ, . . . σ−2, σ−1, σ∞) ∈ G2ℓ+2with:
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σ0

P

Q

σ1

H(m)

σ∞ σ−1

P σ2

σℓ

P

σ−1

XiFigure 15.2: A modi�ed level ℓ signature
σ
(ℓ)
0 = rℓ · · · · · · · r2r1 · xiQ + tH(m),

σ
(ℓ)
k = rℓ · · · rk · xiP for k ∈ {1, . . . , ℓ},

σ
(ℓ)
−k = rk · P for k ∈ {ℓ, . . . , 1},

σ∞ = tP.Re
all Se
tion 9 where we de
omposed the signature s
heme into simplebuilding blo
ks. We now revise the building blo
ks for the modi�ed s
hemebefore we 
ontinue with the re-signing pro
ess.Building blo
ks revisited. As we have seen above the modi�ed signatures
heme slightly di�ers from the original one in the H-representation. Thereforewe �rst state how adding an H works and then we explain the re-randomizationpro
ess by introdu
ing a new building blo
k RE-RANDOM ∞ whi
h explains the
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heme. Re
all Figure 11.1and 
onsider Figure 15.2, a modi�ed level ℓ signature di�ers from the originalone only in the �rst H. Thus, adding an H to a level ℓ > 0 signature is notdi�erent from what we have explained in Se
tion 9. Figure 15.3 shows howadding a trivial H to a modi�ed level 0 signature valid for the publi
 key XAworks. The result is a level 1 signature still valid for the publi
 key XA.
σ0

P

Q

XA

H(m)

σ∞

σ0

P

Q

xAP

H(m)

σ∞ P

P XA

ADDTRIVIALHFigure 15.3: Adding a trivial H to a modi�ed level 0 signatureSimilarly Figure 15.4 shows how a re-signature H is added to a modi�edlevel 0 signature valid for the publi
 key XA with the re-signature key RAB andthe publi
 key XB of user B.
σ0

P

Q

XA

H(m)

σ∞

σ0

P

Q

xAP

H(m)

σ∞ RAB

P XB

ADDRESIGNHFigure 15.4: Adding a re-signature H to a modi�ed level 0 signature



86 T. Jonas ÖzganRe-randomization of the modi�ed signature s
heme. We start withintrodu
ing a new building blo
k RE-RANDOM ∞ . This building blo
k, oninput a modi�ed level ℓ signature
σ(ℓ) = (σ0, σ1, . . . , σℓ, σ−ℓ, . . . , σ−1, σ∞) ∈ G2ℓ+2�rst 
hoses a random r′ ←− Z×

p and it 
al
ulates σ0 ← σ0 + r′H(m) and
σ∞ ← σ∞ + r′P , as shown in Figure 15.5.

σ0

P

Q

σ1

H(m)

σ∞

σℓ

P

σ−ℓ

Xi

RERANDOM ∞
σ0 + r′H(m)

P

Q

σ1

H(m)

σ∞ + r′P

σℓ

P

σ−ℓ

XiFigure 15.5: Re-randomizing σ0 and σ∞The result is still a valid level ℓ signature in the modi�ed s
heme sin
e
e(σ0 + r′H(m), P ) =

= e(σ0, P ) · e(r′H(m), P )

= e(xiQ + tH(m), P ) · e(r′H(m), P )

= e(xiQ,P ) · e(tH(m), P ) · e(r′H(m), P )

= e(Q,Xi) · e(H(m), t+ rP )

= e(Q,Xi) · e(H(m), σ∞).
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heme 87Randomizing at height i. In the modi�ed s
heme the building blo
kRE-RANDOM i operates slightly di�erent then in the original s
heme. Thisbuilding blo
k, on input a modi�ed level ℓ signature
σ(ℓ) = (σ0, σ1, . . . , σℓ, σ−ℓ, . . . , σ−1, σ∞) ∈ G2ℓ+2�rst 
hoses a random ti ←− Z×

p and multiplies σi, σi−1, . . . , σ0 and σ−i and also
σ∞ with it as shown in Figure 15.6. The result is a valid level ℓ signature in

σ0

P

Q

σ1

H(m)

σ∞

σi

P

σ−i

σi+1

σℓ σ−ℓ

P Xi

RERANDOM i

tiσ0

P

Q

tiσ1

H(m)

tiσ∞

tiσi

P

tiσ−i

σi+1

σℓ σ−ℓ

P XiFigure 15.6: Re-randomizing σ(ℓ) at height ithe modi�ed s
heme.The full re-randomization of a level ℓ signature. Re
all that for theoriginal signature s
heme we noted that RE-RANDOM =
∏ℓ

i=1 RE-RANDOM i .Here in the modi�ed signature s
heme we have RE-RANDOM =
∏ℓ

i=1 RE-RANDOM i

+ RE-RANDOM ∞ . This means that for a modi�ed level ℓ signature, �rst allthe RE-RANDOM i for i ∈ {1, . . . , ℓ} are used and then RE-RANDOM ∞ is usedafterwards, the result is shown in Figure 15.7.
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σ0

P

Q

σ1

H(m)

σ∞

σℓ

P

σ−ℓ

Xi

RERANDOM ∞
(t1 · · · tℓ)σ0 + r′H(m)

P

Q

(t1 · · · tℓ)σ1

H(m)

(t1 · · · tℓ)σ∞ + r′P

tℓσℓ

P

tℓσ−ℓ

XiFigure 15.7: Re-randomizing σ(ℓ) 
ompletelyNow we 
ontinue with the des
ription of the modi�ed signature s
heme withthe re-signature algorithm.
Re-Sign(cp, m, ℓ − 1, σ(ℓ−1), Rij, Xi, Xj): On input a message m ∈ {0, 1}n,the re-signing key Rij =

xi

xj
P and a level ℓ− 1 signature

σ(ℓ−1)(m) =
(

σ
(ℓ−1)
0 , σ

(ℓ−1)
1 , σ

(ℓ−1)
2 , . . . , σ

(ℓ−1)
ℓ−1 , σ

(ℓ−1)
−ℓ+1, . . . , σ

(ℓ−1)
−1 , σ(ℓ−1)

∞

)

on m and the publi
 keys Xi, Xj this algorithm �rst appends the re-signatureH and then re-randomizes the result. During the 
omputation the algorithm
hooses ℓ + 1 random 
oe�
ients r′, t1, t2, . . . , tℓ ←− Z×
p and translates σ(ℓ−1)into a level ℓ signature valid for the publi
 key Xj by 
omputing and outputting
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σ
(ℓ)
0 = tℓ · · · · · · · t2t1 · σ

(ℓ−1)
0 + r′H(m),

σ
(ℓ)
k = tℓ · · · tk · σ

(ℓ−1)
k for k ∈ {1, . . . , ℓ− 1},

σ
(ℓ)
ℓ = tℓXi,

σ
(ℓ)
−ℓ = tℓRij ,

σ
(ℓ)
−k = tk · σ

(ℓ−1)
−k for k ∈ {ℓ, . . . , 1− 1},

σ
(ℓ+1)
∞ = tℓ · · · · t2t1 · σ

(ℓ−1)
∞ + r′P.Sin
e we know that the input signature was

σ(ℓ−1)(m) =
(

σ
(ℓ−1)
0 , σ

(ℓ−1)
1 , σ

(ℓ−1)
2 , . . . , σ

(ℓ−1)
ℓ−1 , σ

(ℓ−1)
−ℓ+1, . . . , σ

(ℓ−1)
−1 , σ(ℓ−1)

∞

)

= (rℓ−1 · · · · · · r1xiQ + tH(m),

rℓ−1 · · · · · · r1xiP,

rℓ−1 · · · r2xiP,...
rℓ−1xiP,

rℓ−1P, rℓ−2 . . . , r1P,

t̃P ) ∈ G2ℓ,setting rℓ = tℓ
xi

xj
, t = t1 · · · tℓ + r′ and rk = tkrk for k ∈ {1, . . . , ℓ} gives us
σ(ℓ)(m) = (σ0, σ1, . . . , σℓ, σ−ℓ−1, . . . , σ−1, σ∞)

= ( rℓ . . . . . . .r1xjQ + tH(m),

rℓ . . . . . . r1xjP,

rℓ . . . r2xjP,...
rℓxjP,

rℓP, rℓ−1P, . . . , r1P,

tP ) ∈ G2ℓ+2.



90 T. Jonas ÖzganThis is a modi�ed level ℓ signature valid for the publi
 key Xj . Noti
e thatin this s
heme we have one more element at ea
h level and this is slightlydi�erent than the original one but this modi�
ation will allow us to prove thatthe modi�ed signature s
heme is also se
ure in the standard model.16. Proof of se
urity in the standard modelThe proof of se
urity in the standard model is almost the same as it is in therandom ora
le model ex
ept that the hashing ora
le is removed and repla
edby a hash fun
tion.Theorem 16.1. The modi�ed proxy re-signature s
heme with L levels and
N users is se
ure under the ℓ-�exDH assumption. More pre
isely, given anatta
ker A to Game 13.1 with advantage ε we 
an 
onstru
t an algorithm Bthat solves an ℓ-�exDH instan
e for given P, aP, bP ∈ G with

Pr[B is su

essful ] ≥ qsk · qrk · (N − |I
∗|)3

N |I∗|+3 · 8(qs + qrs)(n+ 1)
· ε.where a, b ∈ Z×

p , n is the length of the messages to be signed, qsk is the numberof private key queries, qrk is the number of re-signature key queries, qs is thenumber of signature queries and qrs is the number of re-signature queries madeby A.Proof. As in random ora
le model proof, we 
onstru
t an algorithm B whi
huses A as a bla
kbox and simulates its ora
les OSkey, OReKey, OSign and OReSign.As before B keeps tra
k of the queries to these ora
les in the Q-list to 
onstru
tthe query graph GQ later. First B prepares the 
ommon publi
 parameters asfollows.Prepare setup.
◦ Set Q = bP .
◦ Choose an integer τ ≪ p.
◦ Choose two random ve
tors ~ω = (ω′, ω1, . . . , ωn) ←− Zn+1

τ and ~z =
(z′, z1, . . . , zn) ←− Zn+1

p , and a random integer κ ←− {0, . . . , n}. Thende�ne a ve
tor ~U = (U ′, U1, . . . , Un) as U ′ = (ω′ − κτ)Q + z′P and
Ui = ωiQ + ziP for i ∈ {0, . . . , n}.
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◦ For any message m = m1 . . .mn ∈ {0, 1}

n the hash value is de�ned as
H(m) = U ′+

n∑

i=1

miUi. We also de�ne two auxiliary fun
tions J(m) : {0, 1}n →

Z and K(m) : {0, 1}n → Zp by� J(m) = ω′ +
n∑

i=1

miωi − κτ ,� K(m) = z′ +
n∑

i=1

mizi,so that H(m) = J(m)Q +K(m)P .At the end the simulator will be su

essful when A 
omes up with a forgedsignature σ∗ on a message m∗ for whi
h J(m∗) ≡ 0 mod p and for all othermessages m 6= m∗ queried by A, J(m) 6≡ 0 mod p. In fa
t here we assume
|J(·)| ≤ τ(n+1)≪ p su
h that J(m∗) ≡ 0 mod p happens with non-negligibleprobability.The atta
kerA is now being 
hallenged with the system parameters (P,Q, ~U).
B answers the ora
le 
alls of A as follows:Publi
 keys: As in the previous proof, B initially guesses a set of users
I∗ ⊂ {0, . . . , N − 1} and sets the publi
 keys of users i ∈ I∗ as Xi = ziaP forsome zi ←− Z×

p and all other publi
 keys as Xi = xiP , for some xi ←− Z×
p andmakes them available to A.

B answers the the ora
le 
alls of A as follows.Private key queries: When A asks for the se
ret key of user i, B does thefollowing:algorithm OSkey.Input: A user i ∈ {0, . . . , N − 1}.Output: The se
ret key xi of user i or B aborts.1. If i ∈ I∗ then B aborts.2. Add [OSkey, i] to Q-list.3. Return xi.



92 T. Jonas ÖzganRe-signature key queries: When A queries OReKey for re-signature keys,
B does the following:algorithm OReKey.Input: Two users i, j ∈ {0, . . . , N − 1}.Output: The 
orresponding re-signature key Rij or B aborts.1. If i /∈ I∗ then2. If j ∈ I∗ then B aborts.3. Else Rij ←

xi

xj
P .4. Else5. If j ∈ I∗ then Rij ←

zia
zja

P = zi
zj
P .6. Else Rij ←

zia
xj
P .7. Add [OReKey, (i, j)] to Q-list.8. Return Rij .Signature queries: When A asks for a signature of user i on m, B does thefollowing:algorithm OSign.Input: A message m ∈ {0, 1}n, user i, a desired level ℓ.Output: A modi�ed level ℓ signature σ on m valid for Xi or B aborts.1. If J(m) ≡ 0 mod p then B aborts.2. Choose t←− Z×

p .3. If i /∈ I∗ then4. σ0 ← (xiQ+ t ·H(m)).5. σ∞ ← tP6. Else7. σ0 ←
(

−K(m)
J(m)

Xi + t ·H(m)
) .8. σ∞ ←

(

− 1
J(m)

Xi + t · P
) .9. Add [i,m] to Q-list.10. σ ← (σ0, σ∞)11. If ℓ > 0 then12. For j = 1, . . . , ℓ do13. σ ← ADD TRIVIAL H ◭ σ.14. σ ← RE-RANDOM ◭ σ.15. Return σ.
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tional Proxy Re-Signature S
heme 93Observe that the elements of a level 0 signature generated on behalf of users
i ∈ I∗ in steps 7 and 8 have the 
orre
t distribution sin
e setting t = t + zia

J(m)for σ = (σ0, σ∞) yields
σ0 = −

K(m)

J(m)
Xi + t ·H(m)

= −
K(m)

J(m)
Xi + tH(m) +

zia

J(m)
H(m)

= −
K(m)

J(m)
Xi + tH(m) +

zia

J(m)
(J(m)Q +K(m)P )

= −
K(m)

J(m)
Xi + tH(m) + ziaQ+

ziaK(m)

J(m)
P

= tH(m) + ziaQ−
K(m)

J(m)
ziaP +

K(m)

J(m)
ziaP

= ziaQ + t ·H(m)and
σ∞ = −

1

J(m)
Xi + tP +

zia

J(m)
P

= tP −
1

J(m)
ziaP +

zia

J(m)
P

= tP.Note that the building blo
ks ADD TRIVIAL H and RE-RANDOM used here arethe ones introdu
ed for the modi�ed s
heme.Re-signing queries: When A asks for a re-signature of the valid ℓ−1 signa-ture σ(ℓ−1) from user i to j on m, as in the random ora
le model, B ignores thisand uses OSign to 
reate a level ℓ signature on m valid for user j. B exe
utesalgorithm OReSign.Input: A modi�ed level ℓ− 1 signature σ(ℓ−1) valid for the publi
 key Xi, twopubli
 keys Xi and Xj of users i, j ∈ {0, . . . , N − 1} and a message
m ∈ {0, 1}n.Output: A modi�ed level ℓ signature σ(ℓ) on m valid for the publi
 key Xj or
B aborts.1. σ(ℓ) ← OSign(m, j, ℓ).



94 T. Jonas Özgan2. Add [OReSign, (i, j,m)] to Q-list.3. Return σ(ℓ).As before, note that the 
all of algorithm OSign in step 1 
an 
ause B to abort.Final output: Finally when A outputs a message signature pair (m∗, σ∗)where σ∗ = (σ∗
0, . . . , σ

∗
ℓ , σ

∗
−ℓ, . . . , σ

∗
−1, σ

∗
∞) is a valid level ℓ signature on m∗ onbehalf of user i∗. If initially B guessed I∗ 
orre
tly and did not have to abortbefore, he does the followingfinalize.Input: A message m∗, a modi�ed level ℓ signature σ∗ valid for the publi
 key

Xi∗ on m∗ and the general query list Q-list.Output: An ℓ-�exDH instan
e (abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1) or B aborts.1. Create the query graph GQ ← Query-graph(i∗, m∗, Q-list).2. If there is a path from [0] to [i∗, m∗] in GQ then B aborts.3. If J(m∗) 6≡ 0 mod p then B aborts.4. Find the path π from [i′, m∗] to [i∗, m∗] with length |π| = k.5. Determine the order of users π0 = i′, . . . , πk = i∗ on the path π.6. Cal
ulate the elements 1
zπ0

= 1
zi′
, 1
zπ1

, . . . , 1
zπk

= 1
zi∗
.7. Return (( 1

zπ0

)

(σ∗
0 −K(m∗)σ∗

∞), ( 1
zπ0

)σ∗
1, . . . , (

1
zπ0

)σ∗
ℓ−k,

(
1

zπ1

)

σ∗
ℓ−k+1,

(
1

zπ2

)

σ∗
ℓ−k+2, . . . ,

(
1

zπk

)

σ∗
ℓ ,

(
zπk

zπk−1

)

σ∗
−ℓ,
(

zπk−1

zπk−2

)

σ∗
−ℓ+1,

(
zπk−2

zπk−3

)

σ∗
−ℓ+2, . . . ,

(
zπ1
zπ0

)

σ∗
−ℓ+k,

σ∗
−ℓ+k+1, . . . , σ

∗
−2, σ

∗
−1

).After renaming the 
oe�
ients a

ordingly, we know that
σ∗
0 = rℓ · · · r1zi′aQ + tK(m∗)P and σ∗

∞ = tP.Thus, we have
1

zπ0

(σ∗
0 −K(m∗)σ∗

∞) =
1

zi′
(rℓ · · · r1)zi′aQ + zi′tK(m∗)P − zi′K(m∗)tP

= abrℓ · · · r1P.
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heme 95This means that
((

1

zπ0

)

(σ∗
0 −K(m∗)σ∗

∞), (
1

zπ0

)σ∗
1, . . . , (

1

zπ0

)σ∗
ℓ−k,

(
1

zπ1

)

σ∗
ℓ−k+1,

(
1

zπ2

)

σ∗
ℓ−k+2, . . . ,

(
1

zπk

)

σ∗
ℓ ,

(
zπk

zπk−1

)

σ∗
−ℓ,

(
zπk−1

zπk−2

)

σ∗
−ℓ+1,

(
zπk−2

zπk−3

)

σ∗
−ℓ+2, . . . ,

(
zπ1

zπ0

)

σ∗
−ℓ+k,

σ∗
−ℓ+k+1, . . . , σ

∗
−2, σ

∗
−1

)

= (abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1),with Di = ri · · · r1P and Ci = riP is a valid ℓ-�exDH instan
e, sin
e for all
j ∈ {1, . . . , ℓ} we have logP Dj =

∏j
i=1 logP Ci and Ci is not the neutral elementof the group G.The su

ess probability of B As in the proof of se
urity in the randomora
le model the initial guess of I∗ gives us the probability
1
(

N

|I∗|

) ≥
1

N |I∗|
.The probability of B not aborting for qsk many se
ret key queries of B we havethe probability

qsk
N − |I∗|

N
.Also, for qrk many re-signature key queries of A we have the probability of Bnot aborting

qrk

(

1−
N − |I∗|

N
·
|I∗|

N − 1

)

≥ qrk
(N − |I∗|)2

N2
.Now, following Waters (2005) we show that the probability of J(m∗) ≡ 0

mod p is Pr[J(m∗) ≡ 0 mod p] ≥
1

8(qs + qrs)(n+ 1)
,



96 T. Jonas Özganwhere n is the length of the messages to be signed. This yields the announ
edbound of B's advantage. To simplify the analysis we de�ne another auxiliaryfun
tion for an n-bit message M = m1, . . . , mn:
F (M) =







0, if ω′ +
n∑

i=1

miωi ≡ 0 mod τ,

1, otherwise.Then the probability of J(m∗) ≡ 0 mod p is given by
Pr[J(m∗) ≡ 0 mod p] = Pr

[(
qs+qrs∧

i=1

F (Mi) = 1

)

∧ ω′ +
n∑

i=1

m∗
iωi = κτ

]for qs + qrs queries on n-bit messages Mj = mj1, . . . , mjn, j ∈ {1, . . . , qs + qrs}and the 
hallenge message m∗ = m1 . . .mn. Note here that F (M) 6= 0 impliesthat J(M) 6≡ 0 mod p be
ause of the initial assumption that p ≫ τ(n + 1).Note also that every re-signature query in fa
t triggers a signature query, asmentioned above. First we rewrite the probability from above as
Pr[J(m∗) ≡ 0 mod p] = Pr

[(
qs+qrs∧

i=1

F (Mi) = 1

)

∧ ω′ +

n∑

i=1

m∗
iωi = κτ

]

= Pr

[(
qs+qrs∧

i=1

F (Mi) = 1

)]

· Pr

[

ω′ +

n∑

i=1

m∗
iωi = κτ

∣
∣
∣
∣

qs+qrs∧

i=1

F (Mi) = 1

]

≥

(

1− Pr

[
qs+qrs∨

i=1

F (Mi) = 0

])

· Pr

[

ω′ +

n∑

i=1

m∗
iωi = κτ

∣
∣
∣
∣

qs+qrs∧

i=1

F (Mi) = 1

]

.

(16.2)
Sin
e we know that Pr [F (M) = 0] = 1

τ
, we transform equation (16.2) into(16.3) (

1−
qs + qrs

τ

)

· Pr

[

ω′ +
n∑

i=1

m∗
iωi = κτ

∣
∣
∣
∣

qs+qrs∧

i=1

F (Mi) = 1

]

.We also know that κ ←− {0, . . . , n} whi
h gives us the fa
tor 1
n+1

su
h thatwe 
an also use the auxiliary fun
tion F (·) for m∗. Thus, we 
hange equation(16.3) into(16.4) 1

n+ 1
·

(

1−
qs + qrs

τ

)

· Pr

[

F (m∗) = 0

∣
∣
∣
∣

qs+qrs∧

i=1

F (Mi) = 1

]

.
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heme 97Now we use Bayes' theorem to transform the probability in equation (16.4)into
Pr [F (m∗) = 0]

Pr
[∧qs+qrs

i=1 F (Mi) = 1
] · Pr

[
qs+qrs∧

i=1

F (Mi) = 1

∣
∣
∣
∣
F (m∗) = 0

]

.Here again we know that Pr [F (M) = 0] = 1
τ
so we 
an estimate that

Pr [F (m∗) = 0]

Pr
[∧qs+qrs

i=1 F (Mi) = 1
] is at least 1

τ
.Thus, with equation (16.4) we get

Pr[J(m∗) ≡ 0 mod p] ≥
1

n+ 1
·

(

1−
qs + qrs

τ

)

·
1

τ
·Pr

[
qs+qrs∧

i=1

F (Mi) = 1

∣
∣
∣
∣
F (m∗) = 0

]whi
h is equal to(16.5) 1

n+ 1
·
1

τ
·

(

1−
qs + qrs

τ

)

·

(

1− Pr

[
qs+qrs∨

i=1

F (Mi) = 0

∣
∣
∣
∣
F (m∗) = 0

])

.We estimate that this equation is at least(16.6) ≥ 1

n + 1
·
1

τ
·

(

1−
qs + qrs

τ

)

·

(

1−

qs+qrs∑

i=1

Pr

[

F (Mi) = 0

∣
∣
∣
∣
F (m∗) = 0

])

.Now we use that for any message pair M,M ′ the probabilities F (M) = 0 and
F (M ′) = 0 are pairwise independent, sin
e the sums ω′ +

n∑

i=1

miωi will di�er atleast in one random ωi be
ause mi ∈ {0, 1}. Therefore equation (16.6) is equalto
1

n+ 1
·
1

τ
·

(

1−
qs + qrs

τ

)

·

(

1−
qs + qrs

τ

)

=
1

n+ 1
·
1

τ
·

(

1−
qs + qrs

τ

)2

.Now we 
an optimize this by setting τ = 4(qs + qrs) whi
h gives usPr[J(m∗) ≡ 0 mod p] ≥
1

8(qs + qrs)(n+ 1)
.Altogether we have the announ
ed bound on the su

ess probability of B as

Pr[B is su

essful ] ≥ qsk · qrk · (N − |I
∗|)3

N |I∗|+3 · 8(qs + qrs)(n+ 1)
· ε.



98 T. Jonas ÖzganArti�
ial abort stage: Note that when τ is 
hosen in the beginning thenumber of signature queries and the number of re-signature queries qs + qrs isnot known to B. Only after A outputs a message signature pair (m∗, σ∗), Bknows the set of queried messages {M1, . . . ,Mqs+qrs}, the forged message m∗and the value qs + qrs. This is 
orre
ted by B with an arti�
ial abort stagebefore the �nal output. Now we explain this stage whi
h happens betweensteps 3 and 4 of algorithm Finalize.Assume that B aborts before this arti�
ial abort stage for all sets of pos-sible queries of A with almost the same probability (1 − ζ). Now we de-�ne a binary fun
tion α (~w,M, m∗) for a set of simulation values ~w ∈ Zn+1
τ ,

M = {M1, . . . ,Mqs+qrs} and m∗ as
α (~w,M, m∗) =







0, if (qs+qrs∧

i=1

F (Mi) = 1

)

∧ ω′ +
n∑

i=1

m∗
iωi = κτ,

1, otherwise.The fun
tion α (~w,M, m∗) will evaluate to 0 if the set of queried messagesMand the forged message m∗ do not 
ause B to abort for the simulation values
~w. We 
onsider this probability as Pr [(α(~w,M, m∗) = 0] = η. At this stage,
B 
olle
ts with respe
t to ζ enough samples of the probabilities η by 
hoosinga random ~w and evaluating α (~w,M, m∗) to 
ompute an estimated η′. Re
allthat we have J(m∗) = ω′ +

∑n

i=1m
∗
iωi − κτ ≡ 0 mod p (step 3 of algorithmFinalize). Therefore this sampling does not require running A again, B justneeds to �nd a right ~ω for M and m∗. Then, if the estimated value η′ is atleast the probability ζ , ie. η′ ≥ ζ , B aborts with probability 1 − ζ

η′
. Here is

ζ = 1
8(qs+qrs)(n+1)

the lower bound of the probability of B not aborting at thisstage, as we showed above. �This unusual proof te
hnique was adopted by many other publi
ations andalso from Libert & Vergnaud (2008a). For more details we refer to the origi-nal publi
ation of Waters (2005). Note that the arti�
ial abort stage 
an bevery time 
onsuming as mentioned in Bellare & Ristenpart (2009) whi
h alsoshows how to eliminate this arti�
ial abort stage and provides a more 
on
reteestimation of the su

ess probability.Note that using the adversaries from the original se
urity de�nition for thisredu
tion gives us similar results as dis
ussed in Se
tion 14.1. We only get anadditional fa
tor 1
8(n+1)

to the su

ess probabilities of the adversaries A1, A2,
A3 and A4. This fa
tor is the result of the instantiation of the hashing ora
lewith the hash fun
tion used in this redu
tion. Noti
e also that the fa
tor

qsk · qrk ·
(N − |I∗|)3

N |I∗|+3
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le model. This means that the resultsa
hieved in Se
tion 14.1 also apply here. Espe
ially we require |I∗| ∈ O(1) tohave a non-negligible su

ess probability of B. Further, we 
an also omit thefa
tor related to the se
ret key queries of A as dis
ussed before.





A Multi-use Uni-dire
tional Proxy Re-Signature S
heme 101Part IVE�
ien
yIn this se
tion we will dis
uss some e�
ien
y issues of the signature s
heme.Considering the e�
ien
y of the signature we see that the length of the sig-nature and the growing number of random 
oe�
ients at ea
h translation arethe dominating fa
tors. We begin with the dis
ussion of the signature lengthand introdu
e a new problem 
alled the 
hain shortening problem (CSP). TheCSP will help us to get an idea about the impli
ations of a shorter signature.We then dis
uss the number of 
oe�
ients used to build a level ℓ signature.We will observe what problems lesser or related 
oe�
ients may 
ause whenthey are used. Note that in this se
tion we will only look at the basi
 formof the signature s
heme and not the modi�ed version whi
h we de�ned for thestandard model proof of se
urity in the previous se
tion.17. Shortening the SignatureAs mentioned before, the ReSign(·) algorithm in
reases the size of the signatureby two elements with ea
h translation. We re
all that a level ℓ signature hasthe following elements:
σ
(ℓ)
0 = (rℓ · · · r1)xAH(m),

σ
(ℓ)
1 = (rℓ · · · · · · · · ·r1)xAP, σ

(ℓ)
−1 = r1P,

σ
(ℓ)
2 = (rℓ · · · · ·r2)xAP, σ

(ℓ)
−2 = r2P,

σ
(ℓ)
3 = (rℓ · · · r3)xAP, σ

(ℓ)
−3 = r3P,... ...

σ
(ℓ)
ℓ = rℓxAP, σ

(ℓ)
−ℓ = rℓP.Re
all Part II where we introdu
ed the H-representation to show the 
onne
-tion between these elements. Now, someone might 
laim to have an algorithmwhi
h 
an merge some of these H-s together so that a shorter signature mightbe a
hieved. We take this into 
onsideration by assuming the existen
e of a
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kbox algorithm (an ora
le) that somehow shortens the signature. To in-trodu
e this 
onsider Figure 17.1 where a bla
kbox CS2→1 shortens the level 2signature to a level 1 signature.
r2r1xAhP

P

hP

r2r1xAP

P

r1P

r2xAP

P

r2P

xAP

CS2→1

b1xAhP

P

hP

b1xAP

P

b1P

xAP

Figure 17.1: CS2→1Here the 
hain shortener CS2→1 shortens the signature by one elementby repla
ing r1, r2 ∈ Z×
p with a random b1 ←− Z×

p . This means that CS2→1redu
es the signature by one H as depi
ted in Figure 17.1. Note that CS2→1is not allowed to 
hange XA = xAP and H(m) = hP , sin
e the message mand the validation publi
 key xAP must stay the same after the shorteningpro
ess. This is be
ause after the shortening pro
ess we still want to have asignature on the same message m valid for the same publi
 key XA. Therefore
xAhP also 
annot be 
hanged during the shortening pro
ess (the green andblue elements). For now we will 
onsider signatures of higher levels and 
omeba
k to level 1 signatures later.Now with the assumption that the 
hain shortener CS2→1 exists as a bla
k-box, we attempt to use it for shortening a level 3 signature as shown in Fig-ure 17.2.At �rst we de
ouple the lower H from the signature and use CS2→1. Thenwe re
ouple the H with the elements r3P and xAP to obtain a valid level 2signature as shown in Figure 17.3. This implies the existen
e of the CS3→2whi
h shortens the level 3 signature to a level 2 signature.Thus we get a valid level 2 signature for XA as

σ(2) = (b1P, r3P, r3xAP, b1r3xAP, b1r3xAH(m)) .
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r3r2r1xAhP

P

hP

r3r2r1xAP

P

r1P

r3r2xAP

P

r2P

r3xAP

P xAP

r3P

Figure 17.2: A level 3 signature
r3r2r1xAhP

P

hP

r3r2r1xAP

P

r1P

r3r2xAP

P

r2P

r3xAP

P xAP

r3P

CS2→1

b1r3xAhP

P

hP

b1r3xAP

P

b1P

r3xAP r3P

P xAPRe
ouple
Figure 17.3: Using CS2→1 on a level 3 signatureNow, we 
an use CS2→1 again as shown in Figure 17.4, whi
h gives usa level 1 signature valid for XA. This implies the existen
e of the CS3→1.
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b1r3xAhP

P

hP

b1r3xAP

P

b1P

r3xAP

P

r3P

xAP

CS2→1

b2xAhP

P

hP

b2xAP

P

b2P

xAP

Figure 17.4: Shortening the signature againRe
apitulating the whole pro
ess, we �rst de
ouple the lower H from the level
3 signature and use CS2→1 to shorten it. Then we add the de
oupled H to theresult and obtain a level 2 signature. Using CS2→1 on that gives us a level 1signature. Therefore we note that the 
hain shorteners CS3→2 and CS3→1 
anbe a
hieved from CS2→1 as
◦ CS3→2: De
ouple lower H, use CS2→1, re
ouple the de
oupled H.
◦ CS3→1: Combine CS3→2 and CS2→1.Note that the existen
e of CS3→1 also implies the existen
e of CS2→1 sin
e,we 
an easily lengthen the signature with our building blo
k ADD TRIVIAL H(see Se
tion 9) and use the CS3→1 afterwards.Level 4 and higher. Similarly as above we 
an re
ursively 
onstru
t CS4→3,

CS4→2 and CS4→1 for level 4 signatures from a CS2→1.
◦ CS4→3: De
ouple lower H, use CS3→2, re
ouple the de
oupled H.
◦ CS4→2: Combine CS4→3 and CS3→2.
◦ CS4→1: Combine CS4→2 and CS2→1.Again the impli
ation CS4→1 ⇒ CS3→1 is trivial sin
e we 
an lengthen thesignature easily before using CS4→1.
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an 
onstru
t 
hain shorteners CSℓ→i where 1 < i < ℓ. Iteven turns out that the 
hain shorteners form an impli
ation hierar
hy. Thiswill give us an understanding about the impli
ations of shortening a signature.But before formally writing down the results we return to the level 1 signatures.The 
hain shortener for level 1 signatures. Now we introdu
e a 
hainshortener for a level 1 signature. A level 1 signature is given by
σ(1) = (r1P, r1xAP, r1xAH(m)) .We assume the existen
e of a 
hain shortener CS1→0 whi
h shortens this level

1 signature to a level 0 signature as shown in Figure 17.5.
r1xAhP

P

hP

r1xAP

P

r1P

XA

CS1→0

xAhP

P

hP

XA

Figure 17.5: CS1→0Here again we 
an re
ursively build a CSi→0 for 2 ≤ i ≤ ℓ as we did before.For example we 
an build a CS2→0 from the CS1→0 as:1. De
ouple the lower H from the level 2 signature,2. use CS1→0 to shorten it,3. add the de
oupled H,4. use CS1→0 again to obtain a valid level 0 signature.We then 
an use CS2→0 similarly to build a CS3→0 and that to build a CS4→0and so on.The existen
e of CS1→0 also implies the existen
e of CS2→1 as:1. De
ouple the lower H from the level 2 signature,2. use CS1→0 to shorten it,



106 T. Jonas Özgan3. add the de
oupled H and obtain a valid level 1 signature.The existen
e of a CS1→0 also enables us to 
al
ulate a−1P for given P, aP . Weuse CS1→0 as as shown in Figure 17.6 to obtain a−1P . We 
all this an inverter
P

aP

P

P

aP

aP

P

CS1→0

a−1P

aP

P

P

Figure 17.6: Obtaining a−1P with CS1→0and note it as INV shown in Figure 17.7.
aP
P

a−1P
P

INV
Figure 17.7: The inverter INV17.1. The hierar
hy of the 
hain shortening problem. Now we formallywrite down our results and analyze the impli
ations of these results. For 
hainshorteners we 
an state:Theorem 17.1. ∃ CSi′→j ⇒ ∃ CSi→j for j < i < i′. This means that if we
an shorten a level i′ signature to a level j signature we 
an also shorten a level

i signature to a level j signature where i′ > i.Proof. We 
an lengthen the level i signature with ADD TRIVIAL H as mu
has ne
essary until we have a level i′ signature and then use the CSi′→j . �
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heme 107Theorem 17.2. ∃ CSi→j ⇒ ∃ CSi→j′ for j < j′ < i. This means that if we
an shorten a level i signature to a level j signature we 
an also shorten it toa level j′ signature, where j < j′.Proof. Sin
e lengthening the signature is easy we 
an use CSi→j to shortenthe level i signature to a level j signature and then use ADD TRIVIAL H as oftenas ne
essary and re-randomize it with RE-RANDOM to get a level j′ signature.�Theorem 17.3. ∃ CSi→j ⇒ ∃ CSi′→j for j < i < i′. This means that if we
an shorten a level i signature to a level j signature we 
an also shorten a level
i′ signature to a level j signature, where i < i′.Proof. To shorten a level i′ signature to a level j signature with CSi→j where
i′ > i, we �rst have to de
ouple the lower i′ − i H s from the level i′ signatureand use CSi→j to shorten it. Then add i− j H s from the top of the de
oupledones and use CSi→j again and 
ontinue this pro
ess until no de
oupled H s areleft. This is the same pro
ess we did above for CS2→1 and CS3→1. Note thatin the 
ase where (i− j) ∤ (i′− i) we still 
an use ADD TRIVIAL H to lengthenthe signature a

ordingly. �Theorem 17.4. ∃ CSi→j ∧ ∃ CSj→k ⇒ ∃ CSi→k for k < j < i. A CSi→k 
aneasily be 
onstru
ted from the 
ombination of CSi→j and CSi→k.Proof. We �rst use the CSi→j on a level i signature to get a level j signaturethen we use CSj→k to obtain a level k signature. �Consider Figure 17.8 whi
h shows the impli
ation hierar
hy of the 
hain short-eners. Theorem 17.1 and Theorem 17.3 note the impli
ations in the verti
aldire
tion, Theorem 17.2 notes the impli
ations from right to left. The diagonalimpli
ations result from the 
ombination of Theorem 17.3 and Theorem 17.2.Now we prove the equivalen
e

∃ CS1→0 ⇐⇒ CDHwith a series of lemmas.Lemma 17.5. ∃ CS1→0 ⇒ ∃ INV . The existen
e of CS1→0 implies the exis-ten
e of INV .Proof. Use CS1→0 with the basepoint and aP as shown in Figure 17.6. �Similar to INV we de�ne a squarer SQR whi
h returns a2P for given P, aPas in Figure 17.9.
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CS5→0

CS4→0

CS3→0

CS2→0

CS1→0CDH
CS2→1

CS3→1

CS4→1

CS5→1

...
CS3→2

CS4→2

CS5→2

...
CS4→3

CS5→3

...
CS5→4

...

Figure 17.8: The Hierar
hy of the 
hain shorteners
aP
P

a2P
P

SQR
Figure 17.9: The squarer SQRLemma 17.6. ∃ INV ⇒ ∃ SQR . The existen
e of INV as in Figure 17.7implies the existen
e of SQR .Proof. Use the INV with the basepoint and aP to aquire [a2P ] as follows
[aP, P ]

INV
−→ [a2P ].

�
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heme 109Lemma 17.7. Assume that halving is easy and an e�
ient bilinear map e(·, ·)exists. Then ∃ SQR ⇔ CDH. The existen
e of a squarer SQR as in Figure 17.9is equivalent to solving the 
omputational Di�e-Hellman problem (CDH).Proof. ∃ SQR ⇒ CDH.Input: A base point P , two points aP and bP for a, b ∈ Z×
p , a non-degeneratebilinear map e(·, ·), a squarer SQR .Output: The solution abP to the given CDH instan
e P, aP, bP .1. Compute a2P with SQR .2. Compute b2P with SQR .3. Compute (a+ b)2P with SQR .4. Compute S ← (a+ b)2P − a2P − b2P = 2abP .5. Compute {c1P, c2P} ← 1

2
S.6. Use e(ciP, P ) = e(aP, bP ) for i ∈ {1, 2} to determine the 
orre
t solution.7. Return the 
orre
t solution ciP = abPNote that the addition and the halving operation are 
onsidered to be easy onellipti
 
urves. The latter is basi
ally a square root operation whi
h has twosolutions. To determine the 
orre
t answer we use the bilinear map e(·, ·) whi
his also 
onsidered to be an easy operation.Now we show CDH⇒ ∃ SQR . This is trivial sin
e the solution to the givenCDH instan
e [P, aP, aP ] is a2P . This means that if we have a bla
kbox CDHwhi
h returns abP for the input [P, aP, bP ] we 
an 
al
ulate a2P with the input

[P, aP, aP ]. �Lemma 17.8. ∃ CDH ⇒ ∃ INV . The existen
e of CDH implies the existen
eof an inverter INV as des
ribed in Figure 17.7.Proof. Use CDH with input [aP, P, P ] to obtain a−1P . �Lemma 17.9. ∃ CDH ⇒ ∃ CS1→0. The existen
e of CDH implies the existen
eof the 
hain shortener CS1→0.Proof. Re
all that a level 1 signature is given by
[
P, xAP, hP, r1P, r1xAP, r1xAhP

]
,



110 T. Jonas Özganto obtain a level 0 signature from these we only need xAhP . Thus using CDHwith input [P, xAP, hP ] gives us a level 0 signature as:
[
P, xAP, hP, xAhP

]
.

�The last result is very natural sin
e the level 0 signature is a short signature(Boneh et al. 2004) whi
h is based on the 
omputational Di�e-Hellman as-sumption. Now we summarize the results from above:
∃ CS1→0 ⇒ ∃ INV ⇒ ∃ SQR ⇐⇒ ∃ CDH ,

∃ CDH ⇒ ∃ INV ,

∃ CDH ⇒ ∃ CS1→0 .Completing the hierar
hy of the 
hain shorteners from Figure 17.8 we get:
∃ CDH ⇐⇒ ∃ CS1→0 .Naturally, if we had a bla
kbox solving ℓ-�exDH instan
es we 
ould alsobuild a CSi→ℓ from that. For example, assume that a bla
kbox 1-flexDH ex-ists whi
h outputs Q, aQ, abQ ∈ G for input P, aP, bP ∈ G. Using 1-flexDHwith input P, xAP, hP would result in Q, xAQ, xAhQ, where hP is the hashvalue of the message and the publi
 key xAP . The result is basi
ally a level 1signature given by
(Q, xAQ, xAhQ),
onsidering that Q = rP for some r ←− Z×

p . Sin
e we only need the publi
key xAP and the hash value hP we 
an shorten level ℓ signatures to level
1 signatures with 1-flexDH . However, it is not 
lear how to relate CSℓ→1to 1-flexDH sin
e a CSℓ→1 generates a new 1-�exDH tuple from a given ℓ-�exDH tuple. Intuitively, every CSi→j where j ≥ 1 has some randomness thatwe 
annot 
ontrol. This prevents us also from relating these 
hain shortenersto more 
lassi
al problems su
h as the CDH.In the end, we observe that the existen
e of a CSi→0 implies all other CSi→jfor 0 ≤ j < i and this is also equivalent to solving CDH. For all other CSi→jwhere j ≥ 1 we 
an build other 
hain shorteners but rea
hing to any CSi→0seems not possible.Even so shortening the signature seems hard to a
hieve. In 
on
lusion,a
hieving logarithmi
 or sublinear or even 
onstant length signatures seemsout of rea
h at the moment (Libert & Vergnaud 2008a).
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ientsIn this se
tion we will analyze the usage of random 
oe�
ients. The mainquestion we will try to answer is �How mu
h randomness is needed? �. Re
allthat the signature s
heme is not SEUF as noted in Part III, sin
e it 
an bepubli
ly re-randomized with the building blo
k RE-RANDOM (Se
tion 9). Infor-mation theoreti
ally, ℓ random 
oe�
ients are needed to blur the 
onne
tionto an re-randomized level ℓ signature. We note this in the following theorem.Theorem 18.1. Using RE-RANDOM on σ(ℓ) we obtain uniform distribution ofthe signature elements where σ(ℓ) = (σ0, . . . , σℓ, σ−ℓ, . . . , σ−1) is any level ℓsignature on a message m valid for the publi
 key Xi.Proof. Consider two di�erent level ℓ signatures σ = (σ0, . . . , σℓ, σ−ℓ, . . . , σ−1)and σ′ = (σ′
0, . . . , σ

′
ℓ, σ

′
−ℓ, . . . , σ

′
−1) on the same message m valid for the samepubli
 key Xi. To transform any σ−i into σ′

−i for an i ∈ {1, . . . , ℓ} exa
tly one
oe�
ient is required. Therefore, in a transformation where ea
h element σ−iis transformed into σ′
−i for all i ∈ {1, . . . , ℓ} exa
tly ℓ 
oe�
ients are needed.As we have seen in Part II, this also ne
essarily transforms the elements σi into

σ′
i for i ∈ {0, . . . , ℓ}. This is exa
tly what RE-RANDOM =

∏ℓ
i=1 RE-RANDOM idoes, it transforms a given level ℓ signature into another level ℓ signature whi
hhas the same distribution of random elements. �Therefore we 
on
lude that, information theoreti
ally, the output ofReSign(·, m, ℓ− 1, σ(ℓ−1), Rij , Xi, Xj)is indistinguishable from the output ofSign(·, m, ℓ, xj)where both algorithms output a level ℓ signature on m valid for the publi
 key

Xj. Using less 
oe�
ients 
annot give us this uniform distribution.We will �rst look at level ℓ signatures where one of the ℓ 
oe�
ients is1 to analyze what happens when less 
oe�
ients are used. After that we willanalyze the 
ase where the random 
oe�
ients have a 
ertain relation expressedby a linear equation. We will observe that in most of the 
ases the unlinkabilityproperty of the signature is lost.Although the output of the algorithms ReSign(·) from level ℓ− 1 to level ℓand Sign(·) at level ℓ are indistinguishable we will 
onsider these separately inea
h subse
tion. More pre
isely, in ea
h subse
tion we 
onsider the 
ases
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◦ Signing at level ℓ, here the adversary tries to gather additional infor-mation from his knowledge.
◦ Re-signing from level ℓ − 1 to level ℓ, here the adversary who hasalso the prede
essor of the resulting level ℓ signature tries to link thesetwo together.Note that the dis
ussion below 
onsiders only the symmetri
 pairing settingand therefore most of the results are not valid for the asymmetri
 setting (seeSe
tion 11). We address this problem at the end of this 
hapter.18.1. Using lesser 
oe�
ients. We �rst look at what happens if one lessrandom 
oe�
ient is used. Re
all that RE-RANDOM =

∏ℓ
i=1 RE-RANDOM i , inthis se
tion we assume that one RE-RANDOM i was left out, ie. ri = 1.18.1.1. Signing at level ℓ. We �rst 
onsider the output of the Sign(·) al-gorithm at level ℓ.CASE rℓ = 1. A signature signed at level ℓ with rℓ = 1.Consider Figure 18.1, the (red) en
ir
led H is redundant sin
e the element

σ
(ℓ)
ℓ is the same as the publi
 key XA. This means that an atta
ker 
an de
ouplethis H, whi
h gives him a level ℓ − 1 signature on the same message valid forthe same publi
 key XA. Thus, if the translation limit in the system was ℓ, thismakes it possible to translate the signature on
e more than allowed.CASE r1 = 1. A signature signed at level ℓ with r1 = 1. In Figure 18.2 wealso see that the (red) en
ir
led H is redundant, thus an atta
ker 
an againshorten this signature to a level ℓ− 1 signature by removing σ

(ℓ)
−1 = P and oneof the (rℓ · · · r2)xAP from the signature.CASE ri = 1. A signature signed at level ℓ with ri = 1.Here we also see in Figure 18.3 that the (red) en
ir
led H is redundant sothe elements σ(ℓ)

−i = P and one of the (rℓ · · · ri−1)xAP 
an be removed.Generally we observe that using lesser 
oe�
ients in the signing pro
essis equivalent to signing the signature on a shorter level. As mentioned abovethis 
an be disadvantageous if there is a limitation on the number of allowedtranslations.18.1.2. Re-signing from level ℓ−1 to level ℓ. We now 
onsider the outputof the ReSign(·) algorithm when one less 
oe�
ient is used.
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(rℓ−1 · · · r1)xAhP

P

H(m)

(rℓ−1 · · · r1)xAP r1P

P (rℓ−1 · · · r2)xAP

σ
(ℓ)
ℓ = xAP

P

P

XAFigure 18.1: σ(ℓ) with rℓ = 1CASE rℓ = 1. We �rst 
onsider a signature re-signed from level ℓ − 1 to ℓwith rℓ = 1. In this 
ase as depi
ted in Figure 18.4 we observe that the lastsigner's publi
 key XA (on level ℓ− 1) is visible in the signature sin
e the newowner's publi
 key (on level ℓ) isXB. Taking away RAB and XB in the en
ir
ledH gives an atta
ker a level ℓ − 1 signature σ(ℓ−1) valid for the publi
 key XA,ie. the whole translation is lost. The atta
ker 
an also extra
t the re-signaturekey RAB, thus also the private proxy property is lost. Sin
e by assumption theatta
ker is also in possession of σ(ℓ−1) the prede
essor of σ(ℓ), he 
an verify that
σ(ℓ) was most probably translated from σ(ℓ−1) by 
he
king

e
(

σ
(ℓ)
ℓ−1, σ

(ℓ−1)
−ℓ+1

)
?
= e

(

σ
(ℓ−1)
ℓ−1 , σ

(ℓ)
−ℓ+1

)

.Thus, the unlinkability property of the signature is lost sin
e the equivalen
eis given by
e
(

σ
(ℓ)
ℓ−1, σ

(ℓ−1)
−ℓ+1

)

= e
(

rℓ−1σ
(ℓ−1)
ℓ−1 , σ

(ℓ−1)
−ℓ+1

)
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(rℓ · · · r2)xAhP

P

H(m)

(rℓ · · · r2)xAP P

P (rℓ · · · r2)xAP r2P

P (rℓ · · · r3)xAP

rℓxAP

P

rℓP

XAFigure 18.2: σ(ℓ) with r1 = 1

= e
(

σ
(ℓ−1)
ℓ−1 , rℓ−1σ

(ℓ−1)
−ℓ+1

)

= e
(

σ
(ℓ−1)
ℓ−1 , σ

(ℓ)
−ℓ+1

)

.CASE r1 = 1. Here we 
onsider a signature re-signed from level ℓ − 1 to
ℓ with r1 = 1 as depi
ted in Figure 18.5. An atta
ker in possession of theprede
essor σ(ℓ−1) of σ(ℓ) 
an see that σ(ℓ−1) is most probably re-signed into σ(ℓ)sin
e

σ
(ℓ)
−1 = σ

(ℓ−1)
−1 .
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(rℓ · · · r1/ri)xAhP

P

H(m)

(rℓ · · · r1/ri)xAP

(rℓ · · · ri−1)xAP P

P (rℓ · · · ri−1)xAP

rℓxAP

P

rℓP

XAFigure 18.3: σ(ℓ) with ri = 1He 
an verify this by 
he
king
e
(

σ
(ℓ)
1 , σ

(ℓ−1)
2

)
?
= e

(

σ
(ℓ−1)
1 , σ

(ℓ)
2

)

,sin
e the equivalen
e is given by
e
(

σ
(ℓ)
1 , σ

(ℓ−1)
2

)

= e
(

(r2 · · · rℓ)σ
(ℓ−1)
1 , σ

(ℓ−1)
2

)

= e
(

σ
(ℓ)
1 , (r2 · · · rℓ)σ

(ℓ−1)
2

)

= e
(

σ
(ℓ−1)
1 , σ

(ℓ)
2

)

.Again the unlinkability property of the signature is lost.
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(rℓ−1 · · · r1)σ

(ℓ−1)
0

P

H(m)

(rℓ−1 · · · r1)σ
(ℓ−1)
1 r1σ

(ℓ−1)
−1

P (rℓ−1 · · · r2)σ
(ℓ−1)
2

rℓ−1σ
(ℓ−1)
−ℓ+1 = σ

(ℓ)
−ℓ+1

P

σ
(ℓ)
ℓ−1 = rℓ−1σ

(ℓ−1)
ℓ−1

XA

P

RAB

XBFigure 18.4: Re-Signing σ(ℓ−1) to σ(ℓ) with rℓ = 1CASE ri = 1. A signature re-signed from level ℓ − 1 to ℓ with ri = 1.Generally if one of the 
oe�
ients ri = 1 in the re-signing pro
ess then we have
σ(ℓ) as in Figure 18.6. An atta
ker in possession of the prede
essor σ(ℓ−1), 
ansee that σ(ℓ−1) was most probably re-signed into σ(ℓ) sin
e

σ
(ℓ−1)
−i = σ

(ℓ)
−i .He 
an verify this by 
he
king

e
(

σ
(ℓ)
i , σ

(ℓ−1)
i+1

)
?
= e

(

σ
(ℓ−1)
i , σ

(ℓ)
i+1

)

,be
ause
e
(

σ
(ℓ)
i , σ

(ℓ−1)
i+1

)

= e
(

(r1 · · · rℓ/ri)σ
(ℓ−1)
i , σ

(ℓ−1)
i+1

)
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(rℓ · · · r2)σ

(ℓ−1)
0

P

H(m)

(rℓ · · · r2)σ
(ℓ−1)
1 σ

(ℓ−1)
−1 = σ

(ℓ)
−1

P (rℓ · · · r2)σ
(ℓ−1)
2

rℓ−1σ
(ℓ−1)
−ℓ+1

P

rℓrℓ−1σ
(ℓ−1)
ℓ−1

rℓXA

P

rℓRAB

XBFigure 18.5: Re-Signing σ(ℓ−1) to σ(ℓ) with r1 = 1

= e
(

σ
(ℓ−1)
i , (r1 · · · rℓ/ri)σ

(ℓ−1)
i+1

)

= e
(

σ
(ℓ−1)
i , σ

(ℓ)
i+1

)

.Thus, using one 
oe�
ient less in the re-signing pro
ess always destroys theunlinkability property of the signature. Espe
ially if rℓ = 1 we loose the wholetranslation and also the private proxy property, sin
e an atta
ker 
an easilya

ess the re-signature key RAB.18.2. Related Coe�
ients. Now we analyze what happens if the 
oe�-
ients satisfy a linear relation. As mentioned in the beginning, we assume thatthe relation is known to an atta
ker and we will try to �nd out if an atta
kergains anything else from this knowledge. We start with the simple 
ase wheretwo 
oe�
ients are equal.18.2.1. Signing at level ℓ.
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(rℓ · · · r1/ri)σ

(ℓ−1)
0

P

H(m)

(rℓ · · · r1/ri)σ
(ℓ−1)
1

σ
(ℓ)
i = (rℓ · · · ri−1)σ

(ℓ−1)
i

σ
(ℓ−1)
−i = σ

(ℓ)
−i

P (rℓ · · · ri−1)σ
(ℓ−1)
i+1

rℓXA

P

rℓRAB

XBFigure 18.6: Re-Signing σ(ℓ−1) to σ(ℓ) with ri = 1CASE rℓ = rℓ−1. A signature signed at level ℓ with rℓ = rℓ−1.In Figure 18.7 we see that σ(ℓ)
−ℓ = σ

(ℓ)
−ℓ+1 whi
h implies that σ(ℓ)

ℓ = rℓ−1xAPand σ
(ℓ)
ℓ = r2ℓ−1xAP . However an atta
ker does not seem to gain mu
h fromthis knowledge.CASE r1 = r2. A signature signed at level ℓ with r1 = r2.Similarly here in Figure 18.8 we have σ

(ℓ)
−1 = σ

(ℓ)
−2 = r2P whi
h also is notvery useful for an atta
ker.
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(r2ℓ−1 · · · r1)xAhP

P

H(m)

(r2ℓ−1 · · · r1)xAP r1P

P (r2ℓ−1 · · · r2)xAP

rℓ−1P

P

r2ℓ−1xAP

rℓ−1xAP

P

rℓ−1P

XAFigure 18.7: σ(ℓ) signed with rℓ = rℓ−1CASE ri = rj for i < j. Generally we know that if a signature is signed onlevel ℓ with ri = rj, we would have two elements σ(ℓ)
−i = σ

(ℓ)
−j for i, j ∈ {1, . . . , ℓ}(Figure 18.9).However it seems that this is not mu
h of a use for an atta
ker.

GENERAL CASE ℓ∏

i=1

reii = 1 for some exponents ei. The general 
asewhere the relation of the 
oe�
ients is given as n∏

i=1

reii = 1 seems out of rea
h tobe analyzed 
ompletely within the limits of this thesis. Nonetheless, we wantto get an idea about this relation of the 
oe�
ients. Therefore we look into thenext more 
omplex 
ase where ri = rj · rk whi
h is ri · r−1
j · r

−1
k = 1.
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(rℓ · · · r22)xAhP

P

H(m)

(rℓ · · · r22)xAP r2P

P (rℓ · · · r2)xAP r2P

P (rℓ · · · r3)xAP

rℓxAP

P

rℓP

XAFigure 18.8: σ(ℓ) signed with r1 = r2The signature signed at level ℓ would 
ontain the following elements:
[

σ
(ℓ)
(−i) = riP = rjrkP, σ

(ℓ)
(−j) = rjP, σ

(ℓ)
(−k) = rkP

]

.Assuming that the linear relation ri · r
−1
j · r

−1
k = 1 is known to the atta
ker, he
an verify this by 
he
king

e(σ
(ℓ)
−i , P )

?
= e(σ

(ℓ)
−j , σ

(ℓ)
−k),sin
e

e(σ
(ℓ)
−i , P ) = e(P, P )ri,

= e(rjP, rkP ),

= e(σ
(ℓ)
−j , σ

(ℓ)
−k).
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(rℓ · · · r2i · · · r1/rj)xAhP

P

H(m)

(rℓ · · · r2i · · · r1/rj)xAP

(rℓ · · · ri+1r
2
i /rj)xAP riP

P (rℓ · · · ri+1ri/rj)xAP

(rℓ · · · rj+1ri)xAP riP

P (rℓ · · · rj+1)xAP

rℓxAP

P

rℓP

XAFigure 18.9: σ(ℓ) signed with ri = rjHere we see that we already rea
h some limit. The nature of the pairings e(·, ·),allows us to treat at most two ei = 1 or one ei = 2 and at most two ei = −1 orone ei = −2 at all. Anything else seems beyond the s
ope of group and pairingrelations.CASE n∑

i=1

αi · ri = 0 for n ≤ ℓ. The other general 
ase where the 
oe�
ientsare additionally related to ea
h other as α1r1+α2r2+ · · ·+αnrn = 0 
an easily
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ause
n∑

i=1

αiriP =
n∑

i=1

αiσ−i = 0 · P = O.Note that by assumption the αi's are known su
h that the values αiriP =
αiσ−i 
an �easily� be 
al
ulated. Similarly by assumption the addition of theseelements is also 
onsidered easy. We 
on
lude that, if related 
oe�
ients areused in the signing pro
ess, an atta
ker is able to verify his knowledge of therelation but beyond that he does not seem to gain mu
h from this knowledge.18.2.2. Re-signing from level ℓ− 1 to level ℓ.CASE rℓ = rℓ−1. A signature re-signed from level ℓ− 1 to ℓ with rℓ = rℓ−1.Considering Figure 18.10 we 
an easily link the signature to its prede
essor by
he
king

e
(

σ
(ℓ)
ℓ , σ

(ℓ−1)
−ℓ+1

)
?
= e

(

XA, σ
(ℓ)
−ℓ+1

)

,sin
e
e
(

σ
(ℓ)
ℓ , σ

(ℓ−1)
−ℓ+1

)

= e
(

rℓ−1XA, σ
(ℓ−1)
−ℓ+1

)

= e
(

XA, rℓ−1σ
(ℓ−1)
−ℓ+1

)

= e
(

XA, σ
(ℓ)
−ℓ+1

)

.This means that again we loose the unlinkability property of the signature.CASE r1 = r2. A signature re-signed from level ℓ − 1 to ℓ with r1 = r2.Consider Figure 18.11, we 
an link the signature to its prede
essor by 
he
king
e
(

σ
(ℓ)
−2, σ

(ℓ−1)
−1

)
?
= e

(

σ
(ℓ−1)
−2 , σ

(ℓ)
−1

)

,sin
e
e
(

σ
(ℓ)
−2, σ

(ℓ−1)
−1

)

= e
(

r2σ
(ℓ−1)
−2 , σ

(ℓ−1)
−1

)

= e
(

σ
(ℓ−1)
−2 , r2σ

(ℓ−1)
−1

)

= e
(

σ
(ℓ−1)
−2 , σ

(ℓ)
−1

)

.Again the unlinkability property is lost.
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(r2ℓ−1 · · · r1)σ

(ℓ−1)
0

P

H(m)

(r2ℓ−1 · · · r1)σ
(ℓ−1)
1 r1σ

(ℓ−1)
−1

P (r2ℓ−1 · · · r2)σ
(ℓ−1)
2

rℓ−1σ
(ℓ−1)
−ℓ+1

P

r2ℓ−1σ
(ℓ−1)
ℓ−1

rℓ−1xAP

P

rℓ−1RAB

XBFigure 18.10: σ(ℓ−1) re-signed to σ(ℓ) with rℓ = rℓ−1CASE ri = rj for i < j < ℓ. Consider Figure 18.12, as we have seen in theprevious 
ases one 
ould analogously link the level ℓ signature to its prede
essorby 
he
king
e
(

σ
(ℓ)
−i , σ

(ℓ−1)
−j

)
?
= e

(

σ
(ℓ−1)
−i , σ

(ℓ)
−j

)

,sin
e
e
(

σ
(ℓ)
−i , σ

(ℓ−1)
−j

)

= e
(

riσ
(ℓ−1)
−i , σ

(ℓ−1)
−j

)

= e
(

σ
(ℓ−1)
−i , riσ

(ℓ−1)
−j

)

= e
(

σ
(ℓ−1)
−i , σ

(ℓ)
−j

)

.We 
on
lude that, if two (or more) equal 
oe�
ients are used in the re-signing pro
ess the unlinkability property of the signature is lost.



124 T. Jonas Özgan
(rℓ · · · r22)σ

(ℓ−1)
0

P

H(m)

(rℓ · · · r22)σ
(ℓ−1)
1 r2σ

(ℓ−1)
−1 = σ

(ℓ)
−1

P (rℓ · · · r2)σ
(ℓ−1)
2 r2σ

(ℓ−1)
−2 = σ

(ℓ)
−2

P (rℓ · · · r3)σ
(ℓ−1)
3

rℓxAP

P

rℓRAB

XBFigure 18.11: σ(ℓ−1) re-signed to σ(ℓ) with r1 = r2GENERAL CASE n∏

i=1

reii = 1 for n ≤ ℓ. Again we only 
onsider the nextmore 
omplex 
ase where ri = rj · rk. A signature whi
h was re-signed fromlevel ℓ− 1 to level ℓ, 
ontains the following elements:
σ
(ℓ)
−i = riσ

(ℓ−1)
−i = rjrkσ

(ℓ−1)
−i ,

σ
(ℓ)
−j = rjσ

(ℓ−1)
−j ,

σ
(ℓ)
−k = rkσ

(ℓ−1)
−k .Sin
e we know that the elements σ(ℓ−1)

−i , σ
(ℓ−1)
−j and σ

(ℓ−1)
−k are di�erent mul-tiples of the base point P we 
an de�ne them as three points Pi, Pj and Pk bysetting

Pi := σ
(ℓ−1)
−i = γiP,
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(rℓ · · · r2i · · · r1/rj)σ

(ℓ−1)
0

P

H(m)

(rℓ · · · r2i · · · r1/rj)σ
(ℓ−1)
1

(rℓ · · · ri+1r
2
i /rj)σ

(ℓ−1)
j riσ

(ℓ−1)
−i = σ

(ℓ)
−i

P (rℓ · · · ri/rj)σ
(ℓ−1)
j+1

(rℓ · · · rj+1ri)σ
(ℓ−1)
i

riσ
(ℓ−1)
−j = σ

(ℓ−1)
−j

P (rℓ · · · rj+1)σ
(ℓ−1)
i+1

rℓxAP

P

rℓRAB

XAFigure 18.12: σ(ℓ) signed with ri = rj

Pj := σ
(ℓ−1)
−j = γjP,

Pk := σ
(ℓ−1)
−k = γkP,for some γi, γj, γk ∈ Z×

p .Now we 
an rewrite the re-signature elements σ(ℓ)
−i , σ

(ℓ)
−j and σ

(ℓ)
−k as di�erentmultiples of the base point P as

σ
(ℓ)
i = riσ

(ℓ−1)
−i = riPi = riγiP = rjrkγiP,

σ
(ℓ)
j = rjσ

(ℓ−1)
−j = rjPj = rjγjP,
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σ
(ℓ)
k = rkσ

(ℓ−1)
−k = rkPk = rkγkP.For linking the signature to its prede
essor we 
ould try the following

e(riγiP, P ) = e(P, P )rjrkγi

= e(rjrkP, γiP )

= e(rjrkP, σ
(ℓ−1)
−i ).or the other way around:

e(rjγjP, rkγkP ) = e(rjrkP, γjγkP )

= e(riP, γjγkP ),whi
h is a
tually worse, sin
e we do not know any of the values on the righthand side of the equations.It seems that, to be able to link these two signatures, we at least have to
al
ulate the value rjrkP from given rjσ
(ℓ−1)
−j and rkσ

(ℓ−1)
−k .Another view point would be to �x the element σ

(ℓ−1)
−i as Q, and rewrite

σ
(ℓ−1)
−j and σ

(ℓ−1)
−k relative to Q as

Q = σ
(ℓ−1)
−i ,

aQ = σ
(ℓ−1)
−j ,

bQ = σ
(ℓ−1)
−k .Re
alling that

σ
(ℓ)
−i = riQ,

σ
(ℓ)
−j = rjaQ,

σ
(ℓ)
−k = rkbQ,our task is now to verify that ri =

rja·rkb

ab
, with these elements. This wouldallow us to link the re-signature σ(ℓ) to its prede
essor σ(ℓ−1). We de�ne thisas the 4-fold de
isional Di�e-Hellman problem.Definition 18.2. 4-fold de
isional Di�e-Hellman problem (4-DDH) is,given Q, aQ, bQ, αQ, βQ, zQ ∈ G determine whether z = αβ

ab
.
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e. To solve this4-DDH instan
e in our pairing setting we 
an 
al
ulate the following values
e(aQ, bQ) := ξ,

e(aQ, rkbQ) := ξrk ,

e(bQ, rjaQ) := ξrj ,

e(abQ, riQ) := ξrjrk .This would redu
e our task to solve the de
isional Di�e-Hellman (DDH) in-stan
e in GT . This is, given ξ, ξm, ξn, ξt determine if t = mn. Note that tobe able to do so we also need to 
al
ulate abQ from given Q, aQ, bQ whi
h isa 
omputational Di�e-Hellman (CDH) instan
e in G. By assumption both ofthese instan
es are 
onsidered to be hard in the 
orresponding groups G and
GT respe
tively. Summarizing the results from above we getCDH(G) + e(·, ·) +DDH(GT )⇒ 4-DDH(G).Thus, it is unlikely that an atta
ker knowing even the simplest form of the rela-tion ri = rj · rk is able to link the signature to its prede
essor. Consequently itis also unlikely that an atta
ker with the knowledge of a more 
omplex, generalrelation between 
oe�
ients is able to link a re-signature to its prede
essor.CASE n∑

i=1

αi · ri = 0 for n ≤ ℓ. Beginning with a simple 
ase assume thata relation as ri = rj + rk is known. Then, as we have seen before, a signaturere-signed from level ℓ− 1 to level ℓ would 
ontain the elements
σ
(ℓ)
−i = riσ

(ℓ−1)
−i ,

σ
(ℓ)
−j = rjσ

(ℓ−1)
−j ,

σ
(ℓ)
−k = rkσ

(ℓ−1)
−k .Again we know that the elements σ

(ℓ−1)
−i , σ

(ℓ−1)
−j and σ

(ℓ−1)
−k are some di�erentmultiples of the base point P . As above we 
an rewrite the elements of thelevel ℓ signature as

σ
(ℓ)
−i = riγiP,

σ
(ℓ)
−j = rjγjP,

σ
(ℓ)
−k = rkγkP.
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e(riγiP, P ) = e(P, P )riγi

= e ((rj + rk)P, γiP )

= e(rjP, σ
(ℓ−1)
−i ) · e(rkP, σ

(ℓ−1)
−i ).As above we 
ould try to 
al
ulate the values rjP and rkP from rjσ

(ℓ−1)
−j and

rkσ
(ℓ−1)
−k respe
tively to link the signature to its prede
essor.Also, another view point is to �x σ

(ℓ−1)
−i as Q and rewrite σ

(ℓ−1)
−j and σ

(ℓ−1)
−kas aQ and bQ su
h that

Q = σ
(ℓ−1)
−i , σ

(ℓ)
−i = riQ,

aQ = σ
(ℓ−1)
−j , σ

(ℓ)
−j = rjaQ,

bQ = σ
(ℓ−1)
−i , σ

(ℓ)
−k = rkbQ.Di�ering from above here our task would be to verify if ri = ab(rj + rk), forlinking σℓ to its prede
essor σℓ−1. In our pairing setting we 
an 
al
ulate thevalues

e(aQ, bQ) := ξ,

e(aQ, rkbQ) := ξrk ,

e(bQ, rjaQ) := ξrj ,

e(abQ, riQ) := ξrj+rk .Given ξ, ξm, ξn, ξt we 
ould easily determine if t = m+ n by 
al
ulating ξm · ξnand therefore link the re-signature σ(ℓ) to its prede
essor σ(ℓ−1). However, asabove we still need to 
al
ulate abQ from given Q, aQ, bQ whi
h is again a CDHinstan
e in G.Summarizing all the results from above, we see that the usage of so many
oe�
ients is indeed ne
essary. Using less or even two equal 
oe�
ients, de-stroys the unlinkability property of the signature. Using related 
oe�
ientshowever does not seem to e�e
t the se
urity requirements of the signature.This is be
ause an atta
ker knowing even the simplest form of a general rela-tion of two 
oe�
ients, ie. ri = rj · rk or ri = rj + rk, is not able to link thesignature to its prede
essor or gain other useful knowledge against the se
urityrequirements. Unless of 
ourse he is able to solve at least the CDH problem.This means that, probably there is no harm in using related 
oe�
ients in theform of ∏n

i=1 r
ei
i = 1 or in the form ∑n

i=1 αiri for n ≤ ℓ, as long as two 
oe�-
ients are not related to ea
h other as αri = βrj. This impli
ates that a shortersignature is probably also su�
ient.
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 setting. As noted in the beginning of this se
tionmost of the results a
hieved above are not valid for the asymmetri
 settingwhere the pairing has the form
e : G1 ×G2 −→ GTfor groups G1,G2 and GT . For example in the general 
ase where two equal
oe�
ients (ri = rj) are used in the re-signing pro
ess, we were able to link there-signed signature σ(ℓ) to its prede
essor σ(ℓ−1) by 
he
king

e
(

σ
(ℓ)
−i , σ

(ℓ−1)
−j

)
?
= e

(

σ
(ℓ−1)
−i , σ

(ℓ)
−j

)

.Naturally, this does not work in the asymmetri
 setting be
ause the elementsin the pairing above would all be from the same group G2.An idea to over
ome this di�
ulty would be to look for an e�
ient mappingbetween G1 and G2 su
h that we 
ould transform the elements of G2 intoelements of G1 and vi
e versa when required. If we 
ould �nd su
h a map, theresults from above would also be valid for the asymmetri
 setting. However,�nding su
h a map would also imply that the de
isional Di�e-Hellman (DDH)assumption does not hold in the asymmetri
 setting. We re
all the de
isionalDi�e-Hellman problem.Definition 18.3. The de
isional Di�e-Hellman problem is, given P, aP, bP, cP ∈
G to de
ide whether c = ab. The de
isional Di�e-Hellman assumption is thatthis problem is hard to solve for 
ertain groups G.Obviously, in a pairing friendly group G with the symmetri
 setting this as-sumption does not hold sin
e one 
an easily 
he
k

e(aP, bP )
?
= e(cP, P ).As mentioned above, if an e�
ient map betweenG1 andG2 was found the DDHassumption would also not hold in the asymmetri
 setting. However, the DDHassumption is believed to be hard on ordinary pairing friendly ellipti
 
urvesin the asymmetri
 setting be
ause no e�
ient maps seem to exists between G1and G2 Freeman (2010). Therefore it seems that in the asymmetri
 setting theknowledge of the 
oe�
ient relations gives an atta
ker even less informationthan in the symmetri
 setting.
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lusionCon
luding the results in this 
hapter, it seems that this type of 
onstru
tionof a multi-use uni-dire
tional proxy re-signature does not allow mu
h tweakingwhen it 
omes to e�
ien
y. As already pointed out in the previous se
tions,shortening the signature seems hard to a
hieve although a shorter signatureis probably su�
ient for the same se
urity requirements. Note that the infor-mation given to the proxy is strongly related to the unlinkability, transparen
yand the private proxy properties of the signature s
heme and that this infor-mation is in
luded into the new signature during the translation pro
ess. Thisinevitably will in
rease the size of the signature. This also in
reases the amountof randomness whi
h is used to blind out the elements for a
hieving the unlink-ability. This means that the amount of random 
oe�
ients is strongly relatedto the translation pro
ess of the signature.
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ationsIn this se
tion we will try to point out the possible appli
ations of proxyre-signatures as motivated in the beginning of Part II. Although proxy re-signatures have been analyzed for their usages in e-
ash systems by the �pair-ings and advan
es in 
ryptology for e-
ash� PACE-Proje
t (2008), the mostpromising appli
ation of proxy re-signatures was proposed for an interoperabledigital rights management(DRM) ar
hite
ture in Taban, Cárdenas & Gligor(2006). After dis
ussing this proposal in detail, we will shortly 
onsider someother usages of proxy re-signatures, as proposed in Ateniese & Hohenberger(2005) and Chow & Phan (2008).20. Torwards an Interoperable Digital RightsManagement SystemThe in
reasing availability of broadband internet 
onne
tions, and the largevariety of digital media su
h as musi
 and video �les, e-books and other digital
ontent has made trading these items through DRM 
ontent providers a verylu
rative business. The re
ent su

ess stories like Apple's iTunes, mark thee
onomi
 importan
e of online shopping for digital 
ontent. The popularity ofsmart phones, portable multimedia players, the next generation gaming 
on-soles serving as media 
enters and the emerging market of home entertainmentindustry indi
ate that this business will grow even further in the next years.However, the la
k of interoperability is a major fa
tor for users to 
omplain,sin
e they 
annot use the digital 
ontent on the devi
e of their 
hoi
e. In asurvey 
arried out by INDICARE (2005), users polled that they were willing topay a higher pri
e for more usage rights and devi
e interoperability. The sur-vey 
on
luded that �it 
ertainly pays for digital musi
 providers to o�er �exibleusage rights, sharing features, and to enable the usage of digital musi
 on var-ious devi
es�. Consequently this la
k of interoperability does not only 
on
ernend users but also digital 
ontent providers, sin
e it slows down the growth ofthe industry and gives reasons for 
ir
umventing DRM me
hanisms. Althoughthere have been similar approa
hes to DRM interoperability as in Koenen et al.(2004) and Kravitz & Messerges (2005), the most satisfying approa
h is the oneof Taban et al. (2006), whi
h we analyze now.
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hite
ture. The ar
hite
ture in the proposal 
onsistsof the 
ommonly a

epted model for the home networks 
onsisting of
◦ Content providers (CP) who provide digital 
ontent to 
onsumersprote
ted by their own DRM me
hanisms.
◦ Consumer ele
troni
s (CE) operators who provide ele
troni
 de-vi
es to users and guarantee the DRM 
apability and the soundness oftheir devi
es against manipulations, for example with a trusted platformmodule (T.C.G. 2008).
◦ Li
ensing organizations who 
ertify and manage 
ompliant devi
es.These organizations also manage revo
ation lists of 
ompromised or 
ir-
umvented devi
es.
◦ Domain interoperability manager (DIM) operators who manufa
-ture and sell devi
es that allow interoperability between di�erent 
ontentproviders.
◦ Home network 
onsists of one single domain where 
onsumers want touse the digital 
ontent they have pur
hased on di�erent devi
es.Consider Figure 20.1, the interoperability problem deals with two di�erentdevi
es DA and DB, for 
ontent providers PA and PB respe
tively. The domaininteroperability manager (DIM) transfers the digital 
ontent available for DAby provider PA into the one of PB used by DB.20.2. Interoperability Framework. For the entities de�ned above we nowexplain their roles and the trust relationships between them. This model alsoserves as a guarantee for all parti
ipants when a new party joins the system.
◦ Li
ensing Organizations a
t like a 
erti�
ate authorities with wellknown publi
 keys. The li
ensing organizations 
ertify the CE and theDIM operators and keep lists of 
ompromised and 
ir
umvented devi
es.
◦ CE operators 
erti�ed by the li
ensing organization are bound to man-ufa
ture and sell only 
ompliant devi
es. These devi
es store the 
erti�-
ates for the CE issued by the li
ensing organization. Su
h a 
erti�
ateauthorizes the publi
 key PKDA

of the devi
e DA as well as the publi
key PKA of the 
ontent provider A.
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Device A Device B

DIM

HOME NETWORK

Provider B

Provider A

Licensing

Authority

Operator
DIM

Figure 20.1: Interoperable DRM System
◦ Content Providers deliver digital 
ontent to authenti
ated devi
es afterensuring that the devi
es re
eiving digital 
ontent are not 
ompromised orrevoked by the li
ensing organizations. At the end of a delivery throughse
ure 
ommuni
ation 
hannels a devi
e DA stores the en
rypted 
on-tent ({M}CEK , L = {CEK,R}PKDA

, σPKA

), where L is the li
ense
ontaining the 
ontent en
ryption key CEK and the rights R asso
iatedwith the 
ontent M en
rypted with PKDA
the publi
 key of devi
e DA,and as well as the signature σPKA

signed by DRM 
ontent provider A onthe li
ense L veri�able with the publi
 key PKA of the 
ontent provider
A.
◦ Domain Interoperability Manager (DIM) is the heart pie
e of theinteroperability framework. It stores the re-en
ryption key REAB andthe re-signature key RSAB for translation between DRM providers A and
B. It also stores translation poli
ies on whi
h the DRM operators have
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ies 
an 
ontain how many times a �le 
an betranslated, how many devi
es should be a

epted, et
. The assumption isthat the DIM has at least periodi
al internet 
onne
tivity whi
h providesit with the ne
essary tools and updates for translating between variousDRM providers and their devi
es. Besides these fun
tions the DIM 
analso provide the user with the ne
essary information of his rights on di�er-ent 
ontent and devi
es. It 
an inform the users of their options regardingthe pur
hased digital 
ontent.20.3. Cryptographi
 Tools. The two main tools used to a
hieve this pro-posed framework are proxy re-en
ryption (Part I) and proxy re-signatures. Asmentioned before, a proxy re-en
ryption s
heme allows a semi trusted proxyto translate a 
iphertext CPKA

omputed under the publi
 key PKA of Aylininto a 
iphertext CPKB

that 
an only be de
rypted with the se
ret key SKB ofBoris. On the other hand a proxy re-signature s
heme allows a semi trustedproxy to translate a signature σA valid for the publi
 key PKA of Aylin intoa signature σB on the same message valid for the publi
 key PKB of Boris.As mentioned above a devi
e DA of the 
ontent provider A stores a digital
ontent {M}CEK , a li
ense L = {CEK,R}PKDA
en
rypted with the publi
 key

PKDA
of devi
e DA, a signature σPKA

on {CEK,R} signed by the 
ontentprovider A and as well as the publi
 key PKA of the 
ontent provider A. Toa

ess the 
ontent the devi
e DA �rst veri�es the li
ense L with the publi
key PKA, then de
rypts the li
ense L with its se
ret key SKDA
to obtain the
ontent en
ryption key CEK whi
h is used to a

ess the digital 
ontent M .Usually its safe to assume that CEK is used with a symmetri
 en
ryptionalgorithm be
ause of it is e�
ien
y. Note that we also assume that the devi
e
annot be 
ompromised or at least it will be revoked when it is 
ompromised.20.4. Proposed Proto
ols. In this framework the DIM a
ts as a semitrusted proxy whi
h by assumption already has the re-en
ryption and re-signature keys REAB and RSAB, respe
tively. As mentioned before this 
anbe a
hieved with (at least) periodi
al internet 
onne
tivity. Based on the trustand DRM realizations of the 
ontent providers, two di�erent proto
ols are pro-posed.20.4.1. Proto
ol 1. This proto
ol minimizes the providers' trust in the DIMby disallowing him the a

ess to the unen
rypted 
ontentM . The disadvantageof this is that the exporting devi
eDA and the importing devi
eDB must rendersimilar DRM formats. This means that the di�erent DRM systems must usesimilar en
ryption and signature algorithms as well as similar rights expression
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ol 
an be used for for di�erent devi
es ofthe same 
ontent provider or for multi devi
es whi
h support more than oneproviders DRM me
hanisms.
Device DA Device DB

{M}CEK {M}CEK

L′ = {CEK,R}PKDB
L = {CEK,R}PKDA

σPKA
({CEK,R}) σPKB

({CEK,R})

DIM

ReEnc(REAB, {CEK,R}PKDA
)

ReSign(RSAB, σPKA
)

Figure 20.2: Proto
ol 1Consider Figure 20.2, the DIM will �rst re-en
rypt the li
ense L = {CEK,R}PKDAwhi
h 
an be de
rypted using the se
ret key SKDA
of devi
e DA to L′ =

{CEK,R}PKDB
whi
h later 
an be de
rypted with the se
ret key SKDB

ofdevi
e DB. The DIM then will re-sign the signature σPKA
to σPKB

on thesame unen
rypted li
ense {CEK,R} whi
h is now veri�able with the publi
key PKB of the 
ontent provider B. Note that the DIM 
annot verify thesignature of the unen
rypted li
ense sin
e it has only a

ess to the en
rypted
ontent {M}CEK and the en
rypted li
ense {CEK,R}PKDA
.20.4.2. Proto
ol 2. This proto
ol allows interoperability of 
ontent providerswith di�erent DRM me
hanisms. Spe
i�
ally this proto
ol supports diversityin 
ontent formats, right expression languages and en
ryption algorithms. Theonly assumption is that the exporting and importing devi
es support the samesignature s
heme. In this proto
ol the exporting devi
e DA and the DIM agreeon a session key k, to avoid the dis
losure of the se
ret key SKDA

of devi
e
DA. Devi
e DA then de
rypts L and en
rypts it again with the session key k.Then the DIM does the following:1. Re
eive ({MA}CEKA

, L = {CEKA, RA}k, σPKA

) and δPKA
, where MA
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ontent en
oded with the format of the 
ontent provider
A, CEKA is the 
ontent en
ryption key provided by A, RA the rightsexpression language of A, σPKA

the signature of A on (CEKA, RA) and
δPKA

is a signature of A on (IDMA
, IDRA

) the identi�ers of the digital
ontent and the asso
iated rights.2. The DIM �rst de
rypts L = {CEKA, RA}k to obtain CEKA and RA,and obtains MA by de
rypting {MA}CEKA
with CEKA.3. Then the DIM trans
odes MA into the formatMB of the 
ontent provider

B and translates RA into the rights expression language RB of provider
B.4. After generating a new 
ontent en
ryption key CEKB the DIM en
rypts
MB with the symmetri
 en
ryption algorithm of provider B and obtains
{MB}CEKB

. Now the DIM 
al
ulates a new li
ense L′ = {CEKB, RB}PKDBby en
rypting it with the publi
 key PKDB
of devi
e DB.5. The DIM now signs {CEKB, RB} by using its own se
ret key SKDIMwith a 
erti�
ate cert issued by the 
ontent provider B that 
erti�es thepubli
 key PKDIM and obtains σPKB

.6. Finally the DIM re-signs the signature δPKA
using the the re-signaturekey RAB and gets δPKB

. This is signature is used to assure that thetransferred 
ontent is authenti
 and original.Now the importing devi
e B re
eives {MB}CEKB
, L = {CEKB, RB}PKDB

,
σPKB

, δPKB
whi
h is a valid 
ontent for the DRM provider B with the 
orre
ten
oding of the �le M and the rights expression language RB of B. In thisproto
ol the trans
oding and the translation pro
ess 
an be very time 
onsum-ing espe
ially for lager �les. Also, as mentioned in the beginning, this pro
essrequires a greater amount of trust in the DIM from 
ontent providers be
ausethe DIM has a

ess to the unen
rypted 
ontent M .20.5. Se
urity. Traditionally there are three types of atta
ks for DRM sys-tems. These are atta
ks against:1. the DRM proto
ols,2. the 
lient devi
es, ie. their se
ure storage,3. and the rendering appli
ation.
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ks is to obtain the unen
rypted digital 
ontent. Inan atta
k against the DRM proto
ol, the atta
ker tries to exploit a weaknessin the design or implementation of the proto
ol. In an atta
k against the 
lientdevi
es, the atta
ker tries to 
orrupt the devi
e su
h that he 
an get a

ess tothe raw 
ontent. In an atta
k against the rendering appli
ation, the atta
kertries to obtain the unen
rypted 
ontent while rendering it. Beyond this in aninteroperable DRM ar
hite
ture the authors de�ne three new atta
ks. Theseare:1. the 
ross-
omplian
y of devi
es,2. spli
ing of 
ontent with an illegitimate li
ense,3. and leakage of 
ontent or 
ontent en
ryption keys on the migration path.The most important 
on
ern for interoperability is that the atta
kers will dis-
over vulnerabilities of 
ertain implementations for 
ompromising devi
es. Toobviate this, providers need to assure that all devi
es are up to date and 
om-pliant. The reasonable assumption is that the home network has at least peri-odi
al internet 
onne
tivity su
h that 
ontent providers 
an 
he
k if a devi
e isup to date before delivering digital 
ontent. This is 
ompli
ated sin
e the DIMand the importing devi
es also need to be up to date and the 
ontent transferbetween devi
es 
an also happen o� line.In the se
ond threat s
enario the 
on
ern is that an atta
ker 
an obtain ali
ense from a possibly 
orrupted devi
e and modi�es the li
ense a

ordinglyor produ
es another one to get a

ess to the raw 
ontent.The third threat s
enario is that an eavesdropper 
an learn se
ret informa-tion from the interoperability proto
ol itself. Furthermore a 
orrupted devi
e
an also be used to extra
t se
ret information from 
ompliant devi
es.20.5.1. Se
urity of proto
ol 1. As mentioned above this proto
ol allowsminimal trust to the DIM. The DIM is used as a semi trusted proxy whotranslates the signatures and the 
iphertext. Thus, if an atta
ker 
ompromisesthe DIM the best he 
an do is to extra
t the re-signature and re-en
ryptionkeys whi
h don't give him any further advantage. Sin
e the DIM does not havea

ess to the unprote
ted 
ontent, the atta
ker does not gain anything duringthe translation pro
ess. Therefore the only way to atta
k the system is to breakthe underlying 
ryptographi
 assumptions.20.5.2. Se
urity of proto
ol 2. Any atta
ker 
orrupting the DIM 
annotgain any information on the system se
rets be
ause the DIM does neither store
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ret keys of 
ontent providers nor of devi
es. Furthermore to preventatta
kers from simply generating their own re-signature and re-en
ryption keys,the DIM is validated through an initial registration with the various 
ontentproviders.The biggest 
on
ern in proto
ol 2 is the fa
t that the DIM has a

ess tounprote
ted 
ontent, either dire
tly when de
rypting the 
ontent or indire
tlythrough the de
ryption of the li
ense. Therefore the 
ontent providers haveto make sure that the DIM is working on trusted 
omputing platform (T.C.G.2008) to ensure that the translated 
ontent is not leaked during the wholetranslation pro
ess.For further 
onsiderations about se
urity, ideas about attestation of 
om-pliant devi
es, atta
k s
enarios and a more detailed insight of this proposal werefer to the original publi
ation Taban et al. (2006).21. Masking the Internal Stru
ture of a CompanyRe
all one of the motivations in the beginning of Part II, a 
ompany with di�er-ent working groups ea
h mandated by its own supervisor. When a (sub)proje
tis �nished the supervisor signs it with his own private key. Then the signatureof the supervisor is translated (via a proxy) into the signature of the 
ompany.For example, an automobile 
ompany does not manufa
ture all the parts oftheir 
ars, more likely the 
ompany has its own 
ontra
tors (other 
ompanies)whi
h are spe
ialized in manufa
turing spe
i�
 parts. The manufa
tured partsare sent to the 
ompany's di�erent divisions like fabri
ation, servi
e, spare partssales, et
. The parts in possession of these di�erent divisions whi
h are possiblydistributed all over the world must all have a valid signature of the 
ar 
om-pany itself. Here we 
an safely assume that modern day logisti
s in this s
aleuses RFID 
hips to deploy signatures. However these 
hips usually 
annot bere-programmed and have limited storage spa
e. This rules out the trivial solu-tions mentioned in Part II. Besides that, the 
ar 
ompany 
ould also delegateits signing rights to its di�erent bran
hes, however this would also in
rease the
han
e of misuse. In addition to this, due 
ompetitive reasons the 
ar 
om-pany is interested in keeping its supply partners 
on�dential. Thus, a proxyre-signature s
heme 
an be very useful in this kind of global and distributedsetting. The di�erent divisions, after re
eiving and verifying the quality of themanufa
tured parts, translate the signatures of the manufa
turers into validsignatures of the 
ar 
ompany. The di�erent divisions a
t as a proxy betweenthe part manufa
turers and the 
ar 
ompany.
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hemes 
an also be used in immigration and 
ustoms ser-vi
es for travelers with ma
hine readable travel do
uments like e-passports.The signature within the e-passport 
an be transformed while the travelerpasses through di�erent 
he
kpoints. This pro
ess ensures that the travelergoes through all the required 
he
kpoints while only one signature is keptwithin the passport. In general, proxy re-signatures 
an be used to ensurethat a 
ertain path in a graph is taken. This 
an be a
hieved by simply pro-viding ea
h node in the graph, ex
ept the �rst one, with the re-signature keysbut no signing keys, su
h that ea
h node is only able to translate signaturesof adja
ent nodes. Consider Figure 22.1, the signer A generates the signature
σA(m) for the message m, along the path the intermediate nodes a
t as proxiesand transform the signature into its �nal version σD(m) whi
h is then veri�edby V .

A B C
D VσA

(m
)

σ
C (m

)

σB(m)

σD
(m

)Figure 22.1: An authenti
ated pathWe note that even if one or more nodes are 
ompromised they still 
annotprodu
e signatures of their own, thus message inje
tion is not possible at anytime. Sin
e only one signature needs to travel the path, there is no need for a
-
umulating signatures and publi
 keys along the path. Re
all the unlinkabilityproperty of the signature s
heme, a full path 
an be kept se
ret sin
e ea
h nodeon the path has only the information of the pre
eding node. This setting 
anbe very useful in networks where the trustworthiness of all nodes is not given.23. Certi�
ate ManagementThe 
erti�
ation of publi
 keys is usually implemented as a signature from the
erti�
ate authority (CA) on the publi
 key belonging to a spe
i�
 identity.
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erti�
ation of new publi
 keys is a time 
onsuming and expensivepro
ess. These 
erti�
ates are often deployed in networks to allow transa
tionsbetween users. Now 
onsider two di�erent networks where the users only trusttheir 
erti�
ation authority due to se
urity reasons. When two users Aylin andBoris in di�erent networks want to 
ommuni
ate with ea
h other, they will �rstex
hange their 
erti�ed publi
 keys. However, by assumption Aylin only trusts
CA1 and Boris only CA2 su
h that they 
annot verify the identities of ea
hother. In this setting proxy re-signatures 
ould be very useful sin
e the di�erent
erti�
ation authorities 
ould set up proxies to allow the translation of theirsignatures. Generalizing this, proxy re-signatures 
an be used for transparent
ross-
erti�
ation between di�erent 
erti�
ate authorities su
h that 
erti�
atesof one authority 
an be 
onverted into 
erti�
ates of others.
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lusionThe resear
h �eld of digital signatures is diverse and very fas
inating. Di�erentrequirements and appli
ation areas, led to various types of digital signaturessome of whi
h we dis
ussed at the end of Part I. Spe
ially when it 
omes topra
ti
al appli
ations in digital rights and e-
ash systems, proxy re-signatures
an be very useful be
ause of their translation property. In this 
ontext weintrodu
ed and analyzed the multi-use unidire
tional proxy re-signature pro-posed by Libert & Vergnaud, in detail. We �rst introdu
ed the s
heme step bystep to provide a 
omprehensive understanding of the signing and translationpro
ess before writing down the formal notations.In Part III, we reviewed the 
ryptographi
 assumptions, the adversarymodel and the two di�erent simulation environments. We also introdu
ed anew se
urity de�nition whi
h over
omes the outlined short
omings of originalse
urity de�nition from Ateniese & Hohenberger (2005). We observed thatour new se
urity de�nition does not only in
lude all the requirements listedin Libert & Vergnaud (2008a) but also provides the ne
essary �exibility to beadapted and used for di�erent requirements. This brought us to the 
on
lusionthat our new se
urity de�nition 
an be used in the future to prove the se
urityof di�erent proxy re-signature s
hemes. We �nished this 
hapter with a de-tailed proof of se
urity in the random ora
le model and in the standard modelafter a slight modi�
ation of the signature s
heme.In Part IV, we have seen that the amount of randomness used in ea
h trans-lation step, is ne
essary to preserve the unlinkability property of the signature.We also introdu
ed a new problem 
lass, the 
hain shortening problem, whi
hwe used to analyze the length of the signature. We observed that if shorteningthe signature was somehow possible this would almost mean solving the CDH.Thus, we 
on
luded that if the proxy has to insert some information (even asingle bit) into the signature, we would inevitably end up with signature whi
hgrows with the number of delegations.In Part V we pointed out some usages of proxy re-signatures, spe
ially theproposed interoperable DRM ar
hite
ture from Taban et al. (2006). Despitethese pra
ti
al appli
ations of proxy re-signatures, dis
ussed in that 
hapter, itis still desirable to have a multi-use proxy re-signature s
heme whi
h 
ombinesthe identities of the 
ontent provider and the user pur
hasing it. In su
h as
heme, when Aylin pur
hases a �le m from the 
ontent provider Peter, a
ombined signature σPA of P and Aylin should authenti
ate the do
ument m.



142 T. Jonas ÖzganIf now Aylin wants to give away the �le to Boris, the translation propertyshould allow the translation of σPA into σPB a 
ombined signature of Borisand Peter. Ideally of 
ourse this should happen without the intera
tion of the
ontent provider Peter. This is be
ause, as in a �ea market example, onlyAylin and Boris have intera
t for trading. In the resear
h area of 
ontentprote
tion and e-
ash systems 
onstru
ting su
h a signature 
ould be veryinnovative and useful.
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