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Abstract. In this paper we present a holistic methodology for automated evalua-
tion of instruction set extensions. We propose a two-stage framework for analyzing
the resource efficiency of extending an instruction set. With emphasis to elliptic curve
cryptography, several instruction set extensions are implemented to a 32 bit RISC mi-
croprocessor and synthesized in a state of the art 65 nm standard cell CMOS technol-
ogy. The achieved performance improvement is analyzed in respect to the hardware
costs in terms of chip area and power consumption. In order to accelerate algorithms
for elliptic curve cryptography, we focus on the optimization of finite field multiplica-
tion. Our approach is based on the Karatsuba algorithm over binary fields GF (2m).

Keywords: instruction set extension, elliptic curve cryptography, binary field mul-
tiplication, resource efficiency

1 Introduction

Finite field arithmetic is a very important issue in public key cryptography and
especially in elliptic curve cryptography (ECC). Among other operations in finite
field arithmetic, multiplication is the most important one. The reason for this is,
because multiplication is most resource consuming operation and is required very
often in cryptographic algorithms. The finite fields that are used in cryptography are
generally either prime finite fields or binary fields, which are of the form F2n and can
be represented as vector spaces over F2 using several possible bases. The cost of finite
field arithmetic depends on the selected basis. There are two popular bases, namely
normal and polynomial bases. On the one hand, normal basis representation has the
advantage that squaring can be done using only a circular shift. On the other hand,
this representation has a relatively expensive multiplication cost and hence is used
for applications, which need more squaring operations than multiplications, e.g. ,
exponentiation in finite fields. Although squaring is slightly more expensive than
in normal basis, in elliptic curve cryptography generally polynomial bases are used,
because multiplication is much easier than in other representations. Multiplication
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in polynomial basis consists of a polynomial multiplication followed by a modular
reduction. The latter can be done very efficiently, when using a sparse irreducible
polynomial that generates the finite field. Therefore the cost of multiplication in
finite field arithmetic is dominated by the cost of the polynomial multiplication.

The performance of algorithms for ECC can be significantly increased by modi-
fying the hardware architecture that executes these algorithms. However, this per-
formance improvement can only be achieved at the expense of additional costs in
terms of chip area or power consumption, respectively. We define the trade-off be-
tween performance and costs as resource efficiency. In this paper we analyze different
modifications of a 32 bit RISC processor, the N-Core [1], in order to accelerate the
performance of elliptic curve cryptography on binary finite fields. More precisely,
we evaluate instruction set extensions in respect to their resource efficiency. For this
purpose, we present a two-stage framework with automated workflow for instruction
set extension (ISE).

Our analysis is based on the multiplication of polynomials of degree 233 over
F2. Among others, the finite field F2233 has been suggested for ECC [2] by the Na-
tional Institute of Standards and Technology (NIST). There are several proposals
in the literature for multiplication of two polynomials (see [3] or [4] for a compre-
hensive list). Each solution is appropriate for some range of polynomial degrees
and is generally selected according to the degree and implementation platform. The
most popular method to multiply polynomials is the classical method, whose cost is
quadratic in the degree of polynomials involved. Depending on the polynomial de-
grees, other methods are asymptotically less expensive than the classical algorithm.
The point where an algorithm gets better than an asymptotically more expensive
method is called crossover point. We choose the Karatsuba method, which is appro-
priate for our polynomial degree n = 232 and has a cost of O(nlog23). There also
exists methods, e.g. , the Cantor or FFT method, which have asymptotically lower
costs than the Karatsuba method, but their crossover points are so high that they
are only suitable for very large polynomial degrees. Up to our knowledge, this is
the first work that studies the Karatsuba method in respect to resource efficiency
of hardware modifications based on instruction set extensions.

The paper is organized as follows. Section 1.1 is devoted to the discussion of
different works in the literature, which concern ISE for finite field arithmetic and
cryptography. In Section 2 we review polynomial multiplication methods and their
implementation aspects. Section 3 describes the hardware architecture of the N-Core
processor and introduces our automated workflow for ISE. Implementation issues of
the instructions set extensions and analysis of their resource efficiency is presented
in Section 4. Finally, Section 5 concludes the paper.



1.1 Related Work

There are several papers about instruction set extensions and their applications
in elliptic curve cryptography over binary finite fields. The authors of [5] con-
sider the integration of bit-level and word-level multiply and shift methods into
a SPARC V2 core to increase its performance for multiplication in F2191 . In [6]
a dual field adder (DFA) module is implemented into a 16-bit RISC architecture
to increase the performance of arithmetic in binary fields. In this way, the authors
created a unifying multiplier for both numbers and binary polynomials. In [7] a mul-
tiply and accumulate (MAC) structure is integrated into a MIPS32 core. MACs have
been already used in DSP processors to increase the performance of finite impulse
response (FIR) filters and the authors have used the similarities between polynomial
multiplications and convolution methods to make use of these structures. Finally, [8]
discusses the performance gain achieved by integrating a polynomial multiplication
unit into the data path of an 8-bit microcontroller, which is equipped with a re-
configurable module. All of the above methods use application-specific information
about classical polynomial multiplication methods and find suitable instructions,
mostly the so-called MULGF2, and measure the achieved improvement in execution
time. In [9] also the automatically generation of instruction set extension is consid-
ered. In our work, we consider the increase in performance of the Karatsuba method
by means of integrating both, application-specific and automatically generated in-
struction set extensions, to the processor and analyze the resource efficiency. In this
context, resource efficiency considers not only the execution time in terms of clock
cycles, but also the hardware costs in terms of chip area and power consumption.
Furthermore, the impact of code size reduction through instruction set extension is
evaluated.

2 Polynomial Arithmetic

Having a compact representation for data structures will not only help in saving
memory, but also can reduce operation time, since on most processors accessing
the memory is one of the most time consuming operations. On w-bit processors,
polynomials over F2 are saved in a 2w-ary representation, i.e. ,

a(x) =
n−1∑

i=0

aix
i =

m∑

j=0

Ajx
wj =

m∑

j=0

Xj , (1)

where m = dn/de, X = xw, and Aj , for 0 ≤ j < m, are polynomials of degree w − 1
over F2.

Since we use a 32 bit RISC processor, in our case we choose w = 32. To multiply
two w-bit polynomials, there are several algorithm, e.g. , the shift-and-xor method,



known in literature [10]. However, we use the optimized algorithm from the number
theory library (NTL) for the 32 bit multiplication at word-level (see [11]). In the
32 bit method that is shown in Algorithm 1 the size of the lookup-table A can
be adjusted according to the number of registers or cache. In addition, the loop
containing Lines 8 to 18 has been unrolled for efficiency reasons.

Algorithm 1 word-level multiplication
Input: Two 32 bit words a and b, containing input polynomials of degree at most 31
Output: The 64 bit product c

1: A[0]← 0
2: A[1]← a

3: A[2]← a� 1
4: A[3]← A[2]⊕ a

5: A[4]← A[2]� 1
6: A[5]← A[4]⊕ a

7: A[6]← A[4]⊕ A[2]
8: A[7]← A[6]⊕ a . The array A contains p(x)a for p(x) ∈ F2[x] from 0 to x2 + x + 1
9: c← A[b & 0x0007]

10: b← b� 3
11: c← c⊕ A[b & 0x0007]
12: b← b� 3
13: c← c⊕ A[b & 0x0007]
14: b← b� 3
15: c← c⊕ A[b & 0x0007]
16: b← b� 3
17: c← c⊕ A[b & 0x0007]
18: b← b� 3
19: c← c⊕ A[b]

As you will see in Section 4, Algorithm 1 turned out to be very efficient on our
processor for word-level multiplication of binary finite fields. The field multiplica-
tion in F2233 is realized by extending Algorithm 1 using the Karatsuba method. This
means, we multiply two polynomials A(X) =

∑m−1
j=0 AjX

j and B(X) =
∑m−1

j=0 BjX
j

in which Aj and Bj are polynomials of degree at most 31. Originally, the Karatsuba
method was introduced for multiplication of long integers by [12]. The three coeffi-
cients of the product (A1X +A0)(B1x+B0) = A1B1X

2 +(A1B0 +A0B1)X +A0B0

are “classically” computed with 4 multiplications and 1 addition from the four input
coefficients A1, A0, B1, and B0. The Karatsuba method uses only 3 multiplications
and 4 additions by applying the following formula:

(A1X + A0)(B1X + B0) =

A1B1X
2 + ((A1 + A0)(B1 + B0) − A1B1 − A0B0)x + A0B0. (2)



Since in binary field arithmetics a multiplication needs much more resources
than an addition, which equals a XOR operation, the Karatsuba method reduces
the overall complexity. In our case, where the polynomial degree m is large, each
of the polynomials A0, A1, B0, and B1 can be chosen as polynomials of degree
dm/2e. This process can be repeated until each of the coefficients is a polynomial of
degree 31. Recursive application of the Karatsuba method decreases the number of
operations from O(m2) of the classical method to O(mlog2 3).

3 Processor Architecture and ISE Framework

The N-Core represents a 32 bit RISC microprocessor and is specified at register
transfer level (RTL) in the hardware description language VHDL [1]. The typical
load-store architecture of the processor (cf. Fig. 1) provides a three-stage pipeline
that comprises the operations fetch, decode and execute. The N-Core features two
register banks containing 16 × 32 bit registers each. The additional register bank
allows the N-Core immediate thread switching without storing the register content,
e.g. , for fast interrupt handling. In contrast to the 32 bit wide data path, all in-
struction words of the processor element have a fix length of 16 bit. Therefore, a
high code density is reached and instruction memory can be reduced. Not only effi-
cient memory utilization, but also a small size in terms of chip area and low power
consumption (see Section 4) make the N-Core particularly suitable for embedded
systems with limited resources, e.g. , smartcards.

ALU

bus

controller
PC

address

calculation

decoder
priority

decoder

FETCH

EXECUTE

DECODE

address

A B

X Y

result

imm./const.
address offsets

opcodes

PC
reg. addresses
address offsetsopcodes

reg.

I/O

access
error

IRQs

Fig. 1. N-Core architecture featuring a three-stage pipeline.



Although the N-Core uses 16 bit instruction words, there are still 11 % of free
opcode space left. This allows us to implement additional instructions in order to
accelerate a software task. We propose a two-stage workflow for instruction set
extension as depicted in Fig. 2.

The first stage is called compiler-related workflow. At this stage, we use a formal
model of the N-Core processor, which is described in the Unified Processor Specifica-
tion Language (UPSLA). Based on this formal processor specification a correspond-
ing ANSI-C compiler as well as a cycle accurate simulator can be automatically
generated [13]. Furthermore, the simulator features powerful profiling capabilities
that allow a detailed analysis of instruction distribution and memory access. In this
way, a software application can easily be analyzed in respect to frequently executed
instruction sequences. After the software profiling, selected instruction sequences
can be combined to so called super instructions. Instead of executing an instruction
sequence of two (instruction pair) or more instructions (instruction block), the super
instruction completes the same operation in less clock cycles. In this way, not only
instruction memory space is saved, but also the software application is accelerated.
After the new super instruction is specified in the formal model of the processor, an
adapted compiler and simulator can be generated on the fly. Recompiling the ap-
plication program automatically applies the new super instructions. To analyze the
performance improvement in terms of execution cycles, the software can be again
simulated and profiled, respectively.

C source code

Compiler 
Generator

Simulator 
Generator

Compiler

Simulator

formal model 
of processor

new super instructions

memory 
image

gate-level 
synthesis

power estimation

gate-level 
simulation

VHDL model 
of processor

switching activities

VHDL 
refinement

compiler-related workflow hardware-related workflow

RTL 
simulation

Fig. 2. Automated two-stage framework of instruction set extension.



After the instruction set has been optimized, we move to the hardware-related
workflow in order to analyze the chip area and power consumption. Therefore, we
have to implement the specified super instructions at register transfer level of our
VHDL processor model. The compiled memory image is reused for RTL simulation
to verify the functionality of the adapted processor. Chip area and power estimation
are evaluated on gate-level with back annotation of switching activities, respectively.

4 Implementation and Analysis

Since the multiplication represents the most time consuming part of ECC methods,
the evaluation of our ISE framework is based on the finite field multiplication in
binary fields (cf. Section 2). Therefore, we start our analysis with a software imple-
mentation of Algorithm 1 that multiplies two 32 bit binary field polynomials. By
applying our ISE-framework (cf. Fig. 2) we easily obtain detailed profiling informa-
tion of the multiplication algorithm. After analyzing the distribution of instruction
pairs, we choose to implement the new super instructions LSRIxor, LSLIxor and
LSRIandadd. Due to the nature of Algorithm 1, the combination of shifting (Logical
Shift Right/Left Immediate) and XOR operation is quite obvious for super instruc-
tions. The operation LSRIandadd combines even three regular instructions to one
super instruction. Hence, the following operations are executed in one instead of
three clock cycles: The content of register X is shifted to the right by the specified
immediate value. Afterwards, a logical AND operation with the immediate value 28
is performed. Finally, the value of the stack pointer is added (ADD) and the re-
sult is written back to register X. This super instruction is frequently used in the
multiplication algorithm for calculating address offsets. In the following, the N-Core
processor that contains the three new super instructions is referred to as ISE 1.

Whereas ISE 1 only combines existing instructions to super instructions, the next
variant of instruction set extension (referred to as ISE 1 ) introduces a new instruc-
tion, called MULGF2. This instruction multiplies two 32 bit binary field polynomials
by using existing functions of the arithmetic logical unit (ALU). Multiplication with
ISE 2 is realized bit by bit utilizing the shift unit and xor function of the ALU and
can be compared to MULGFS instruction in [5].

The third type of instruction set extension (ISE 3) also supports the MULGF2

instruction, but a dedicated hardware unit for the binary field multiplication is im-
plemented instead of using existing ALU functions for the multiplication. Therefore,
not only the instruction decoder is modified, but also the ALU has to be extended.

Table 1 shows the synthesis results for all three versions of instruction set ex-
tensions. The synthesis results are constraint for a clock frequency of 200 MHz and
based on a 65 nm standard cell CMOS technology at typical operating conditions.



Table 1. Absolute values and relative increase of chip area based on 65 nm standard cell technology.

absolute relative absolute relative absolute relative
[µm²] [%] [µm²] [%] [µm²] [%]

N-Core 57,189.96        0.00 3502.80 0.00 16,439.76  0.00
N-Core (ISE 1) 57,518.64        0.57 3507.84 0.14 16,137.01  -1.88
N-Core (ISE 2) 59,289.84  3.54 3520.08 0.49 18,260.64  9.97
N-Core (ISE 3) 64,734.48  11.65 3394.80 -3.18 22,924.08  28.29

arithmetic logical unittotal processor area instruction decoder

Since using a top down design flow, the critical path may change due to our hard-
ware modifications. As a result, the chip area of some components can also decrease,
which is the case for ALU of ISE 1 and for the instruction decoder of ISE 3. Because
already existing instructions are combined for ISE 1, the chip area increases slightly
about 0.6 % in total. Also ISE 2 requires only a medium increase (3.5 %) of chip
size, which corresponds to chip costs, respectively. Therefore, the worst impact on
chip cost is observed by ISE 3, which is due to the dedicated hardware multiplier
inside the ALU.

Figure 3 depicts the power consumption of the main N-Core components for
a word-level multiplication at 200 MHz clock frequency. Again, ISE 3 requires the
most resources and consumes nearly 20 % more power than the original N-Core,
which is due to the high switching activity of the dedicated hardware multiplier. In
contrast, ISE 2 even saves power compared to all other implementations, because
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Fig. 3. Power consumption of main N-Core components for word-level multiplication at 200 MHz.



Table 2. Execution time in terms of clock cycles and code size for word and field multiplication.

clock cycles code size clock cycles code size

N-Core 166 268 byte 6498 956 byte
N-Core (ISE 1) 130 196 byte 5545 880 byte
N-Core (ISE 2) 36 2 byte 2060 576 byte
N-Core (ISE 3) 2 2 byte 1169 576 byte

field multiplicationword multiplication

mainly the shift and xor unit are used, which operate very power efficient. Using
the super instructions of ISE 1 results in a slightly higher power consumption of
roughly 7 % compared to the original N-Core.

The execution time in terms of clock cycles as well as the code size is shown in
Table 2. A word-level multiplication using Algorithm 1 takes 166 clock cycles at the
unmodified N-Core and requires 268 byte of instruction memory. The field multipli-
cation over finite binary field F2233 using the Karatsuba method consumes 6498 clock
cycles and 956 byte of memory, respectively. With little effort of instruction combin-
ing (ISE 1) a speedup of 1.28 can be achieved for word-level multiplication and a
speedup of 1.17 for the field multiplication, respectively. For calculating the word-
level product bit by bit using ISE 2, a speedup of 4.61 is achieved. The Karatsuba
method for field multiplication can be accelerated by factor 3.15 by applying ISE 2.
The dedicated hardware multiplier requires only 2 clock cycles for a word multipli-
cation, which equals a speedup of 83.0 or 5.56 for field multiplication, respectively.
Because ISE 2 and ISE 3 use the MULGF2 instruction, the code size for word-level
multiplication equals 2 byte. As a result, nearly 40 % of instruction memory can be
saved for the field multiplication algorithm, when applying ISE 2 or ISE 3.

70.140

0.155

75.705

1.368

263.110

8.970

299.883

10.707

0 1 10 100 1000

field 
multiplication

word 
multiplication

Energy [nJ]

N-Core

N-Core (ISE 1)

N-Core (ISE 2)

N-Core (ISE 3)

Fig. 4. Energy consumption for word and field multiplication at 200 MHz clock frequency.



Figure 4 shows the energy consumption for word-level and binary field multi-
plication at 200 MHz clock frequency. Whereas ISE 1 saves approximately 15 % of
energy when calculating either a word-level multiplication or binary field multiplica-
tion, the impact of ISE 2 and ISE 3 is more significant. Because ISE 3 comprises the
binary field hardware multiplier, a word-level multiplication is done in 2 clock cycles
and therefore consumes only about 0,16 nJ of energy at 200 MHz clock frequency. At
word-level ISE 2 consumes almost 9 times more energy for the multiplication, which
is still only 13 % of the energy consumption of the original N-Core. In contrast, ISE 3
requires nearly the same energy as ISE 2 for a field multiplication over F2233 . This is
due to the overhead of instructions other than multiplication, which do not benefit
from the dedicated hardware multiplier.

5 Conclusion

In this paper, we have analyzed different types of instruction set extension in respect
to their resource efficiency. In this context, we have considered resource efficiency
as a trade-off between performance in terms of execution time (clock cycles) and
hardware costs by means of chip area and power consumption. Furthermore, we
have proposed an two-stage framework that features an automated workflow for ISE.
Using our ISE framework, we have introduced three variants of ISE for accelerating
ECC algorithms. Thereby, we have concentrated on binary field multiplication over
F2233 . We have started with word-level multiplication of 32 bit polynomials, which
were extended to field multiplication by applying the Karatsuba method.

The analysis of combining instructions (ISE 1), introducing new instructions that
use existing function units (ISE 2) and implementing dedicated hardware for binary
field multiplication (ISE 3) supplies a detailed overview of pros and cons of different
types of instruction set extension. In respect to resource efficiency, ISE 2 provides
the best trade-off between performance improvement and hardware costs. While
the chip area increases only slightly (3.6 %), a speedup of roughly 4.6 is achieved
for word-level multiplication. By applying the Karatsuba method, ISE 2 leads to
an overall speedup of nearly 3.2 for a binary finite field multiplication over F2233 .
Furthermore, ISE 2 saves approximately 75 % of energy compared to the original
software implementation running on the N-Core.

In our future work, we will evaluate additional ISE for scalar multiplication in
binary finite fields. Especially the modular reduction and squaring operation are
promising further speedup possibilities. Moreover, we want to analyze hardware
accelerator units that are externally coupled to the processor.
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