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A Multi-use Uni-diretional Proxy Re-Signature Sheme 11. Introdution1.1. Motivation. Digital signatures are mathematial shemes demonstrat-ing the authentiity of a doument. A valid signature suggests that the authen-tiated doument belongs to a known signer, and it also assures the integrityof the doument. Although in pratie there are a variety of types of digitalsignatures, generally we an say that, a digital signature an be used to provethe originality of a doument while also providing a mehanism to protet thesigned doument against alteration. In the age of information and with the in-reasing availability of high speed internet, users ome in ontat with a largevariety of digital media suh as musi, books, artiles, photos, and so on. Alsothe popularity of smart phones, portable multi-media players and next genera-tion gaming onsoles has turned the digital world into a big trading and sharingplae, spread all over the world. The demand for digital media has made thetrading of digital ontent a very lurative business. Sensing this opportunitymany ompanies started to o�er digital media, some of the well known examplesare Apple's iTunes, Mirosoft Windows Media and Napster. These ompaniesuse ontent protetion systems to protet their �les against illegal distributionbut also to authentiate them. Sine di�erent ompanies use di�erent ontentprotetion mehanisms the users annot use the digital ontent on devies oftheir hoie. This lak of interoperability gives reasons for the illegal usage anddistribution of digital media and also slows down the growth of the industry.To ahieve interoperable ontent protetion mehanisms, but also for e-ashand e-passport systems, a speial type of digital signature is required. As inthe real world, when a user sells his CD to another user, the banderol on theCD proves its originality to the new owner. In this selling proess whih ouldtake plae for example on a �ea market, the users do not need any interationwith the reord ompany or with the bank that issued money. As in this simpletrading example we require a digital signature that an be given away easily.This means that, as in the real world, the users who want to exhange their�les with a urreny should only need to interat with eah other and not withthe ontent providers or the urreny owner. A good approah to ahieve thiskind of digital trading is the onept of proxy re-ryptography speially proxyre-signatures.1.2. Conept. In this thesis we will analyze in detail the proposal of Libert& Vergnaud (2008a), a multi-use unidiretional proxy re-signature. We hooseto analyze this signature sheme beause of its translation property and itspossible usages in pratie suh as digital ontent protetion systems and ele-troni ash systems. Our aim was to introdue the signature sheme step by



2 T. Jonas Özganstep for a omprehensive understanding of its struture and relations to be ableto analyze its seurity and its e�ieny.1.3. Contributions. In this work we provide a new seurity de�nition foruni-diretional proxy re-signatures. The shortomings of the original seurityde�nition from Ateniese & Hohenberger (2005) suh as the arti�ial splittingof the seurity de�nition and the unnatural limitation of the adversaries, mo-tivated us to onstrut a new game based seurity de�nition. In Shao et al.(2010) the authors also point out the shortomings and the unneessary om-plexity of the old seurity de�nition and provide another seurity de�nitionfor uni-diretional proxy re-signatures with ertain probabilities. Similar toour proposal the authors onsider a generi adversary with aess to as muhinformation as possible to overome the shortomings of the old seurity def-inition. Di�ering from their proposal, we provide a simple graph algorithmto keep trak of the adversary's queries and to detet trivial forgeries. As weshow in Part III, simple modi�ations to the graph algorithm seem to makeour de�nition also valid for di�erent types of proxy re-signatures. Therefore,we believe that our new seurity de�nition provides the neessary �exibility tobe adapted and used for di�erent types of proxy re-signatures with di�erentproperties.Further we an list the following:
◦ We explained the idea behind the onstrution of the signature by ex-tending a short signature (Boneh et al. 2004) into a multi-use proxy re-signature step by step. We used the additive notation for the signaturesheme instead of the multipliative one. We hanged the numberingof the indies of the signature elements and as well as the used oe�-ients to provide a more intuitive understanding of the signature sheme.We showed how the veri�ation equations are related to the elementsof the signature. This allowed us to develop a graphial notation todemonstrate the relation between signature elements. We also expressedthe onstrution of the signature sheme by deomposing it into simplebuilding bloks.
◦ We tried to analyze the e�ieny of the signature sheme from two dif-ferent angles: (1) The amount of randomness and (2) the length of thesignature. Unfortunately there was no hint or disussion in the originalpubliation we ould make use of. To be able to analyze the length ofthe signature we introdued a new problem alled the hain shorteningproblem. We provided some insight what would it mean to have a shorter



A Multi-use Uni-diretional Proxy Re-Signature Sheme 3signature or even if this was possible. We also analyzed the amount ofrandomness used by the signing and re-signing algorithms and pointedout the impliations of using lesser or related oe�ients.
◦ We put together the possible usages of proxy re-signatures whih weresuggested in di�erent publiations. We foused our attention on Tabanet al. (2006) to point out the pratial importane of proxy re-signaturesin ontent protetion systems.1.4. Related Work. The onept of proxy re-ryptography was �rst intro-dued in Blaze, Bleumer & Strauss (1998) as atomi proxy ryptography, inwhih a semi trusted proxy an onvert signatures of Aylin into the signaturesof Boris on the same message. However, in this proess the proxy an notsign arbitrary messages on behalf of both parties Aylin and Boris. This ryp-tographi primitive reeived renewed interest with the publiation Ateniese &Hohenberger (2005) in whih the authors provided useful seurity de�nitionsand introdued two new proxy re-signature shemes, (1) multi-use bidiretionaland (2) single-use unidiretional. The seurity of both of these shemes wasproven in the random orale model (Bellare & Rogaway 1993). The authors leftopen the hallenge to �nd a multi-use unidiretional sheme whih was also se-ure in the standard model. In Libert & Vergnaud (2008a) the authors proposedthe �rst multi-use unidiretional proxy re-signature sheme whih is also seurein the standard model, after a slight modi�ation. This sheme was based onbilinear maps, unlike the later proposal of a multi-use unidiretional sheme inSunitha & Amberker (2009) whih is based on fatoring. Note that a proxy re-signature is not the same as a proxy signature. In the proxy re-signature shemea proxy �translates� a valid and publily veri�able signature σA(m) of Aylinon a message m into σB(m) one from Boris on the same message. However,proxy signatures allow Aylin to delegate her signing rights to Boris but only ifProxy ooperates. The general idea is to divide Aylin's seret into two shares.Boris and Proxy only reeive one share eah so they an jointly generate sig-natures on behalf of Aylin on the same message. Clearly proxy signatures havea ompletely di�erent appliation area than proxy re-signatures.1.5. Struture of the Thesis. In the following setions we will introduethe signature sheme step by step with its theoretial bakground and designidea. This thesis is divided into �ve main parts.
◦ In Part I, we start with the foundations of ellipti urve based ryptog-raphy. Remembering the de�nition of an ellipti urve, we show that



4 T. Jonas Özganthe points on an ellipti urve with the point of in�nity form an abeliangroup. After de�ning pairings and how to alulate them, we disusssome ellipti urve based digital signatures.
◦ In Part II, we start with the disussion of possible methods of transfer-ring a signature of user Aylin to user Boris. Sine the trivial methodsshow fatal de�its we formulate our requirements to a transferable signa-ture. We then build up step by step the signature sheme from Libert &Vergnaud (2008a) by transferring a short signature (Boneh et al. 2004)one and generalize this idea into a multi-use sheme. In this proess wealso see the relations of the signature elements in a graphial form whihenables us to de�ne the signature with building bloks. We �nish thishapter with formally writing down the signature sheme.
◦ Part III begins with the introdution to the ryptographi assumptionsunderlying the signature sheme. We ontinue with disussion of the ad-versary model and the two environments in whih the adversary is simu-lated. We then introdue our new seurity de�nition for uni-diretionalproxy re-signatures. This allows us to ompare our new seurity de�nitionto the original one after realling the seurity de�nition from Ateniese &Hohenberger (2005) and outlining its limitations. We then prove that thesignature sheme is seure for the new seurity de�nition in the randomorale model. After modifying the signature sheme slightly we also provethe seurity of the signature sheme in the standard model.
◦ In Part IV we analyze the e�ieny of the signature from two angles.First, we introdue a new problem lass alled the hain shortening prob-lem, whih helps to understand the length of the signature. Seond, weanalyze the amount of used randomness to build the signature and disussthe results of using lesser or related oe�ients.
◦ In Part V we put together the possible appliations of proxy re-signaturesespeially fousing on the interoperable digital rights management pro-posal from Taban et al. (2006).
◦ Finally in Part VI we outline and onlude the results ahieved in thisthesis.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 5Part IEllipti urve ryptographyEllipti urves have a rih history and have been studied by mathematiiansover a entury before they have beome popular in ryptographi researh andappliations in the last thirty years. In 1985, Neal Koblitz and Vitor Millerindependently proposed to use ellipti urves for publi-key ryptographi sys-tems. However, the aeptane of ellipti urve based rypto-systems ame inthe late nineties when aredited standard organizations suh as the Ameri-an National Standards Institute (ANSI) spei�ed protools based on elliptiurves. At present there are numerous appliations and publiations on elliptiurves. This shows that there has been an extensive amount of researh ar-ried out in this area. The aim of this hapter is give an introdution to elliptiurves and pairing based ellipti urve ryptography.2. Ellipti CurvesThere are many di�erent ways of introduing ellipti urves suh as startingwith the anon ball problem as Washington (2008) or starting more algebrailike Werner (2002). We start right away with the de�nition:Definition 2.1. An ellipti urve E over a �eld F is de�ned by an equationin the form(1.1) E : y2 = x3 + ax+ bwhere a, b ∈ F and ∆ 6= 0. Here, the disriminant ∆ = −16(4a3 + 27b2) of theurve is used to exlude singular ases.This equation is alled the simpli�ed Weierstrass equation or just the Weier-strass equation. Note here that usually in literature the ellipti urves areintrodued by what is known as the generalized Weierstrass equation. Howeverone an show that the generalized Weierstrass form of an ellipti urve analways be transformed into the simpli�ed Weierstrass equation above if theharateristi of F, is neither 2 nor 3. The generalized Weierstrass equation aswell as the simpli�ation proess are explained in detail in Washington (2008)and Werner (2002). For any extension K of the �eld F , K ⊇ F we an onsiderthe set of K-rational points(2.2) E(K) := {O} ∪ {(x, y) ∈ K×K| y2 = x3 + ax+ b}.



6 T. Jonas Özgan

Figure 2.1: Ellipti Curves E : y2 = x3 − 2x+ αFigure 2.1 shows di�erent ellipti urves given by y2 = x3 − 2x+ α.The point O is alled the point at in�nity whih, allows us to prove thegroup struture of points on the urve. One an imagine this point sittingsomewhere up high on top of the y-axis. Visually, onsider a two dimensionalplane (like a sheet of paper) on whih an ellipti urve is drawn. Starting froma point on the urve, an ant ould walk in two diretions on the urve. In eahdiretion the ant would fall o� the plane and ome to some �unde�ned� plae.The algebrai nature of these plaes (points) is all the same whih is O, thepoint at in�nity. Understanding the algebrai nature of this point requires anintrodution to projetive spae whih an be found in Werner (2002).3. The group lawWe an atually introdue a group struture on an ellipti urve. This, inturn,is used to onstrut ellipti urve based ryptosystems.Definition 3.1. Let E be an ellipti urve over a �nite �eld F given in the



A Multi-use Uni-diretional Proxy Re-Signature Sheme 7Weierstrass form, and P1 = (x1, y1) and P2 = (x2, y2) two di�erent points on
E. To add P1 and P2 we draw a line passing through P1 and P2. This lineintersets E in a third point whih we all P3 = (x3, y3). Then P3 is re�etedalong the x-axis by hanging the sign of the y-oordinate and this is P1 + P2.

.....
b

b

b

b

P1

P2

P3

P1 + P2

L1

L2

O

Figure 3.1: P1 + P2 on an ellipti urveLet us �rst assume that P1 6= P2 and none of them is O. The slope of L1 is(3.2) m =
y2 − y1
x2 − x1

.In ase where x1 = x2, the line L1 will be vertial and for now we assume thatthis is not the ase. The equation of L1 is
y = m(x− x1) + y1.Now substituting this in the Weierstrass equation of E we obtain

m(x− x1) + y1)
2 = x3 + ax+ b.The resulting equation will be in the form

0 = x3 −m2x2 + · · ·This ubi polynomial has three roots and we know two of them, namely x1and x2. Sine (x1 + x2 + x3) = m2 we obtain
x3 = m2 − x1 − x2 and y3 = m(x3 − x1) + y1.



8 T. Jonas ÖzganRe�eting this aross the x-axis yields P1 + P2 = P4 = (x4, y4) with
x4 = m2 − x1 − x2 and y4 = m(x1 − x3)− y1.Now onsider the ase where P1 = P2 = (x1, y1). This means that the line L1is tangent to E at P1. Sine P1 = P2 we use impliit di�erentiation to �nd outthe slope m of L1(3.3) dy

dx
= m =

3x2
1 + a

2y1
.Again two roots, or better one double root, of the ubi polynomial

0 = x3 −m2x2 + ...are known and we an �nd out the third root. The same tehnique as abovegives us for P1 + P1 = P4 = (x4, y4) the values
x4 = m2 − 2x1, y4 = m(x1 − x4)− y1.this is alled point doubling (Figure 3.2).

..... b

b

b

O

P
P ′

2PFigure 3.2: Point DoublingNow onsider two points P1 and P2 where x1 = x2 and y1 6= y2. The linethrough P1 and P2 is parallel to the y-axis thus the third point of intereption



A Multi-use Uni-diretional Proxy Re-Signature Sheme 9is O. Re�eting O aross the x-axis is again O sine the algebrai nature of�all� O's are the same as mentioned above. Therefore here we get P1+P2 = O.Finally, assume that one of the points is O. Similar to last the ase above,the line through P1 and O is vertial. The third point of intereption is there�etion of P1 aross the x-axis, re�eting it again will result bak in P1. Thus
P1 +O = P1. Here we an see that with this de�nition of an addition over E,the point O is behaving as a neutral element.Now we summarize the addition ases from above to de�ne an addition onan ellipti urve.Definition 3.4. Let E be an ellipti urve in Weierstrass form: y2 = x3 +
ax+ b. Given two points P1 = (x1, y1) and P2 = (x2, y2) on E, P1, P2 6= O and
m is the slope of the line through P1 and P2 (see equations (3.2) and (3.3)).De�ne an addition by P1 + P2 := P4 = (x4, y4) where:(i) x4 = m2 − x1 − x4 and y4 = m(x1 − x4)− y1, if x1 6= x2.(ii) P4 = O if x1 = x2 but y1 6= y2, ie. P1 and P2 are symmetri with respetto the x-axis.(iii) x4 = m2 − 2x1 and y4 = m(x1 − x4) − y1, if P1 = P2 and y 6= 0, ie. thepoint P1 is a double.(iv) P4 = O if P1 = P2 and y = 0, ie. the point P1 is a double root on the

x-axis.The de�nition De�nition 3.4 allows us to formulate the following theorem.Theorem 3.5. The points on an ellipti urve E form an abelian group withthe addition operation as de�ned above with O as the neutral element. Inpartiular,(i) (P1 + P2) + P3 = P1 + (P2 + P3) for all P1, P2, P3 on E (the group isassoiative),(ii) P +O = P for all P on E (O is the group's neutral element),(iii) for any P on E there is a P ′ on E whih satis�es P + P ′ = O (existeneof inverses),(iv) P1 + P2 = P2 + P1 for all P1, P2 on E (the group is ommutative).We already pointed out above how O behaves as a neutral element. For adetailed proof of the group properties see Washington (2008) or Werner (2002).



10 T. Jonas Özgan 4. PairingsIn this setion we want to make a proper introdution to pairings whih will besu�ient for understanding the later setions. A pairing is a funtion mappinga pair of points from two groups G1 and G2 to another group GT . In manyappliations all three groups are usually of prime order n. This mapping,often noted as e(·, ·), has some properties whih are espeially attrative inryptographi settings. We study the appliations of pairings in ryptographisettings in the next setion.Definition 4.1 (Torsion points). Consider an ellipti urve E de�ned over
Fq and an integer n not divisible by the harateristi of Fq. The set E[n] of
n-torsion points is given by

E[n] = {P ∈ E(Fq)|nP = O},where Fq is the algebrai losure of Fq. In other words the set of n-torsionpoints onsists of all points P ∈ E(Fq) whih have order dividing n.Now we introdue a bilinear pairing in a basi setting.Definition 4.2 (Pairing). Let E(Fq) be an ellipti urve de�ned over Fq, G1and G2, GT three groups usually of prime order n. Typially G1 and G2 aresubgroups of E[n] andGT is a subgroup of F×
qk
, where k is alled the embeddingdegree if n is the minimal integer dividing qk − 1 . Then there exists a map:

e : G1 ×G2 −→ GT ,whih satis�es the following onditions.(i) The map e is bilinear:
◦ e(P1 +Q1, P2) = e(P1, P2)e(Q1, P2),
◦ e(P1, P2 +Q2) = e(P1, P2)e(P1, Q2),for all P1, Q1 ∈ G1 and P2, Q2 ∈ G2.(ii) The map e is non-degenerate:
◦ e(P1, P2) 6= 1,for some P1 ∈ G1 and P2 ∈ G2.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 11(iii) For pratial reasons we require that e is e�iently omputable withrespet to the input size whih is Θ(log q) bits sine P,Q ∈ E(Fq).An example of this is the Weil pairing whih has the form(4.3) en : E[n]×E[n] −→ µnfor an ellipti urve E(Fq) where
µn = {x ∈ Fq|x

n = 1}denotes the set of nth roots of unity in Fq. The Weil pairing satis�es thefollowing onditions1. en is bilinear:
◦ en(P +Q,R) = en(P,R)en(Q,R),
◦ en(P,Q+R) = en(P,Q)en(P,R)for all P,Q,R ∈ E[n].2. en is non-degenerate: If en(P,Q) = 1 for all Q ∈ E[n], then P = O.Notie that di�ering from De�nition 4.2 we use here only one additive group

E[n] instead of two, whih is alled the symmetri ase. For the de�nition ofthe Weil pairing and a proof of the listed properties above see Washington(2008).Based on the Weil pairing it is possible to onstrut other pairings, anexample of this is the modi�ed Tate-Lihtenbaum pairing whih has theform(4.4) τn : E(Fq)[n]×E(Fq)/nE(Fq) −→ µn ⊆ F×
q ,for an ellipti urve E(Fq) with n | q−1. Here E(Fq)[n] denotes the elements of

E with oordinates in Fq and of order dividing n, where µn is again the groupof the nth roots of unity as de�ned above.The modi�ed Tate-Lihtenbaum pairing an be onstruted from the Weilpairing by
τn(P,Q) = en(P,R− φqR),where P ∈ E(Fq)[n], Q ∈ E(Fq),R ∈ E(Fq) and nR = Q. Here

φq :
Fq −→ Fq,
x 7−→ xq



12 T. Jonas Özganis alled the q-th power of the Frobenius endomorphism.In ontrast to (4.4) the original Tate-Lihtenbaum pairing has the fol-lowing form:(4.5) 〈·, ·〉n : E(Fq)[n]× E(Fq)/nE(Fq) −→ F×
q /(F

×
q )

n,Note that sine we obtain here a oset in F×
q mod n-th powers by takingthe n-th root of µn, the modi�ed Tate-Lihtenbaum pairing is more suitable forpratial appliations than the original one and these pairings an be alulatedquikly (Washington 2008).We mentioned above that for pratial appliations we require that thepairing is e�iently omputable. However, we require a basi understanding ofdivisor theory before disussing the omputation of pairings. The following ismostly taken from Joux (2002); Me�ert (2009); Nüsken (2010) and Washington(2008).4.1. Divisors. In this setion we will make a brief introdution into divisortheory. Roughly speaking a divisor D is an element of the group generatedby the points of the urve E. It is used to keep trak of poles and zeros. Thefuntion f is said to have a zero at point P if it takes the value 0 at P , similarlyit has a pole at P if it takes the value O at P . Then D an be written as a�nite sum D :=

∑

i ai(Pi) where eah Pi is a point on E and eah ai is aninteger. Given a funtion f from the set of rational maps in the oordinates ofpoints x, y we build a divisor div(f) from the zeros and poles of f by formingthe formal sum of zeros and poles with their multipliity.Remember Setion 3 where we introdued the addition of points on elliptiurves. We used a line passing through two points P1 and P2 on the urve Eand onluded that this line has to interset E at a third point P3 ( Figure 3.1).We atually used the solutions to the funtion 0 = mx− y + c to alulate theoordinates of the point P3. Now onsider a non-trivial funtion f = ax+by+cand assume that it passes through three points P1, P2 and P3. If b 6= 0 then
P1, P2, P3 6= O and f has a triple pole in O. Thusdiv(ax+ by + c) = [P1] + [P2] + [P3]− 3[O].On the other hand if b = 0 then the line passes through P3, −P3 and O. Weobtain div(x− x3) = [P3] + [−P3]− 2[O].In Figure 3.1 this is L2 onneting P3 and P1 + P2. Now if we rewrite −P3 =
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P1 + P2 we get(4.6) div(ax+ by + c

x− x3

)

= [P1] + [P2]− [P1 + P2]− [O],where x3 is the x-oordinate of P3. Equivalently, we have
[P1 + P2] + [O] + div(ax+ by + c

x− x3

) = [P1] + [P2].Sine we an always draw a line through two given points P1, P2 ∈ E we anreplae a divisor [P1] + [P2] with [P1 + P2] + [O] plus the divisor of some otherfuntion.We observe that the sum of points of a divisor is O and the degree of thedivisor is 0. However proving this requires more theory than introdued here,for a proper introdution to divisor theory we refer to Washington (2008).4.2. Calulation of pairings. In this setion we will introdue the algo-rithm from Miller (1986) for the omputation of pairings. We start with thede�nition of the Tate-Lihtenbaum pairing and ontinue with its alulation.Definition 4.7 (Tate-Lihtenbaum pairing). Let E(Fq) be an ellipti urveand �x a prime n whih is not divisible by the harateristi of Fq. Further,let k be the smallest integer suh that n | qk − 1 (embedding degree). Alsoassume that fP is a funtion with divisor n[P + R] − n[R] for some R, and
Q1 − Q2 = Q suh that P + R, R, Q1, Q2 are all di�erent and non-zero. Wede�ne the Tate-Lihtenbaum pairing by

〈·, ·〉n :
E(Fq)[n]× E(Fqk)/nE(Fqk) −→ F×

qk
/(F×

qk
)n,

(P,Q) 7−→ 〈P,Q〉n = fP (Q1)
fP (Q2)

.and the modi�ed Tate-Lihtenbaum pairing by
τn :

E(Fq)[n]× E(Fqk)/nE(Fqk) −→ µn ⊆ F×
qk
,

(P,Q) 7−→ 〈P,Q〉n
qk−1

n

.Here E(Fq)[n] denotes the elements of E with oordinates in Fq and of orderdividing n and µn the set of nth roots of unity as de�ned above. The group
E(Fqk)/nE(Fqk) is the set of equivalene lasses of points of E(Fq) where twopoints are onsidered equivalent if their di�erene is another point of order n.The group F×

qk
/(F×

qk
)n isomorphi to µn is the set of equivalene lasses of theelements of Fq where two elements onsidered to be equivalent if they are thesame up to the multipliation with an nth power.



14 T. Jonas ÖzganSine the �nal exponentiation with qk−1
n

an be handled, the main goal is a-tually to �nd that funtion fP and alulate the pairing
〈P,Q〉n =

fP (Q1)

fP (Q2)
,suh that the divisor of fP and the divisor DQ := [Q1]− [Q2] are disjoint.Now we want to make a onnetion between n and the funtion fP whihwill allow us to alulate this pairing. We �rst de�ne a funtion fi for i ≥ 0suh that(i) div(fi) = Di := i[P +R]− i[R]− [iP ] + [O]with P,Q,R ∈ E as above. We observe here thatdiv(fn) = n[P +R]− n[R]− [nP ]

︸︷︷︸

[O]

+[O] = div(fP )sine P is a torsion point and thus nP = O. This means if we an omputethe value(4.8) fn(Q1)

fn(Q2)
=

fP (Q1)

fP (Q2)
= 〈P,Q〉nwe have reahed our goal.We note that for i = 0 we get

f0(Q1)

f0(Q2)
= 1sine

D0 := 0[P +R]− 0[R]− [0P ] + [O] = 0.For i = 1 we have
D1 := [P +R]− [R]− [P ] + [O].Now assume that ℓ = ax + by + c is the line through P and R, v = x + d thevertial line through P +R and O. Then we obtain

f1(Q1)

f1(Q2)
=

ax+by+c

x+d
|(x,y)=Q1

ax+by+c

x+d
|(x,y)=Q2

.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 15Now we want to use f0 and f1 to alulate the values f2, f3, . . . , fn suh thatwe an ompute the desired value (4.8). Therefore, assuming that the values
fj(Q1)

fj(Q2)
and fk(Q1)

fk(Q2)are already alulated for some integers j, k, we want to derive a solution for
fj+k(Q1)

fj+k(Q2)
.As de�ned in (i) above fj and fk have the divisorsdiv(fj) = Dj := j[P +R]− j[R]− [jP ] + [O],(1) div(fk) = Dk := k[P +R]− k[R]− [kP ] + [O].(2)Let ℓ = ax+ by + c the line through jP and kP , and let v = x+ d the vertialline through (j + k)P . Realling equation (4.6) we get(3) div(ax+ by + c

x+ d

)

= [jP ] + [kP ]− [(j + k)P ]− [O].Adding (1),(2) and (3) we getdiv(fjfk ax+ by + c

x+ d

)

= Dj+k := (j+k)[P +R]− (j+k)[R]− [(j+k)P ]+ [O].Consequently, we obtain
fj+k(Q1)

fj+k(Q2)
=

fj(Q1)

fj(Q2)
·
fk(Q1)

fk(Q2)
·

ax+by+c

x+d
|(x,y)=Q1

ax+by+c

x+d
|(x,y)=Q2as the evaluation of fj+k at Q1 and Q2 whih is the required value. This meansthat to alulate the value of fj+k at Q1 and Q2 we we only need the values of

fj and fk there and the points jP and kP .The following algorithm from Miller (1986) starts with f1 and suessivelyuses point doubling and adding to reah up to fn.Miller's Algorithm.Input: Points P,R,Q1, Q2 ∈ E and the �nal index n where nP = O.Output: The value of 〈P,Q〉n = fP (Q1)
fP (Q2)

where div(fP ) = n[P + R] − n[R] −

[nP ] + [O].



16 T. Jonas Özgan1. Compute ℓ = ax+ by + c the line through P and R.2. Compute v = x+ d the vertial line through P +R and O.3. Compute f1 ←
ax+by+c

x+d
|(x,y)=Q1

ax+by+c
x+d

|(x,y)=Q2

.4. Let f ← f1, J ← P .5. Write n = (nr−1, . . . , n1n0) in base 2.6. For i = r − 2, . . . , 0 do 7�177. Let ℓ = ax+ by + c be the tangent at J .8. S ← 2J .9. Let v = x+ d be the vertial line through S.10. f ← f 2 · ℓ
v
|Q1 ·

v
ℓ
|Q2.11. J ← S.12. If ni = 1 then13. Let ℓ = ax+ by + c be the line through J and P .14. S ← J + P .15. Let v = x+ d be the vertial line through S.16. f ← f · f1 ·

ℓ
v
|Q1 ·

v
ℓ
|Q2.17. J ← S.18. Return f .The runtime of Miller's Algorithm is determined by the point adding anddoubling steps whih depend on the group order n. Reall that the inputsize is Θ(log q) then the algorithm makes O(k log q) point operations whih isonsidered to be too slow for pratial purposes. This results from the hoieof qk whih is qk ≈ 21024 bits (or even qk ≈ 22048) and is related to the seurityof the signature sheme. We will disuss the hoie of qk in the ontext of theseurity of the signature sheme later in Part III.Miller's Algorithm is used as a basis for the alulation of pairings and therehave been numerous proposals to speed up and optimize it for spei� groupsand di�erent pairings. For example, the reent publiation Costello & Stebila(2010) proposes a preomputation based modi�ation of Miller's Algorithmthat is 37% faster than the original one and 19, 5% faster than other preom-putation based approahes. For a detailed disussion we refer to some of thepubliations in this area suh as Costello & Stebila (2010); Galbraith, Harrison& Soldera (2002); Ian Blake & Xu (2004)5. Ellipti urve based ryptosystemsHaving introdued ellipti urves and bilinear pairings we now look at someexamples of ellipti urve based ryptosystems. Sine we later aim to analyze



A Multi-use Uni-diretional Proxy Re-Signature Sheme 17a signature sheme in the rest of this thesis, we will onentrate on signatureshemes based on ellipti urves and pairings.5.1. El-Gamal type signature sheme. In El-Gamal (1985) the El-Gamalsignature sheme was introdued. It is based on the hardness of the disretelogarithm problem in ertain groups. We explain here an ellipti urve variantof the El-Gamal Signature Sheme.Given an ellipti urve E over a �nite �eld Fq (where the disrete log prob-lem is hard) and a point P ∈ E(Fq) with a large (prime) order n. Let also
H : {0, 1}∗ → Zn be a hash funtion and f : E(Fq) → Zn be a funtion map-ping the points on E to integers. Boris wants to verify a signature σm(s, R)whih was signed by Aylin on a message m. He �rst retrieves Aylin's publikey A = aP ∈ E(Fq) (where a is the private key). After that his verifyingalgorithm does:1. Compute v1 ← f(R)A+ sR.2. Compute v2 ← H(m)P .3. Chek whether v1 ?

= v2.We dedue the signing proess from the verifying equation. Consider that
R = rP where r is a random element with gd(r, n) = 1 and we also know thatfor a valid signature we must have v1 = v2. Thus

v1 = f(R)A+ sR

= f(R)aP + srP

= (f(R)a+ sr)P

= (f(R)a+ sr)P
?
= v2 = H(m)P.This means that f(R)a+sr = H(m) whih diretly gives us the signing equationas

s = r−1(H(m)− af(R)).Altogether we have:EC El-Gamal sign. Aylin signs.Publi input: The group E(Fq), the base point P and its order n, the funtions
H : {0, 1}∗ → Zn and f : E(Fq)→ Zn.Input: Aylin's private key a ∈ Z×

n , the message m ∈ {0, 1}∗.Output: Signature σm(s, R).



18 T. Jonas Özgan1. Choose a random r ←− Z×
n with gd(r, n) = 1.2. Compute R← rP .3. Compute s← r−1 (H(m)− af(R)) mod n.4. Return σm ← (s, R).EC El-Gamal verify. Boris veri�es.Publi input: The group E(Fq), the base point P and its order n, the funtions

H : {0, 1}∗ → Zn and f : E(Fq) → Zn and the publi key A ofAylin.Input: The message m ∈ {0, 1}∗ and a signature σm(s, R).Output: {ACCEPT, REJECT}.1. Compute v1 ← f(R)A+ sR.2. Compute v2 ← H(m)P .3. If v1 = v2 then4. Return ACCEPT.5. Else6. Return REJECT.For seurity reasons we require that the funtion f whih onverts points intointegers in the �eld Zn allows preimage omputation. A simple example of thisfuntion would be just to take the x-oordinate of a given point, ie f((x, y)) = x.This would result in at most two points yielding the same output under f whihis aeptable.An attaker Charly an forge the signature if he an alulate the disretelogarithm a from A = aP or by �nding a ollision in the hash funtion suhas H(m) = H(m′). Both of them are assumed to be hard problems. HoweverAylin needs to be areful when signing messages. Assume that Charly obtainstwo signatures (m,R, s) and (m′, R, s′) signed with the same r. Then the twoequations for s and s′ are
rs ≡ H(m)− af(R),

rs′ ≡ H(m′)− af(R).Subtrating these would give Charly r(s−s′) ≡ H(m)−H(m′) mod n. Charlyan now ompute r and with that he an obtain the private key a of Aylin.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 195.2. Ellipti urve digital signature algorithm (ECDSA). The El-Gamal signature sheme in the raw form above is rarely used in pratie. TheNational Institute of Standards and Tehnology (NIST) proposed a variant ofthis sheme in 1991 whih was alled the Digital Signature Algorithm (U.S.Department of Commere / National Institute of Standards and Tehnology2000). A more reent version of it uses ellipti urves instead of multipliativegroups in �nite �elds. The algorithm is atually an El-Gamal type signaturesheme with tiny modi�ations.The main di�erene to the El-Gamal sheme above is in the veri�ationproedure. Although the signature in the ECDSA sheme is omputed exatlythe same way as in the El-Gamal sheme, here a valid signature is veri�ed by
rP

?
= s−1H(m)P − s−1f(R)A.

= s−1(H(m)− f(R)a)PNote that the El-Gamal system requires a total of three integer times pointomputations (whih are expensive) in its veri�ation equations v1 = f(R)A+
sR and v2 = H(m)P where the ECDSA system only needs two in s−1H(m)Pand f(R)A.Note that there are again no speial requirements to the funtion f . Alsoas above the signer has to be areful about signing di�erent messages with thesame random element r.5.3. Short signatures. Boneh, Lynn & Shaham (2004) introdues Shortsignatures from the Weil pairing. The seurity of this signature sheme is basedon the omputational Di�e-Hellman assumption whih is to �nd abP from agiven triple (P, aP, bP ), more in Part III. Compared to the ECDSA above, ithas the same level of seurity but half of the length: 170 bits instead of 320.This is of ourse a signi�ant improvement for low bandwidth systems and alsofor systems where humans are required to type in the signature.Given an ellipti urve E over Fq and a point P ∈ E(Fq) generating thegroupG. Further �x a hash funtion H : {0, 1}∗ → E(Fq) that maps bit stringsto points on the ellipti urve. Most importantly, hoose a non-degeneratebilinear pairing e : G×G→ F×

q satisfying De�nition 4.2.Suppose that Boris wants to verify Aylin's signature σ on a message m.After retrieving her publi key A = aP his verifying algorithm does1. Compute u← e(H(m), A).



20 T. Jonas Özgan2. Compute v ← e(σ, P ).3. Chek whether v = u.Sine we know that
u = e(H(m), A) = e(H(m), aP ) = e(H(m), P )a = e(aH(m), P ),we an satis�y v = u by assuming aH(m) = σ. Altogether we obtainBLS sign. Aylin signs.Publi input: The Group E(Fq), the base point P and its order n, the hashfuntion H : {0, 1}∗ → E(Fq), the bilinear pairing e : G ×G →

F×
q .Input: Aylin's private key a ∈ Z×

q , the message m ∈ {0, 1}∗.Output: Signature σm.1. Compute σm ← aH(m).2. Return σm.BLS verify. Boris veri�es.Publi input: The Group E(Fq), the base point P and its order n, the funtion
H : {0, 1}∗ → E(Fq), the bilinear pairing e : G×G→ F×

q .Input: Aylin's publi key A, the message m ∈ {0, 1}∗, the signature σm.Output: {ACCEPT, REJECT}.1. Compute u← e(H(m), A).2. Compute v ← e(σm, P ).3. If v = u then4. Return ACCEPT.5. Else6. Return REJECT.The seurity of this signature sheme is shown in the random orale modelintrodued in Bellare & Rogaway (1993). Note that the onstrution of a hashfuntion mapping to the points on the ellipti urve is not trivial. A detailedexplanation of onstruting suh hash funtions an be found in the originalpubliation.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 215.4. Multi-designated veri�ers signature. In the mid 90's Jakobsson,Sako & Impagliazzo (1996) introdued the onept of Designated veri�er sig-natures whih was independently patented by Chaum (1996) as private signa-tures. In these proposals a signature ould only be veri�ed by a unique userhosen by the signer. The idea was that no one exept the designated veri�erould be onvined by a signature beause the designated veri�er ould alsoprodue the signature by himself. The authors suggested also an extension oftheir sheme to a set of designated veri�ers. Later in Laguillaumie & Vergnaud(2007) this onept was formalized and multi-designated veri�ers signatureswere introdued. In their publiation the authors introdued a bi-designatedveri�ers signature sheme whih only an be validated by two designated ver-i�ers (Boris and Charly) hosen by the signer Aylin. The idea behind thesignature is that for a fourth party David, the signature states that eitherAylin produed the signature or Boris and Charly together produed thesignature.Consider an ellipti urve E, two groups G and H of large prime order
n and P ∈ E a generator for G. Chose a non-degenerate bilinear pairing
e : G×G→ H and a hash funtion H : {0, 1}∗ ×H→ G.Aylin (the signer) hooses her private key as a←− Z×

n where her publi key
PA = aP . Boris (veri�er #1) hooses his private key as b ←− Z×

n where hispubli key PB = bP . Charly (veri�er #2) hooses his private key as c ←− Z×
nwhere his publi key PC = cP .As before suppose that Boris wants to verify a signature σm = (QA, R, ℓ)whih was generated by Aylin for Boris and Charly the designated veri�erson a message m. Now Boris retrieves the publi keys PA and PC . Then theverifying algorithm does1. Compute u← e(PA, PC)

b.2. Compute M ← H(m, uℓ).3. Compute PBC ← PB + PC .4. Chek whether e(QA, PA)e(R,PBC) = e(M,P ).If Charly instead of Boris veri�es the signature he just replaes PB with PCand b with c. A signature σm is valid i� the equation e(QA, PA)e(R,PBC) =
e(M,P ) holds. As before we onstrut R = rP with a random integer r.Assuming that ℓ is another random integer, we an dedue the signing proess
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e(M,P ) = e(QA, PA)e(R,PBC)

= e(QA, aP )e(rP, (b+ c)P )

= e(aQA, P )e(r(b+ c)P, P )

= e(aQA + r(b+ c)P, P ).This is satis�ed if
M = aQA + r(b+ c)P, or
QA = a−1(M − r(b+ c)P ).Now we summarize both proesses.MDVS sign. Aylin signs.Publi input: Two groups G and H, the base point P and its order n, the non-degenerate bilinear pairing e : G × G → H, the hash funtion

H : {0, 1}∗ ×H→ G.Input: Aylin's private key a ∈ Z×
n , the message m ∈ {0, 1}∗, Publi keys PBand PC of Boris and Charly.Output: Signature σm.1. Choose two random integers r, ℓ←− Z×

n .2. Compute PBC ← PB + PC .3. Compute u← e(PB, PC)
a.4. Compute M ← H(m, uℓ).5. Compute QA ← a−1(M − rPBC)6. Set σm ← (QA, R, ℓ).7. Return σm.MDVS verify. Charly veri�es.Publi input: Two groups G and H, the base point P and its order n, the non-degenerate bilinear pairing e : G × G → H, the hash funtion

H : {0, 1}∗ ×H→ G.Input: Publi keys PA and PB of Aylin and Boris, the message m ∈ {0, 1}∗,the signature σm.Output: {ACCEPT, REJECT}.1. Compute u← e(PA, PB)
c.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 232. Compute M ← H(m, uℓ).3. If u = M then4. Return ACCEPT.5. Else6. Return REJECT.Taking into onsideration the examples above one an still see the �touh�of El-Gamal in the equation QA = a−1(M − rPBC). This sheme is also seurein the random orale model, as proven by the authors.There have been numerous other publiations about designated veri�ers sig-nature shemes. These suggest universal designated veri�ers signature shemesand onstruting designated veri�ers signatures from any non-degenerate bi-linear mapping for details see Laguillaumie & Vergnaud (2004); Saeednia et al.(2003); Steinfeld et al. (2003).5.5. Proxy re-signatures. In Blaze, Bleumer & Strauss (1998) introdued anew ryptographi primitive alled atomi proxy ryptography, in whih a semitrusted proxy onverts signatures of Aylin into signatures of Boris on the samemessage. However, in this proess the proxy an not sign arbitrary messagesfor both parties. Until the publiation of Ateniese & Hohenberger (2005), thisryptographi primitive was widely ignored by the ryptographi ommunity.The authors revised the primitive and provided appropriate seurity de�nitionsfor the random orale model. They also introdued two new proxy re-signatureshemes (1) multi-use bidiretional and (2) single-use unidiretional.5.5.1. Multi-use bidiretional sheme. Given the seurity parameter k�x two groups G1 and G2 of prime order n, a generator P for G1, a non-degenerate bilinear mapping e : G1×G1 → G2 and a hash funtionH : {0, 1}∗ →G1.In this type of shemes we have three parties to onsider. Aylin the dele-gator with publi key A = aP , the proxy who onverts the signatures of Aylininto signatures of Boris identi�ed by his publi key B = bP . The proxy isable to do this with the re-signature key RAB = b
a
whih by assumption theproxy already has. Note that there are many seure ways of omputing RAB,an example is mentioned in Ateniese & Hohenberger (2005).As before we will begin with the veri�ation of a signature σ whih wasgenerated by Aylin. Let us assume that Charly wants to verify σ. Afterretrieving A = aP the verifying algorithm heks if the equation

e(σ, P )
?
= e(H(m), A)



24 T. Jonas Özganholds. Sine a valid signature σ ful�lls this equation we have
e(σ, P ) = e(H(m), aP )

= e(aH(m), P ).So ensuring σm = aH(m) yields a valid signature. This is exatly the sign-ing algorithm. Considering that the proxy has RAB = b
a
, the resigning of asignature σ into σ′is quite trivial as

σ′
m = RAB · σm = bH(m).Now we give an overview of all three algorithms.Algorithm. Aylin signs.Publi input: The groups G1 and G2 , the base point P and its order n,the bilinear pairing e : G1 × G1 → G2 and the hash funtion

H : {0, 1}∗ → G1.Input: Aylin's private key a ∈ Z×
n , the message m ∈ {0, 1}∗.Output: Signature σ.1. Compute σ ← aH(m).2. Return σ.Algorithm. The proxy re-signs.Publi input: The groups G1 and G2 , the base point P and its order n,the bilinear pairing e : G1 × G1 → G2 and the hash funtion

H : {0, 1}∗ → G1.Input: The re-signature key RAB = b
a
, the message m ∈ {0, 1}∗ and the signa-ture σ.Output: σ′.1. Compute σ′ ← RAB · σ.2. Return σ′.Algorithm. Boris veri�es.Publi input: The groups G1 and G2 , the base point P and its order n,the bilinear pairing e : G1 × G1 → G2 and the hash funtion

H : {0, 1}∗ → G1.Input: Aylin's publi key A, the message m ∈ {0, 1}∗ and the signature σ.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 25Output: {ACCEPT, REJECT}.1. Compute U ← e(H(m), A).2. Compute V ← e(σ, P ).3. If V = U then4. Return ACCEPT.5. Else6. Return REJECT.5.5.2. Single-use unidiretional sheme. Again �x two groups G1 andG2 of prime order n and also generators P and Q for G1. Choose a non-degenerate bilinear mapping e : G1×G1 → G2 and a hash funtion h : {0, 1}∗ →
Z×
n .In this sheme we again onsider three parties Aylin, Boris and the proxy.The di�erene here is that the users have publi key pairs instead of just onepubli key. This means that, for Aylin we say that she has a publi key pair

A = aP,A′ = 1
a
Q where a is her strong seret and aQ her weak seret. SimilarlyBoris has a publi key pair B = bP,B′ = 1

b
Q where b is his strong seret and

bQ the weak one.Again we assume that the proxy already has the re-signature key RAB = b
a
Qwhih enables him to onvert signatures of Aylin into signatures of Boris.Sine this sheme allows the proxy to onvert a signature only one, we aredistinguishing between a lavel 0 signature and a level 1 signature. Now assumethat Charly wants to verify the level 0 signature σ(0) = (s, R) generated byAylin on a message m ∈ {0, 1}∗. His veri�ation algorithm heks if theequation(5.1) e(P, sQ)

?
= e(A,R)e(A, h(m||R)Q)holds. Similarly as above we onstrut R = rQ for a random integer r. Sinea valid signature ful�lls the equation (5.1) we obtain

e(P, sQ) = e(A,R)e(A, h(m||R)Q)

= e(aP,R + h(m||R)Q)

= e(P, a(R + h(m||R)Q))

= e(P, a(h(m||R) + r)Q).Now we an see that a level 0 signature an be signed by
σ(0) = (s, R) = (a(h(m||R) + r), rQ).



26 T. Jonas ÖzganIf the proxy is asked to onvert this signature σ(0) = (s, R) into σ(1) = (s′, R)with the re-signature key RAB = b
a
Q he omputes

σ(1) ← (sRAB, R) = (s
b

a
Q,R) = (b(h(m||R) + r)Q,R).This slightly hanges the veri�ation proess for a level 1 signature. If Charlywants to verify a level 1 signature σ(1) = (S,R) with the publi key B of Borishe heks if the equation

e(P, S)
?
= e(B,R)e(B,H(m||R)Q).holds. Notie that Aylin an also diretly produe a level 1 signature as

σ(2) = (a(H(m||R) + r)Q, rQ).The di�erene between the veri�ation of a level 0 and a level 1 signature anbe seen learly in the overview of all three algorithms.Algorithm. Aylin signs.Publi input: The groups G1 and G2 , the generators of P and Q G1, thenon-degenerate bilinear pairing e : G1 ×G1 → G2 and the hashfuntion h : {0, 1}∗ → Z×
n .Input: Aylin's private key a ∈ Z×

n , the message m ∈ {0, 1}∗, ℓ ∈ {0, 1} thesigning level.Output: Signature σ(ℓ).1. Choose a random r ←− Z×
n .2. Compute R← rP .3. If ℓ = 0 then4. s← a(h(m||R) + r).5. σ(0) ← (s, R).6. Else if ℓ = 2 then7. S ← a(h(m||R) + r)Q.8. σ(1) ← (S,R).9. Return σ(ℓ).Algorithm. Proxy Re-signs.Publi input: The groups G1 and G2 , the generators of P and Q G1, the non-degenerate bilinear pairing e : G1×G1 → G2, the hash funtion

h : {0, 1}∗ → Z×
n .



A Multi-use Uni-diretional Proxy Re-Signature Sheme 27Input: The re-signature key RAB = b
a
Q, the message m ∈ {0, 1}∗ and a level 0signature σ(0) = (s, R)Output: A level 1 signature σ(1).1. Compute S ← sRAB.2. Set σ(1) ← (s′, R).3. Return σ(1).Algorithm. Boris veri�es.Publi input: The groups G1 and G2 , the generators P and Q of G1, the non-degenerate bilinear pairing e : G1×G1 → G2, the hash funtion

h : {0, 1}∗ → Z×
n .Input: Aylin's publi key A, the message m ∈ {0, 1}∗ and a signature σ(ℓ) validfor A.Output: {ACCEPT, REJECT}.1. If ℓ = 0 then

u← e(P, sQ).2. Else if ℓ = 1 then
u← e(P, s).3. Compute v ← e(A,R)e(A, h(m||R)Q).4. If v = u then5. Return ACCEPT.6. Else7. Return REJECT.Note that in both shemes we ould require the proxy to verify the inputsignature before translating it. The seurity of these shemes was shown in therandom orale model for details see ??.The left open hallenge was to �nd a uni-diretional multi-use proxy re-signature sheme. This in Libert & Vergnaud (2008a). This sheme will beanalyzed in detail in this thesis.5.6. Proxy re-enryption. Similar to proxy re-signatures a proxy re-enryptionsheme allows a semi trusted entity alled proxy to translate a iphertext en-rypted with the publi key PKA into a iphertext enrypted with a distintother publi key PKB. However the proxy annot learn anything about themessages enrypted under either key. Also based on the publiation of Blaze,Bleumer & Strauss (1998), there have been numerous proposal for proxy re-enryption shemes (Ateniese, Fu, Green & Hohenberger 2006; Canetti & Ho-



28 T. Jonas Özganhenberger 2007; Chow, Weng, Yang & Deng 2010; Libert & Vergnaud 2008b).Although all these shemes have very interesting properties and appliations,a sophistiated analysis is not within the limits of this thesis. For more infor-mation on proxy re-signatures and proxy re-ryptography see Shao (2009).5.7. Tripartite Di�e-Hellman key exhange. In Joux (2004), anotheruseful appliation of pairings was introdued. The author suggested a one roundprotool for tripartite Di�e-Hellman whih allows three parties to exhange asession key in just one round. The natural variant of the Di�e-Hellman keyexhange protool (Di�e & Hellman 1976) needs two rounds.Again, let E be an ellipti urve over Fq, P ∈ E(Fq) a generator for thegroup G and e : G×G→ F×
q a non-degenerate bilinear pairing.The parties Aylin, Boris and Charly want to agree on a session key. Thus,they do the following:3-Party Diffie-Hellman Protool. Aylin.Publi Input The group G, the base point P and its order n, the bilinearpairing e : G×G→ F×

q .Input: Aylin's private key a, B publi key of Boris, C publi key of Charly.Output: Session key K.1. Compute K ← e(B,C)a.2. Return K.3-Party Diffie-Hellman Protool. Boris.Publi Input The group G, the base point P and its order n, the bilinearpairing e : G×G→ F×
q .Input: Boris' private key b, A publi key of Aylin, C publi key of Charly.Output: Session key K.1. Compute K ← e(A,C)b.2. Return K.3-Party Diffie-Hellman Protool. Charly.Publi Input The group G, the base point P and its order n, the bilinearpairing e : G×G→ F×
q .Input: Charly's private key c, A publi key of Aylin, B publi key of Boris.Output: Session key K.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 291. Compute K ← e(A,B)c.2. Return K.In the end all parties have the session key K = e(P, P )abc. Note we needa pairing with e(P, P ) 6= 1. Naturally we require that the disrete logarithmproblem is both hard in the group G and in F×
q , a detailed seurity disussion anbe found in the original publiation. Note also that despite this looks somehownie on paper, in pratie it is not really e�ient beause of the nature ofpairings. Sine they map points to elements of a multipliative �eld, one hasto inrease the size of the �eld for seurity whih again e�ets the omputationof a pairing. The urrent ommuniation speed on digital hannels neutralizesthe �gain� of this key exhange sheme.5.8. Other uses of pairings. The last example above shows that pairingsare not only interesting in digital signatures. There are numerous other ryp-tographi settings where pairings are used. Some very interesting topis inpairing based ryptography are:

◦ Identity based ryptography
◦ Authentiation
◦ Threshold ryptosystems
◦ Traitor traing
◦ Hierarhial ryptosystems
◦ ...The pairing based rypto lounge Barreto (2009) provides an exellent resourefor further information and researh on areas based on pairings.





A Multi-use Uni-diretional Proxy Re-Signature Sheme 31Part IIThe Signature ShemeSuppose that you are the holder of a doument m whih has been issued anderti�ed in the form of a signature by a spei� domain A. After a while youwant or need to hange your membership to another domain B and want to takeyour douments with you without loosing their originality. For example, thisan be the true for digital rights management (DRM) systems, or for publikey erti�ates validated by di�erent erti�ation authorities (CA), or even forfuture e-passport systems. In short, the valid signature σA(m) whih ensuresthe authentiity of the doument m for domain A has to be somehow hangedinto σB(m), a valid signature on the same doument m for the domain B. Thedetailed form of these ases will be disussed in Part V.6. The trivial solutionsThe �rst trivial solution to the problem above would be removing the signatureof Aylin (owner of domain A) from the doument and replaing it with a sig-nature of Boris (owner of domain B). This solution, however, is not aeptablesine the doument an be altered during the re-signing proess. This solutionwould also require interation between domains and the doument holders, maybe even for terabytes of data. Considering that there are hundreds of thousandsof users, an attaker ould expose Aylin's and maybe also Boris' seret.The seond trivial solution for hanging the signature from a spei� domainto another would be, that the holder Osar of the doument m, asks Boristo over-sign the doument m with the signature of Aylin on it. This meansthat Boris just adds his signature on the doument as depited in Figure 6.1.However, this simple solution has signi�ant disadvantages. First of all Borismust either sign all the douments himself or he has to delegate his signingrights to some other entities. For Boris this means the following:
◦ It is very ine�ient. For example in the ase of the DRM platforms,there are many users and many �les, whih would mean that Boris hasto verify the authentiity of terabytes of data and over-sign them all.
◦ This ould also be a seurity risk, sine attakers ould impose as falsedomains and attak Boris or his delegatees during signing proesses.On the other hand this means for Osar:
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σA

m m

σA

σB

m′

OverSign(m, ·)

Figure 6.1: Trivial OverSign() proess
◦ Boris knows diretly that Osar has his doument from Aylin whihompromises Osar's privay.
◦ Eah translation auses the atual doument m to grow sine the newdoument m′ would also inlude the signature of Aylin. Using a shortsignature of Boneh et al. (2004) as introdued in Part I, the signatureof Aylin on m is σA(m) = aH(m) then Boris over-signs it as σB(m

′) =
bH(m||σA(m)). The new doument would be m′ = m||σA(m) whih hasthe signature σA(m) of Aylin appended to the original doument m.Let us also onsider another pratial ase, where in a ompany users areseparated into independent working groups and eah one of them is mandatedby a supervisor. The outome of a projet of some ooperating working groupshas to be signed by the private key of the ompany. The trivial solutions wouldreveal the internal struture of the ompany as well as the working groups.This is learly not in the best interest of the ompany.7. RequirementsWe onlude here that for some appliation areas as mentioned above anddisussed later in Part V, the trivial solutions are not appropriate. Thus, theamount of data and the unavailability of the domain owners' private keys skAand skB, another entity is required to translate a signature from one domain(Aylin) into another (Boris). We require that:1. This entity, alled, proxy is only semi-trusted and the information (the re-signature key) that he is granted is limited. This means that a orruptedproxy annot expose serets of the domain owners.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 332. Uni-diretional, multi-use. The re-signature key, available to theproxy allows him only to translate signatures from Aylin to Boris andnot vie versa.3. Private proxy. The re-signature keys available to the proxy an be keptseret.4. Non-transitivity. The re-signature key RAB whih allows the proxy totranslate signatures from Aylin to Boris and the re-signature key RBCwhih allows the proxy to translate signatures from Boris to Charly,does not give him the ability to alulate the re-signature key RAC fortranslating signatures from Aylin to Charly diretly.5. Non-interative. The re-signature key RAB an be alulated withoutthe interation of Aylin.6. Transpareny. Users do not need to know that a proxy translated thesignature.7. Unlinkability. The translated douments an not be linked to the pre-vious signer Aylin, ie. the new signature has no onnetion with Aylinand it is a perfetly valid signature of Boris.8. Key optimal. The domain owners do not need to store more informationthan their seret key sk.Obviously we also need that this signature sheme is seure against hosenmessage attaks, desirably in the standard model. This requires a bullet proofseurity de�nition and proof of the seurity whih we disuss in Part III. Nowwe introdue the multi-use uni-diretional proxy re-signature sheme from Lib-ert & Vergnaud (2008a), step by step, for a omprehensive understanding.8. A multi-use uni-diretional proxy re-signatureAs in Part I, instead of writing down all the formal de�nitions, we will try toexplore this signature sheme step by step for a lear understanding. Assumethat we have a signature σA(m) from an entity Aylin on a doument m andwe want this doument to be authenti for another entity Boris. Sine at thispoint this signature σA(m) an be an arbitrary signature sheme, we rememberthe short signature from Boneh, Lynn & Shaham (2004) introdued in Part I.It is safe and also pratial to assume that we have a short signature of Aylinon the message m.



34 T. Jonas ÖzganMore formally, for a generator P of the groupG, a hash funtionH : {0, 1}∗ →G and a non-degenerate bilinear mapping e : G×G→ Z×
p :

◦ The publi and private key pair of Aylin is (XA, xA) with xA ∈ Z×
p and

XA = xAP .
◦ The valid signature σA(m) of Aylin on m ∈ {0, 1}∗ is omputed as
σA(m) = σ0 = xAH(m).
◦ A signature is veri�ed by heking e(σ0, P )

?
= e(H(m), XA).Note that as in every signature sheme the publi key is needed for veri�a-tion. This means that the short signature is atually a four tuple σA(m) =

(xAH(m), XA, H(m), P ) with the publi key XA, the hash value of the mes-sage H(m) and the generator P of the group G. To understand the relationof these 4 elements, we graphially onnet them to a big �H� as shown on theleft side of Figure 8.1.
σ0

P

H(m)

XA

e(σ0, P ) = e(H(m), XA)
σ0

P
=
H(m)

P
·
XA

P

Figure 8.1: The H-representationThis H tells us that, pairing of the signature σ0 and the base point P equalsthe pairing of the hash value H(m) of the message and the publi key XA,depited in the middle of Figure 8.1. Equivalently the disrete logarithm tobase P of σ0 is equal to the disrete logarithm of H(m) to base P times thedisrete logarithm of XA to base P . This is expressed in a slightly unusualdisrete logarithm notation on the right hand side of Figure 8.1.Now we want the proxy to re-sign this signature into one whih is valid forthe publi key XB = xBP of Boris. To do so, the proxy has to blind out the xAin the signature to assure unlinkability to Aylin and use the information thathe has, namely the re-signature key, in onstruting the translated signatureappropriately. We want the signature(8.1) σ0

P
=

H(m)

P
·

XA

P
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σ0

P
=

H(m)

P
·

σ1

P
,where the enirled element of equation (8.1) is hanged into an element σ1

P
.Sine σ1 annot beXB beause for that transformation the private key of Aylinis needed, it has to ful�ll another relation like

σ1

P
=

σ−1

P
·
XB

P
.The translated signature has three elements (σ0, σ1, σ−1) and is related to thepubli key XB of Boris. They ful�ll the following relations:

σ0

P
=

H(m)

P
·
σ1

P
,

σ1

P
=

σ−1

P
·
XB

P
.Converting these disrete logarithm relations into pairing equations we get

e(σ0, P ) = e(H(m), σ1),

e(σ1, P ) = e(σ−1, XB).Graphially speaking, from these two equations we get two H s whih areonneted to eah other. This means that the proxy extended the signature byadding one H with two new elements to the original H as shown in Figure 8.2.Now we want to determine the relations between the elements of the orig-inal signature and the elements of the translated signature to understand thetranslation proess. First, we know that the publi key of Boris is XB = xBPand σ−1 = tP where xB, t ∈ Z×
p . Thus, to ful�ll the relations from above wehave σ1 = txBP and σ0 = txBH(m). Consider Figure 8.3, the original signa-ture of Aylin on the left side is translated into a signature of Boris on theright hand side.Sine t annot be xA

xB
beause the proxy is only semi trusted we know that

t = r · xA

xB
for some r ←− Z×

p . Therefore σ1 = rXA and σ−1 = r · xA

xB
P . Now wean learly see what happens in the translation proess, the proxy, on reeivinga valid signature σ = xAH(m) for the publi key XA = xAP , hooses a random

r ←− Z×
p and re-signs the signature as:
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σ0

P

H(m)

XA

σ0

P

H(m)

σ1

P

σ−1

XBFigure 8.2: Extending the �H�.
σ0 = xA ·H(m) σ0 = t · xB ·H(m)

XA = xA · P σ1 = t · xB · P

σ−1 = t · P

XB = xB · PFigure 8.3: Translation of the Signature xAH(m)

σ = (σ0, σ1, σ−1) = (r · σ0, r ·XA, r ·
xA

xB
P ) = (r · xAH(m), r · xAP, r · RAB).Setting t = r xA

xB
yields:(8.2) σ = (σ0, σ1, σ−1) = (txBH(m), txBP, tP ).One veri�es the signature by heking the two H relations:

e(σ0, P )
?
= e(H(m), σ1) ∧ e(σ1, P )

?
= e(σ−1, XB).Note that we assume that the proxy already has the re-signature key whihis RAB = xA

xB
P . This re-signature key an be alulated as (xB)

−1XA = xA

xB
Pand given to him by Boris without interating with Aylin (non-interativity).Note also that RAB allows the proxy to onvert signatures only from Aylinto Boris and not the other way around (uni-diretionality).In equation (8.2) we see that Boris an also onstrut this signature byhimself. This means that one annot distinguish between a translated signatureand signature whih was signed like that (transpareny).



A Multi-use Uni-diretional Proxy Re-Signature Sheme 37The idea behind this is to exploit the Di�e-Hellman assumption that given
tP for some t ∈ Z×

p it is hard to generate txBP without knowing the seret
xB ∈ Z×

p of Boris. The valid short signature σ = xAH(m) is re-randomizedand blinded into σ = (txBH(m), txBP, tP ) with a random element t ∈ Z×
p .Now we want use this idea of re-randomizing and blinding by adding twonew elements iteratively to extend the translation proess into a multi-usesheme. To obviate onfusion we all the short signature of Boneh et al. (2004)a level 0 signature and the translated one a level 1 signature, thus a signaturewhih was translated ℓ times, will be alled a level ℓ signature. Now onsiderthe level ℓ signature with 2ℓ+1 elements valid for the publi key Xi representedin the �H� form shown in Figure 8.4.

σ0

P

H(m)

σ1

P

σ−1

σ2

P

σ−2

σ3

P σ−ℓ+1

σℓ

P

σ−ℓ

XiFigure 8.4: An level ℓ signatureAs we know eah H orresponds to one bilinear veri�ation equation as
e(·, ·)

?
= e(·, ·), ounting a total of ℓ + 1 for a level ℓ signature. Using thedisrete logarithm notation from above we observe that for a valid signature



38 T. Jonas Özganthe following equations hold:
σ0

P
=

H(m)

P
·
σ1

P
,

σ1

P
=

σ−1

P
·
σ2

P
,

σ2

P
=

σ−2

P
·
σ3

P
, . . .

σℓ

P
=

σ−ℓ

P
·
Xi

P
.We also observe that, all these equations are onneted to eah other like hains.For example in the �rst equation we an replae σ1

P
using the seond equationto obtain

σ0

P
=

H(m)

P
·
σ−1

P
·

σ2

P
.Repeating this for all equations results in ℓ+ 1 equations

σ0

P
=

H(m)

P
·
σ−1

P
·
σ−2

P

σ−3

P
· · · · · ·

σ−ℓ+1

P
·
σ−ℓ

P
·
Xi

P
,(0)

σ1

P
=

σ−1

P
·
σ−2

P
· · · · · · · · · · · · · · · · · · ·

σ−ℓ

P
·
Xi

P
,(1)

σ2

P
=

σ−2

P
·
σ−3

P
· · · · · · · · · · · ·

σ−ℓ

P
·
Xi

P
,(2)

σ3

P
=

σ−3

P
·
σ−4

P
· · · · · ·

σ−ℓ

P
·
Xi

P
,(3) ... ...(...)

σℓ−1

P
=

σ−ℓ+1

P
·
σ−ℓ

P
·
Xi

P
,(ℓ− 1)

σℓ

P
=

σ−ℓ

P
·
Xi

P
.(ℓ)



A Multi-use Uni-diretional Proxy Re-Signature Sheme 39Now we want to interpret these equations. We know that Xi = xiP and wewrite the elements σ−k = rkP for k ∈ {1, . . . , ℓ} with rk ∈ Z×
p . This meansthat

σ−ℓ = rℓP, σ−ℓ+1 = rℓ−1P, · · · , σ−2 = r2P, σ−1 = r1P.One an verify the valid level ℓ signature σ(ℓ)(m) on message m for thepubli key Xi by heking the following ℓ+ 1 equations:
e(σ0, P )

?
= e(H(m), σ1),(0)

e(σk, P )
?
= e(σk+1, σ−k) k ∈ {1, . . . , ℓ− 1},(k)

e(σℓ, P )
?
= e(σ−ℓ, Xi).(ℓ)Thus a level ℓ signature valid for the publi key Xi has the form as in Figure 8.5whih also shows the signing proess at level ℓ. In short ℓ random oe�ients

rk ←− Z×
p for k ∈ {1, ..., ℓ} are hosen and multiplied as in Figure 8.5.

σ
(ℓ)
0 = (rℓ · · · r1)xiH(m),

σ
(ℓ)
1 = (rℓ · · · · · · · · ·r1)xiP, σ

(ℓ)
−1 = r1P,

σ
(ℓ)
2 = (rℓ · · · · ·r2)xiP, σ

(ℓ)
−2 = r2P,

σ
(ℓ)
3 = (r1 · · · r3)xiP , σ

(ℓ)
−3 = r3P,... ...

σ
(ℓ)
ℓ = rℓxiP, σ

(ℓ)
−ℓ = rℓP .Figure 8.5: Coe�ient RepresentationTo understand the translation proess, we now want the proxy to translatethis signature into a level ℓ + 1 signature valid for the publi key Xj = xjPof user j. Similar to Figure 8.2, the proxy has to add one H at the end ofFigure 8.4 for blinding out the publi key Xi. We assume that user j has already
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σℓ

P

σ−ℓ

Xi

σℓ

P

σ−ℓ

Xi

P

xi

xj
P = Rij

XjFigure 8.6: Appending one H to a level ℓ signaturedelegated the re-signature key Rij =
xi

xj
P = x−1

j Xi to the proxy. As before theproxy adds one H at the end of the signature as shown in Figure 8.6. Theresulting signature is perfetly valid for Xj the publi key of user j. However,the elements Xi and Rij are visible and allow an attaker extrat to the re-signature key from it. Thus the proxy wants to blind out the re-signature key
Rij and the publi key Xi of user i. To do so, the proxy hoses a random
tℓ+1 ←− Z×

p and re-randomizes Xi and Rij as tℓ+1Xi and tℓ+1Rij respetively.
σ−ℓ+1

P

σℓ−1

σℓ

P

σ−ℓ

Xi

σℓ−1

P

σ−ℓ+1

σℓ

P

σ−ℓ

tℓ+1Xi

P

tℓ+1Rij

XjFigure 8.7: The re-randomization of the level ℓ+ 1 signature



A Multi-use Uni-diretional Proxy Re-Signature Sheme 41Now onsider Figure 8.7, we observe that the equation of the H inside the(green) dashed frame will not hold if σℓ = σℓ and σ−ℓ = σ−ℓ. Therefore theproxy multiplies σℓ with tℓ+1 suh that σℓ = tℓ+1σℓ. Sine all the H-s are on-neted to eah other the multipliation σℓ = tℓ+1σℓ, learly breaks the equationsof the upper H-s. To reassure the equations of eah H the multipliation with
tℓ+1 has to ripple all the way up to σ0 = tℓ+1σ0.However this is not the only problem whih ours while translating thesignature. Sine at this point the proxy did not do anything to σ−k for k ∈
{1, . . . , ℓ}, the signature is easily linkable to its predeessor beause σ−ℓ = σ−ℓ, σ−ℓ+1 = σ−ℓ+1 ,..., σ−1 = σ−1. Thus, the proxy hooses another randomoe�ient tℓ ←− Z×

p and re-randomizes σ−ℓ as σ−ℓ = tℓσ−ℓ. Again the relationof the H inside the (green) dashed frame is broken. So, the proxy has to multiply
σℓ with tℓ to reassure the integrity of this H and sine we have σℓ = tℓ+1tℓσℓthe multipliation with tℓ also has to ripple all the way up to σ0 whih is now
σ0 = tℓ+1tℓσ0.Now onsider the H inside the (blue) dotted frame, we have σℓ = tℓ+1tℓσℓ,also to avoid linkability here, the proxy hooses another random oe�ient
tℓ−1 ←− Z×

p and multiplies σ−ℓ+1 with it whih means that σ−ℓ+1 = tℓ−1σ−ℓ+1.The multipliation σℓ−1 = tℓ+1tℓtℓ−1σℓ−1 then reassures that the equation ofthe H inside the (blue) dotted frame holds. But to reassure the integrity of theupper H-s this multipliation with tℓ−1 has also to ripple all the way up to σ0whih is then σ0 = tℓ+1tℓtℓ−1σ0. Following this proess up to the top, we getthe translated level ℓ+ 1 signature as
σ0 = (tℓ+1 · · · t1)σ0

σ1 = (tℓ+1 · · · · · · t1)σ1, σ−1 = t1σ−1,

σ2 = (tℓ+1 · · · · ·t2)σ2, σ−2 = t2σ−2,

σ3 = (tℓ+1 · · · t3)σ3, σ−3 = t3σ−3,... ...
σℓ = tℓ+1tℓσℓ, σ−ℓ = tℓσ−ℓ,

σℓ+1 = tℓ+1Xi, σ−ℓ−1 = tℓ+1Rij .Setting r̃ℓ+1 = tℓ+1
xi

xj
and r̃k = tkrk for k ∈ {1, . . . , ℓ} gives us similar toFigure 8.5 that the level ℓ + 1 signature is valid for the publi key Xj on the



42 T. Jonas Özgansame message m

σ
(ℓ+1)
Xj

(m) = (σ
(ℓ+1)
0 , σ

(ℓ+1)
1 , · · · , σ

(ℓ+1)
ℓ+1 , σ

(ℓ+1)
−ℓ−1, · · · , σ

(ℓ+1)
−1 )with 2ℓ+ 3 elements as:

σ
(ℓ+1)
0 = (r̃ℓ+1 · · · r̃1)xjH(m),

σ
(ℓ+1)
1 = (r̃ℓ+1 · · · · · · · · ·r̃1)xjP, σ

(ℓ+1)
−1 = r̃1P,

σ
(ℓ+1)
2 = (r̃ℓ+1 · · · · · · ·r̃2)xjP , σ

(ℓ+1)
−2 = r̃2P,

σ
(ℓ+1)
3 = (r̃ℓ+1 · · · r̃3)xjP , σ

(ℓ+1)
−3 = r̃3P,... ...

σ
(ℓ+1)
ℓ = r̃ℓ+1r̃ℓxjP, σ

(ℓ+1)
−ℓ = r̃ℓP,

σ
(ℓ+1)
ℓ+1 = r̃ℓ+1xjP, σ

(ℓ+1)
−ℓ−1 = r̃ℓ+1P.Note that we already explained the relation between the veri�ation equa-tions and the elements of the signature with the H notation. In the next setionwe de�ne a set of tools whih help us to understand the signing an re-signingproesses explained above.9. Building bloks of signature shemeIn this setion, we deompose the signature sheme into simple building bloks.These simple building bloks will make it easier to understand the followingsetions.9.1. The building bloks. Realling the previous setion, we an dividethe building bloks into two main ategories. In the �rst ategory we have thebuilding bloks whih lengthen the signature. In the seond ategory we havethe building bloks whih randomize the signature elements.9.1.1. Lengthening the signature. We an extend a level ℓ signature byone H in two di�erent ways. Namely, by adding a trivial H or by adding are-signature H, whih are both explained below.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 43Building blok ADD TRIVIAL H . This building blok on input a level ℓsignature valid for the publi key Xi extends the signature by one H as shownin Figure 9.1. Despite the redundany of the last H, the result is a level ℓ + 1
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ADDTRIVIALH
Figure 9.1: Adding a trivial H to a level ℓ signaturesignature still perfetly valid for the publi key Xi.Building blok ADD RE-SIGN H . This building blok on input a level ℓsignature valid for the publi key Xi, a re-signature key Rij =

xi

xj
P and anotherpubli key Xj extends the signature by one H as shown in Figure 9.7. The

σℓ

P

σ−ℓ

Xi

σℓ

P

σ−ℓ

Xi
xi

xj
P = Rij

P Xj

ADDRE-SIGNH
Figure 9.2: Adding a re-signature H to a level ℓ signatureresulting level ℓ+ 1 signature is now valid for the publi key Xj.



44 T. Jonas Özgan9.1.2. Randomization of the signature elements. Reall the previoussetion where we observed that a multipliation of a signature element ripplesall the way up to reassure the integrity of eah upper H. We start with theintrodution of the building blok RE-RANDOM i whih starts randomizing ata ertain height i of the input signature with only one oe�ient.Building blok RE-RANDOM i . This building blok on input a level ℓ ≥ isignature hooses a random oe�ient ri ←− Z×
p and multiplies the elements

σ0, . . . , σi and σ−i with ri as shown in Figure 9.3. The resulting new signature
σ0

P

H(m)

σ1

σi

P

σ−i

σi+1

σℓ σ−ℓ

P Xi

RERANDOM i

riσ0

P

H(m)

riσ1

riσi

P

riσ−i

σi+1

σℓ σ−ℓ

P XiFigure 9.3: Re-randomizing σ(ℓ) at height iis still perfetly valid for the publi key Xi.Building blok RE-RANDOM . This building blok on input a level ℓ sig-nature hooses ℓ random oe�ients r1, . . . , rℓ ←− Z×
p and multiplies themas shown in Figure 9.4. Note that RE-RANDOM =
ℓ∏

i=1

RE-RANDOM i where



A Multi-use Uni-diretional Proxy Re-Signature Sheme 45the produt means that all RE-RANDOM i are applied one after another. Theresulting signature is still perfetly valid for the publi key Xi.
σ0

P

H(m)

σ1

σi

P

σ−i

σi+1

σℓ σ−ℓ

P Xi

RERANDOM
rℓ · · · r1σ0

P

H(m)

rℓ · · · r1σ1

rℓ · · · riσi

P

riσ−i

rℓ · · · ri+1σi+1

rℓσℓ rℓσ−ℓ

P XiFigure 9.4: Re-randomizing σ(ℓ) ompletelyWe observe that lengthening and re-randomizing the signature is easy. Nowwe want to explain the signing and re-singing proesses using these buildingbloks.9.2. Signing at level ℓ. Reall that a level 0 signature σ(0) valid for thepubli key xAP = XA of user A in the H representation looks like Figure 9.5.After omputing this σ(0) user A uses the building blok ADD TRIVIAL H on
σ(0) ℓ times and obtains an extended level 0 signature as depited on the left sideof Figure 9.6. User A then uses building blok RE-RANDOM on this extendedsignature and obtains σ(ℓ) whih is depited on the right hand side of Figure 9.6.Summarizing this, a user A with publi key XA �rst omputes a level 0signature σ(0) and uses the building blok ADD TRIVIAL H ℓ times to lengthenthe signature. Using the building blok RE-RANDOM on this extended signature
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XAFigure 9.5: A level 0 signature
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rℓXA rℓP

P XAFigure 9.6: Re-randomizing the extended σ(0)gives A proper a level ℓ signature.9.3. Re-signing a level ℓ signature. Now suppose that a proxy is askedto re-sign the level ℓ signature valid for the publi key XA of user A from aboveinto a level ℓ + 1 signature valid for the publi key XB of user B. Assumingthat user B already delegated the re-signature key xA

xB
P = RAB to the proxy,the re-signing proess an be explained in two steps.Step 1. The proxy uses the building blok ADD RE-SIGN H to append a newH onsisting of the re-signature key RAB and the new publi key XB to the



A Multi-use Uni-diretional Proxy Re-Signature Sheme 47level ℓ signature from above as shown in Figure 9.7. The result is a level ℓ+ 1
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σ
(ℓ)
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H(m)

σ1
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RAB = xA
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P
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Figure 9.7: Step 1: adding the re-sign H
signature perfetly valid for the publi key XB.
Step 2. Now the proxy uses RE-RANDOM to re-randomize the signature andblind out the elements. As shown in Figure 9.8 RE-RANDOM hooses ℓ + 1random oe�ients (rℓ+1, . . . , r1) ←− Z×

p and multiplies them aordingly.Summarizing the results from above we now write down everything in a formalnotation.
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Figure 9.8: Step 2: Re-randomization of the re-signature10. Formal de�nitionFirst we reall the formal de�nition of a proxy re-signature sheme from Ate-niese & Hohenberger (2005).Definition 10.1. A (uni-diretional) proxy re-signature sheme for N signersand L levels onsists of the following six randomized algorithms:1. Setup(λ): On input of the seurity parameter λ, this randomized al-gorithm produes the publi system parameters cp. It will be run by atrusted party.2. KeyGen(cp): On input of the publi parameters cp this probabilistialgorithm outputs a users' publi and private key pair (pk, sk).3. ReKeyGen(cp, pki, skj): On input of the publi parameters cp, signer
i's publi key pki and user j's private key skj this (non-interative) algo-rithm outputs a re-signature key Rij that allows translating signatures ofuser i into signatures of user j.4. Verify(cp, m, ℓ, σ

(ℓ)
i , pki): On input of the publi parameters cp, a mes-sage m ∈ {0, 1}∗, a level ℓ signature σ(ℓ) and a publi key pki, this de-



A Multi-use Uni-diretional Proxy Re-Signature Sheme 49terministi algorithm outputs 1 if σ(ℓ) is a valid signature for pki or 0 ifotherwise.5. Sign(cp, m, ℓ, ski): On input of the publi parameters cp, a messagem ∈
{0, 1}∗ and the signers private key ski this randomized algorithm outputsa signature σ(ℓ)

i (m) of user i on the message m at level ℓ ∈ {0, ..., L}.6. Re-Sign(cp, m, ℓ, σ
(ℓ)
i , Rij , pki, pkj): Given the publi parameters cp, amessage m ∈ {0, 1}∗ , a level ℓ signature σ

(ℓ)
i of user i, the re-signaturekey Rij, this randomized algorithm produes σ(ℓ+1

j a level ℓ+1 signaturefor user j if σ(ℓ)
i is valid for the publi key pki.Here λ is the seurity parameter and both the number N of users and thenumber L of allowed translations (levels) are polynomial in λ. We require thatfor all λ ∈ N all system parameters cp produed by Setup(), for all publiand private key-pairs (pki, ski), (pkj, skj) produed by KeyGen() and for any

ℓ ∈ {0, ..., L} and messages m ∈ {0, 1}∗:
Verify (cp, m, ℓ,Sign(cp, m, ℓ, ski), pki) = 1 .

Verify(cp, m, ℓ,ReSign(cp, m, ℓ,Sign(cp, m, ℓ, ski),
ReKeyGen(cp, pki, skj)), pkj) = 1 .Now we will speify the implementation of the multi-use uni-diretional proxyre-signature sheme from Libert & Vergnaud (2008a).The multi-use uni-diretional shemeSetup(λ): On input of the seurity parameter λ ∈ N, this algorithm hoosesbilinear groups (G,GT ) of prime order p > 2λ, a generator P ∈ G and a hashfuntion H : {0, 1}∗ → G. The publi system parameters are

cp := {G,GT , P,H}.Keygen(cp): User i's publi and private key pair is (Xi, xi) with a random
xi ←− Z×

p .ReKeygen(cp, Xi, xj): This algorithm outputs the Re-Signature key asRij =
1
xj
Xi =

xi

xj
P whih allows the proxy to translate signatures of user i into signa-tures of user j.



50 T. Jonas ÖzganVerify(cp, m, ℓ, σ(ℓ), Xi): The validity of an level ℓ signature
σ(ℓ)(m) = (σ0, σ1, . . . , σℓ, σ−ℓ, . . . , σ−1) ∈ G2ℓ+1on a message m ∈ {0, 1}∗ for the publi key Xi is veri�ed if the ℓ+1 equations
e(σ0, P )

?
= e(σ1, H(m)),(10.2)

e(σk, P )
?
= e(σk+1, σ−k) for k ∈ {1, . . . , ℓ− 1},(10.3)

e(σℓ, P )
?
= e(Xi, σ−ℓ)(10.4)all hold. For ℓ = 0 this speializes to the following:
e(σ(0), P )

?
= e(Xi, H(m)).Sign(cp, m, ℓ, xi): On input a message m ∈ {0, 1}∗ and a private key xi, thisalgorithm signs signatures at level ℓ for user i. It �rst omputes

σ(0)(m) = xiH(m).Then appends ℓ trivial H-s and re-randomizes the result. During the ompu-tation the algorithm hooses r1, . . . , rℓ ←− Z×
p and omputes and outputs thegroup elements as

σ
(ℓ)
0 = rℓ · · · · · · r2 · r1 · xiH(m),

σ
(ℓ)
k = rℓ · · · rk · xiP for k ∈ {1, . . . , ℓ},

σ
(ℓ)
−k = rk · P for k ∈ {ℓ, . . . , 1}.Note that this is preisely as in Figure 8.5.Re-Sign(cp, m, ℓ− 1, σ(ℓ−1), Rij , Xi, Xj): On input a message m ∈ {0, 1}∗, avalid level ℓ− 1 signature

σ(ℓ−1)(m) = (σ0, σ1, σ2, . . . , σℓ−1, σ−ℓ+1, . . . , σ−1) ∈ G2ℓ−1on m, the re-signature key Rij = xi

xj
P and the publi keys Xi, Xj, this algo-rithm re-sings σ(ℓ−1) to σ(ℓ) valid for Xj . It �rst appends the re-signature H andthen re-randomizes the result. During the omputation the algorithm hooses

ℓ random elements t1, t2, . . . , tℓ ←− Z×
p then it translates σ(ℓ−1) into a level ℓ
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σ
(ℓ)
0 = tℓ . . . . . . t2t1 · σ

(ℓ−1)
0 ,

σ
(ℓ)
k = tℓ . . . tk · σ

(ℓ−1)
k for k ∈ {1, . . . , ℓ− 1},

σ
(ℓ)
ℓ = tℓXi,

σ
(ℓ)
−ℓ = tℓRij = tℓ

xi

xj
P,

σ
(ℓ)
−k = tk · σ

(ℓ−1)
k for k ∈ {ℓ− 1, . . . , 1}.We observe that:

σ(ℓ)(m) = (σ0, σ1, σ2, . . . , σℓ, σ−ℓ, . . . , σ−2, σ−1)

= (rℓ . . . . . . .r1xjH(m),

rℓ . . . . . . r1xjP,

rℓ . . . r2xjP,...
rℓxjP,

rℓP, . . . , r2P, r1P ) ∈ G2ℓ+1.If we set rℓ = tℓ
xi

xj
and rk = tkrk for k ∈ {1, . . . , ℓ− 1}. Sine

σ(ℓ−1)(m) = (σ0, σ1, σ2, . . . , σℓ−1, σ−ℓ+1, . . . , σ−1)

= ( rℓ−1 · · · · · · r1xiH(m),

rℓ−1 · · · · · · r1xiP,

rℓ−1 · · · r2xiP,...
rℓ−1xiP,

rℓ−1P, . . . , r2P, r1P ) ∈ G2ℓ−1.



52 T. Jonas ÖzganNotie the slight hange of the order of the elements in (10.2) and (10.4) inthe veri�ation proess. This notion is formally more orret beause we anuse two di�erent groups G1 and G2 instead of one to onstrut the signaturesheme. Reall the H representation of a level ℓ signature as in Figure 8.4, ineah H we then would have the diagonal elements in the same groups. This isalled the asymmetri ase and the hoie of using two groups instead of one ishighly related to the seurity of the signature sheme whih we disuss in thenext hapter. We also observe the following:
◦ Uni-diretional: The re-signature key Rij allows the proxy to translatesignatures in one diretion.
◦ Multi-use: Signatures in this sheme an be translated polynomiallymany times, in fat a signer an limit the number of translations to nby signing the signature at level L− n where at most L translations areallowed.
◦ Private-proxy: An honest proxy an keep the re-signature key Rij seretbeause while translating the signature, Rij is blinded out by a randomelement tℓ ←− Z×

p .
◦ Transpareny: Sine the signatures an also be signed at some arbitrarylevel ℓ ∈ {0, . . . , L} the user does not even know that a proxy exists.
◦ Unlinkability: A signature translated from level ℓ−1 has the same distri-bution of the oe�ients as a signature whih was signed at level ℓ, thusa user has no way of linking it to its predeessor.
◦ Non-interative: Trivially, the re-signature key Rij = xi

xj
P an be al-ulated without the interation of the delegatee i. As mentioned beforesigner j an alulate Rij by 1

xj
Xi and make it available to the proxy forexample with an interative seure protool.

◦ Non-transitive: The proxy annot re-delegate his signing rights. Thismeans that even if he is in possession of RAB and RBC he is not able toprodue RAC for some users A,B and C. Note that in this ase the proxy an�rst translate the signatures of A into ones of B and then translate theminto signatures of C but he is not able to translate signatures diretly.
◦ Key-optimal: Signers only have to store a onstant amount of data, ie.one private key for Aylin is enough for all signatures and delegations shemakes.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 53Part IIISeurityIn this hapter we will disuss the seurity issues of the signature sheme. Wewill start with reviewing the underlying ryptographi assumptions and afterthat we formulate an adversary model and ompare the two di�erent environ-ments in whih the adversaries are simulated. We will ontinue with formu-lating a new seurity de�nition and ompare it the original seurity de�nitionde�ned in Ateniese & Hohenberger (2005) and also used in Libert & Vergnaud(2008a).Using this new seurity de�nition we �rst prove that the signature shemeis seure in the random orale model (Bellare & Rogaway 1993). Then wemodify the signature sheme with a trik from Waters (2005) and prove thatthe signature sheme is also seure in the standard model after this slightmodi�ation. 11. Cryptographi assumptionsWe �rst reall the de�nition of a bilinear pairing from Part I.Definition 11.1. For prime order groups G and GT a bilinear map e : G ×G→ GT is a mapping with the following properties(i) e is bilinear: e(aP, bQ) = e(P,Q)ab for all (P,Q) ∈ G×G and a, b ∈ Z×
p .(ii) e is non-degenerate: e(P, P ) 6= 1 for some P ∈ G.(iii) e is e�iently omputable.The symmetri setting Although we de�ned pairings in Part I generallyin an asymmetri setting, here we use the symmetri setting for the signaturesheme as we did in Part II. In pratie the seurity of the signature shemeis highly related to the embedding degree k of the ellipti urve E(Fqk) onwhih the target group GT is de�ned. The seurity level β is measured inbits whih means that alulating the relevant disrete logarithm should takeapproximately 2β basi operations. The National Institute of Standards andTehnology (NIST) reommends until the end of year 2010 an 80 bit seuritylevel (Barker, Barker, Burr, Polk & Smid 2007). This implies that in RSA basedryptosystems the key size has to be at least 1024 bits (after 2010 even 2048



54 T. Jonas Özganbits) whih orresponds approximately to a key size of at least 160 bits (after2010 at least 224 bits) in ellipti urve based systems (Barker, Burr, Jones,Polk, Rose, Dang & Smid 2009). Thus, with an 80 bit seurity requirementin the symmetri setting we need the prime order q of the group G at leastto be 160 bits, ie. q ≈ 2160. Now onsider the target group GT . Sine this isa multipliative subgroup of Fqk we need 1024 bits to ahieve 80 bit seuritythere. Therefore to ahieve 80 bits of seurity we need qk ≈ 21024. This meansthat to meet the reommendation of NIST for an 80 bit seurity level we needat least k = 6. Unfortunately in the symmetri setting, for k = 6 there arenot many urves available. And if we try to work the opposite way aroundfor a smaller embedding degree, let's say k = 2, we end up with ine�ientgroups of size q ≈ 2512 whih is muh higher than the required value 2160.Consequently the situation gets worse for 128 bit and 256 bit seurity levels,but we an modify our signature sheme into an asymmetri setting in whihthere are more urves available for k ≥ 6. A good family of urves an befound in Barreto & Naehrig (2005). We an modify our signature sheme intoan asymmetri setting by allowing two groups G1 and G2. The elements of alevel ℓ signature are then distributed as follows:
σ
(ℓ)
i ∈ G1 for all i ∈ {0, . . . , ℓ},

σ
(ℓ)
−i ∈ G2 for all i ∈ {1, . . . , ℓ} and

H(m), P ∈ G2.Consider Figure 11.1, in eah H the diagonal elements must be from the samegroup. However, to simplify things for the theoretial approah we only onsiderthe symmetri setting throughout this hapter.The signature sheme relies on the generi Computational Di�e-Hellman(CDH) assumption and on another urrent generalization of it, alled the ℓ-�exible Di�e-Hellman (ℓ-�exDH) problem. Realling the de�nition of thewell known generi omputational Di�e-Hellman problem we introdue the
ℓ-�exDH problem. We assume that the disrete logarithm problem is hard inthese groups.Definition 11.2. The omputational Di�e-Hellman (CDH) problem is,given P, aP, bP ∈ G to ompute abP ∈ G. The omputational Di�e-Hellmanassumption is that this problem is hard to solve.To introdue and understand the ℓ-�exDH problem, we start with the de�nitionof the 1-�exDH problem.
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XiFigure 11.1: A level ℓ signature σ(ℓ) valid for XiDefinition 11.3. The 1-�exible Di�e-Hellman (1-�exDH) problem is, given
P, aP, bP ∈ G to ompute a triple (abC, aC, C) ∈ G3 suh that C is not theneutral element of the group. The 1-�exible Di�e-Hellman assumption is thatthis problem is hard to solve.The 1-�exDH problem is very similar to what is known as 2-out-of-3 Di�e-Hellman problem whih states that, it is already hard to ompute a pair
(abC, C) ∈ G2 from the same triple (P, aP, bP ) ∈ G3. Now we extend thede�nition of the 1-�exDH problem to the ℓ-�exDH.Definition 11.4. The ℓ-�exible Di�e-Hellman (ℓ-�exDH) problem is, given
P, aP, bP ∈ G to �nd a (2ℓ+ 1)-tuple

(abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1) ∈ G2ℓ+1suh that logP Dj =
∏j

i=1 logP Ci for all i ∈ {1, . . . , ℓ}, where Ci is not theneutral element of the group G.



56 T. Jonas ÖzganTheorem 11.5. The ℓ-�exDH problem as de�ned above is hard to solve.Proof. A proof of hardness of the ℓ-�exDH in generi groups an be foundin Libert & Vergnaud (2008a). The proof uses the family of omputationalproblems provided in Kunz-Jaques & Pointheval (2006) whih allow the studyof the variants of the CDH in the generi group model. �For explanatory purposes we also introdue another variant of the CDH whihis alled the modi�ed omputational Di�e-Hellman (mCDH) problem.Definition 11.6. The modi�ed omputational Di�e-Hellman (mCDH)problem is, given P, aP, 1
a
P, bP ∈ G to ompute abP ∈ G. The modi�edomputational Di�e-Hellman assumption is that this problem is hard to solve.12. Adversary modelWe now pik up the seurity disussion whih we skipped at the end of Part II.The general seurity notion for signatures onsiders an adversary against thesheme and addresses two issues:1. the apabilities of the adversary, in partiular, how muh informationdoes the adversary have,2. and the adversary goal.We onsider the seurity of the signature sheme as existentially unforgeableagainst an adversary with adaptive hosen message attak apabilities (EUF-CMA). This means that we onsider an adversary A with full aess to thesigner who is idealized as a signing orale and to the publi key of the signer.More onretely, A is allowed to query the signing orale to obtain valid sig-natures σ1, . . . , σn on arbitrary messages m1, . . . , mn. Sine A an adaptivelyask for signatures on di�erent messages this is alled an adaptive hosen mes-sage attak. As an example for an adversary with a lot less apabilities, weould limit the adversary to have no information at all exept the publi key.This would result in an key only attak (KOA) whih is the unavoidable aseanyway.In the endA is onsidered to be suessful if he an ome up with a signature

σ∗ on a message m∗ /∈ {m1, . . . , mn} within reasonable time. Notie that A isrequired reate a new message m∗ and a new signature σ∗ by himself and this isalled existentially unforgeability of the signature sheme. This is a very strong



A Multi-use Uni-diretional Proxy Re-Signature Sheme 57seurity requirement sine the goal of the adversary is very �easy�. This isbeause we require A to alulate only one forgery. As an example of a weakerseurity requirement than EUF, thus a harder goal for A, we ould require
A to produe a forgery σ∗ for a given message m∗. This is alled seletiveunforgeability (SUF). The weakest seurity requirement and thus the hardestgoal for an adversary in this sense is that we require him to reover the seretkey sk from the given publi key pk. This is alled unbreakability (UB).12.1. Strong unforgeablity. A slightly stronger seurity requirement thanEUF is the strong unforgeability (SEUF) as de�ned in An, Dodis & Rabin(2002). Here we require the attaker not only be unable to forge a signature ofa �new� message, but also that he is unable to generate even a di�erent signaturefrom an already signed message, ie. we only require σ∗ /∈ {σ1, . . . , σn}. In thissense we observe that the signature sheme onsidered in this thesis is notSEUF, sine any level ℓ ≥ 1 signature an be publily re-randomized. It seemsthat in this setting we annot have SEUF if we want unlinkability. This resultsfrom the fat that the unlinkability is ahieved through the re-randomizationstep in the re-singing proess. Therefore, this is not a weakness of the signaturesheme, on the ontrary it allows the desired unlinkability property.12.2. The adversary. Translated into daily language EUF-CMA seuritymeans that, even if an attaker Charly has aess to his vitim Aylin's om-puter for a while and produes many valid signatures of her on arbitrary mes-sages of his hoie, he is still unable to produe a valid message signature pair
(m∗, σ∗) on a fresh message m∗ by himself. In SEUF-CMA seurity, Charlywould even be unable to produe a new message signature pair (m∗, σ∗) fromthe signatures he obtained from Aylin's omputer. The di�erene is that inEUF-CMA seurity we do not allow Charly to query the message of m∗ atany time. In the SEUF-CMA seurity however, Charly is allowed to query asignature for m∗ but is required to reate a new signature for m∗ in that ase.In Goldwasser, Miali & Rivest (1988) the highest seurity level is on-sidered as EUF-CMA. This means that an adversary who annot produe anexistential forgery with adaptive hosen message attak apabilities is also notable to forge signatures on weaker seurity notions with lesser apabilities, forexample SUF-KOA. Thus it is desirable to prove the seurity with respet toEUF-CMA. To formalize this we de�ne the following gameEUF-CMA Game.Input: An attaker A, a signature orale OSign, the list (pk) of publi keys ofall possible vitims.



58 T. Jonas ÖzganOutput: { WIN , LOOSE }.1. (pk∗, m∗, σ∗)← A ((pk),OSign).2. If σ∗ is valid for pk∗ on m∗ then3. If m∗ was queried from OSign thenLOOSE .4. Else WIN .5. Else LOOSE .The adversary A has aess to the publi keys pk of all possible vitims and asignature orale OSign whih returns signatures on behalf of the vitims to A.After a while A outputs a message signature pair (m∗, σ∗) valid for the publikey pk∗ (step 1). Obviously we do not allow A to ask OSign for a signature on
m∗ (step 3). We require that A has at most advantage ε of winning the game,ie.

Pr[A wins EUF-CMA Game] ≤ ε.A proof of seurity states that if there exists an attaker A who an break EUF-CMA seurity then this also implies breaking the underlying ryptographiassumptions whih in our ase is the ℓ-�exDH assumption. Suh a proof isatually a redution from the attaker A to the underlying assumption, ie. ifan attaker A exists we an use it as a blakbox and solve the ryptographiproblem by manipulating A's input and orales.In the following setions we will show that the signature sheme is seureby onstruting algorithms whih use EUF-CMA attakers with advantage εto solve the ℓ-�exDH instanes. We will also allow these attakers to haveaess to more information through di�erent orales. There are two di�erentenvironments (models) used in seurity proofs for simulating the attakers whilemanipulating their inputs and orales. These are:1. the random orale model,2. and the standard model.Eah model has its advantages and disadvantages whih we will brie�y disussnow.12.3. Random orale model versus standard model. The random or-ale model was introdued in Bellare & Rogaway (1993) and has been a usefultool for proving the seurity of many signature shemes ever sine (over 2400itations on Google sholar). In the random orale model the attaker has an-other orale OHash whih he an query for hash values on arbitrary messages of



A Multi-use Uni-diretional Proxy Re-Signature Sheme 59his hoie. This idealization of the hash funtion as an orale in this environ-ment results from the assumption that the hash funtion used in the signaturesheme is truly random and onsequently that the attaker is independent ofthe hash funtion. However, when moving from the theoretial sheme to apratial implementation, the idealized hash funtion has to be implementedas a ertain ryptographi funtion suh as SHA-1 or MD5 (Barker et al. 2009;Eastlake & Jones 2001; Rivest 1992). This means that there are signaturesshemes whih are seure in the random orale model but have no seure im-plementation in a real world without random orales (Canetti, Goldreih &Halevi 2004). The weakness of the random orale model is that the attakeran also be dependent of the hash funtion, suh that he is exploiting spei��aws in the atual implementation of the hashing orale. This would mean thatthe modi�ations made to the hashing orale would also orrupt the output ofthe attaker whih would also make the redution invalid in this model.In the standard model there are no idealizations exept the signing oralewhih is realisti as desribed above. More importantly this makes the shemeonly stronger. This means that, in this environment, the hash funtion has aertain implementation and therefore a ertain probability distribution of itsoutputs. When manipulating the hash funtion we have to assure that after themanipulations the distribution of the outputs is still the same. In ontrast tothe random orale model this ompliates a redution in the standard model.In fat later we even modify the atual signature sheme slightly to ahieveprovable seurity in the standard model. Thus, even though the random oralemodel is a powerful tool for the theoretial approah it is still desirable tohave a seurity proof in the standard model. For more information about theapabilities and a detailed disussion of the shortomings of the random oralemodel we refer to the link farm Lipmaa (2010).13. Seurity de�nitionIn this setion we provide a new seurity de�nition for the signature shemeonsidering a generi adversary A who has aess to as muh as informationpossible. We allow A to have aess to four di�erent orales and keep trak of
A's orale alls in a query list Q-list. When A outputs a forgery we onstruta direted graph from the query list. The idea is to rule out the ombinationof A's queries whih lead to a trivial forgery.13.1. The orales. There are four di�erent orales available to A.1. OSkey(i). When queried with i, the private key orale returns the private



60 T. Jonas Özgankey ski of user i. The entry [OSkey, i] is added to Q-list.2. OReKey(i, j). When queried with (i, j) the re-signature key orale returns
Rij the re-signature key from user i to j. The entry [OReKey, (i, j)] isadded to Q-list.3. OSign(i,m, ℓ). When queried with (i,m, ℓ), the signature orale returns alevel ℓ signature σi on m valid for pki the publi key of user i. The entry
[OSign, (i,m)] is added to Q-list.4. OReSign(σi, i, j,m). When queried with (σi, i, j,m), the re-signature oralereturns σj a re-signature of σi on m valid for pkj the publi key of user
j. The entry [OReSign, (i, j,m)] is added to Q-list.When A outputs a forgery, the entries in Q-list onsists of tuples [orale, query].13.2. The query graph. The query graph GQ is onstruted from the querylist after A omes up with a forged message signature pair (m∗, σ∗) valid for

pki∗ the publi key of user i∗. Consider the following algorithm:Query-graph.Input: A user i∗, a message m∗ and a query list Q-list,Output: A direted graph GQ = (V,E).1. M := {m | ∃ i, j : [OSign, (i,m)] ∈ Q-list or [OReSign, (i, j,m)] ∈ Q-list}.2. V ← {[0], [i∗, m∗]}, E ← ∅.3. For eah entry [orale, query] ∈ Q-list Do 3-15.4. If orale = OSkey && query = i then5. V ← V ∪ {[i,m]} for all m ∈M .6. E ← E ∪ {([0], [i,m])} for all m ∈ M .7. Else if orale = OReKey && query = (i, j) then8. V ← V ∪ {[i,m], [j,m]} for all m ∈M .9. E ← E ∪ {([i,m], [j,m])} for all m ∈M .10. Else if orale = OSign && query = (i,m) then11. V ← V ∪ {[i,m]}.12. E ← E ∪ {([0], [i,m])}.13. Else if orale = OReSign && query = (i, j,m) then14. V ← V ∪ {[i,m], [j,m]}.15. E ← E ∪ {([i,m], [j,m])}.16. Return GQ ← (V,E)



A Multi-use Uni-diretional Proxy Re-Signature Sheme 61In the beginning the algorithm de�nes a set M ontaining all queried mes-sages m from the Q-list (step 1). The algorithm then initializes the set of nodes
V with a start node [0] and the �nal node [i∗, m∗], at this point the set of edges
E is empty (step 2). Eah private key ski queried fromOSkey, allows an attaker
A to reate signatures on behalf of user i on any message m ∈ M , espeiallyon m∗ ∈ M . Therefore the nodes labeled [i,m] with edges ([0], [i,m]) for all
m ∈M are added to the graph (steps 5 and 6). Similarly eah re-signature key
Rij allows an attaker to translate a signature σi of user i into a signature σjof user j independent of the signed message m. Thus, the algorithm adds thenodes [i,m], [j,m] and the interonneting edges ([i,m], [j,m]) for all m ∈ Mto the graph (steps 8 and 9). For eah signature query of user i on m thenode [i,m] and the edge ([0], [i,m]) are added to the graph (steps 11 and 12).Also for eah re-signature query from user i to user j on a message m the node
([i,m]), ([j,m]) with the interonneting edge ([i,m], [j,m]) are added to thegraph (steps 14 and 15). In the end if there is a path from [0] to [i∗, m∗] weknow for sure that A has obtained some information whih allows him to reate
(m∗, σ∗) trivially.Note that in view of generality we ould also label the nodes additionallywith the queried signatures ie. [i,m, σ]. However this does not make sense inour ase beause the signature sheme is not strongly unforgeable (SEUF). Thismeans that even if we use suh a labeling of nodes, we are not interested in theadditional information σ sine the adversary is able to transform σ into σ′ byhimself. Thus onsidering only the queried users i and the queried messages
m is enough for us to know if A has some information whih leads to a trivialforgery. Further, we ould also only treat the queries ontaining m∗ sine inthe end we are only interested in a path from [0] to [i∗, m∗].13.3. The hallenge. Now we de�ne the following game:Game 13.1.Publi input: A list (pki) of publi keys of all users i ∈ {0, . . . , N − 1}.Input: An attaker A, a private key orale OSKey, a signature orale OSign, are-signature orale OReSign and a re-signature key orale OReKey.Output: { WIN , LOOSE }.1. (i∗, m∗, σ∗)← A ((pki),OSKey,OReKey,OSign,OReSign).2. If Verify(·, pki∗, m∗, σ∗) = 0 then LOOSE .3. GQ ← Query-graph(i∗, m∗, Q-list).4. If there is a path from [0] to [i∗, m∗] in GQ then LOOSE .5. Else WIN .



62 T. Jonas ÖzganThe attaker A is allowed to have aess to all the publi keys (pki) of users
i ∈ {0, . . . , N−1} and all the orales de�ned above (step 1). A is then requiredto ome up with a forged message signature pair (m∗, σ∗) valid for pki∗ thepubli key of user i∗ ∈ {0, . . . , N − 1} (steps 1 and 2). Then the query graph
GQ is onstruted from the Q-list with respet to i∗ and m∗ (step 3). If thereis no path from [0] to [i∗, m∗] in GQ, A wins Game 13.1.13.4. The new seurity de�nition. We all the signature sheme seureif for any attaker A the probability Pr[A wins Game 13.1] = f(λ) is neg-ligible in the seurity parameter λ. Reall that f is negligible in λ i� ∀p ∈poly+(λ) ∃L ∀λ > L : f(λ) ≤ 1

p(λ)
, where poly+(λ) denotes the set of positivepolynomials in λ.In our new seurity de�nition we onsider a generi attaker A who hasaess to four di�erent orales. We keep trak of A's orale queries in a querylist Q-list where the orale alls and mathing query values are reorded to-gether as entries in the form of [orale, query]. The graph GQ generated by thealgorithm Query-graph from Q-list allows us to determine if A queried someinformation whih leads to a trivial forgery, ie. if A heated. This means that Ais not restrited in anyway and has aess to as muh as information possible.Now we reall and ompare the old seurity de�nition from Ateniese &Hohenberger (2005) whih was also used in Libert & Vergnaud (2008a) withour new seurity de�nition.13.5. The seurity de�nition from Ateniese & Hohenberger (2005).This seurity de�nition for uni-diretional proxy re-signature shemes distin-guishes between internal and external seurity.13.5.1. Internal seurity. This notion aptures that an honest party insidethe system is seure against olliding delegation partners. There are three dif-ferent seurity notions de�ned inside the system depending on whih delegationpartner an attaker, ie. a orrupt user, an impersonate.Limited proxy seurity. This notion aptures the inability of the proxy tosign messages on behalf of the delegatee (who's signature is translated) and alsohis inability to reate signatures for the delegator unless they were �rst signedby the delegatee. In this de�nition the adversary is allowed to have aess to allpubli keys, all re-signature keys and a signature orale whih returns level 0signatures on behalf of any user. In the end the adversary is required to omeup with any level ℓ signature σ∗ valid for some user i∗ ∈ {0, . . . , N − 1} of hishoie. The adversary fails if he queried the signature orale for a signature on



A Multi-use Uni-diretional Proxy Re-Signature Sheme 63the forged message m∗ before. The proof uses this adversary with advantage εto solve a given ℓ-�exDH instane with a suess probability Ω( ε
qs
) where qs isthe number of signature queries.In omparison to our new seurity de�nition and the other adversaries inthis seurity de�nition this adversary seems to be the most �natural� one. Wenote that this adversary A1 has aess to all re-signature keys and thereforean reate re-signatures on his own. We also note that A1 has not aess toany seret key information. Thus, we an redue A1 to our generi adversary

A by limiting A's aess to the orales OReKey, OSign and OReSign.Delegatee seurity. This notion states that an honest delegatee (who's sig-nature is translated) is proteted against a olliding delegator and proxy. Thismeans that an attaker impersonating as the proxy and the delegator has verylittle hane of oming up with a forgery on behalf of the targeted delegatee.In this de�nition the adversary is allowed to have aess to all publi keys, allseret keys exept the seret key of the targeted delegatee i∗, all re-signaturekeys exept Rii∗ , and a signature orale whih returns level 0 signatures onbehalf of targeted delegatee. In the end the adversary is required to ome upwith a level ℓ signature σ∗ on behalf of the targeted delegatee i∗. The adversaryfails if he queried the signature orale for a signature on the forged message
m∗ before. The proof uses this adversary with advantage ε to solve a given
ℓ-�exDH instane with a suess probability Ω( ε

qs
) where qs is the number ofsignature queries.This adversary A2 is not allowed to hoose freely whih user he wants toorrupt, in omparison to our generi adversary A this seems like a very un-natural limitation of the seurity notion EUF-CMA. We an redue A2 to Aby requiring A to ome up with a signature σ∗ valid for the publi key pki∗of a user i∗ who is �xed in the beginning. The aess to all seret keys ski ofusers i ∈ {0, . . . , N −1}\{i∗} allows A2 to reate signatures for users i 6= i∗ byhimself. Further the aess to all re-signature keys Rij where j 6= i∗ allows himalso to reate re-signatures of his hoie. Note that in the new seurity de�ni-tion the query for the seret key ski∗ would reate a path from [0] to [i∗, m∗] inthe query graph GQ. However, the query for the re-signature key Rii∗ wouldreate an edge ([i,m∗], [i∗, m∗]) but not neessarily a path from [0] to [i∗, m∗]beause the simple knowledge of Rii∗ does not lead to a trivial forgery. Thismeans that in the old seurity de�nition this permissible query is ruled outand not onsidered beause the adversary A2 has aess to all seret keys skiexept ski∗ . Thus, the di�erene between A and A2 is not only the free hoieof targeted delegatee i∗ but also the allowed queries for re-signature keys Rii∗



64 T. Jonas Özganwhih do not neessarily lead to a trivial forgery.Delegator seurity. This notion aptures that a ollision between the del-egatee and the proxy is harmless for an honest delegator. This means thatthe attaker who is impersonating the delegatee and the proxy has very littlehane of oming up with a forgery on behalf of the targeted delegator. Inthis de�nition the adversary is allowed to have aess to all publi keys, allseret keys exept the seret key of the targeted delegator i∗, all re-signaturekeys and a signature orale whih returns level 0 signatures on behalf of targetdelegatee. In the end the the adversary is required to ome up with a level 0signature σ∗ for the targeted delegator i∗. The adversary fails if he queried thesignature orale for a signature on the forged message m∗ before. The proofuses this adversary with advantage ε to solve the given mCDH instane (seeDe�nition 11.6) with a suess probability Ω( ε
qs
) where qs is the number ofsignature queries.As in the previous ase this adversary is also not allowed to hoose freelywhih user he wants to orrupt. Another additional restrition here is that hehas to ome up with a level 0 signature. We an redue this adversary A3 toour generi adversary A by requiring A to ome up with a level 0 signature σ∗on behalf of a spei� user i∗ who is �xed in the beginning.13.5.2. External Seurity. This notion aptures that an attaker who isoutside of the system is not able to orrupt users inside the system. In thisde�nition the adversary is allowed to have aess to all publi keys, a signatureorale returning level 0 signatures on behalf any user and a re-signature oralewhih returns re-signatures as de�ned above. In the end the adversary is re-quired to ome up with a level ℓ signature σ∗ valid for a user i∗ ∈ {0, . . . , N−1}of his hoie. The adversary fails if he queried one of the orales for a signa-ture on behalf of user i∗ on the forged message m∗ before. The proof uses thisadversary with advantage ε to solve a given ℓ-�exDH instane with a suessprobability Ω( ε

N(qs+qrs
)) where qs is the number of signature queries and qrs isthe number of re-signature queries. Di�ering from the other proofs above thefator 1

N
omes from the initial guess of the user i∗ whih will be orrupted bythe adversary.Compared to our generi adversary and the other adversaries in this seurityde�nition this adversary is the most limited one. We an redue this adversary

A4 to our generi adversary A by limiting A's aess to the orales OSign and
OReSign.Note 13.2. As the authors Libert & Vergnaud (2008a) point out orretly,



A Multi-use Uni-diretional Proxy Re-Signature Sheme 65the notion of external seurity �only makes sense if the re-signature keys arekept private by the proxy�. This means that the private proxy property isessential for the seurity de�nition of Ateniese & Hohenberger (2005). Thiswas later also pointed out by Chow & Phan (2008) and Shao et al. (2010), seeRemark 13.3 later.13.6. Results. The seurity de�nition from Ateniese & Hohenberger (2005)seems orret in pratie beause intuitively it overs all attak senarios. How-ever both Ateniese & Hohenberger (2005) and Libert & Vergnaud (2008a) lakof an argumentation of how this de�nition was onstruted. Formally speakingthis means that it is not lear if there are other attak senarios or not. Asalready pointed out in the ase of delegatee seurity there are some ases whihare not onsidered in the original seurity de�nition. For example, in the aseof external seurity adversaries who have aess to more information suh assome re-signature keys are also not onsidered.On the other hand, using the query graph tehnique with a generi adversaryallows us to avoid these arti�ial limitations of adversaries and splitting theseurity de�nition. Therefore it is safe to assume that our seurity de�nitionis not equivalent to the original one. It rather enompasses the old one andalso the unonsidered attak senarios. Consequently we only need one proofinstead of four.As mentioned above, another point of ritique is that the adversaries in theases of delegatee seurity and delegator seurity are not allowed to hoose thetargeted user i∗ freely. It seems that this determination of the targeted user
i∗ in these ases is somehow similar to the ase of external seurity. Sine inthe proof external seurity the orrupted user i∗ is guessed initially, the suessprobabilities of delegatee seurity and delegator seurity should at least di�erfrom the suess probability of limited proxy seurity beause in that ase theadversary is allowed to hoose i∗ freely.13.7. Observations. This new seurity de�nition inludes all requirementsfrom Part II as we are going to show in the following.13.7.1. Uni-diretionality. Suppose that we have a signature sheme wherethe re-signature key Rij an be used to translate signatures σi valid for user
i into signatures σj valid for user j and vie versa. A generi adversary withaess to the orales from above an do the following:1. Query OSign(i,m∗) to obtain a valid signature σi on m∗ on behalf of user

i.



66 T. Jonas Özgan2. Query OReKey(i∗, i) to get the re-signature key Ri∗i.3. Return σi∗ ← ReSign(m∗, ·, σj, Ri∗i, Xi∗ , Xi) whih is a forged signatureon m∗ on behalf of user i∗.This is a perfetly valid forgery in the sense of our new seurity de�nition. Thisresults from the direted edges of the graph GQ onstruted from Q-list. The�rst query will reate a path from [0] to [i,m∗] the seond query will reate apath from [i∗, m∗] to [i,m∗] but there will be no path from [0] to [i∗, m∗]. Usingan undireted graph instead, seems to make this seurity de�nition also validfor bi-diretional shemes. However, it is not lear what impats the usage ofan undireted graph has on the other requirements.13.7.2. Private proxy. Suppose that we have a signature sheme where there-signature key Rij is easily reovered from the signatures σi(m) and σj(m).An adversary with aess to the orales from above an do the following:1. Query OSign(i,m) to get a valid signature σi(m) on a message m on behalfof user i.2. Query OReSign(σi, i, i
∗, m) to get a valid re-signature σi∗(m) on m on be-half of user i∗ re-signed from σi(m).3. Reover Rii∗ from σi(m) and σi∗(m).4. Query OSign(i,m∗) and get a valid signature σi(m

∗) on m∗ on behalf ofuser i.5. Return σ∗
i∗(m

∗) ← ReSign(m∗, ·, σi(m
∗), Rii∗ , Xi, Xi∗) whih is a forgedsignature on the message m∗ on behalf of user i∗.As above this proess is also a perfetly valid forgery in the sense of the new se-urity de�nition beause there will be no entry [OReKey, (i, i∗)] in Q-list. There-fore the graph algorithm will not be able to reate an edge from the node [i,m∗]to [i∗, m∗]. This means that our new seurity de�nition and also the originalone only make sense if the proxy keeps the re-signature keys Rij private (Chow& Phan 2008). However, we an modify the algorithm Query-graph suh that itadds edges ([i,m], [j,m]) for all messages m ∈ M for every re-signature queryentry [OReSign, (i, j,m)] ∈ Q-list (step 15 in algorithm Query-graph). Thismeans that the algorithm would then treat every entry [OReSign, (i, j,m)] in

Q-list additionally as a re-signature key query, ie. [OReKey, (i, j)]. This seemsto make the seurity de�nition also valid for signature shemes with the publiproxy property.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 6713.7.3. Transpareny. Suppose that we have signature sheme where anadversary an distinguish between signed and re-signed signatures on the samelevel. This means that an algorithm isTransformed(·) is impliitly inludedin the system parameters whih answers 1 if a signature was generated bythe ReSign(·) algorithm (Chow & Phan 2008). Now we onsider an adversarymaking the following queries:1. Query OSign(i,m) to obtain a valid signature σi(m) on a message m onbehalf of user i.2. Query OReSign(σi, i, j,m) to get a valid re-signature σj(m) on m on behalfof user j re-signed from σi(m).If the adversary an somehow now extrat some information from σi(m) and
σj(m) that allows him to alulate the re-signature key Rij , he an outputvalid forgery as shown above in the private proxy property. Besides that justthe knowledge of isTransformed(σ) = 1, should be �safe� for the seurity of thesignature sheme. Therefore, our new seurity de�nition also seems to applyfor non-transparent proxy re-signature shemes.13.7.4. Unlinkability. Similar to the transpareny property this propertyis also highly related to the private proxy property. This means that the mereability to link a re-signature to its predeessor does not seem to ompromisethe seurity of the signature sheme.13.7.5. Non-transitivity. Suppose that we have transitive signature shemewhere the re-signature key Rii∗ an easily be produed from Rij and Rji∗ . Con-sider the following attak from Chow & Phan (2008):1. Query OSign(i,m∗) to get σi on a message m on behalf of user i.2. Query OReKey(i, j) to get Rij the re-signature key from user i to j where

i 6= j.3. Query OReKey(j, i∗) to get Rij the re-signature key from user i to j where
i 6= j 6= i∗.4. Compute Rii∗ from Rij and Rii∗ .5. Return σ∗ ← ReSign(m∗, ·, σi(m

∗), Rii∗ , Xi, Xi∗).This is a valid forgery for the seurity de�nition of Ateniese & Hohenberger(2005). However, this is not the ase in our new seurity de�nition. We onsider



68 T. Jonas Özganthe query graph GQ for this attak. The signature query OSign(i,m∗) will reatea path from [0] to [i,m∗] and the re-signature key queries for Rij and Rji∗ willreate paths from [i,m∗] to [j,m∗] and from [j,m∗] to [i∗, m∗] respetively. Sinethere is a path from [0] to [i∗, m∗] in GQ, this is not a valid forgery in the senseof our new seurity de�nition. Therefore our new seurity should also applyfor transitive proxy re-signature shemes.13.8. Multi-use and single-use. It seems that this new seurity de�nitionis valid for both single-use and multi-use shemes sine the algorithm Query-graph makes no distintion between signed and re-signed signatures. The nodesreated by the algorithm only onsider the ability of the adversary to generateany signature on a message m on behalf of user i and if he is able to translateany signature into his �nal output σ∗ valid for user i∗ on a message m∗. Thismeans that in a single-use sheme a trivial forgery will be deteted by the al-gorithm Query-graph but the new seurity de�nition may limit the adversary'sapabilities.13.9. Conlusions. The results and the observations from above lead us tothe onlusion that our new seurity de�nition seems also to apply to proxyre-signatures with di�erent requirements. The generi adversary and the querygraph tehnique allow the neessary �exibility to prove the seurity of proxyre-signatures with transitivity, transpareny and linkability properties. Slightmodi�ations to the algorithm Query-graph seem to make our new seurity def-inition also useful for proxy re-signatures with publi proxy and bi-diretionalityproperties.Remark 13.3. In the reent publiation of Shao et al. (2010), the authorspoint out a ��aw� of the seurity de�nition of Ateniese & Hohenberger (2005)for uni-diretional proxy re-signatures. The authors onstrut a uni-diretionalproxy re-signature sheme without the private proxy property whih an beproven seure in the seurity de�nition of Ateniese & Hohenberger (2005) butsu�ers from an attak similar to the one above. The authors onlude thatprivate proxy property is essential for the seurity de�nition of Ateniese &Hohenberger (2005), however as noted above this was already pointed out inLibert & Vergnaud (2008a) and also mentioned in Chow & Phan (2008) later.The authors Shao et al. (2010) also mention that the de�ieny of the seuritymodel of Ateniese & Hohenberger (2005) is that this model �tried to modelall types of attaks on all types of proxy re-signatures� and therefore is moreomplex than the seurity de�nitions for other types of signatures. The au-thors provide another seurity de�nition for uni-diretional proxy re-signatures



A Multi-use Uni-diretional Proxy Re-Signature Sheme 69with the private proxy property. However, the ahieved results in this thesislet us believe that our new seurity de�nition for proxy re-signature shemesoveromes the mentioned omplexity and is more simpler than both proposals.We also believe that our new seurity de�nition provides the neessary �exibil-ity to be adapted for di�erent types of proxy re-signature shemes as we havedisussed in this setion.14. Proof of seurity in the random orale modelUsing the new seurity de�nition we now prove that the signature sheme isseure in the random orale model.Theorem 14.1. The proxy re-signature sheme with L levels and N users isseure under the ℓ-�exDH assumption. More preisely, given an attaker A toGame 13.1 with advantage ε we an onstrut an algorithm B that solves an
ℓ-�exDH instane for given P, aP, bP ∈ G with probability

Ω

(

qsk · qrk ·
(N − |I∗|)3

N |I∗|+3(qs + qrs)
· ε

)

.where a, b ∈ Z×
p , qsk is the number of private key queries, qrk is the numberof re-signature key queries, qs is the number of signature queries and qrs thenumber of re-signature queries made by A. Here |I∗| denotes the ardinalityof the set I∗ ⊂ {0, . . . , N − 1} whih is hosen in advane by B as desribedbelow in the proof sketh.Proof sketh: We onstrut an algorithm B whih takes ontrol of A's ora-les, OSkey, OReKey, OSign and OReSign. We allow A to have aess to a hashingorale OHash whih is also ontrolled by B. All queries to OHash are stored inthe QHash-list while all other queries are stored in the Q-list whih allows us toreate the query graph GQ. Figure 14.1 shows algorithm B using A.Note that in our new seurity de�nition A is allowed to forge a signature σ′on m∗ on behalf of user i′ ∈ {0, . . . , N − 1} and then transform σ′ many timeswith the orresponding re-signature keys into a signature σ∗ on behalf of user

i∗ ∈ {0, . . . , N − 1} before outputting it. If this is a valid forgery then thereis no path from [0] to [i′, m∗], but a path π from [i′, m∗] to [i∗, m∗]. Therefore,when B is hallenged with (P, aP, bP ) ∈ G, he guesses in advane a set ofusers I∗ ⊂ {0, . . . , N − 1} whih ontains all users on the path π from [i′, m∗]to [i∗, m∗]. B sets the publi keys Xi of users i ∈ I∗ as ziaP , for some zi ←− Z×
p
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B (Xi∗ = zi∗aP ,Xi = xiP )

Guess a set of users I∗ = {i∗}
Q-list

[orale, query]...
Q−Hash-list
[m,H, µ, c]...

OSkey
OReKey
OHash
OSign

OReSign
A

[m∗, σ∗]

(m∗, H∗, µ∗, c∗)

(abDℓ, aDℓ, · · · , aD1, C1, · · · , Cℓ)Figure 14.1: Algorithm B using Aand all other publi keys are set as Xi = xiP for some xi ←− Z×
p and madeavailable to A. In the end when A omes up with a valid message signaturepair (m∗, σ∗) valid for the publi key Xi∗ , B onstruts the query graph GQfrom the Q-list and if this is a non-trivial forgery there will be no path from

[0] to [i∗, m∗] in GQ.Proof. After guessing the set of users I∗ and setting the publi keys asdesribed above B answers the orale alls of A as follows:Private key orale OSkey queries: When A asks OSkey for the seret keyof user i, B does the following:algorithm OSkey.Input: A user i ∈ {0, . . . , N − 1}.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 71Output: The seret key xi of user i or B aborts.1. If i ∈ I∗ then B aborts.2. Add [OSkey, i] to Q-list.3. Return xi.Re-signature key orale OReKey queries: When A queries OReKey for re-signature keys, B does the following:algorithm OReKey.Input: Two users i, j ∈ {0, . . . , N − 1}.Output: The re-signature key Rij or B aborts.1. If i /∈ I∗ then2. If j ∈ I∗ then B aborts.3. Else Rij ←
xi

xj
P .4. Else5. If j ∈ I∗ then Rij ←

zia
zja

P = zi
zj
P .6. Else Rij ←

zia
xj
P .7. Add [OReKey, (i, j)] to Q-list.8. Return Rij .Hashing orale OHash queries: When A asks for the hash value of a mes-sage m, B runs the following algorithm using the global hash list QHash-list.This list onsists of 4-tuple entries [m,H, µ, c], where m is the message, H theanswer to the query, µ←− Z×

p a randomly hosen parameter and c←− {0, 1} arandom bit with probability Pr[c = 0] = ζ for a ζ ∈ (0; 1) to be adopted later.algorithm OHash.Input: A message m ∈ {0, 1}∗.Output: A hash value H .1. If m ∈ QHash-list then2. [m,H, µ, c]← QHash-list.3. Else4. Generate a bit c←− {0, 1}.5. Choose a random µ←− Z×
p .6. If c = 1 then



72 T. Jonas Özgan7. H ← µbP .8. Else H ← µP .9. Add [m,H, µ, c] to QHash-list.10. Return H .Signature orale OSign queries: When A queries OSign for a signature ofuser i on a message m, B runs the following algorithmalgorithm OSign.Input: A message m ∈ {0, 1}∗, a user i ∈ {0, . . . , N − 1}, a desired level
ℓ ∈ {0, . . . , L− 1}.Output: A level ℓ signature σ(ℓ) on m valid for the publi key Xi or B aborts.1. Run algorithm OHash(m).2. [m,H, µ, c]← QHash-list.3. If c = 1 then B aborts.4. If i ∈ I∗ then σ(0) ← µziaP .5. Else σ(0) ← xiH .6. If ℓ > 0 then7. For k = 1, . . . , ℓ do8. σ(k) ← ADD TRIVIAL H ◭ σ(k−1).9. σ(ℓ) ← RE-RANDOM ◭ σ(ℓ).10. Add [OSign, (i,m)] to Q-list.11. Return σ(ℓ).Re-signature orale OReSign queries: When A queries OReSign for the re-signature of σ(ℓ−1) valid for Xi from user i to j, B ignores this and uses OSignto reate σ(ℓ) a level ℓ signature for user j. The resulting signature is thenreturned to A. Namely:algorithm OReSign.Input: Two users keys (i, j), a message m and a level ℓ− 1 signature σ(ℓ−1) on
m valid for Xi.Output: A level ℓ signature σ(ℓ) on m valid for Xj or B aborts.1. σ(ℓ) ← OSign(m, j, ℓ).2. Add [OReSign, (i, j,m)] to Q-list.3. Return σ(ℓ).



A Multi-use Uni-diretional Proxy Re-Signature Sheme 73Note that the all of algorithm OSign in step 1 an ause an abort whih is nothandled here sine B is in ontrol and knows when to abort.Final output: Finally A outputs a message signature pair (m∗, σ∗) where
σ∗ = (σ∗

0, . . . , σ
∗
ℓ , σ

∗
−ℓ, . . . , σ

∗
−1) is a valid level ℓ signature on m∗ on behalf ofuser i∗ ∈ I∗. If initially B guessed the set I∗ orretly and did not have to abortbefore, he runs the algorithm Finalize below. Here B reates the query graph

GQ from the Q-list with this algorithm and �nds the path π in GQ starting at
[i′, m∗] and ending at [i∗, m∗] to determine the initially forged user i′ ∈ I∗ andall the re-signature keys leading to the �nal forgery σ∗. To understand whathappens at the �nal step onsider the following example shown in Figure 14.2.

σ∗
ℓ−1

P

σ∗
−ℓ+1 = rℓ−1P

rℓXi′ rℓ
zi′

zi∗
P = rℓRi′i∗

P Xi∗(a) Forged and transformed signature σ∗

[0] .

[·, m∗]

[·, m∗]

[·, m∗]

[i∗, m∗]

[i′, m∗]

Ri′i∗π

(b) The query graph GQFigure 14.2: A forged signature with the orresponding query graphIn this example A forged a signature on behalf of user i′ ∈ I∗ and trans-formed it only one into σ∗ on behalf of user i∗ ∈ I∗ with the re-signature key
Ri′i∗ . Figure 14.2(a) shows the the appended H where σ∗

ℓ is rℓzi′aP and σ∗
−ℓis rℓRi′i∗ . Now, B needs to remove zi′ from σℓ and zi′

zi∗
from σ−ℓ to ahieve a�regular� signature on behalf of user i∗. For this B �nds the path π from [i′, m∗]to [i∗, m∗] in the orresponding query graph GQ shown in Figure 14.2(b). Herein this example B determines the length of the path |π| as 1 and knows thatthe output signature was only transformed one. Therefore B determines theorder of the users π0 = i′ and π1 = i∗ and alulates the elements 1

zπ0
= 1

zi′
and

1
zπ1

= 1
z∗i
. This allows him to remove the unwanted elements and treat σ∗ as ifit was never transformed. Now onsider the following algorithm:



74 T. Jonas Özganfinalize.Input: A message m∗, a signature σ∗ valid for the publi key Xi∗ on m∗, thehash list QHash-list and the general query list Q-list.Output: An ℓ-�exDH instane (abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1) or B aborts.1. Create the query graph GQ ← Query-graph(i∗, m∗, Q-list).2. If there is a path from [0] to [i∗, m∗] in GQ then B aborts.3. Run algorithm OHash(m∗).4. [m∗, H∗, µ∗, c∗]← QHash-list.5. If c∗ = 0 then B aborts.6. Find the path π from [i′, m∗] to [i∗, m∗] with length |π| = k.7. Determine the order of users π0 = i′, . . . , πk = i∗ on the path π.8. Calulate the elements 1
zπ0

= 1
zi′
, 1
zπ1

, . . . , 1
zπk

= 1
zi∗
.9. Return (( 1

zπ0µ
∗

)

σ∗
0 , (

1
zπ0

)σ∗
1, . . . , (

1
zπ0

)σ∗
ℓ−k,

(
1

zπ1

)

σ∗
ℓ−k+1,

(
1

zπ+2

)

σ∗
ℓ−k+2, . . . ,

(
1

zπk

)

σ∗
ℓ ,

(
zπk

zπk−1

)

σ∗
−ℓ,
(

zπk−1

zπk−2

)

σ∗
−ℓ+1,

(
zπk−2

zπk−3

)

σ∗
−ℓ+2, . . . ,

(
zπ1
zπ0

)

σ∗
−ℓ+k,

σ∗
−ℓ+k+1, . . . , σ

∗
−2, σ

∗
−1

).Reall that B initially guessed a set of users I∗ ⊂ {0, . . . , N} whose publikeys he set as Xi = ziaP for some zi ←− Z×
p . In the example from Figure 14.2,the set I∗ ontains the two users {i′, i∗} and thus, the algorithm Finalizewould return

((
1

zπ0µ
∗

)

σ∗
0 , (

1

zπ0

)σ∗
1, . . . , (

1

zπ0

)σ∗
ℓ−1,

(
1

zπ1

)

σ∗
ℓ ,

(
zπ1

zπ0

)

σ∗
−ℓ, σ

∗
−ℓ+1, . . . , σ

∗
−2, σ

∗
−1

)in step 9. Where this value an be written as
(abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1),whih is a valid ℓ-�exDH instane beause for all j ∈ {1, . . . , ℓ} we havelogP Dj =

∏j
i=1 logP Ci and further Cj is not the neutral element of the group

G. In the simplest ase where I∗ = {i∗}, A outputs a forged signature whihwas not transformed. In this ase the return value is
((

1

zi∗µ∗

)

σ∗
0, (

1

zi∗
)σ∗

1 , . . . , (
1

zi∗
)σ∗

ℓ , σ
∗
−ℓ, σ

∗
−ℓ+1, . . . , σ

∗
−1

)

=
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=

((
1

zi∗µ∗

)

(rℓ · · · r1)zi∗µ
∗abP, (

1

zi∗
)(rℓ · · · r1)zi∗aP, . . . , (

1

zi∗
)rℓzi∗aP, σ

∗
−ℓ, . . . , σ

∗
−1

)

.Here we an easily see that this is a valid ℓ-�exDH instane as
(abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1),with Di = rℓ · · · riP and Ci = riP and for all j ∈ {1, . . . , ℓ} we have logP Dj =∏j

i=1 logP Ci. Thus, the return value in step 9 of algorithm Finalize is a valid
ℓ-�exDH instane as

(abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1),where for all j ∈ {1, . . . , ℓ} we have logP Dj =
∏j

i=1 logP Ci and further Cj isnot the neutral element of the group G.Note that it is possible that di�erent paths π exist whih may even haveommon edges. In this ase B has to try out all paths π until he �nds a valid
ℓ-�exDH instane. For simpliity reasons we assume that there is only one suhpath π.The suess probability of B. We use an analysis similar to that in Coron(2000) to determine a lower bound for the suess probability of B. Rememberthat initially B takes a guess of the set of users I∗ ⊂ {0, . . . , N − 1}. Theprobability that B guesses the orret set I∗ is

1

N
·

1

N − 1
· · ·

1

N − |I∗|+ 1
=

1
(

N

|I∗|

) .

A asks for the private key of user i ∈ I∗ with probability |I∗|
N
, thus the proba-bility that B does not abort for qsk many private key queries of A is

qsk
N − |I∗|

N
.

B aborts the simulation for any re-signature key query Rij of A if i /∈ I∗ and
j ∈ I∗. This happens for a single re-signature key query of A with probability

N − |I∗|

N
·
|I∗|

N − 1
.Thus, the probability that B does not abort for qrk many re-signature keyqueries of A is

qrk
1

R
:= qrk

(

1−
N − |I∗|

N
·
|I∗|

N − 1

)

.



76 T. Jonas ÖzganReall that a query to OReSign triggers atually a signature query to OSign.Reall also that OSign uses OHash to answer the signature queries. When OHashgenerates a 4-tuple [m,H, µ, c], OSign auses B to abort if c = 1. Thereforethe probability that B answers to all signature and re-signature queries of Aand does not abort here is ζqs+qrs sine the probability Pr[c = 0] = ζ . In theend when A outputs a valid message signature pair (m∗, σ∗) the bit c∗ = 1happens with probability Pr[c∗ = 1] = 1 − ζ . This means that, if B guessedthe set of users I∗ orretly and did not have to abort beause of a seret keyor a re-signature key query of A, the probability that he outputs an ℓ-�exDHanswer is at least
α(ζ) = ζqs+qrs · (1− ζ).The funtion α(ζ) is maximal for ζmax = 1− 1

qs+qrs+1
whih gives us

α(ζmax) =
1

qs + qrs
·

(

1−
1

qs + qrs + 1

)qs+qrs+1

.Then the suess probability of B is
Pr[B is suessful ] ≥ ε·qsk

N − |I∗|

N
·

1
(

N

|I∗|

) ·
qrk
R
·

1

qs + qrs

(

1−
1

qs + qrs + 1

)(qs+qrs+1)

.Now we notie that
1
(

N

|I∗|

) ≥
1

N |I∗|and also
qrk

1

R
≥ qrk ·

(N − |I∗|)2

N2
.This gives us the announed bound of

Ω

(

qsk · qrk ·
(N − |I∗|)3

N |I∗|+3(qs + qrs)
· ε

)

.

�14.1. Results. We emphasize here that the partitioning I∗ ⊂ {0, . . . , N − 1}of the users is neessary beause we allow A to translate his atual forgery be-fore outputting it. This results from the fat that in our new seurity de�nitionwe grant A aess to re-signature keys whih do not neessarily lead to a trivialforgery. Consequently in this redution the size of I∗ e�ets the suess proba-bility of B. Now we analyze how the size of I∗, the number of seret key queries
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qsk and the number of re-signature key queries qrk e�et the suess probabilityof B. Firstly, we notie that the fator

(N − |I∗|)3

N |I∗|+3an grow very fast and is the strongest deisive fator in this redution. There-fore we require the size of I∗ to be bounded and note this in the followingorollary.Corollary 14.2 (Size of |I∗|). In order to have a non-negligible suess prob-ability of B, N |I∗|+3 is required to be polynomial in N . Therefore, we require
|I∗| ∈ O(1).We note the following orollary for the smallest size of I∗.Corollary 14.3 (Case: |I∗| = 1). In the ase where I∗ = {i∗} we have theinitial probability of 1

N
. The probability that B does not abort for a single seretkey query N−1

N
. The probability of B not aborting for a single re-signature keyquery is also N−1
N

. This gives us the suess probability of B as
Ω

(

qsk · qrk ·
(N − 1)2

N3(qs + qrs)
· ε

)

.In this ase we an omit the fator related to the seret key queries of A beauseeven if B ould answer query for the seret key of user i∗ this would reate apath from [0] and [i∗, m∗] in GQ and ause B to abort anyway.Corollary 14.3 leads us to the onlusion that if B initially hoose the �orret�set I∗ suh that all the users of I∗ are on the path π, the abortion for seretkey queries is �justi�ed� and the fator related to qsk many seret key queriesof A an be omitted, sine these would lead to a trivial forgery anyway. Wenote this in the following orollary.Corollary 14.4 (|I∗| = |π|+ 1). We require that B initially hooses the or-ret set I∗ suh that all users in I∗ are on the path π, ie. |I∗| = |π|+ 1. Thenwe an omit the fator related to qsk many seret key queries of A sine thequeries for seret keys of users i ∈ I∗ would neessarily lead to a trivial forgeryand ause the simulation to abort anyway. This gives us the suess probabilityof B as
Ω

(

qrk ·
(N − |I∗|)2

N |I∗|+2(qs + qrs)
· ε

)

.



78 T. Jonas ÖzganWe also notie that the fator related to the re-signature key queries of Ais another deisive fator for the suess probability of B. In this ontext wenote the following orollary.Corollary 14.5 (Case OReKey abortions forbidden). If the adversary is for-bidden to ask for re-signature keys Rij of users i /∈ I∗ and j ∈ I∗ the suessprobability of B is ompletely independent of the fator
qrk

1

R
:= qrk

(

1−
N − |I∗|

N
·
|I∗|

N − 1

)

.Therefore the suess probability of B would be
Ω

(
ε

N |I∗|(qs + qrs)

)

.Realling Setion 13.5, we now want use the adversaries A1,A2,A3,A4 fromthe original seurity de�nition in our redution and ompare the results.Corollary 14.6 (Limited proxy seurity). The adversary A1 in ase of lim-ited proxy seurity has aess to all re-signature keys and a signing orale andreturns a valid level ℓ signature on behalf of a user i∗ ∈ {0, . . . , N − 1}. B anprovide A1 with this information by setting |I∗| = N . This means that all pub-li keys Xi are set as ziaP for some zi ←− Z×
p for all users i ∈ {0, . . . , N − 1}.This allows B to answer all re-signature key queries Rij of A1 without abort-ing the simulation. B handles the signature queries of A1 with his signaturealgorithm OSign. In the end when A1 omes up with a level ℓ forgery σ∗, Btreats σ∗ as if it was never translated and retrieves the ℓ-�exDH instane from

σ∗. The suess probability of B is the same as it is in the original seurityde�nition. Namely,
Ω

(
ε

qs

)

.Note here that A1 does not make any seret key and re-signature queries suhthat the fators qsk and qrs are omitted.Corollary 14.7 (Delegatee seurity). The adversary A2 in ase of delegateeseurity targets a spei�ed delegatee i∗ and has aess to a signing orale whihprovides him with signatures on behalf of i∗. A2 has also aess to all seretkeys xi for users i ∈ {0, . . . , N − 1} \ {i∗} and to all re-signatures keys Rijexept Rii∗ for any i 6= i∗. B an provide A2 with this information by hoosing
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I∗ = {i∗}. Sine A2 targets a spei�ed user i∗ this an be done with any user
i ∈ {0, . . . , N − 1}, therefore this is not an initial guess as it is in our seurityde�nition. This means also that all the seret key and all the re-signature keyqueries made by A2 an be answered beause by assumption A2 is not allowedto ask for the seret key of user i∗ or any re-signature key Rii∗ . The signaturequeries of A2 are handled by B as usual. In the end when A1 omes up with alevel ℓ forgery σ∗, B retrieves an ℓ-�exDH instane with a suess probabilityof

Ω

(
ε

qs

)

.This is the same as it is in the original seurity de�nition in the ase of delegateeseurity. Again, the fator qrs is omitted sine A2 does not ask for re-signatures.Corollary 14.8 (Delegator seurity). The adversary A3 in the ase of dele-gator seurity targets a spei�ed delegator i∗ and has aess to a signing oralewhih provides him with signatures on behalf of i∗. A2 has also aess to allseret keys xi for users i ∈ {0, . . . , N − 1} inluding Ri∗i and Rii∗ . In the end
A3 omes up with a level 0 signature on behalf of user i∗. B an answer thesignature and seret key queries of A3 after speifying I∗ = {i∗} for a user
i∗ ∈ {0, . . . , N − 1} but he annot answer the re-signature key queries Rii∗ of
A3 in this setting. In the end when A3 omes up with a level 0 forgery witha slight modi�ation to B's algorithm Finalize, the suess probability of Bwould then be

Ω

(

qrk ·
ε

Nqs

)

,for qrk many re-signature key queries of A3. However, we note that the redu-tion in the original seurity de�nition is done under the mCDH assumption(De�nition 11.6) where an additional element 1
a
P is available to B. A slightmodi�ation to the re-signature key algorithm OReKey of B with the element

1
a
P would allow him to answer all re-signature key queries of A3 inluding Rii∗ .This then gives us the suess probability of

Ω

(
ε

qs

)

,whih is the same as it is in the original seurity de�nition.



80 T. Jonas ÖzganCorollary 14.9 (External seurity). The adversary A4 in the ase of exter-nal seurity has aess to a signature and a re-signature orale, and returns avalid level ℓ signature on behalf of a user i∗ ∈ {0, . . . , N − 1}. B an provide
A4 with this information by initially guessing a user i∗ and setting I∗ = {i∗}. Bthen an answer all signature and re-signature key queries of A4 with algorithm
OSign and algorithm OReSign, respetively. In the end when A4 outputs a level
ℓ forgery on behalf of user i∗, B retrieves an ℓ-�exDH instane with a suessprobability of

Ω

(
ε

N(qs + qrs)

)

.This is the same as it is in the original seurity de�nition in the ase of externalseurity. Note that A4 does neither ask for seret keys nor for re-signature keys.As we an see there is a �huge� gap between the suess probabilities of ourredution and the redutions done with the adversaries to the original seurityde�nition. A strategy to overome this gap would be to fore our generiadversary to output a non-transformed signature σ∗ whih would be the asedisussed in Corollary 14.3. This an be done for example by aessing theadversaries memory and retrieving the atual forgery σ′ but this requires thatthe adversary keeps σ′ in his memory until it outputs σ∗. Similarly we ouldstop the adversary at the time of the atual forgery by monitoring its memoryand retrieve σ′. However, both ases require aess to the adversary's memory.Ideally, if we ould fore the adversary to output a non-transformed signatureand forbid its aess to re-signature keys whih ause B to abort, we ouldobtain a ombination of the ases disussed in Corollary 14.3 and Corollary 14.5.This would give us the same suess probability as in Corollary 14.9 but itseems that we annot limit the adversary suh that it does not ask for �bad�re-signature keys.Another strategy to redue this gap would be to to set all publi keys
Xi as ziaP for some zi ←− Z×

p for all users i ∈ {0, . . . , N − 1} as we did inCorollary 14.6. B then an answer all re-signature key queries but he is not ableto provide the adversary A with any seret key information. Therefore B wouldhave to abort for any seret key query of A whih an be avoided if A's aessto seret keys is forbidden. In this ase the suess probability of B wouldbe Ω
(

ε
(qs+qrs)

) whih is similar to the results in the ases of Corollary 14.6,Corollary 14.7 and Corollary 14.8.A di�erent strategy to redue this gap would be to hange the underlyingryptographi assumption. As in Corollary 14.8, if the additional element 1
a
Pwas also available to B, he an answer all re-signature key queries of A. In this
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Ω

(
ε

N |I∗|(qs + qrs)

)

,sine we an omit the fator related to qsk many seret key queries. Then theunderlying ryptographi assumption would be a ombination of the mCDHand the ℓ-�exDH problem. We all this the modi�ed ℓ-�exible Di�e-Hellman(m-ℓ-�exDH) problem and note this in the following de�nition.Definition 14.10. The modi�ed ℓ-�exible Di�e-Hellman (m-ℓ-�exDH)problem is, given P, aP, 1
a
P, bP ∈ G to �nd a (2ℓ+ 1)-tuple

(abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1) ∈ G2ℓ+1suh that logP Dj =
∏j

i=1 logP Ci for all i ∈ {1, . . . , ℓ}, where Ci is not theneutral element of the group G.Although it seems that the m-ℓ-�exDH problem is hard to solve, an adapta-tion of the proof of hardness for the ℓ-�exDH problem provided by Libert &Vergnaud (2008a) does not seem to work here. Thus, we annot be ertain thatthe redution would be valid in this ase.We onlude from these results that the huge gap between the suess prob-abilities results primarily from the generi adversary in our seurity de�nition.It seems that there is no strategy to overome this gap between the suessprobabilities without arti�ially limiting our generi adversary's apabilities.On the other hand, these arti�ial limitations of the adversaries in the originalseurity de�nition motivated us to onstrut a new seurity de�nition in whihthe adversary has aess to as muh information as possible. It seems that ournew seurity de�nition is more �strit� ompared to the old one and thereforewe end up with a smaller suess probability in the redution. However, we�rmly believe that this redution in our new seurity de�nition provides a moreonrete estimation of the suess probability.15. The signature sheme in the standard modelIn this setion we use a trik from Waters (2005) to eliminate the randomorale and instantiate the hash funtion H by a ertain ollision resistant hashfuntion. A slight modi�ation of the signature sheme will allow us to provethe seurity of the signature sheme also in the standard model. Note here thatthe ommon publi parameters have to be generated by a trusted third partywhih remains o�-line after the setup phase.



82 T. Jonas ÖzganSetup(λ, n): On input of the seurity parameter λ and the length n of themessages to be signed, this algorithm hooses bilinear groups (G,GT ) of primeorder p > 2λ, two generators P,Q←− G and a random vetor ~u = (U ′, U1, . . . , Un)
←− Gn+1 vetor of length (n+ 1).The vetor ~u de�nes a funtion H : {0, 1}n → G whih maps n-bit strings
m = m1, . . . , mn to G as H(m) = U ′ +

n∑

i=1

miUi where mi ∈ {0, 1}.The publi parameters are:p = {λ, n,G,GT , P,H, ~u}.Keygen(p): This algorithm outputs user i's publi and private key pair
(Xi, xi) for a random xi ←− Z×

p and Xi = xiP .ReKeygen(p, Xi, xj): Given the publi key Xi of user i and the private key
xj of user j this algorithm outputs the re-signature key as Rij =

1
xj
Xi =

xi

xj
P .Verify(cp, m, 0, σ,Xi): The validity of a level 0 signature σ = (σ0, σ∞) on amessage m ∈ {0, 1}n for the publi key Xi is veri�ed if the following equationholds(15.1) e(σ0, P )

?
= e(Xi, Q) · e(σ∞, H(m)).The algorithm returns 1 if the input signature is valid and 0 otherwise.Verify(cp, m, ℓ, σ(ℓ), Xi): The validity of a level ℓ signature

σ(ℓ)(m) = (σ0, σ1, . . . , σℓ, σ−ℓ, . . . , σ−1, σ∞) ∈ G2ℓ+2on a message m ∈ {0, 1}n for the publi key Xi, is veri�ed by the following
ℓ+ 1 equations

e(σ0, P )
?
= e(σ1, Q) · e(σ∞, H(m)),(15.2)

e(σk, P )
?
= e(σk+1, σ−k) for k ∈ {1, . . . , ℓ− 1},(15.3)

e(σℓ, P )
?
= e(Xi, σ−ℓ).(15.4)The algorithm returns 1 if the input signature is valid and 0 otherwise.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 83H-notation for the modi�ed signature sheme. Before ontinuing tothe signing and re-signing algorithms we want to make a graphial onnetionbetween the signature elements and piture them in the H-notation as we did inPart II. The veri�ation equation (15.1) states that the elements of a modi�edlevel 0 signature valid for the publi key Xi on a message m are onneted asshown in Figure 15.1.
σ0

P

Q

Xi

H(m)

σ∞Figure 15.1: A modi�ed level 0 signatureWe dedue from Figure 15.1 the signing proess at level 0 as follows.Sign(p, m, 0, xi): On input of a message m ∈ {0, 1}n and the private key
xi of signer i, this algorithm hooses a random t←− Z×

p and outputs a level 0signature as
σ(0)(m) = (σ0, σ∞) = (xiQ+ tH(m), tP ).Using Figure 15.1 as a basis and interpreting the veri�ation equations(15.2), (15.3) and (15.4) we onnet the elements of a modi�ed level ℓ signaturevalid for Xi on m as show in Figure 15.2.Now we dedue from Figure 15.2 the signing proess at level ℓ as follows.Sign(p, m, ℓ, xi): On input a message m ∈ {0, 1}n and the private key xi ofsigner i and ℓ ∈ {1, . . . , L} the level of the signature, this algorithm hooses

ℓ+ 1 random oe�ients t, r1, r2, . . . , rℓ ←− Z×
p and outputs

σ(ℓ)(m) = (σ0, σ1, . . . , σℓ, σ−ℓ, . . . σ−2, σ−1, σ∞) ∈ G2ℓ+2with:
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σ0

P

Q

σ1

H(m)

σ∞ σ−1

P σ2

σℓ

P

σ−1

XiFigure 15.2: A modi�ed level ℓ signature
σ
(ℓ)
0 = rℓ · · · · · · · r2r1 · xiQ + tH(m),

σ
(ℓ)
k = rℓ · · · rk · xiP for k ∈ {1, . . . , ℓ},

σ
(ℓ)
−k = rk · P for k ∈ {ℓ, . . . , 1},

σ∞ = tP.Reall Setion 9 where we deomposed the signature sheme into simplebuilding bloks. We now revise the building bloks for the modi�ed shemebefore we ontinue with the re-signing proess.Building bloks revisited. As we have seen above the modi�ed signaturesheme slightly di�ers from the original one in the H-representation. Thereforewe �rst state how adding an H works and then we explain the re-randomizationproess by introduing a new building blok RE-RANDOM ∞ whih explains the



A Multi-use Uni-diretional Proxy Re-Signature Sheme 85re-randomization of the new element σ∞.Adding an H to the modi�ed signature sheme. Reall Figure 11.1and onsider Figure 15.2, a modi�ed level ℓ signature di�ers from the originalone only in the �rst H. Thus, adding an H to a level ℓ > 0 signature is notdi�erent from what we have explained in Setion 9. Figure 15.3 shows howadding a trivial H to a modi�ed level 0 signature valid for the publi key XAworks. The result is a level 1 signature still valid for the publi key XA.
σ0

P

Q

XA

H(m)

σ∞

σ0

P

Q

xAP

H(m)

σ∞ P

P XA

ADDTRIVIALHFigure 15.3: Adding a trivial H to a modi�ed level 0 signatureSimilarly Figure 15.4 shows how a re-signature H is added to a modi�edlevel 0 signature valid for the publi key XA with the re-signature key RAB andthe publi key XB of user B.
σ0

P

Q

XA

H(m)

σ∞

σ0

P

Q

xAP

H(m)

σ∞ RAB

P XB

ADDRESIGNHFigure 15.4: Adding a re-signature H to a modi�ed level 0 signature



86 T. Jonas ÖzganRe-randomization of the modi�ed signature sheme. We start withintroduing a new building blok RE-RANDOM ∞ . This building blok, oninput a modi�ed level ℓ signature
σ(ℓ) = (σ0, σ1, . . . , σℓ, σ−ℓ, . . . , σ−1, σ∞) ∈ G2ℓ+2�rst hoses a random r′ ←− Z×

p and it alulates σ0 ← σ0 + r′H(m) and
σ∞ ← σ∞ + r′P , as shown in Figure 15.5.

σ0

P

Q

σ1

H(m)

σ∞

σℓ

P

σ−ℓ

Xi

RERANDOM ∞
σ0 + r′H(m)

P

Q

σ1

H(m)

σ∞ + r′P

σℓ

P

σ−ℓ

XiFigure 15.5: Re-randomizing σ0 and σ∞The result is still a valid level ℓ signature in the modi�ed sheme sine
e(σ0 + r′H(m), P ) =

= e(σ0, P ) · e(r′H(m), P )

= e(xiQ + tH(m), P ) · e(r′H(m), P )

= e(xiQ,P ) · e(tH(m), P ) · e(r′H(m), P )

= e(Q,Xi) · e(H(m), t+ rP )

= e(Q,Xi) · e(H(m), σ∞).



A Multi-use Uni-diretional Proxy Re-Signature Sheme 87Randomizing at height i. In the modi�ed sheme the building blokRE-RANDOM i operates slightly di�erent then in the original sheme. Thisbuilding blok, on input a modi�ed level ℓ signature
σ(ℓ) = (σ0, σ1, . . . , σℓ, σ−ℓ, . . . , σ−1, σ∞) ∈ G2ℓ+2�rst hoses a random ti ←− Z×

p and multiplies σi, σi−1, . . . , σ0 and σ−i and also
σ∞ with it as shown in Figure 15.6. The result is a valid level ℓ signature in

σ0

P

Q

σ1

H(m)

σ∞

σi

P

σ−i

σi+1

σℓ σ−ℓ

P Xi

RERANDOM i

tiσ0

P

Q

tiσ1

H(m)

tiσ∞

tiσi

P

tiσ−i

σi+1

σℓ σ−ℓ

P XiFigure 15.6: Re-randomizing σ(ℓ) at height ithe modi�ed sheme.The full re-randomization of a level ℓ signature. Reall that for theoriginal signature sheme we noted that RE-RANDOM =
∏ℓ

i=1 RE-RANDOM i .Here in the modi�ed signature sheme we have RE-RANDOM =
∏ℓ

i=1 RE-RANDOM i

+ RE-RANDOM ∞ . This means that for a modi�ed level ℓ signature, �rst allthe RE-RANDOM i for i ∈ {1, . . . , ℓ} are used and then RE-RANDOM ∞ is usedafterwards, the result is shown in Figure 15.7.
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σ0

P

Q

σ1

H(m)

σ∞

σℓ

P

σ−ℓ

Xi

RERANDOM ∞
(t1 · · · tℓ)σ0 + r′H(m)

P

Q

(t1 · · · tℓ)σ1

H(m)

(t1 · · · tℓ)σ∞ + r′P

tℓσℓ

P

tℓσ−ℓ

XiFigure 15.7: Re-randomizing σ(ℓ) ompletelyNow we ontinue with the desription of the modi�ed signature sheme withthe re-signature algorithm.
Re-Sign(cp, m, ℓ − 1, σ(ℓ−1), Rij, Xi, Xj): On input a message m ∈ {0, 1}n,the re-signing key Rij =

xi

xj
P and a level ℓ− 1 signature

σ(ℓ−1)(m) =
(

σ
(ℓ−1)
0 , σ

(ℓ−1)
1 , σ

(ℓ−1)
2 , . . . , σ

(ℓ−1)
ℓ−1 , σ

(ℓ−1)
−ℓ+1, . . . , σ

(ℓ−1)
−1 , σ(ℓ−1)

∞

)

on m and the publi keys Xi, Xj this algorithm �rst appends the re-signatureH and then re-randomizes the result. During the omputation the algorithmhooses ℓ + 1 random oe�ients r′, t1, t2, . . . , tℓ ←− Z×
p and translates σ(ℓ−1)into a level ℓ signature valid for the publi key Xj by omputing and outputting
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σ
(ℓ)
0 = tℓ · · · · · · · t2t1 · σ

(ℓ−1)
0 + r′H(m),

σ
(ℓ)
k = tℓ · · · tk · σ

(ℓ−1)
k for k ∈ {1, . . . , ℓ− 1},

σ
(ℓ)
ℓ = tℓXi,

σ
(ℓ)
−ℓ = tℓRij ,

σ
(ℓ)
−k = tk · σ

(ℓ−1)
−k for k ∈ {ℓ, . . . , 1− 1},

σ
(ℓ+1)
∞ = tℓ · · · · t2t1 · σ

(ℓ−1)
∞ + r′P.Sine we know that the input signature was

σ(ℓ−1)(m) =
(

σ
(ℓ−1)
0 , σ

(ℓ−1)
1 , σ

(ℓ−1)
2 , . . . , σ

(ℓ−1)
ℓ−1 , σ

(ℓ−1)
−ℓ+1, . . . , σ

(ℓ−1)
−1 , σ(ℓ−1)

∞

)

= (rℓ−1 · · · · · · r1xiQ + tH(m),

rℓ−1 · · · · · · r1xiP,

rℓ−1 · · · r2xiP,...
rℓ−1xiP,

rℓ−1P, rℓ−2 . . . , r1P,

t̃P ) ∈ G2ℓ,setting rℓ = tℓ
xi

xj
, t = t1 · · · tℓ + r′ and rk = tkrk for k ∈ {1, . . . , ℓ} gives us
σ(ℓ)(m) = (σ0, σ1, . . . , σℓ, σ−ℓ−1, . . . , σ−1, σ∞)

= ( rℓ . . . . . . .r1xjQ + tH(m),

rℓ . . . . . . r1xjP,

rℓ . . . r2xjP,...
rℓxjP,

rℓP, rℓ−1P, . . . , r1P,

tP ) ∈ G2ℓ+2.



90 T. Jonas ÖzganThis is a modi�ed level ℓ signature valid for the publi key Xj . Notie thatin this sheme we have one more element at eah level and this is slightlydi�erent than the original one but this modi�ation will allow us to prove thatthe modi�ed signature sheme is also seure in the standard model.16. Proof of seurity in the standard modelThe proof of seurity in the standard model is almost the same as it is in therandom orale model exept that the hashing orale is removed and replaedby a hash funtion.Theorem 16.1. The modi�ed proxy re-signature sheme with L levels and
N users is seure under the ℓ-�exDH assumption. More preisely, given anattaker A to Game 13.1 with advantage ε we an onstrut an algorithm Bthat solves an ℓ-�exDH instane for given P, aP, bP ∈ G with

Pr[B is suessful ] ≥ qsk · qrk · (N − |I
∗|)3

N |I∗|+3 · 8(qs + qrs)(n+ 1)
· ε.where a, b ∈ Z×

p , n is the length of the messages to be signed, qsk is the numberof private key queries, qrk is the number of re-signature key queries, qs is thenumber of signature queries and qrs is the number of re-signature queries madeby A.Proof. As in random orale model proof, we onstrut an algorithm B whihuses A as a blakbox and simulates its orales OSkey, OReKey, OSign and OReSign.As before B keeps trak of the queries to these orales in the Q-list to onstrutthe query graph GQ later. First B prepares the ommon publi parameters asfollows.Prepare setup.
◦ Set Q = bP .
◦ Choose an integer τ ≪ p.
◦ Choose two random vetors ~ω = (ω′, ω1, . . . , ωn) ←− Zn+1

τ and ~z =
(z′, z1, . . . , zn) ←− Zn+1

p , and a random integer κ ←− {0, . . . , n}. Thende�ne a vetor ~U = (U ′, U1, . . . , Un) as U ′ = (ω′ − κτ)Q + z′P and
Ui = ωiQ + ziP for i ∈ {0, . . . , n}.
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◦ For any message m = m1 . . .mn ∈ {0, 1}

n the hash value is de�ned as
H(m) = U ′+

n∑

i=1

miUi. We also de�ne two auxiliary funtions J(m) : {0, 1}n →

Z and K(m) : {0, 1}n → Zp by� J(m) = ω′ +
n∑

i=1

miωi − κτ ,� K(m) = z′ +
n∑

i=1

mizi,so that H(m) = J(m)Q +K(m)P .At the end the simulator will be suessful when A omes up with a forgedsignature σ∗ on a message m∗ for whih J(m∗) ≡ 0 mod p and for all othermessages m 6= m∗ queried by A, J(m) 6≡ 0 mod p. In fat here we assume
|J(·)| ≤ τ(n+1)≪ p suh that J(m∗) ≡ 0 mod p happens with non-negligibleprobability.The attakerA is now being hallenged with the system parameters (P,Q, ~U).
B answers the orale alls of A as follows:Publi keys: As in the previous proof, B initially guesses a set of users
I∗ ⊂ {0, . . . , N − 1} and sets the publi keys of users i ∈ I∗ as Xi = ziaP forsome zi ←− Z×

p and all other publi keys as Xi = xiP , for some xi ←− Z×
p andmakes them available to A.

B answers the the orale alls of A as follows.Private key queries: When A asks for the seret key of user i, B does thefollowing:algorithm OSkey.Input: A user i ∈ {0, . . . , N − 1}.Output: The seret key xi of user i or B aborts.1. If i ∈ I∗ then B aborts.2. Add [OSkey, i] to Q-list.3. Return xi.



92 T. Jonas ÖzganRe-signature key queries: When A queries OReKey for re-signature keys,
B does the following:algorithm OReKey.Input: Two users i, j ∈ {0, . . . , N − 1}.Output: The orresponding re-signature key Rij or B aborts.1. If i /∈ I∗ then2. If j ∈ I∗ then B aborts.3. Else Rij ←

xi

xj
P .4. Else5. If j ∈ I∗ then Rij ←

zia
zja

P = zi
zj
P .6. Else Rij ←

zia
xj
P .7. Add [OReKey, (i, j)] to Q-list.8. Return Rij .Signature queries: When A asks for a signature of user i on m, B does thefollowing:algorithm OSign.Input: A message m ∈ {0, 1}n, user i, a desired level ℓ.Output: A modi�ed level ℓ signature σ on m valid for Xi or B aborts.1. If J(m) ≡ 0 mod p then B aborts.2. Choose t←− Z×

p .3. If i /∈ I∗ then4. σ0 ← (xiQ+ t ·H(m)).5. σ∞ ← tP6. Else7. σ0 ←
(

−K(m)
J(m)

Xi + t ·H(m)
) .8. σ∞ ←

(

− 1
J(m)

Xi + t · P
) .9. Add [i,m] to Q-list.10. σ ← (σ0, σ∞)11. If ℓ > 0 then12. For j = 1, . . . , ℓ do13. σ ← ADD TRIVIAL H ◭ σ.14. σ ← RE-RANDOM ◭ σ.15. Return σ.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 93Observe that the elements of a level 0 signature generated on behalf of users
i ∈ I∗ in steps 7 and 8 have the orret distribution sine setting t = t + zia

J(m)for σ = (σ0, σ∞) yields
σ0 = −

K(m)

J(m)
Xi + t ·H(m)

= −
K(m)

J(m)
Xi + tH(m) +

zia

J(m)
H(m)

= −
K(m)

J(m)
Xi + tH(m) +

zia

J(m)
(J(m)Q +K(m)P )

= −
K(m)

J(m)
Xi + tH(m) + ziaQ+

ziaK(m)

J(m)
P

= tH(m) + ziaQ−
K(m)

J(m)
ziaP +

K(m)

J(m)
ziaP

= ziaQ + t ·H(m)and
σ∞ = −

1

J(m)
Xi + tP +

zia

J(m)
P

= tP −
1

J(m)
ziaP +

zia

J(m)
P

= tP.Note that the building bloks ADD TRIVIAL H and RE-RANDOM used here arethe ones introdued for the modi�ed sheme.Re-signing queries: When A asks for a re-signature of the valid ℓ−1 signa-ture σ(ℓ−1) from user i to j on m, as in the random orale model, B ignores thisand uses OSign to reate a level ℓ signature on m valid for user j. B exeutesalgorithm OReSign.Input: A modi�ed level ℓ− 1 signature σ(ℓ−1) valid for the publi key Xi, twopubli keys Xi and Xj of users i, j ∈ {0, . . . , N − 1} and a message
m ∈ {0, 1}n.Output: A modi�ed level ℓ signature σ(ℓ) on m valid for the publi key Xj or
B aborts.1. σ(ℓ) ← OSign(m, j, ℓ).



94 T. Jonas Özgan2. Add [OReSign, (i, j,m)] to Q-list.3. Return σ(ℓ).As before, note that the all of algorithm OSign in step 1 an ause B to abort.Final output: Finally when A outputs a message signature pair (m∗, σ∗)where σ∗ = (σ∗
0, . . . , σ

∗
ℓ , σ

∗
−ℓ, . . . , σ

∗
−1, σ

∗
∞) is a valid level ℓ signature on m∗ onbehalf of user i∗. If initially B guessed I∗ orretly and did not have to abortbefore, he does the followingfinalize.Input: A message m∗, a modi�ed level ℓ signature σ∗ valid for the publi key

Xi∗ on m∗ and the general query list Q-list.Output: An ℓ-�exDH instane (abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1) or B aborts.1. Create the query graph GQ ← Query-graph(i∗, m∗, Q-list).2. If there is a path from [0] to [i∗, m∗] in GQ then B aborts.3. If J(m∗) 6≡ 0 mod p then B aborts.4. Find the path π from [i′, m∗] to [i∗, m∗] with length |π| = k.5. Determine the order of users π0 = i′, . . . , πk = i∗ on the path π.6. Calulate the elements 1
zπ0

= 1
zi′
, 1
zπ1

, . . . , 1
zπk

= 1
zi∗
.7. Return (( 1

zπ0

)

(σ∗
0 −K(m∗)σ∗

∞), ( 1
zπ0

)σ∗
1, . . . , (

1
zπ0

)σ∗
ℓ−k,

(
1

zπ1

)

σ∗
ℓ−k+1,

(
1

zπ2

)

σ∗
ℓ−k+2, . . . ,

(
1

zπk

)

σ∗
ℓ ,

(
zπk

zπk−1

)

σ∗
−ℓ,
(

zπk−1

zπk−2

)

σ∗
−ℓ+1,

(
zπk−2

zπk−3

)

σ∗
−ℓ+2, . . . ,

(
zπ1
zπ0

)

σ∗
−ℓ+k,

σ∗
−ℓ+k+1, . . . , σ

∗
−2, σ

∗
−1

).After renaming the oe�ients aordingly, we know that
σ∗
0 = rℓ · · · r1zi′aQ + tK(m∗)P and σ∗

∞ = tP.Thus, we have
1

zπ0

(σ∗
0 −K(m∗)σ∗

∞) =
1

zi′
(rℓ · · · r1)zi′aQ + zi′tK(m∗)P − zi′K(m∗)tP

= abrℓ · · · r1P.
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((

1

zπ0

)

(σ∗
0 −K(m∗)σ∗

∞), (
1

zπ0

)σ∗
1, . . . , (

1

zπ0

)σ∗
ℓ−k,

(
1

zπ1

)

σ∗
ℓ−k+1,

(
1

zπ2

)

σ∗
ℓ−k+2, . . . ,

(
1

zπk

)

σ∗
ℓ ,

(
zπk

zπk−1

)

σ∗
−ℓ,

(
zπk−1

zπk−2

)

σ∗
−ℓ+1,

(
zπk−2

zπk−3

)

σ∗
−ℓ+2, . . . ,

(
zπ1

zπ0

)

σ∗
−ℓ+k,

σ∗
−ℓ+k+1, . . . , σ

∗
−2, σ

∗
−1

)

= (abDℓ, aDℓ, . . . , aD1, Cℓ, . . . , C1),with Di = ri · · · r1P and Ci = riP is a valid ℓ-�exDH instane, sine for all
j ∈ {1, . . . , ℓ} we have logP Dj =

∏j
i=1 logP Ci and Ci is not the neutral elementof the group G.The suess probability of B As in the proof of seurity in the randomorale model the initial guess of I∗ gives us the probability
1
(

N

|I∗|

) ≥
1

N |I∗|
.The probability of B not aborting for qsk many seret key queries of B we havethe probability

qsk
N − |I∗|

N
.Also, for qrk many re-signature key queries of A we have the probability of Bnot aborting

qrk

(

1−
N − |I∗|

N
·
|I∗|

N − 1

)

≥ qrk
(N − |I∗|)2

N2
.Now, following Waters (2005) we show that the probability of J(m∗) ≡ 0

mod p is Pr[J(m∗) ≡ 0 mod p] ≥
1

8(qs + qrs)(n+ 1)
,



96 T. Jonas Özganwhere n is the length of the messages to be signed. This yields the announedbound of B's advantage. To simplify the analysis we de�ne another auxiliaryfuntion for an n-bit message M = m1, . . . , mn:
F (M) =







0, if ω′ +
n∑

i=1

miωi ≡ 0 mod τ,

1, otherwise.Then the probability of J(m∗) ≡ 0 mod p is given by
Pr[J(m∗) ≡ 0 mod p] = Pr

[(
qs+qrs∧

i=1

F (Mi) = 1

)

∧ ω′ +
n∑

i=1

m∗
iωi = κτ

]for qs + qrs queries on n-bit messages Mj = mj1, . . . , mjn, j ∈ {1, . . . , qs + qrs}and the hallenge message m∗ = m1 . . .mn. Note here that F (M) 6= 0 impliesthat J(M) 6≡ 0 mod p beause of the initial assumption that p ≫ τ(n + 1).Note also that every re-signature query in fat triggers a signature query, asmentioned above. First we rewrite the probability from above as
Pr[J(m∗) ≡ 0 mod p] = Pr

[(
qs+qrs∧

i=1

F (Mi) = 1

)

∧ ω′ +

n∑

i=1

m∗
iωi = κτ

]

= Pr

[(
qs+qrs∧

i=1

F (Mi) = 1

)]

· Pr

[

ω′ +

n∑

i=1

m∗
iωi = κτ

∣
∣
∣
∣

qs+qrs∧

i=1

F (Mi) = 1

]

≥

(

1− Pr

[
qs+qrs∨

i=1

F (Mi) = 0

])

· Pr

[

ω′ +

n∑

i=1

m∗
iωi = κτ

∣
∣
∣
∣

qs+qrs∧

i=1

F (Mi) = 1

]

.

(16.2)
Sine we know that Pr [F (M) = 0] = 1

τ
, we transform equation (16.2) into(16.3) (

1−
qs + qrs

τ

)

· Pr

[

ω′ +
n∑

i=1

m∗
iωi = κτ

∣
∣
∣
∣

qs+qrs∧

i=1

F (Mi) = 1

]

.We also know that κ ←− {0, . . . , n} whih gives us the fator 1
n+1

suh thatwe an also use the auxiliary funtion F (·) for m∗. Thus, we hange equation(16.3) into(16.4) 1

n+ 1
·

(

1−
qs + qrs

τ

)

· Pr

[

F (m∗) = 0

∣
∣
∣
∣

qs+qrs∧

i=1

F (Mi) = 1

]

.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 97Now we use Bayes' theorem to transform the probability in equation (16.4)into
Pr [F (m∗) = 0]

Pr
[∧qs+qrs

i=1 F (Mi) = 1
] · Pr

[
qs+qrs∧

i=1

F (Mi) = 1

∣
∣
∣
∣
F (m∗) = 0

]

.Here again we know that Pr [F (M) = 0] = 1
τ
so we an estimate that

Pr [F (m∗) = 0]

Pr
[∧qs+qrs

i=1 F (Mi) = 1
] is at least 1

τ
.Thus, with equation (16.4) we get

Pr[J(m∗) ≡ 0 mod p] ≥
1

n+ 1
·

(

1−
qs + qrs

τ

)

·
1

τ
·Pr

[
qs+qrs∧

i=1

F (Mi) = 1

∣
∣
∣
∣
F (m∗) = 0

]whih is equal to(16.5) 1

n+ 1
·
1

τ
·

(

1−
qs + qrs

τ

)

·

(

1− Pr

[
qs+qrs∨

i=1

F (Mi) = 0

∣
∣
∣
∣
F (m∗) = 0

])

.We estimate that this equation is at least(16.6) ≥ 1

n + 1
·
1

τ
·

(

1−
qs + qrs

τ

)

·

(

1−

qs+qrs∑

i=1

Pr

[

F (Mi) = 0

∣
∣
∣
∣
F (m∗) = 0

])

.Now we use that for any message pair M,M ′ the probabilities F (M) = 0 and
F (M ′) = 0 are pairwise independent, sine the sums ω′ +

n∑

i=1

miωi will di�er atleast in one random ωi beause mi ∈ {0, 1}. Therefore equation (16.6) is equalto
1

n+ 1
·
1

τ
·

(

1−
qs + qrs

τ

)

·

(

1−
qs + qrs

τ

)

=
1

n+ 1
·
1

τ
·

(

1−
qs + qrs

τ

)2

.Now we an optimize this by setting τ = 4(qs + qrs) whih gives usPr[J(m∗) ≡ 0 mod p] ≥
1

8(qs + qrs)(n+ 1)
.Altogether we have the announed bound on the suess probability of B as

Pr[B is suessful ] ≥ qsk · qrk · (N − |I
∗|)3

N |I∗|+3 · 8(qs + qrs)(n+ 1)
· ε.



98 T. Jonas ÖzganArti�ial abort stage: Note that when τ is hosen in the beginning thenumber of signature queries and the number of re-signature queries qs + qrs isnot known to B. Only after A outputs a message signature pair (m∗, σ∗), Bknows the set of queried messages {M1, . . . ,Mqs+qrs}, the forged message m∗and the value qs + qrs. This is orreted by B with an arti�ial abort stagebefore the �nal output. Now we explain this stage whih happens betweensteps 3 and 4 of algorithm Finalize.Assume that B aborts before this arti�ial abort stage for all sets of pos-sible queries of A with almost the same probability (1 − ζ). Now we de-�ne a binary funtion α (~w,M, m∗) for a set of simulation values ~w ∈ Zn+1
τ ,

M = {M1, . . . ,Mqs+qrs} and m∗ as
α (~w,M, m∗) =







0, if (qs+qrs∧

i=1

F (Mi) = 1

)

∧ ω′ +
n∑

i=1

m∗
iωi = κτ,

1, otherwise.The funtion α (~w,M, m∗) will evaluate to 0 if the set of queried messagesMand the forged message m∗ do not ause B to abort for the simulation values
~w. We onsider this probability as Pr [(α(~w,M, m∗) = 0] = η. At this stage,
B ollets with respet to ζ enough samples of the probabilities η by hoosinga random ~w and evaluating α (~w,M, m∗) to ompute an estimated η′. Reallthat we have J(m∗) = ω′ +

∑n

i=1m
∗
iωi − κτ ≡ 0 mod p (step 3 of algorithmFinalize). Therefore this sampling does not require running A again, B justneeds to �nd a right ~ω for M and m∗. Then, if the estimated value η′ is atleast the probability ζ , ie. η′ ≥ ζ , B aborts with probability 1 − ζ

η′
. Here is

ζ = 1
8(qs+qrs)(n+1)

the lower bound of the probability of B not aborting at thisstage, as we showed above. �This unusual proof tehnique was adopted by many other publiations andalso from Libert & Vergnaud (2008a). For more details we refer to the origi-nal publiation of Waters (2005). Note that the arti�ial abort stage an bevery time onsuming as mentioned in Bellare & Ristenpart (2009) whih alsoshows how to eliminate this arti�ial abort stage and provides a more onreteestimation of the suess probability.Note that using the adversaries from the original seurity de�nition for thisredution gives us similar results as disussed in Setion 14.1. We only get anadditional fator 1
8(n+1)

to the suess probabilities of the adversaries A1, A2,
A3 and A4. This fator is the result of the instantiation of the hashing oralewith the hash funtion used in this redution. Notie also that the fator

qsk · qrk ·
(N − |I∗|)3

N |I∗|+3



A Multi-use Uni-diretional Proxy Re-Signature Sheme 99is the same as it is in the random orale model. This means that the resultsahieved in Setion 14.1 also apply here. Espeially we require |I∗| ∈ O(1) tohave a non-negligible suess probability of B. Further, we an also omit thefator related to the seret key queries of A as disussed before.





A Multi-use Uni-diretional Proxy Re-Signature Sheme 101Part IVE�ienyIn this setion we will disuss some e�ieny issues of the signature sheme.Considering the e�ieny of the signature we see that the length of the sig-nature and the growing number of random oe�ients at eah translation arethe dominating fators. We begin with the disussion of the signature lengthand introdue a new problem alled the hain shortening problem (CSP). TheCSP will help us to get an idea about the impliations of a shorter signature.We then disuss the number of oe�ients used to build a level ℓ signature.We will observe what problems lesser or related oe�ients may ause whenthey are used. Note that in this setion we will only look at the basi formof the signature sheme and not the modi�ed version whih we de�ned for thestandard model proof of seurity in the previous setion.17. Shortening the SignatureAs mentioned before, the ReSign(·) algorithm inreases the size of the signatureby two elements with eah translation. We reall that a level ℓ signature hasthe following elements:
σ
(ℓ)
0 = (rℓ · · · r1)xAH(m),

σ
(ℓ)
1 = (rℓ · · · · · · · · ·r1)xAP, σ

(ℓ)
−1 = r1P,

σ
(ℓ)
2 = (rℓ · · · · ·r2)xAP, σ

(ℓ)
−2 = r2P,

σ
(ℓ)
3 = (rℓ · · · r3)xAP, σ

(ℓ)
−3 = r3P,... ...

σ
(ℓ)
ℓ = rℓxAP, σ

(ℓ)
−ℓ = rℓP.Reall Part II where we introdued the H-representation to show the onne-tion between these elements. Now, someone might laim to have an algorithmwhih an merge some of these H-s together so that a shorter signature mightbe ahieved. We take this into onsideration by assuming the existene of a



102 T. Jonas Özganblakbox algorithm (an orale) that somehow shortens the signature. To in-trodue this onsider Figure 17.1 where a blakbox CS2→1 shortens the level 2signature to a level 1 signature.
r2r1xAhP

P

hP

r2r1xAP

P

r1P

r2xAP

P

r2P

xAP

CS2→1

b1xAhP

P

hP

b1xAP

P

b1P

xAP

Figure 17.1: CS2→1Here the hain shortener CS2→1 shortens the signature by one elementby replaing r1, r2 ∈ Z×
p with a random b1 ←− Z×

p . This means that CS2→1redues the signature by one H as depited in Figure 17.1. Note that CS2→1is not allowed to hange XA = xAP and H(m) = hP , sine the message mand the validation publi key xAP must stay the same after the shorteningproess. This is beause after the shortening proess we still want to have asignature on the same message m valid for the same publi key XA. Therefore
xAhP also annot be hanged during the shortening proess (the green andblue elements). For now we will onsider signatures of higher levels and omebak to level 1 signatures later.Now with the assumption that the hain shortener CS2→1 exists as a blak-box, we attempt to use it for shortening a level 3 signature as shown in Fig-ure 17.2.At �rst we deouple the lower H from the signature and use CS2→1. Thenwe reouple the H with the elements r3P and xAP to obtain a valid level 2signature as shown in Figure 17.3. This implies the existene of the CS3→2whih shortens the level 3 signature to a level 2 signature.Thus we get a valid level 2 signature for XA as

σ(2) = (b1P, r3P, r3xAP, b1r3xAP, b1r3xAH(m)) .
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r3r2r1xAhP

P

hP

r3r2r1xAP

P

r1P

r3r2xAP

P

r2P

r3xAP

P xAP

r3P

Figure 17.2: A level 3 signature
r3r2r1xAhP

P

hP

r3r2r1xAP

P

r1P

r3r2xAP

P

r2P

r3xAP

P xAP

r3P

CS2→1

b1r3xAhP

P

hP

b1r3xAP

P

b1P

r3xAP r3P

P xAPReouple
Figure 17.3: Using CS2→1 on a level 3 signatureNow, we an use CS2→1 again as shown in Figure 17.4, whih gives usa level 1 signature valid for XA. This implies the existene of the CS3→1.
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b1r3xAhP

P

hP

b1r3xAP

P

b1P

r3xAP

P

r3P

xAP

CS2→1

b2xAhP

P

hP

b2xAP

P

b2P

xAP

Figure 17.4: Shortening the signature againReapitulating the whole proess, we �rst deouple the lower H from the level
3 signature and use CS2→1 to shorten it. Then we add the deoupled H to theresult and obtain a level 2 signature. Using CS2→1 on that gives us a level 1signature. Therefore we note that the hain shorteners CS3→2 and CS3→1 anbe ahieved from CS2→1 as
◦ CS3→2: Deouple lower H, use CS2→1, reouple the deoupled H.
◦ CS3→1: Combine CS3→2 and CS2→1.Note that the existene of CS3→1 also implies the existene of CS2→1 sine,we an easily lengthen the signature with our building blok ADD TRIVIAL H(see Setion 9) and use the CS3→1 afterwards.Level 4 and higher. Similarly as above we an reursively onstrut CS4→3,

CS4→2 and CS4→1 for level 4 signatures from a CS2→1.
◦ CS4→3: Deouple lower H, use CS3→2, reouple the deoupled H.
◦ CS4→2: Combine CS4→3 and CS3→2.
◦ CS4→1: Combine CS4→2 and CS2→1.Again the impliation CS4→1 ⇒ CS3→1 is trivial sine we an lengthen thesignature easily before using CS4→1.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 105Analogously we an onstrut hain shorteners CSℓ→i where 1 < i < ℓ. Iteven turns out that the hain shorteners form an impliation hierarhy. Thiswill give us an understanding about the impliations of shortening a signature.But before formally writing down the results we return to the level 1 signatures.The hain shortener for level 1 signatures. Now we introdue a hainshortener for a level 1 signature. A level 1 signature is given by
σ(1) = (r1P, r1xAP, r1xAH(m)) .We assume the existene of a hain shortener CS1→0 whih shortens this level

1 signature to a level 0 signature as shown in Figure 17.5.
r1xAhP

P

hP

r1xAP

P

r1P

XA

CS1→0

xAhP

P

hP

XA

Figure 17.5: CS1→0Here again we an reursively build a CSi→0 for 2 ≤ i ≤ ℓ as we did before.For example we an build a CS2→0 from the CS1→0 as:1. Deouple the lower H from the level 2 signature,2. use CS1→0 to shorten it,3. add the deoupled H,4. use CS1→0 again to obtain a valid level 0 signature.We then an use CS2→0 similarly to build a CS3→0 and that to build a CS4→0and so on.The existene of CS1→0 also implies the existene of CS2→1 as:1. Deouple the lower H from the level 2 signature,2. use CS1→0 to shorten it,



106 T. Jonas Özgan3. add the deoupled H and obtain a valid level 1 signature.The existene of a CS1→0 also enables us to alulate a−1P for given P, aP . Weuse CS1→0 as as shown in Figure 17.6 to obtain a−1P . We all this an inverter
P

aP

P

P

aP

aP

P

CS1→0

a−1P

aP

P

P

Figure 17.6: Obtaining a−1P with CS1→0and note it as INV shown in Figure 17.7.
aP
P

a−1P
P

INV
Figure 17.7: The inverter INV17.1. The hierarhy of the hain shortening problem. Now we formallywrite down our results and analyze the impliations of these results. For hainshorteners we an state:Theorem 17.1. ∃ CSi′→j ⇒ ∃ CSi→j for j < i < i′. This means that if wean shorten a level i′ signature to a level j signature we an also shorten a level

i signature to a level j signature where i′ > i.Proof. We an lengthen the level i signature with ADD TRIVIAL H as muhas neessary until we have a level i′ signature and then use the CSi′→j . �



A Multi-use Uni-diretional Proxy Re-Signature Sheme 107Theorem 17.2. ∃ CSi→j ⇒ ∃ CSi→j′ for j < j′ < i. This means that if wean shorten a level i signature to a level j signature we an also shorten it toa level j′ signature, where j < j′.Proof. Sine lengthening the signature is easy we an use CSi→j to shortenthe level i signature to a level j signature and then use ADD TRIVIAL H as oftenas neessary and re-randomize it with RE-RANDOM to get a level j′ signature.�Theorem 17.3. ∃ CSi→j ⇒ ∃ CSi′→j for j < i < i′. This means that if wean shorten a level i signature to a level j signature we an also shorten a level
i′ signature to a level j signature, where i < i′.Proof. To shorten a level i′ signature to a level j signature with CSi→j where
i′ > i, we �rst have to deouple the lower i′ − i H s from the level i′ signatureand use CSi→j to shorten it. Then add i− j H s from the top of the deoupledones and use CSi→j again and ontinue this proess until no deoupled H s areleft. This is the same proess we did above for CS2→1 and CS3→1. Note thatin the ase where (i− j) ∤ (i′− i) we still an use ADD TRIVIAL H to lengthenthe signature aordingly. �Theorem 17.4. ∃ CSi→j ∧ ∃ CSj→k ⇒ ∃ CSi→k for k < j < i. A CSi→k aneasily be onstruted from the ombination of CSi→j and CSi→k.Proof. We �rst use the CSi→j on a level i signature to get a level j signaturethen we use CSj→k to obtain a level k signature. �Consider Figure 17.8 whih shows the impliation hierarhy of the hain short-eners. Theorem 17.1 and Theorem 17.3 note the impliations in the vertialdiretion, Theorem 17.2 notes the impliations from right to left. The diagonalimpliations result from the ombination of Theorem 17.3 and Theorem 17.2.Now we prove the equivalene

∃ CS1→0 ⇐⇒ CDHwith a series of lemmas.Lemma 17.5. ∃ CS1→0 ⇒ ∃ INV . The existene of CS1→0 implies the exis-tene of INV .Proof. Use CS1→0 with the basepoint and aP as shown in Figure 17.6. �Similar to INV we de�ne a squarer SQR whih returns a2P for given P, aPas in Figure 17.9.
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CS5→0

CS4→0
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...
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Figure 17.8: The Hierarhy of the hain shorteners
aP
P

a2P
P

SQR
Figure 17.9: The squarer SQRLemma 17.6. ∃ INV ⇒ ∃ SQR . The existene of INV as in Figure 17.7implies the existene of SQR .Proof. Use the INV with the basepoint and aP to aquire [a2P ] as follows
[aP, P ]

INV
−→ [a2P ].

�



A Multi-use Uni-diretional Proxy Re-Signature Sheme 109Lemma 17.7. Assume that halving is easy and an e�ient bilinear map e(·, ·)exists. Then ∃ SQR ⇔ CDH. The existene of a squarer SQR as in Figure 17.9is equivalent to solving the omputational Di�e-Hellman problem (CDH).Proof. ∃ SQR ⇒ CDH.Input: A base point P , two points aP and bP for a, b ∈ Z×
p , a non-degeneratebilinear map e(·, ·), a squarer SQR .Output: The solution abP to the given CDH instane P, aP, bP .1. Compute a2P with SQR .2. Compute b2P with SQR .3. Compute (a+ b)2P with SQR .4. Compute S ← (a+ b)2P − a2P − b2P = 2abP .5. Compute {c1P, c2P} ← 1

2
S.6. Use e(ciP, P ) = e(aP, bP ) for i ∈ {1, 2} to determine the orret solution.7. Return the orret solution ciP = abPNote that the addition and the halving operation are onsidered to be easy onellipti urves. The latter is basially a square root operation whih has twosolutions. To determine the orret answer we use the bilinear map e(·, ·) whihis also onsidered to be an easy operation.Now we show CDH⇒ ∃ SQR . This is trivial sine the solution to the givenCDH instane [P, aP, aP ] is a2P . This means that if we have a blakbox CDHwhih returns abP for the input [P, aP, bP ] we an alulate a2P with the input

[P, aP, aP ]. �Lemma 17.8. ∃ CDH ⇒ ∃ INV . The existene of CDH implies the existeneof an inverter INV as desribed in Figure 17.7.Proof. Use CDH with input [aP, P, P ] to obtain a−1P . �Lemma 17.9. ∃ CDH ⇒ ∃ CS1→0. The existene of CDH implies the existeneof the hain shortener CS1→0.Proof. Reall that a level 1 signature is given by
[
P, xAP, hP, r1P, r1xAP, r1xAhP

]
,



110 T. Jonas Özganto obtain a level 0 signature from these we only need xAhP . Thus using CDHwith input [P, xAP, hP ] gives us a level 0 signature as:
[
P, xAP, hP, xAhP

]
.

�The last result is very natural sine the level 0 signature is a short signature(Boneh et al. 2004) whih is based on the omputational Di�e-Hellman as-sumption. Now we summarize the results from above:
∃ CS1→0 ⇒ ∃ INV ⇒ ∃ SQR ⇐⇒ ∃ CDH ,

∃ CDH ⇒ ∃ INV ,

∃ CDH ⇒ ∃ CS1→0 .Completing the hierarhy of the hain shorteners from Figure 17.8 we get:
∃ CDH ⇐⇒ ∃ CS1→0 .Naturally, if we had a blakbox solving ℓ-�exDH instanes we ould alsobuild a CSi→ℓ from that. For example, assume that a blakbox 1-flexDH ex-ists whih outputs Q, aQ, abQ ∈ G for input P, aP, bP ∈ G. Using 1-flexDHwith input P, xAP, hP would result in Q, xAQ, xAhQ, where hP is the hashvalue of the message and the publi key xAP . The result is basially a level 1signature given by
(Q, xAQ, xAhQ),onsidering that Q = rP for some r ←− Z×

p . Sine we only need the publikey xAP and the hash value hP we an shorten level ℓ signatures to level
1 signatures with 1-flexDH . However, it is not lear how to relate CSℓ→1to 1-flexDH sine a CSℓ→1 generates a new 1-�exDH tuple from a given ℓ-�exDH tuple. Intuitively, every CSi→j where j ≥ 1 has some randomness thatwe annot ontrol. This prevents us also from relating these hain shortenersto more lassial problems suh as the CDH.In the end, we observe that the existene of a CSi→0 implies all other CSi→jfor 0 ≤ j < i and this is also equivalent to solving CDH. For all other CSi→jwhere j ≥ 1 we an build other hain shorteners but reahing to any CSi→0seems not possible.Even so shortening the signature seems hard to ahieve. In onlusion,ahieving logarithmi or sublinear or even onstant length signatures seemsout of reah at the moment (Libert & Vergnaud 2008a).



A Multi-use Uni-diretional Proxy Re-Signature Sheme 11118. Usage of Random Coe�ientsIn this setion we will analyze the usage of random oe�ients. The mainquestion we will try to answer is �How muh randomness is needed? �. Reallthat the signature sheme is not SEUF as noted in Part III, sine it an bepublily re-randomized with the building blok RE-RANDOM (Setion 9). Infor-mation theoretially, ℓ random oe�ients are needed to blur the onnetionto an re-randomized level ℓ signature. We note this in the following theorem.Theorem 18.1. Using RE-RANDOM on σ(ℓ) we obtain uniform distribution ofthe signature elements where σ(ℓ) = (σ0, . . . , σℓ, σ−ℓ, . . . , σ−1) is any level ℓsignature on a message m valid for the publi key Xi.Proof. Consider two di�erent level ℓ signatures σ = (σ0, . . . , σℓ, σ−ℓ, . . . , σ−1)and σ′ = (σ′
0, . . . , σ

′
ℓ, σ

′
−ℓ, . . . , σ

′
−1) on the same message m valid for the samepubli key Xi. To transform any σ−i into σ′

−i for an i ∈ {1, . . . , ℓ} exatly oneoe�ient is required. Therefore, in a transformation where eah element σ−iis transformed into σ′
−i for all i ∈ {1, . . . , ℓ} exatly ℓ oe�ients are needed.As we have seen in Part II, this also neessarily transforms the elements σi into

σ′
i for i ∈ {0, . . . , ℓ}. This is exatly what RE-RANDOM =

∏ℓ
i=1 RE-RANDOM idoes, it transforms a given level ℓ signature into another level ℓ signature whihhas the same distribution of random elements. �Therefore we onlude that, information theoretially, the output ofReSign(·, m, ℓ− 1, σ(ℓ−1), Rij , Xi, Xj)is indistinguishable from the output ofSign(·, m, ℓ, xj)where both algorithms output a level ℓ signature on m valid for the publi key

Xj. Using less oe�ients annot give us this uniform distribution.We will �rst look at level ℓ signatures where one of the ℓ oe�ients is1 to analyze what happens when less oe�ients are used. After that we willanalyze the ase where the random oe�ients have a ertain relation expressedby a linear equation. We will observe that in most of the ases the unlinkabilityproperty of the signature is lost.Although the output of the algorithms ReSign(·) from level ℓ− 1 to level ℓand Sign(·) at level ℓ are indistinguishable we will onsider these separately ineah subsetion. More preisely, in eah subsetion we onsider the ases



112 T. Jonas Özgan
◦ Signing at level ℓ, here the adversary tries to gather additional infor-mation from his knowledge.
◦ Re-signing from level ℓ − 1 to level ℓ, here the adversary who hasalso the predeessor of the resulting level ℓ signature tries to link thesetwo together.Note that the disussion below onsiders only the symmetri pairing settingand therefore most of the results are not valid for the asymmetri setting (seeSetion 11). We address this problem at the end of this hapter.18.1. Using lesser oe�ients. We �rst look at what happens if one lessrandom oe�ient is used. Reall that RE-RANDOM =

∏ℓ
i=1 RE-RANDOM i , inthis setion we assume that one RE-RANDOM i was left out, ie. ri = 1.18.1.1. Signing at level ℓ. We �rst onsider the output of the Sign(·) al-gorithm at level ℓ.CASE rℓ = 1. A signature signed at level ℓ with rℓ = 1.Consider Figure 18.1, the (red) enirled H is redundant sine the element

σ
(ℓ)
ℓ is the same as the publi key XA. This means that an attaker an deouplethis H, whih gives him a level ℓ − 1 signature on the same message valid forthe same publi key XA. Thus, if the translation limit in the system was ℓ, thismakes it possible to translate the signature one more than allowed.CASE r1 = 1. A signature signed at level ℓ with r1 = 1. In Figure 18.2 wealso see that the (red) enirled H is redundant, thus an attaker an againshorten this signature to a level ℓ− 1 signature by removing σ

(ℓ)
−1 = P and oneof the (rℓ · · · r2)xAP from the signature.CASE ri = 1. A signature signed at level ℓ with ri = 1.Here we also see in Figure 18.3 that the (red) enirled H is redundant sothe elements σ(ℓ)

−i = P and one of the (rℓ · · · ri−1)xAP an be removed.Generally we observe that using lesser oe�ients in the signing proessis equivalent to signing the signature on a shorter level. As mentioned abovethis an be disadvantageous if there is a limitation on the number of allowedtranslations.18.1.2. Re-signing from level ℓ−1 to level ℓ. We now onsider the outputof the ReSign(·) algorithm when one less oe�ient is used.
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(rℓ−1 · · · r1)xAhP

P

H(m)

(rℓ−1 · · · r1)xAP r1P

P (rℓ−1 · · · r2)xAP

σ
(ℓ)
ℓ = xAP

P

P

XAFigure 18.1: σ(ℓ) with rℓ = 1CASE rℓ = 1. We �rst onsider a signature re-signed from level ℓ − 1 to ℓwith rℓ = 1. In this ase as depited in Figure 18.4 we observe that the lastsigner's publi key XA (on level ℓ− 1) is visible in the signature sine the newowner's publi key (on level ℓ) isXB. Taking away RAB and XB in the enirledH gives an attaker a level ℓ − 1 signature σ(ℓ−1) valid for the publi key XA,ie. the whole translation is lost. The attaker an also extrat the re-signaturekey RAB, thus also the private proxy property is lost. Sine by assumption theattaker is also in possession of σ(ℓ−1) the predeessor of σ(ℓ), he an verify that
σ(ℓ) was most probably translated from σ(ℓ−1) by heking

e
(

σ
(ℓ)
ℓ−1, σ

(ℓ−1)
−ℓ+1

)
?
= e

(

σ
(ℓ−1)
ℓ−1 , σ

(ℓ)
−ℓ+1

)

.Thus, the unlinkability property of the signature is lost sine the equivaleneis given by
e
(

σ
(ℓ)
ℓ−1, σ

(ℓ−1)
−ℓ+1

)

= e
(

rℓ−1σ
(ℓ−1)
ℓ−1 , σ

(ℓ−1)
−ℓ+1

)



114 T. Jonas Özgan
(rℓ · · · r2)xAhP

P

H(m)

(rℓ · · · r2)xAP P

P (rℓ · · · r2)xAP r2P

P (rℓ · · · r3)xAP

rℓxAP

P

rℓP

XAFigure 18.2: σ(ℓ) with r1 = 1

= e
(

σ
(ℓ−1)
ℓ−1 , rℓ−1σ

(ℓ−1)
−ℓ+1

)

= e
(

σ
(ℓ−1)
ℓ−1 , σ

(ℓ)
−ℓ+1

)

.CASE r1 = 1. Here we onsider a signature re-signed from level ℓ − 1 to
ℓ with r1 = 1 as depited in Figure 18.5. An attaker in possession of thepredeessor σ(ℓ−1) of σ(ℓ) an see that σ(ℓ−1) is most probably re-signed into σ(ℓ)sine

σ
(ℓ)
−1 = σ

(ℓ−1)
−1 .
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(rℓ · · · r1/ri)xAhP

P

H(m)

(rℓ · · · r1/ri)xAP

(rℓ · · · ri−1)xAP P

P (rℓ · · · ri−1)xAP

rℓxAP

P

rℓP

XAFigure 18.3: σ(ℓ) with ri = 1He an verify this by heking
e
(

σ
(ℓ)
1 , σ

(ℓ−1)
2

)
?
= e

(

σ
(ℓ−1)
1 , σ

(ℓ)
2

)

,sine the equivalene is given by
e
(

σ
(ℓ)
1 , σ

(ℓ−1)
2

)

= e
(

(r2 · · · rℓ)σ
(ℓ−1)
1 , σ

(ℓ−1)
2

)

= e
(

σ
(ℓ)
1 , (r2 · · · rℓ)σ

(ℓ−1)
2

)

= e
(

σ
(ℓ−1)
1 , σ

(ℓ)
2

)

.Again the unlinkability property of the signature is lost.
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(rℓ−1 · · · r1)σ

(ℓ−1)
0

P

H(m)

(rℓ−1 · · · r1)σ
(ℓ−1)
1 r1σ

(ℓ−1)
−1

P (rℓ−1 · · · r2)σ
(ℓ−1)
2

rℓ−1σ
(ℓ−1)
−ℓ+1 = σ

(ℓ)
−ℓ+1

P

σ
(ℓ)
ℓ−1 = rℓ−1σ

(ℓ−1)
ℓ−1

XA

P

RAB

XBFigure 18.4: Re-Signing σ(ℓ−1) to σ(ℓ) with rℓ = 1CASE ri = 1. A signature re-signed from level ℓ − 1 to ℓ with ri = 1.Generally if one of the oe�ients ri = 1 in the re-signing proess then we have
σ(ℓ) as in Figure 18.6. An attaker in possession of the predeessor σ(ℓ−1), ansee that σ(ℓ−1) was most probably re-signed into σ(ℓ) sine

σ
(ℓ−1)
−i = σ

(ℓ)
−i .He an verify this by heking

e
(

σ
(ℓ)
i , σ

(ℓ−1)
i+1

)
?
= e

(

σ
(ℓ−1)
i , σ

(ℓ)
i+1

)

,beause
e
(

σ
(ℓ)
i , σ

(ℓ−1)
i+1

)

= e
(

(r1 · · · rℓ/ri)σ
(ℓ−1)
i , σ

(ℓ−1)
i+1

)
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(rℓ · · · r2)σ

(ℓ−1)
0

P

H(m)

(rℓ · · · r2)σ
(ℓ−1)
1 σ

(ℓ−1)
−1 = σ

(ℓ)
−1

P (rℓ · · · r2)σ
(ℓ−1)
2

rℓ−1σ
(ℓ−1)
−ℓ+1

P

rℓrℓ−1σ
(ℓ−1)
ℓ−1

rℓXA

P

rℓRAB

XBFigure 18.5: Re-Signing σ(ℓ−1) to σ(ℓ) with r1 = 1

= e
(

σ
(ℓ−1)
i , (r1 · · · rℓ/ri)σ

(ℓ−1)
i+1

)

= e
(

σ
(ℓ−1)
i , σ

(ℓ)
i+1

)

.Thus, using one oe�ient less in the re-signing proess always destroys theunlinkability property of the signature. Espeially if rℓ = 1 we loose the wholetranslation and also the private proxy property, sine an attaker an easilyaess the re-signature key RAB.18.2. Related Coe�ients. Now we analyze what happens if the oe�-ients satisfy a linear relation. As mentioned in the beginning, we assume thatthe relation is known to an attaker and we will try to �nd out if an attakergains anything else from this knowledge. We start with the simple ase wheretwo oe�ients are equal.18.2.1. Signing at level ℓ.
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(rℓ · · · r1/ri)σ

(ℓ−1)
0

P

H(m)

(rℓ · · · r1/ri)σ
(ℓ−1)
1

σ
(ℓ)
i = (rℓ · · · ri−1)σ

(ℓ−1)
i

σ
(ℓ−1)
−i = σ

(ℓ)
−i

P (rℓ · · · ri−1)σ
(ℓ−1)
i+1

rℓXA

P

rℓRAB

XBFigure 18.6: Re-Signing σ(ℓ−1) to σ(ℓ) with ri = 1CASE rℓ = rℓ−1. A signature signed at level ℓ with rℓ = rℓ−1.In Figure 18.7 we see that σ(ℓ)
−ℓ = σ

(ℓ)
−ℓ+1 whih implies that σ(ℓ)

ℓ = rℓ−1xAPand σ
(ℓ)
ℓ = r2ℓ−1xAP . However an attaker does not seem to gain muh fromthis knowledge.CASE r1 = r2. A signature signed at level ℓ with r1 = r2.Similarly here in Figure 18.8 we have σ

(ℓ)
−1 = σ

(ℓ)
−2 = r2P whih also is notvery useful for an attaker.
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(r2ℓ−1 · · · r1)xAhP

P

H(m)

(r2ℓ−1 · · · r1)xAP r1P

P (r2ℓ−1 · · · r2)xAP

rℓ−1P

P

r2ℓ−1xAP

rℓ−1xAP

P

rℓ−1P

XAFigure 18.7: σ(ℓ) signed with rℓ = rℓ−1CASE ri = rj for i < j. Generally we know that if a signature is signed onlevel ℓ with ri = rj, we would have two elements σ(ℓ)
−i = σ

(ℓ)
−j for i, j ∈ {1, . . . , ℓ}(Figure 18.9).However it seems that this is not muh of a use for an attaker.

GENERAL CASE ℓ∏

i=1

reii = 1 for some exponents ei. The general asewhere the relation of the oe�ients is given as n∏

i=1

reii = 1 seems out of reah tobe analyzed ompletely within the limits of this thesis. Nonetheless, we wantto get an idea about this relation of the oe�ients. Therefore we look into thenext more omplex ase where ri = rj · rk whih is ri · r−1
j · r

−1
k = 1.
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(rℓ · · · r22)xAhP

P

H(m)

(rℓ · · · r22)xAP r2P

P (rℓ · · · r2)xAP r2P

P (rℓ · · · r3)xAP

rℓxAP

P

rℓP

XAFigure 18.8: σ(ℓ) signed with r1 = r2The signature signed at level ℓ would ontain the following elements:
[

σ
(ℓ)
(−i) = riP = rjrkP, σ

(ℓ)
(−j) = rjP, σ

(ℓ)
(−k) = rkP

]

.Assuming that the linear relation ri · r
−1
j · r

−1
k = 1 is known to the attaker, hean verify this by heking

e(σ
(ℓ)
−i , P )

?
= e(σ

(ℓ)
−j , σ

(ℓ)
−k),sine

e(σ
(ℓ)
−i , P ) = e(P, P )ri,

= e(rjP, rkP ),

= e(σ
(ℓ)
−j , σ

(ℓ)
−k).
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(rℓ · · · r2i · · · r1/rj)xAhP

P

H(m)

(rℓ · · · r2i · · · r1/rj)xAP

(rℓ · · · ri+1r
2
i /rj)xAP riP

P (rℓ · · · ri+1ri/rj)xAP

(rℓ · · · rj+1ri)xAP riP

P (rℓ · · · rj+1)xAP

rℓxAP

P

rℓP

XAFigure 18.9: σ(ℓ) signed with ri = rjHere we see that we already reah some limit. The nature of the pairings e(·, ·),allows us to treat at most two ei = 1 or one ei = 2 and at most two ei = −1 orone ei = −2 at all. Anything else seems beyond the sope of group and pairingrelations.CASE n∑

i=1

αi · ri = 0 for n ≤ ℓ. The other general ase where the oe�ientsare additionally related to eah other as α1r1+α2r2+ · · ·+αnrn = 0 an easily



122 T. Jonas Özganbe veri�ed beause
n∑

i=1

αiriP =
n∑

i=1

αiσ−i = 0 · P = O.Note that by assumption the αi's are known suh that the values αiriP =
αiσ−i an �easily� be alulated. Similarly by assumption the addition of theseelements is also onsidered easy. We onlude that, if related oe�ients areused in the signing proess, an attaker is able to verify his knowledge of therelation but beyond that he does not seem to gain muh from this knowledge.18.2.2. Re-signing from level ℓ− 1 to level ℓ.CASE rℓ = rℓ−1. A signature re-signed from level ℓ− 1 to ℓ with rℓ = rℓ−1.Considering Figure 18.10 we an easily link the signature to its predeessor byheking

e
(

σ
(ℓ)
ℓ , σ

(ℓ−1)
−ℓ+1

)
?
= e

(

XA, σ
(ℓ)
−ℓ+1

)

,sine
e
(

σ
(ℓ)
ℓ , σ

(ℓ−1)
−ℓ+1

)

= e
(

rℓ−1XA, σ
(ℓ−1)
−ℓ+1

)

= e
(

XA, rℓ−1σ
(ℓ−1)
−ℓ+1

)

= e
(

XA, σ
(ℓ)
−ℓ+1

)

.This means that again we loose the unlinkability property of the signature.CASE r1 = r2. A signature re-signed from level ℓ − 1 to ℓ with r1 = r2.Consider Figure 18.11, we an link the signature to its predeessor by heking
e
(

σ
(ℓ)
−2, σ

(ℓ−1)
−1

)
?
= e

(

σ
(ℓ−1)
−2 , σ

(ℓ)
−1

)

,sine
e
(

σ
(ℓ)
−2, σ

(ℓ−1)
−1

)

= e
(

r2σ
(ℓ−1)
−2 , σ

(ℓ−1)
−1

)

= e
(

σ
(ℓ−1)
−2 , r2σ

(ℓ−1)
−1

)

= e
(

σ
(ℓ−1)
−2 , σ

(ℓ)
−1

)

.Again the unlinkability property is lost.
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P

rℓ−1RAB

XBFigure 18.10: σ(ℓ−1) re-signed to σ(ℓ) with rℓ = rℓ−1CASE ri = rj for i < j < ℓ. Consider Figure 18.12, as we have seen in theprevious ases one ould analogously link the level ℓ signature to its predeessorby heking
e
(
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)
?
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(

σ
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−i , σ
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)
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)
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riσ
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)
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−i , riσ
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)

= e
(

σ
(ℓ−1)
−i , σ

(ℓ)
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)

.We onlude that, if two (or more) equal oe�ients are used in the re-signing proess the unlinkability property of the signature is lost.
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XBFigure 18.11: σ(ℓ−1) re-signed to σ(ℓ) with r1 = r2GENERAL CASE n∏

i=1

reii = 1 for n ≤ ℓ. Again we only onsider the nextmore omplex ase where ri = rj · rk. A signature whih was re-signed fromlevel ℓ− 1 to level ℓ, ontains the following elements:
σ
(ℓ)
−i = riσ

(ℓ−1)
−i = rjrkσ

(ℓ−1)
−i ,

σ
(ℓ)
−j = rjσ

(ℓ−1)
−j ,

σ
(ℓ)
−k = rkσ

(ℓ−1)
−k .Sine we know that the elements σ(ℓ−1)

−i , σ
(ℓ−1)
−j and σ

(ℓ−1)
−k are di�erent mul-tiples of the base point P we an de�ne them as three points Pi, Pj and Pk bysetting

Pi := σ
(ℓ−1)
−i = γiP,
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XAFigure 18.12: σ(ℓ) signed with ri = rj

Pj := σ
(ℓ−1)
−j = γjP,

Pk := σ
(ℓ−1)
−k = γkP,for some γi, γj, γk ∈ Z×

p .Now we an rewrite the re-signature elements σ(ℓ)
−i , σ

(ℓ)
−j and σ

(ℓ)
−k as di�erentmultiples of the base point P as

σ
(ℓ)
i = riσ

(ℓ−1)
−i = riPi = riγiP = rjrkγiP,

σ
(ℓ)
j = rjσ

(ℓ−1)
−j = rjPj = rjγjP,
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σ
(ℓ)
k = rkσ

(ℓ−1)
−k = rkPk = rkγkP.For linking the signature to its predeessor we ould try the following

e(riγiP, P ) = e(P, P )rjrkγi

= e(rjrkP, γiP )

= e(rjrkP, σ
(ℓ−1)
−i ).or the other way around:

e(rjγjP, rkγkP ) = e(rjrkP, γjγkP )

= e(riP, γjγkP ),whih is atually worse, sine we do not know any of the values on the righthand side of the equations.It seems that, to be able to link these two signatures, we at least have toalulate the value rjrkP from given rjσ
(ℓ−1)
−j and rkσ

(ℓ−1)
−k .Another view point would be to �x the element σ

(ℓ−1)
−i as Q, and rewrite

σ
(ℓ−1)
−j and σ

(ℓ−1)
−k relative to Q as

Q = σ
(ℓ−1)
−i ,

aQ = σ
(ℓ−1)
−j ,

bQ = σ
(ℓ−1)
−k .Realling that

σ
(ℓ)
−i = riQ,

σ
(ℓ)
−j = rjaQ,

σ
(ℓ)
−k = rkbQ,our task is now to verify that ri =

rja·rkb

ab
, with these elements. This wouldallow us to link the re-signature σ(ℓ) to its predeessor σ(ℓ−1). We de�ne thisas the 4-fold deisional Di�e-Hellman problem.Definition 18.2. 4-fold deisional Di�e-Hellman problem (4-DDH) is,given Q, aQ, bQ, αQ, βQ, zQ ∈ G determine whether z = αβ

ab
.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 127Setting ri = z, rja = α and rkb = β gives us the equivalene. To solve this4-DDH instane in our pairing setting we an alulate the following values
e(aQ, bQ) := ξ,

e(aQ, rkbQ) := ξrk ,

e(bQ, rjaQ) := ξrj ,

e(abQ, riQ) := ξrjrk .This would redue our task to solve the deisional Di�e-Hellman (DDH) in-stane in GT . This is, given ξ, ξm, ξn, ξt determine if t = mn. Note that tobe able to do so we also need to alulate abQ from given Q, aQ, bQ whih isa omputational Di�e-Hellman (CDH) instane in G. By assumption both ofthese instanes are onsidered to be hard in the orresponding groups G and
GT respetively. Summarizing the results from above we getCDH(G) + e(·, ·) +DDH(GT )⇒ 4-DDH(G).Thus, it is unlikely that an attaker knowing even the simplest form of the rela-tion ri = rj · rk is able to link the signature to its predeessor. Consequently itis also unlikely that an attaker with the knowledge of a more omplex, generalrelation between oe�ients is able to link a re-signature to its predeessor.CASE n∑

i=1

αi · ri = 0 for n ≤ ℓ. Beginning with a simple ase assume thata relation as ri = rj + rk is known. Then, as we have seen before, a signaturere-signed from level ℓ− 1 to level ℓ would ontain the elements
σ
(ℓ)
−i = riσ

(ℓ−1)
−i ,

σ
(ℓ)
−j = rjσ

(ℓ−1)
−j ,

σ
(ℓ)
−k = rkσ

(ℓ−1)
−k .Again we know that the elements σ

(ℓ−1)
−i , σ

(ℓ−1)
−j and σ

(ℓ−1)
−k are some di�erentmultiples of the base point P . As above we an rewrite the elements of thelevel ℓ signature as

σ
(ℓ)
−i = riγiP,

σ
(ℓ)
−j = rjγjP,

σ
(ℓ)
−k = rkγkP.



128 T. Jonas ÖzganNow if we try to link these elements we do the following
e(riγiP, P ) = e(P, P )riγi

= e ((rj + rk)P, γiP )

= e(rjP, σ
(ℓ−1)
−i ) · e(rkP, σ

(ℓ−1)
−i ).As above we ould try to alulate the values rjP and rkP from rjσ

(ℓ−1)
−j and

rkσ
(ℓ−1)
−k respetively to link the signature to its predeessor.Also, another view point is to �x σ

(ℓ−1)
−i as Q and rewrite σ

(ℓ−1)
−j and σ

(ℓ−1)
−kas aQ and bQ suh that

Q = σ
(ℓ−1)
−i , σ

(ℓ)
−i = riQ,

aQ = σ
(ℓ−1)
−j , σ

(ℓ)
−j = rjaQ,

bQ = σ
(ℓ−1)
−i , σ

(ℓ)
−k = rkbQ.Di�ering from above here our task would be to verify if ri = ab(rj + rk), forlinking σℓ to its predeessor σℓ−1. In our pairing setting we an alulate thevalues

e(aQ, bQ) := ξ,

e(aQ, rkbQ) := ξrk ,

e(bQ, rjaQ) := ξrj ,

e(abQ, riQ) := ξrj+rk .Given ξ, ξm, ξn, ξt we ould easily determine if t = m+ n by alulating ξm · ξnand therefore link the re-signature σ(ℓ) to its predeessor σ(ℓ−1). However, asabove we still need to alulate abQ from given Q, aQ, bQ whih is again a CDHinstane in G.Summarizing all the results from above, we see that the usage of so manyoe�ients is indeed neessary. Using less or even two equal oe�ients, de-stroys the unlinkability property of the signature. Using related oe�ientshowever does not seem to e�et the seurity requirements of the signature.This is beause an attaker knowing even the simplest form of a general rela-tion of two oe�ients, ie. ri = rj · rk or ri = rj + rk, is not able to link thesignature to its predeessor or gain other useful knowledge against the seurityrequirements. Unless of ourse he is able to solve at least the CDH problem.This means that, probably there is no harm in using related oe�ients in theform of ∏n

i=1 r
ei
i = 1 or in the form ∑n

i=1 αiri for n ≤ ℓ, as long as two oe�-ients are not related to eah other as αri = βrj. This impliates that a shortersignature is probably also su�ient.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 12918.3. The asymmetri setting. As noted in the beginning of this setionmost of the results ahieved above are not valid for the asymmetri settingwhere the pairing has the form
e : G1 ×G2 −→ GTfor groups G1,G2 and GT . For example in the general ase where two equaloe�ients (ri = rj) are used in the re-signing proess, we were able to link there-signed signature σ(ℓ) to its predeessor σ(ℓ−1) by heking

e
(

σ
(ℓ)
−i , σ

(ℓ−1)
−j

)
?
= e

(

σ
(ℓ−1)
−i , σ

(ℓ)
−j

)

.Naturally, this does not work in the asymmetri setting beause the elementsin the pairing above would all be from the same group G2.An idea to overome this di�ulty would be to look for an e�ient mappingbetween G1 and G2 suh that we ould transform the elements of G2 intoelements of G1 and vie versa when required. If we ould �nd suh a map, theresults from above would also be valid for the asymmetri setting. However,�nding suh a map would also imply that the deisional Di�e-Hellman (DDH)assumption does not hold in the asymmetri setting. We reall the deisionalDi�e-Hellman problem.Definition 18.3. The deisional Di�e-Hellman problem is, given P, aP, bP, cP ∈
G to deide whether c = ab. The deisional Di�e-Hellman assumption is thatthis problem is hard to solve for ertain groups G.Obviously, in a pairing friendly group G with the symmetri setting this as-sumption does not hold sine one an easily hek

e(aP, bP )
?
= e(cP, P ).As mentioned above, if an e�ient map betweenG1 andG2 was found the DDHassumption would also not hold in the asymmetri setting. However, the DDHassumption is believed to be hard on ordinary pairing friendly ellipti urvesin the asymmetri setting beause no e�ient maps seem to exists between G1and G2 Freeman (2010). Therefore it seems that in the asymmetri setting theknowledge of the oe�ient relations gives an attaker even less informationthan in the symmetri setting.



130 T. Jonas Özgan 19. ConlusionConluding the results in this hapter, it seems that this type of onstrutionof a multi-use uni-diretional proxy re-signature does not allow muh tweakingwhen it omes to e�ieny. As already pointed out in the previous setions,shortening the signature seems hard to ahieve although a shorter signatureis probably su�ient for the same seurity requirements. Note that the infor-mation given to the proxy is strongly related to the unlinkability, transparenyand the private proxy properties of the signature sheme and that this infor-mation is inluded into the new signature during the translation proess. Thisinevitably will inrease the size of the signature. This also inreases the amountof randomness whih is used to blind out the elements for ahieving the unlink-ability. This means that the amount of random oe�ients is strongly relatedto the translation proess of the signature.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 131Part VAppliationsIn this setion we will try to point out the possible appliations of proxyre-signatures as motivated in the beginning of Part II. Although proxy re-signatures have been analyzed for their usages in e-ash systems by the �pair-ings and advanes in ryptology for e-ash� PACE-Projet (2008), the mostpromising appliation of proxy re-signatures was proposed for an interoperabledigital rights management(DRM) arhiteture in Taban, Cárdenas & Gligor(2006). After disussing this proposal in detail, we will shortly onsider someother usages of proxy re-signatures, as proposed in Ateniese & Hohenberger(2005) and Chow & Phan (2008).20. Torwards an Interoperable Digital RightsManagement SystemThe inreasing availability of broadband internet onnetions, and the largevariety of digital media suh as musi and video �les, e-books and other digitalontent has made trading these items through DRM ontent providers a verylurative business. The reent suess stories like Apple's iTunes, mark theeonomi importane of online shopping for digital ontent. The popularity ofsmart phones, portable multimedia players, the next generation gaming on-soles serving as media enters and the emerging market of home entertainmentindustry indiate that this business will grow even further in the next years.However, the lak of interoperability is a major fator for users to omplain,sine they annot use the digital ontent on the devie of their hoie. In asurvey arried out by INDICARE (2005), users polled that they were willing topay a higher prie for more usage rights and devie interoperability. The sur-vey onluded that �it ertainly pays for digital musi providers to o�er �exibleusage rights, sharing features, and to enable the usage of digital musi on var-ious devies�. Consequently this lak of interoperability does not only onernend users but also digital ontent providers, sine it slows down the growth ofthe industry and gives reasons for irumventing DRM mehanisms. Althoughthere have been similar approahes to DRM interoperability as in Koenen et al.(2004) and Kravitz & Messerges (2005), the most satisfying approah is the oneof Taban et al. (2006), whih we analyze now.



132 T. Jonas Özgan20.1. Proposed Arhiteture. The arhiteture in the proposal onsistsof the ommonly aepted model for the home networks onsisting of
◦ Content providers (CP) who provide digital ontent to onsumersproteted by their own DRM mehanisms.
◦ Consumer eletronis (CE) operators who provide eletroni de-vies to users and guarantee the DRM apability and the soundness oftheir devies against manipulations, for example with a trusted platformmodule (T.C.G. 2008).
◦ Liensing organizations who ertify and manage ompliant devies.These organizations also manage revoation lists of ompromised or ir-umvented devies.
◦ Domain interoperability manager (DIM) operators who manufa-ture and sell devies that allow interoperability between di�erent ontentproviders.
◦ Home network onsists of one single domain where onsumers want touse the digital ontent they have purhased on di�erent devies.Consider Figure 20.1, the interoperability problem deals with two di�erentdevies DA and DB, for ontent providers PA and PB respetively. The domaininteroperability manager (DIM) transfers the digital ontent available for DAby provider PA into the one of PB used by DB.20.2. Interoperability Framework. For the entities de�ned above we nowexplain their roles and the trust relationships between them. This model alsoserves as a guarantee for all partiipants when a new party joins the system.
◦ Liensing Organizations at like a erti�ate authorities with wellknown publi keys. The liensing organizations ertify the CE and theDIM operators and keep lists of ompromised and irumvented devies.
◦ CE operators erti�ed by the liensing organization are bound to man-ufature and sell only ompliant devies. These devies store the erti�-ates for the CE issued by the liensing organization. Suh a erti�ateauthorizes the publi key PKDA

of the devie DA as well as the publikey PKA of the ontent provider A.
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Figure 20.1: Interoperable DRM System
◦ Content Providers deliver digital ontent to authentiated devies afterensuring that the devies reeiving digital ontent are not ompromised orrevoked by the liensing organizations. At the end of a delivery throughseure ommuniation hannels a devie DA stores the enrypted on-tent ({M}CEK , L = {CEK,R}PKDA

, σPKA

), where L is the lienseontaining the ontent enryption key CEK and the rights R assoiatedwith the ontent M enrypted with PKDA
the publi key of devie DA,and as well as the signature σPKA

signed by DRM ontent provider A onthe liense L veri�able with the publi key PKA of the ontent provider
A.
◦ Domain Interoperability Manager (DIM) is the heart piee of theinteroperability framework. It stores the re-enryption key REAB andthe re-signature key RSAB for translation between DRM providers A and
B. It also stores translation poliies on whih the DRM operators have



134 T. Jonas Özganagreed before. These poliies an ontain how many times a �le an betranslated, how many devies should be aepted, et. The assumption isthat the DIM has at least periodial internet onnetivity whih providesit with the neessary tools and updates for translating between variousDRM providers and their devies. Besides these funtions the DIM analso provide the user with the neessary information of his rights on di�er-ent ontent and devies. It an inform the users of their options regardingthe purhased digital ontent.20.3. Cryptographi Tools. The two main tools used to ahieve this pro-posed framework are proxy re-enryption (Part I) and proxy re-signatures. Asmentioned before, a proxy re-enryption sheme allows a semi trusted proxyto translate a iphertext CPKA
omputed under the publi key PKA of Aylininto a iphertext CPKB

that an only be derypted with the seret key SKB ofBoris. On the other hand a proxy re-signature sheme allows a semi trustedproxy to translate a signature σA valid for the publi key PKA of Aylin intoa signature σB on the same message valid for the publi key PKB of Boris.As mentioned above a devie DA of the ontent provider A stores a digitalontent {M}CEK , a liense L = {CEK,R}PKDA
enrypted with the publi key

PKDA
of devie DA, a signature σPKA

on {CEK,R} signed by the ontentprovider A and as well as the publi key PKA of the ontent provider A. Toaess the ontent the devie DA �rst veri�es the liense L with the publikey PKA, then derypts the liense L with its seret key SKDA
to obtain theontent enryption key CEK whih is used to aess the digital ontent M .Usually its safe to assume that CEK is used with a symmetri enryptionalgorithm beause of it is e�ieny. Note that we also assume that the devieannot be ompromised or at least it will be revoked when it is ompromised.20.4. Proposed Protools. In this framework the DIM ats as a semitrusted proxy whih by assumption already has the re-enryption and re-signature keys REAB and RSAB, respetively. As mentioned before this anbe ahieved with (at least) periodial internet onnetivity. Based on the trustand DRM realizations of the ontent providers, two di�erent protools are pro-posed.20.4.1. Protool 1. This protool minimizes the providers' trust in the DIMby disallowing him the aess to the unenrypted ontentM . The disadvantageof this is that the exporting devieDA and the importing devieDB must rendersimilar DRM formats. This means that the di�erent DRM systems must usesimilar enryption and signature algorithms as well as similar rights expression



A Multi-use Uni-diretional Proxy Re-Signature Sheme 135languages. Nonetheless this protool an be used for for di�erent devies ofthe same ontent provider or for multi devies whih support more than oneproviders DRM mehanisms.
Device DA Device DB

{M}CEK {M}CEK

L′ = {CEK,R}PKDB
L = {CEK,R}PKDA

σPKA
({CEK,R}) σPKB

({CEK,R})

DIM

ReEnc(REAB, {CEK,R}PKDA
)

ReSign(RSAB, σPKA
)

Figure 20.2: Protool 1Consider Figure 20.2, the DIM will �rst re-enrypt the liense L = {CEK,R}PKDAwhih an be derypted using the seret key SKDA
of devie DA to L′ =

{CEK,R}PKDB
whih later an be derypted with the seret key SKDB

ofdevie DB. The DIM then will re-sign the signature σPKA
to σPKB

on thesame unenrypted liense {CEK,R} whih is now veri�able with the publikey PKB of the ontent provider B. Note that the DIM annot verify thesignature of the unenrypted liense sine it has only aess to the enryptedontent {M}CEK and the enrypted liense {CEK,R}PKDA
.20.4.2. Protool 2. This protool allows interoperability of ontent providerswith di�erent DRM mehanisms. Spei�ally this protool supports diversityin ontent formats, right expression languages and enryption algorithms. Theonly assumption is that the exporting and importing devies support the samesignature sheme. In this protool the exporting devie DA and the DIM agreeon a session key k, to avoid the dislosure of the seret key SKDA

of devie
DA. Devie DA then derypts L and enrypts it again with the session key k.Then the DIM does the following:1. Reeive ({MA}CEKA

, L = {CEKA, RA}k, σPKA

) and δPKA
, where MA



136 T. Jonas Özganis the digital ontent enoded with the format of the ontent provider
A, CEKA is the ontent enryption key provided by A, RA the rightsexpression language of A, σPKA

the signature of A on (CEKA, RA) and
δPKA

is a signature of A on (IDMA
, IDRA

) the identi�ers of the digitalontent and the assoiated rights.2. The DIM �rst derypts L = {CEKA, RA}k to obtain CEKA and RA,and obtains MA by derypting {MA}CEKA
with CEKA.3. Then the DIM transodes MA into the formatMB of the ontent provider

B and translates RA into the rights expression language RB of provider
B.4. After generating a new ontent enryption key CEKB the DIM enrypts
MB with the symmetri enryption algorithm of provider B and obtains
{MB}CEKB

. Now the DIM alulates a new liense L′ = {CEKB, RB}PKDBby enrypting it with the publi key PKDB
of devie DB.5. The DIM now signs {CEKB, RB} by using its own seret key SKDIMwith a erti�ate cert issued by the ontent provider B that erti�es thepubli key PKDIM and obtains σPKB

.6. Finally the DIM re-signs the signature δPKA
using the the re-signaturekey RAB and gets δPKB

. This is signature is used to assure that thetransferred ontent is authenti and original.Now the importing devie B reeives {MB}CEKB
, L = {CEKB, RB}PKDB

,
σPKB

, δPKB
whih is a valid ontent for the DRM provider B with the orretenoding of the �le M and the rights expression language RB of B. In thisprotool the transoding and the translation proess an be very time onsum-ing espeially for lager �les. Also, as mentioned in the beginning, this proessrequires a greater amount of trust in the DIM from ontent providers beausethe DIM has aess to the unenrypted ontent M .20.5. Seurity. Traditionally there are three types of attaks for DRM sys-tems. These are attaks against:1. the DRM protools,2. the lient devies, ie. their seure storage,3. and the rendering appliation.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 137The purpose of these attaks is to obtain the unenrypted digital ontent. Inan attak against the DRM protool, the attaker tries to exploit a weaknessin the design or implementation of the protool. In an attak against the lientdevies, the attaker tries to orrupt the devie suh that he an get aess tothe raw ontent. In an attak against the rendering appliation, the attakertries to obtain the unenrypted ontent while rendering it. Beyond this in aninteroperable DRM arhiteture the authors de�ne three new attaks. Theseare:1. the ross-ompliany of devies,2. spliing of ontent with an illegitimate liense,3. and leakage of ontent or ontent enryption keys on the migration path.The most important onern for interoperability is that the attakers will dis-over vulnerabilities of ertain implementations for ompromising devies. Toobviate this, providers need to assure that all devies are up to date and om-pliant. The reasonable assumption is that the home network has at least peri-odial internet onnetivity suh that ontent providers an hek if a devie isup to date before delivering digital ontent. This is ompliated sine the DIMand the importing devies also need to be up to date and the ontent transferbetween devies an also happen o� line.In the seond threat senario the onern is that an attaker an obtain aliense from a possibly orrupted devie and modi�es the liense aordinglyor produes another one to get aess to the raw ontent.The third threat senario is that an eavesdropper an learn seret informa-tion from the interoperability protool itself. Furthermore a orrupted deviean also be used to extrat seret information from ompliant devies.20.5.1. Seurity of protool 1. As mentioned above this protool allowsminimal trust to the DIM. The DIM is used as a semi trusted proxy whotranslates the signatures and the iphertext. Thus, if an attaker ompromisesthe DIM the best he an do is to extrat the re-signature and re-enryptionkeys whih don't give him any further advantage. Sine the DIM does not haveaess to the unproteted ontent, the attaker does not gain anything duringthe translation proess. Therefore the only way to attak the system is to breakthe underlying ryptographi assumptions.20.5.2. Seurity of protool 2. Any attaker orrupting the DIM annotgain any information on the system serets beause the DIM does neither store



138 T. Jonas Özganthe seret keys of ontent providers nor of devies. Furthermore to preventattakers from simply generating their own re-signature and re-enryption keys,the DIM is validated through an initial registration with the various ontentproviders.The biggest onern in protool 2 is the fat that the DIM has aess tounproteted ontent, either diretly when derypting the ontent or indiretlythrough the deryption of the liense. Therefore the ontent providers haveto make sure that the DIM is working on trusted omputing platform (T.C.G.2008) to ensure that the translated ontent is not leaked during the wholetranslation proess.For further onsiderations about seurity, ideas about attestation of om-pliant devies, attak senarios and a more detailed insight of this proposal werefer to the original publiation Taban et al. (2006).21. Masking the Internal Struture of a CompanyReall one of the motivations in the beginning of Part II, a ompany with di�er-ent working groups eah mandated by its own supervisor. When a (sub)projetis �nished the supervisor signs it with his own private key. Then the signatureof the supervisor is translated (via a proxy) into the signature of the ompany.For example, an automobile ompany does not manufature all the parts oftheir ars, more likely the ompany has its own ontrators (other ompanies)whih are speialized in manufaturing spei� parts. The manufatured partsare sent to the ompany's di�erent divisions like fabriation, servie, spare partssales, et. The parts in possession of these di�erent divisions whih are possiblydistributed all over the world must all have a valid signature of the ar om-pany itself. Here we an safely assume that modern day logistis in this saleuses RFID hips to deploy signatures. However these hips usually annot bere-programmed and have limited storage spae. This rules out the trivial solu-tions mentioned in Part II. Besides that, the ar ompany ould also delegateits signing rights to its di�erent branhes, however this would also inrease thehane of misuse. In addition to this, due ompetitive reasons the ar om-pany is interested in keeping its supply partners on�dential. Thus, a proxyre-signature sheme an be very useful in this kind of global and distributedsetting. The di�erent divisions, after reeiving and verifying the quality of themanufatured parts, translate the signatures of the manufaturers into validsignatures of the ar ompany. The di�erent divisions at as a proxy betweenthe part manufaturers and the ar ompany.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 13922. E-Passport Systems and GraphsProxy re-signature shemes an also be used in immigration and ustoms ser-vies for travelers with mahine readable travel douments like e-passports.The signature within the e-passport an be transformed while the travelerpasses through di�erent hekpoints. This proess ensures that the travelergoes through all the required hekpoints while only one signature is keptwithin the passport. In general, proxy re-signatures an be used to ensurethat a ertain path in a graph is taken. This an be ahieved by simply pro-viding eah node in the graph, exept the �rst one, with the re-signature keysbut no signing keys, suh that eah node is only able to translate signaturesof adjaent nodes. Consider Figure 22.1, the signer A generates the signature
σA(m) for the message m, along the path the intermediate nodes at as proxiesand transform the signature into its �nal version σD(m) whih is then veri�edby V .

A B C
D VσA

(m
)

σ
C (m

)

σB(m)

σD
(m

)Figure 22.1: An authentiated pathWe note that even if one or more nodes are ompromised they still annotprodue signatures of their own, thus message injetion is not possible at anytime. Sine only one signature needs to travel the path, there is no need for a-umulating signatures and publi keys along the path. Reall the unlinkabilityproperty of the signature sheme, a full path an be kept seret sine eah nodeon the path has only the information of the preeding node. This setting anbe very useful in networks where the trustworthiness of all nodes is not given.23. Certi�ate ManagementThe erti�ation of publi keys is usually implemented as a signature from theerti�ate authority (CA) on the publi key belonging to a spei� identity.



140 T. Jonas ÖzganNaturally the erti�ation of new publi keys is a time onsuming and expensiveproess. These erti�ates are often deployed in networks to allow transationsbetween users. Now onsider two di�erent networks where the users only trusttheir erti�ation authority due to seurity reasons. When two users Aylin andBoris in di�erent networks want to ommuniate with eah other, they will �rstexhange their erti�ed publi keys. However, by assumption Aylin only trusts
CA1 and Boris only CA2 suh that they annot verify the identities of eahother. In this setting proxy re-signatures ould be very useful sine the di�erenterti�ation authorities ould set up proxies to allow the translation of theirsignatures. Generalizing this, proxy re-signatures an be used for transparentross-erti�ation between di�erent erti�ate authorities suh that erti�atesof one authority an be onverted into erti�ates of others.



A Multi-use Uni-diretional Proxy Re-Signature Sheme 141Part VIConlusionThe researh �eld of digital signatures is diverse and very fasinating. Di�erentrequirements and appliation areas, led to various types of digital signaturessome of whih we disussed at the end of Part I. Speially when it omes topratial appliations in digital rights and e-ash systems, proxy re-signaturesan be very useful beause of their translation property. In this ontext weintrodued and analyzed the multi-use unidiretional proxy re-signature pro-posed by Libert & Vergnaud, in detail. We �rst introdued the sheme step bystep to provide a omprehensive understanding of the signing and translationproess before writing down the formal notations.In Part III, we reviewed the ryptographi assumptions, the adversarymodel and the two di�erent simulation environments. We also introdued anew seurity de�nition whih overomes the outlined shortomings of originalseurity de�nition from Ateniese & Hohenberger (2005). We observed thatour new seurity de�nition does not only inlude all the requirements listedin Libert & Vergnaud (2008a) but also provides the neessary �exibility to beadapted and used for di�erent requirements. This brought us to the onlusionthat our new seurity de�nition an be used in the future to prove the seurityof di�erent proxy re-signature shemes. We �nished this hapter with a de-tailed proof of seurity in the random orale model and in the standard modelafter a slight modi�ation of the signature sheme.In Part IV, we have seen that the amount of randomness used in eah trans-lation step, is neessary to preserve the unlinkability property of the signature.We also introdued a new problem lass, the hain shortening problem, whihwe used to analyze the length of the signature. We observed that if shorteningthe signature was somehow possible this would almost mean solving the CDH.Thus, we onluded that if the proxy has to insert some information (even asingle bit) into the signature, we would inevitably end up with signature whihgrows with the number of delegations.In Part V we pointed out some usages of proxy re-signatures, speially theproposed interoperable DRM arhiteture from Taban et al. (2006). Despitethese pratial appliations of proxy re-signatures, disussed in that hapter, itis still desirable to have a multi-use proxy re-signature sheme whih ombinesthe identities of the ontent provider and the user purhasing it. In suh asheme, when Aylin purhases a �le m from the ontent provider Peter, aombined signature σPA of P and Aylin should authentiate the doument m.



142 T. Jonas ÖzganIf now Aylin wants to give away the �le to Boris, the translation propertyshould allow the translation of σPA into σPB a ombined signature of Borisand Peter. Ideally of ourse this should happen without the interation of theontent provider Peter. This is beause, as in a �ea market example, onlyAylin and Boris have interat for trading. In the researh area of ontentprotetion and e-ash systems onstruting suh a signature ould be veryinnovative and useful.
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