
Diploma thesis

SmartCom

Secure SMS Encryption with
High Usability

submitted by

Torsten W. Schröder
student ID no. 1248471

Supervisors:

Prof. Dr. Joachim von zur Gathen
Dipl.-Inf. Daniel Loebenberger

Department of Computer Security
b-it - Bonn-Aachen International Center for Information Technology

University of Bonn, GERMANY

March 12, 2012

T
H

O
R

S
T

E
N

W
.S

C
H

R
Ö

D
E

R
(2

01
2)

.
Sm

ar
tC

om
—

Se
cu

re
SM

S
E

nc
ry

pt
io

n
w

ith
H

ig
h

U
sa

bi
lit

y.
D

ip
lo

m
a

th
es

is
,D

ep
ar

tm
en

to
fC

om
pu

te
rS

ec
ur

ity
,b

-i
t–

B
on

n-
A

ac
he

n
In

te
rn

at
io

na
lC

en
te

rf
or

In
fo

rm
at

io
n

Te
ch

no
lo

gy
,U

ni
ve

rs
ity

of
B

on
n,

B
on

n,
G

er
m

an
y.

T
hi

sd
oc

um
en

ti
sp

ro
vi

de
d

as
a

m
ea

ns
to

en
su

re
tim

el
y

di
ss

em
in

at
io

n
of

sc
ho

la
rl

y
an

d
te

ch
ni

ca
lw

or
k

on
a

no
n-

co
m

m
er

ci
al

ba
si

s.
C

op
yr

ig
ht

an
d

al
lr

ig
ht

s
th

er
ei

n
ar

e
m

ai
nt

ai
ne

d
by

th
e

au
th

or
s

or
by

ot
he

rc
op

yr
ig

ht
ho

ld
er

s,
no

tw
ith

st
an

di
ng

th
at

th
es

e
w

or
ks

ar
e

po
st

ed
he

re
el

ec
tr

on
ic

al
ly

.I
ti

s
un

de
rs

to
od

th
at

al
lp

er
so

ns
co

py
-

in
g

an
y

of
th

es
e

do
cu

m
en

ts
w

ill
ad

he
re

to
th

e
te

rm
s

an
d

co
ns

tr
ai

nt
s

in
vo

ke
d

by
ea

ch
co

py
ri

gh
t

ho
ld

er
,a

nd
in

pa
rt

ic
ul

ar
us

e
th

em
on

ly
fo

r
no

nc
om

m
er

ci
al

pu
r-

po
se

s.
T

he
se

w
or

ks
m

ay
no

tb
e

po
st

ed
el

se
w

he
re

w
ith

ou
tt

he
ex

pl
ic

it
w

ri
tte

n
pe

r-
m

is
si

on
of

th
e

co
py

ri
gh

th
ol

de
r.

(L
as

tu
pd

at
e

20
17

/1
1/

29
-1

8
:2

2.
)

Declaration

I, Torsten W. Schröder (student of Computer Science at the University of Bonn,
student ID no. 1248471), solemnly declare that I have written this thesis indepen-
dently, and that I have not made use of any aids other than those acknowledged
in this thesis. Neither this thesis, nor any similar work, have previously been
submitted to any examination board.

Torsten W. Schröder
Bonn, March 12, 2012

i

Übersicht

Auf Grund der hohen Popularität und Nachfrage nach Smartphones wird diese Diplo-
marbeit einen Prototyp vorstellen, der die hohe Komplexität der Kryptographie mit
einfacher Benutzbarkeit der Smartphones kombiniert. Das bekannte Android Betrieb-
ssystem, für das der Prototyp entwickelt wurde, bietet eine breite und umfangreiche
Grundlage für die Entwicklung komplexer Applikationen.
Der Prototyp zeigt eine benutzeroptimierte Methode, um verschlüsselte Nachrichten zu
senden. Während der Verschlüsselung wird eine Variante des Diffie-Hellman Schlüsse-
laustausches benutzt, die auf elliptischen Kurven beruht, um einen gemeinsamen Schlüs-
sel zu generieren. Dabei wird auf eine SSL-Verbindung zurückgegriffen, die Zugriff auf
einen Server ermöglicht, der die öffentlichen Schlüssel speichert. Im späteren Verlauf wird
zum Speichern oder Senden der Nachrichten zu anderen Benutzern die AES Verschlüs-
selung verwendet. Der Vorteil dieser Kombination ist die Sicherheit gegenüber Man-in-
the-Middle Attacken (basierend auf dem Design von SSL), gepaart mit den gründlich
erforschten Grundlagen für den asymmetrischen Schlüsselaustausch und dem geringen
zeitliche Aufwand des AES Algorithmus beim Verschlüsseln kurzer Nachrichten.
Ein anderer Aspekt der Implementierung ist die Einbettung des Programms in ein be-
nutzerfreundliche, graphische Arbeitsoberfläche, dabei verwendet die Applikation speziellen
Funktionalitäten der Smartphones und eine Verbindung zur Kontaktdatenbank.

Abstract

Due to the popularity and the great demand for smartphones, this diploma thesis is

going to introduce a prototype which establishes a connection between the complexity of

cryptography and the simple usability of smartphones. The Android operating system,

which was used, is widely known and offers a wide base for the development of complex

applications.

The prototype shows a user-friendly method to send encrypted text messages. The en-

cryption makes use of the elliptic curve Diffie-Hellman key exchange to create a common

secret by using an SSL-connection to a key server. Later, the AES encryption is used for

sending the text messages to other users and storing them in a database. The advantage

of this combination is that the high resilience and reliability against man-in-the-middle

attacks (due to the design of SSL) is paired with well-studied asymmetric primitives for

key agreement and combined with the small time complexity of the AES for encrypting

short messages.

Another aspect of implementation is the embedding of this program in a user-friendly

graphical user interface and connecting it to special services and the contact-provider of

the smartphone.

ii

Contents

Declaration i

Abstract / Übersicht ii

1 Introduction 4

2 The Android Operating System 6
2.1 Architecture of the Android-OS . 7
2.2 The Dalvik Virtual Machine . 8
2.3 The Android Sandbox Principle . 9
2.4 Android integrated systems . 10

2.4.1 The Contact Provider . 10
2.4.2 The Notification Service . 11
2.4.3 The Telephony Package . 12

2.5 The Activity Lifecycycle . 12

3 Cryptography 15
3.1 Elliptic curve cryptography . 15

3.1.1 Elliptic curves . 15
3.1.2 The Elliptic Curve Discrete Logarithm Problem 18
3.1.3 NIST curves . 18

3.2 Elliptic Curve Diffie-Hellman Key Exchange 19
3.3 The SHA-256 Algorithm . 21

3.3.1 Preparation . 21
3.3.2 The SHA-256 Message Schedule 21
3.3.3 The SHA-256 Compression Function 22

3.4 The AES-Algorithm . 23
3.4.1 Mode of operation . 24
3.4.2 Key generation . 25
3.4.3 Step: AddRoundKey . 25
3.4.4 Step: SubBytes . 26
3.4.5 Step: ShiftRows . 26
3.4.6 Step: MixColumns . 27

1

Contents

3.4.7 Decryption . 28
3.5 The Secure Socket Layer . 28

3.5.1 The SSL Architecture . 29
3.5.2 The SSL Handshake Protocol 30
3.5.3 Additional first layer protocols 32
3.5.4 The SSL Record Protocol 32

4 Design principles 34
4.1 How to create a good usability . 34
4.2 The golden ratio . 35
4.3 Keep the interface transparent . 36

4.3.1 Think about the amount of elements on the screen 36
4.3.2 Present navigation differently 37
4.3.3 Make use of established identifiers 37
4.3.4 Group elements with the same theme 37
4.3.5 Reduce distracting elements to a minimum 37

4.4 Minimize the text input . 38
4.5 Short ways for the user . 38
4.6 Take advantage of inbuilt functionality 39

4.6.1 Application menus . 39
4.6.2 TabView and ListView . 40
4.6.3 The AutoCompleteTextView 42

5 SmartCom - The Development 43
5.1 Conflict between privacy and simplicity 43
5.2 Preparation . 44
5.3 The development process . 47

5.3.1 The key exchange process 48
5.3.2 The SmartCom key server 50
5.3.3 Good usability by using specialized views 50
5.3.4 Support tools for improving the layout and usability 52

5.4 Final processes . 53
5.4.1 The login procedure . 53
5.4.2 Storing and loading data . 55
5.4.3 The key exchange . 56
5.4.4 Sending and receiving SMS 57

5.5 Challenges during the development 58

6 SmartCOM - A demonstration 60
6.1 Login . 60
6.2 Key Exchange . 61

2

Contents

6.3 Send SMS . 63
6.4 Receive SMS . 64
6.5 Last SMS . 65
6.6 History . 66

7 Conclusion / Further Work 68

Bibliography 73

Index 74

3

Chapter 1

Introduction

This diploma thesis is based on the diploma thesis of Thomas Berndt ”CryptCOM
- Insuring secure communication on arbitrary GSM phones by applying strong
cryptography” [Ber10]. The author developed a prototype for SMS encryption for
Java based mobile phones. This application offers a high level of security, but it is
complicated to use as older generations of mobile phones have limited design fea-
tures to support a good usability. Nowadays, the aspect of good usability becomes
more and more important for application development. This diploma thesis will
show a way to combine a high level of security and a good usability by using the
basic ideas of Thomas Berndt combined with the new possibilities the smartphones
offer.
Smartphones are the new generation of mobile phones. The first of these new
devices, which was produced in great numbers and started the new hype, was the
iPhone developed by Apple in 2007.
Compared to classic mobile phones, smartphones are optimized for many different
applications. Older mobile phones are optimized for voice telephony and send-
ing short messages. Apart from that, they are just able to run small java based
applications. Only a few of these mobile phones are able to run more complex
applications, but these applications are highly customized for individual phones or
manufacturers and cannot be widely used.
Smartphones offer many complex applications in a large variety of categories. To
support miscellaneous applications, a smartphone has many integrated subsys-
tems. Therefore, it can be used as a communication center for telephony, handling
SMS and MMS or as a personal information center to organize addresses, mes-
sages, personal notes and data like older mobile phones. These basic functions
were extended by the possibility to organize e-mails and making video calls.
They can also be used as multimedia center to play music, show video clips and
movies and for organizing this multimedia content. Additionally, they offer more

4

Chapter 1 Introduction

complex built in functionality for applications, for example an integrated GPS-
sensor allowing the smartphone to be used as a satellite navigation system. Many
sensors such as motion-, light- and approximation-sensors offer a lot of options for
special applications, for example a spirit level or a distance meter. During the last
years, these new electronical options became more and more popular in the game
development for smartphones; at the University of Bonn, for instance, a research
group has developed a variant of the ”Scotland Yard” game for the iPhone, which
uses the approximation sensor and the GPS for navigation and starting events
[Bon].
In order to present complex applications, the smartphones do not only make use
of their new, integrated systems but also utilize new possibilities for presentation
and user interaction, like touchscreens and high-definition displays. Additionally,
the new operating systems offer a large number of options to present information
in a clear and concise way. Two well known and frequently used design instuments
are the ListView and the TabView, see section 4.6.2.
The most important differentiating factor to classical mobile phones is the pub-
lic and well described API, enabling the designer/programmer to create new ap-
plications and to extend existing applications with more ease. Normally, every
operating-system for smartphones provides an option to include classes from es-
tablished programming languages, the Android-OS can use java libraries which
offers a wide scope for development.

5

Chapter 2

The Android Operating System

The new smartphones have many different operating systems (OS). Among these,
around 85% market share fall to three well established OS for smartphones, the
Apple iOS for iPhones (≈15%), Android (>50%) and Symbian OS (≈17%). The
Android OS is becoming increasingly popular, with its market share rapidly grow-
ing [Gar10] [Gar11].

%

1

2

3

4

5

third quarter 2010

25.5

A
nd

ro
id

36.6

Sy
m

bi
an

16.7

iO
S

12.2

O
th

er
s

%

1

2

3

4

5

third quarter 2011

52.5

A
nd

ro
id

16.9

Sy
m

bi
an

15

iO
S

15.6

O
th

er
s

Figure 2.1: Android market share following Gartner

In the summer of 2005, Google bought the Android company which specialized in

6

Chapter 2 The Android Operating System

location based applications for mobile phones. Since November 2007, the Android
OS is developed by the ”Open Handset Alliance” lead by Google. On October 21th
of 2008, the first official version of the Android OS was made available [Bor08].
Initially, Android was designed for mobile devices like the smartphones, but nowa-
days it is used in several other fields because it is easy to install on devices with
limited resources. Some producers of microprocessors have developed their own
variant of the Android OS optimized for their processors, so that many embedded
systems are running with the Android OS.

2.1 Architecture of the Android-OS

The content of this sections follows chaper one, section two of the book ”Android
2 - Grundlagen der Programmierung” [BP10].

Application Layer

Native Ap-
plications

Third Party
Applications

Developer
Applications

Window
Manager

Application Framework

Content
Provider

Location -
Based Services

Activity
Manager

Package
Manager

NotificationsP2P/IMTelephony Views
Resource
Manager

Media

Libraries

Graphics
SSL &
Webkit

SQLite
LIBC (System

Libraries)

Surface
Manager

Android
Libraries

Runtime

DVM

Hardware
Drivers

Memory
Manager

Power
Manager

Linux Kernel

Prozess
Manager

IPC-Driver
(Binder)

Figure 2.2: Android architecture

7

Chapter 2 The Android Operating System

The Android OS has a four layer architecture, see Figure 2.2. The basic layer rep-
resents the Linux-Kernel and contains the hardware driver and controls the power,
memory and process management. The kernel is optimized for a low energy and
memory usage.
The second layer consists of the basic libraries and the runtime. The basic libraries
are written in C/C++ and offer the core funtionalities to run Android applications
such as the database, a web-browser, the multimedia-management or the SSL com-
ponents. The Android runtime cointains the core components of the Android OS,
the Android runtime libraries and the Dalvik Virtual Machine.
The next layer is the Application Framework layer. This framework allows access
to system components by an application such as the contact database, basic phone
information and status of services. In order to achieve this, this layer provides
a wide range of manager classes which offer direct access to the different areas
like the Content Provider (contact data), the Telephony Manager or the Window
Manager. In contrast to the basic libraries, the manager classes are written in Java
and form the foundation of application development.
The top layer is called the Application Layer. This layer contains the Android
applications such as the standard appications developed by Google or third party
applications. In this layer, the interaction between the user and the application
takes place. In addition the communication between two applications is also reg-
ulated in the Application Layer.

2.2 The Dalvik Virtual Machine

The Dalvik Virtual Machine (DVM) is the core component of the Android OS.
It is based on the JVM Apache Harmony and was developed by Dan Bornstein,
an employee of Google. The Apache Harmony JVM was optimized to keep the
memory usage on a low level and to run multiple instances on a small device.
In contrast to the JVM stack maschine, the DVM was optimized for the modern
processor architecture, so that the integrated registers of modern mircoprocessors
can be used. Therefore, it has a register based architecture, which enables a faster
calculation period for computations with many substeps.
At first, the DVM was developed and optimized for ARM-Processors used for em-
bedded systems and mobile phones, because these processors are fast and have
a low power usage. Nowadays, many manufacturers who have adapted this ar-
chitecture, so that the Android OS can be used for several embedded systems,
too.

8

Chapter 2 The Android Operating System

Java IDE

*.java
*.class *.dex

DVM

*.apk

Development

Android device

javac dx

deployment

Figure 2.3: The Dalvik Virtual Machine

Android applications are programmed in Java and later compiled to Java bytecode.
After that, the Java bytecode is compiled to Dalvik bytecode by a program called
DX (Figure 2.3). The DVM then uses the Dalvik bytecode to run the application.

2.3 The Android Sandbox Principle

Android runs its applications in a sandbox: a restricted runtime, in which it is
not possible to directly access the OS and other applications running on this de-
vice. The Android OS is based on a Linux Kernel and every application follows
the Linux principles. For this reason, every application has it own Linux-user and
DVM, runs in his own process and has its dedicated section of the main memory
and data storage. In addition, the Linux process- and access management is used,
so that the directory in the data storage is not visible for other users and the pro-
cess can not be accessed from outside without authorization. Therefore, no access
to the DVM from the outside is possible.
Access to the application-process from the outside and accesses between application-

processes can only be granted in the AndroidManifest [Andf]. The AndroidMan-

ifest is a XML file containing a detailed Activity (see section 2.5) description and
the required rights of the application, for example the rights to send and receive
SMS can begranted by adding the following code:

<uses-permission android:name="android.permission.SEND_SMS" />

<uses-permission android:name="android.permission.RECEIVE_SMS" />

9

Chapter 2 The Android Operating System

2.4 Android integrated systems

In comparison with older operating systems for mobile phones, the Android OS
offers a number of providers and services to access the system data and functions.
This is regulated in the android manifest as mentioned in the section above. In
modern development, these providers and services are regularly used to provide
more comfortable and user-optimized applications. Especially, many parameter
entries can be omitted for the users, because these information can be read-out
automatically.

2.4.1 The Contact Provider

The Contact Provider [Andb] gives access to the contact data of the Android
smartphone which contains definitions of supported URIs and columns.

Contacts

1 Contact-1

2 Contact-2

3 Contact-3

RawContacts

1 Raw-1

2 Raw-2

3 Raw-3

4 Raw-4

Data

1 Name-1

2 Number-1

3 Number-2

4 Number-3

5 E-Mail-1

6 E-Mail-2

7 Number-4

8 Name-2

Figure 2.4: Android: Contact Database

In the contact database the data is stored in a three-tier model. The lowest tier con-
sists of the ContactsContract.Data table. This table contains every kind of per-
sonal data, for example names, phone numbers or e-mail addresses. A predefined
set of data types is available but every application can define new ones. The next

10

Chapter 2 The Android Operating System

tier is composed by the ContactsContract.RawContacts table. A RawContact

represents a set of data describing a person associated with a single account such
as a GMail account. These RawContacts are merged into the top tier, containing
the ContactsContract.Contacts table, so that every RawContact associated with
the same person is represented by the same contact in the phone book. Figure 2.4
shows an example for three contact entries.

2.4.2 The Notification Service

The Notification Service [Andc] is used to alert the user about events happening
in the background like receiving an SMS, a pending software update or a posi-
tion update from the GPS. This service can be accessed through the Notification
Manager. Notifications can have different forms:

• A persistent icon in the statusbar to start the corresponding application by
clicking on this icon (Figure 2.5).

• The backlight or LEDs of the device can be turned on or flashed.

• A vibration can start.

• The user can be notified by a special sound.

Since applications became increasingly complex, many of them make use of services
running in the background. Notifications are a simple and user-friendly way to
keep the user informed about events which are important for their applications.
In contrast to earlier OS, the user is always up to date even if the application is
not running.

Figure 2.5: Android: Notification (persistent icon)

11

Chapter 2 The Android Operating System

2.4.3 The Telephony Package

The Telephony Package [Ande] offers an API to get access to the basic phone
information and functions. The package contains an SMS Manager, Telephony
Manager and some utility classes for dealing with phone number strings. The
SMS Manager is responsible for SMS operations like preparing and sending text
or data SMS. The Telephony Manager establishes an interface to the Telephony
service. This service offers access to the basic phone information such as location of
the device, the signal strength or phone state. In addition, it allows the monitoring
of the connection state and network type.

Telephony
Package

Telephony
Manager

SMS
Manager

Utility
Classes

SMS
Classes

Service
State

Cell
Location

Signal
Strength

Other
Service C.

Figure 2.6: Android: Telephony Package

Applications make use of the Telephony Manager to register a listener to get noti-
fications about state changes. The access to some telephony information requires
permissions which can be declared in the AndroidManifest of the application.
The simple access to basic phone information and functions offers a range of ad-
ditional possibilities for application development in contrast to earlier OS.

2.5 The Activity Lifecycycle

Another aspect of modern application development is the buffering of input infor-
mation. The smartphone users want to have the option to switch between their
applications whenever they want. In order to ensure that no data is lost, the devel-
opers have to think about mechanisms for buffering data and how to best integrate

12

Chapter 2 The Android Operating System

these mechanisms into their program.

onCreate()

onStart()

onResume()

Activity is
running!

onPause()

onStop()

onDestroy()

onRestart()

Activity
& Prozess
is killed

Activity
comes
on top

Activity
comes
on top

Not
enougth
memory

User
navigates

back

Activity starts

Activity not visible

Activity shuts down

Figure 2.7: Android: Activity Lifecycle

The Android OS offers a special design of application which simplifies dealing with
this aspect, called the Activity Lifecycle [Anda, BP10], see Figure 2.7. This cycle
was developed to manage the memory and power usage since both resources are

13

Chapter 2 The Android Operating System

very limited. As a side effect, it also makes it much easier to buffer inserted data.
Every Application consists of one or more activities. An activity contains the
view of an application, manages the view elements, handles the user input and
responds to selections the user makes. The lifecycle describes the different states
of an activity. Every activity runs through a predefined set of states; every state
is started by calling the intended function of the state. These functions are also
predefined, but can be adapted by overwriting or expanding them.
Android offers different integration points to deal with the buffering of data. The
developers have many options to do so, depending on the special aspect they want
to deal with, such as the handling of data filling a selection box. There are two
simple ways to do that: On the one hand, if the input data changes rarely, one
can load the data from the database in the onCreate() method, store it in a
variable in the onPause() method and reload the variable and fill the selection
box in the onResume() method. On the other hand, if the data changes rapidly,
one can load the data from the database in every call of the onResume() method.
The first implementation is the faster one but the second solution ensures that the
information is always up to date.

14

Chapter 3

Cryptography

During the last few years, security has become ever more important for the users
of personal computers and smartphones as many processes of their every-day life
can be managed using the internet. Therefore, it is essential that the users can
ensure their privacy in their banking transactions, mails and SMS. Key exchange
mechanisms, authentication, efficient encryption algorithms and secure connections
came more and more into the focus of application- and web- developers.

3.1 Elliptic curve cryptography

Elliptic curve cryptography (ECC) [Bun09] is one of the public key crypto systems.
In a public key crypto system, every user taking part in the communication has
a key pair: a public key and a private key. Additionally, each user must have a
set of parameters for the encrypted communication, like the domain parameters,
describing which elliptic curve is used for the calculation. The public key is not
a secret, it is distributed to all users over an unsecured channel; in contrast, the
private key is only known to the specific user. The asymmetric public key cryp-
tography needs no common secret for communication but it is much slower than
symmetric encryption.

3.1.1 Elliptic curves

In order to understand the concept of ECC, this section will give the reader a
short introduction into elliptic curves. An elliptic curve over a finite field K can

15

Chapter 3 Cryptography

be defined as a set of points (x, y) ∈ K2 which satisfy the equation

y2 = x3 + ax + b (3.1)

where a, b ∈ K are given.
The equation 3.1 is called Short Weierstrass Equation. In order to ensure that
the elliptic curve is adapted for ECC, the parameters has to comply with the
property

4a3 + 27b2 6= 0. (3.2)

This property ensures that the graph of the curve has no cusps or self-intersections.
The points of the elliptic curve together with a special point of infinity O form an
Abelian group, where O is the neutral element.

Figure 3.1: Addition and doubling on elliptic curves in R2

In order to facilitate a better understanding, the concatenation for operating on
an elliptic curve will be described for R2. Figure 3.1 shows in an illustrated way
the two operations on an elliptic curve:

16

Chapter 3 Cryptography

• Adding two points (on the left):
The line PQ will cross the elliptic curve in a third point. Then the intersec-
tion point is reflected on the x-axis. The result of the reflection is also the
result of the operation P + Q, the point R. If P and Q are lying on parallel
line to the y-axis, the line will never again cross the elliptic curve and the
result of the operation is the point of infinity O.

• Doubling one points (on the right):
The line PQ is replaced by the tangent at the point P . The intersection
point of the tangent and the elliptic curve is also reflected on the x-axis and
the result is the result of the operation, the point R. If the tangent of P
is a parallel line to the x-axis, the point of infinity O is the result of the
operation.

After the illustrated description of the operations in R2, one can generally define
the concatenation of two points P and Q over a finite field as follows:

P+Q =


P , if Q = O

Q , if P = O

O , if xP = xQ and yP 6= yQ

(xR, yR) , otherwise, with xR = m2 − xP − xQ and yR = m(xP − xS)− yP

Thereby the slope m can have two different values depending on P and Q:

m =


yP−yQ

xP−xQ
, if P 6= Q

3x2
P +a

2yP
, if P = Q

The different cases for the slope m based on the two possible operations, described
in an illustrated way before.
The algebraic rules for an elliptic curve in R2 can be adopted for elliptic curves
over a finite field Fq, with the difference that the computations are performed in
Fq.

17

Chapter 3 Cryptography

3.1.2 The Elliptic Curve Discrete Logarithm Problem

Asymmetric cryptographic mechanism are typically based on some well-studied
number-theoretic problems. A mechanism is strong, if this problem is difficult to
solve in an efficient way. Former public key crypto systems such as RSA are based
on the integer factorization problem, but nowadays algorithms were found to solve
the integer factorization problem in subexponetial time. As a consequence, RSA
needs quite long keys for encryption to make it infeasible to attack. Newer pub-
lic key systems like the ElGamal encryption are based on the Discrete Logarithm
Problem (DLP). The ciphers using elliptic curves are based on the Elliptic Curve
Discrete Logarithm Problem (ECDLP), which is similar to the DLP in the un-
derlying finite field. Let E be an elliptic curve over the finite field Fq and P , Q
two points on the curve. Then the Elliptic Curve Discrete Logarithm Problem is
defined as follows:

Find n ∈ N such that nP = Q.

The ECDLP is believed to be much more difficult to solve in an efficient way than
the DLP and in contrast to the integer factorization problem, there exists currently
no known algorithm for solving the ECDLP in subexponetial time.
This has an influence on the key size: much shorter keys can be used [LV00,
NSA09a] to reach the same level of security as algorithms based on integer fac-
torization or the DGL. For example, a 160-bit key in ECC is considered to be as
secure as a 1024-bit key in RSA. Therefore, the ciphers based on the ECC are a
favorite for the application development on mobile phones, where the resources are
limited.

3.1.3 NIST curves

NIST curves are elliptic curves which are optimized for fast computations. It has
been discovered that reduction modulo p, which is needed for addition and multipli-
cation, is much faster if p ≈ 2d. This increase in speed has a practical background:
Computers can do operations modulo p much more efficiently for numbers p near
2n, because they are operating on binary numbers including bitwise operations.
In FIPS 186-3 [NIS09] the NIST presents 15 elliptic curves over ten finite fields.
Among these fields are five prime fields Fp for certain primes p of sizes 192, 224,
256, 384, and 521-bit and five binary fields F2m for m = {163, 233, 283, 409, 571}.

18

Chapter 3 Cryptography

For each field an elliptic curve is recommended and in the binary case one Koblitz
curve was also recommended. The curves have to provide optimal security and the
implementation must be possible in a very efficient way, so that fast computations
are ensured.
Even the National Security Agency (NSA) has included EC crypto systems working
on these NIST curves into their Suite-B [NSA05] set of recommended algorithms.
The Suite-B is used to protect classified information up to the ”Secret” or ”Top
Secret” level.
The NIST is not the only institute which recommends curves in their standards,
there are also two other established institutes, on the the one hand the ”American
National Standards Institute” (ANSI) [ANS] and the ”Standards for efficient cryp-
tography group” (SECG) [SEC]. The prototype in this diploma thesis uses the
”P-192” curve (NIST), this curve is one of two curves which are contained in all
three standards [BWBG+06], but it can be replaced by every curve of the NIST
standard, even by curves recommended for a 521-bit key size and thereby a level of
security can be reached that is higher than the level recommended for ”Top Secret”
documents which uses a key size of 384-bit.

3.2 Elliptic Curve Diffie-Hellman Key Exchange

The Diffie-Hellman Key Exchange [DH06] is a cryptographic protocol which pro-
vides the possibility to exchange a common secret over an insecure channel. This
secret is normally used to create a secret key for symmetric encryption algorithms
like AES. The Elliptic Curve Diffie-Hellman Key Exchange (ECDH) [NSA09b][BJS07]
is a variant of the original Diffie-Hellman key exchange which uses elliptic curve
cryptography.
In order to use the key agreement protocol, both parties have to agree on the
domain parameters, which form the basic structure the protocol is working on.
These parameters are in the binary case (m, f(x), a, b, G, n, h) and in the prime
case (p, a, b, n, h). The first parameter defines a finite field, in the binary case
F2m by m and the irreducible polynomial f(x) over F2 or in the prime case Fp by
the prime p. Then the elliptic curve E both parties have agreed on is described by
the parameters a and b (y2 = x3 + ax + b). The next parameter is the generator,
a point G on the curve which defines a cyclic subgroup of E. The parameter n is
the order of G, that means n is the smallest positive number solving the equation
nG = O and it should contain at least one large prime divisor. The last parameter
is the cofactor h = |E|

n
which should preferably be near 1. These parameters can

be passed over an insecure channel, none of them must be kept secret.

19

Chapter 3 Cryptography

In the next step, the two parties, let me call them Alice and Bob, have to generate
their private and public keys. The private key r is a randomly selected integer in
the interval [1, n-1] and the public key PK = rG. Let (rAlice, PKAlice) and (rBob,
PKBob) be the two key pairs. Now Alice and Bob exchange their public keys via
the insecure channel.
Now Alice and Bob have to compute the secret point on the curve. Alice com-
putes (xk, yk) = rAlicePKBob and Bob (xk, yk) = rBobPKAlice. Both will get the
same point on the curve, because rAlicePKBob = rAlicerBobG = rBobrAliceG =
rBobPKAlice. The x-coordinate xk of the common point represents the shared
secret by convention. Figure 3.2 shows the line of action in an illustrated way.

Alice generates key-pair:

rAlice, rAliceG = PKAlice

Bob generates key-pair:

rBob, rBobG = PKBob

Alice computes secret:

(x, y) = rAlice PKBob

= rAlice rBob G

Bob computes secret:

(x, y) = rBob PKAlice

= rBob rAlice G

The x-coordinate forms the secret

PKBob

PKAlice

Figure 3.2: Elliptic Curve Diffie-Hellman

The ECDH protocol is secure unless a method is found to solve the Elliptic Curve
Discrete Logarithm in an efficient way. The ECDH works perfectly, if the attacker
can only read the information such as the domain parameters or the public keys,
but if the attacker can alter some of the information, he can perform the agreement
with both sides and thus observe the communication. This is commonly referred to
as a Man-in-the-Middle attack. In order to avoid these Man-in-the-Middle attacks,
the combination of Diffie-Hellman with an authentication mechanism is essential.

20

Chapter 3 Cryptography

3.3 The SHA-256 Algorithm

The SHA-256 Algorithm [NIS02] is a cryptographic hash-function and belongs to
the SHA2 family. It was developed by the National Security Agency and the
National Institute of Standards and Technology. The hash-function was published
in August 2002. The design of the SHA-256 hash function is based on the Merkle-
Damg̊ard construction and is intended to sign messages as part of the Digital
Signature Algorithms (DSA) [NIS09]. The algorithm takes arbitrary blocks of data
and returns a 256-bit string. The compression function of the SHA-256 operates
on a 512-bit input and produces a 256-bit output.

3.3.1 Preparation

At first, the message is expanded by appending the ”1” bit and as many ”0”s so
that the result is a multiple of 512-bit minus 64-bit. Then, the message length is
added as a 64-bit word. Secondly, the message is split into 512-bit blocks. After
that, every block is expanded a second time (this is called the SHA-256 Message
Schedule) and the the algorithm is initialized with eight 32-bit words.

IV1 = 6a09e667

IV2 = bb67ae85

IV3 = 3c6ef372

IV4 = a54ff53a

IV5 = 510e527f

IV6 = 9b05688c

IV7 = 1f83d9ab

IV8 = 5be0cd19

3.3.2 The SHA-256 Message Schedule

During the SHA-256 Message Schedule every 512-bit block is split into 16 32-bit
parts Mj and expanded to 64 32-bit words Wi which are needed for the 64 rounds
of operations.

Operation:
� = Addition modulo 232

≫ = Rotation to the right

� = Shift to the right

21

Chapter 3 Cryptography

Support functions:

F1(x) = (x≫ 7)⊕ (x≫ 18)⊕ (x� 3)
F2(x) = (x≫ 17)⊕ (x≫ 19)⊕ (x� 10)

Calculation of W0,...,W63:

Wi =


Mi, for i = 0,...,15

F2(Wi−2)�Wi−7 � F2(Wi−15)�Wi−16, for i = 16,...,63

3.3.3 The SHA-256 Compression Function

After initialization and message expansion, the computation of the hash value
begins. The algorithm runs through 64 equally designed rounds. In each round
the next part of the message block Wi and the predefined round key Ki is added,
every round has a different round key. In order to compute the result values of a
round, four functions are used. All functions operate on a 32-bit word and produce
a 32-bit word as output. The functions are defined as follows:

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)
Ma(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

S1(x) = (x≫ 6)⊕ (x≫ 11)⊕ (x≫ 25)
S2(x) = (x1≫ 2)⊕ (x≫ 13)⊕ (x≫ 22)

During the calculation, the initial values IV1, IV2, IV3, IV5, IV6, IV7 are shifted
one to the right and the value for R1 and R5 is computed in the following way:

H1 = IV8 � S1(IV1)� CH(IV5, IV6, IV7)�Ki �Wi

H2 = S2(IV1)�Maj(IV1, IV2, IV3)
R1 = H1 �H2

R5 = IV4 �H1

22

Chapter 3 Cryptography

At the end of each round, the result values R1, R2, ... , R8 become the new initial
values of the next round. The picture below describes one round of the SHA-256
algorithm in detail:

IV 1 IV 2 IV 3 IV 4 IV 5 IV 6 IV 7 IV 8

R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8

Wi

Ch

S1

Ma

S2

�

�

�

�

�

�
Ki

Figure 3.3: SHA-256 Algorithm

In the normal use of the SHA-256, one has many messages that are longer than
512-bit. In this case, the algorithm calculates one 512-bit block one after another
and the hash value H is a combination of the hash values Hi before:

Hj = Hj−1 � CMj
(Hj − 1),

where C is the compression function of the SHA-256 algorithm.

3.4 The AES-Algorithm

The Advanced Encryption Standard (AES) is a specification for data encryption
and was developed by Joan Daemen and Vincent Rijmen [DR02]. In October 2000,

23

Chapter 3 Cryptography

it was announced as the successor of the Data Encryption Standard (DES) by the
National Institute of Standards and Technology (NIST) [Bul00].
AES is a symmetric crypto system based on the Rijndael-Algorithm. In contrast
to Rijndael, which can have a block- and a key-size of 128, 160, 192, 224, 256 bit,
the AES algorithm has a 128-bit fixed block size and a variable key size of 128,
192 and 256 bit.

3.4.1 Mode of operation

AES operates on a 4× 4 matrix of bytes. The algorithm contains four operations
distributed in rounds and the key expansion. At the beginning the key has to be
expanded to get enough round-keys for encryption, because the original-key and
also multiple parts of the expanded version are used.

Key generation AddRoundKey

Preparation

#Rounds
< n?

ShiftRows

SubBytes

MixColumns

AddRoundKey

Enc.
Rounds

SubBytes

ShiftRows

AddRoundKey

Final
Round

Input

Output

No

Yes

Figure 3.4: AES: Mode of operation

Then, every block of plaintext passes through four different preassigned transfor-

24

Chapter 3 Cryptography

mations in a special order, the SubBytes, ShiftRows, MixColumns and AddRoundKey

operation. The number of rounds which has to be passed depends on the selected
key-size, 10 rounds for a 128-bit key, 12 for a 192-bit key and 14 rounds for a
256-bit key. Figure 3.4 shows a detailed overview of the operating sequence, where
n is the number of the rounds.

3.4.2 Key generation

At first, (n + 1) round-keys have to be generated, where n is the number of rounds
and the additional key is needed for the preparation round. The keys are derived
from the secret key using the Rijndael key schedule.

3.4.3 Step: AddRoundKey

The AddRoundKey operation executes the key-addition. This means that every byte
of the round-key is combined via the XOR-Function with a byte of the block con-
taining the intermediate result of the encryption. This is the only step depending
on the encryption-key.

a 11

a 21

a 31

a 41

a 12

a 22

a 32

a 42

a 13

a 23

a 33

a 43

a 14

a 24

a 34

a 44

a 22

b 11

b 21

b 31

b 41

b 12

b 22

b 32

b 42

b 13

b 23

b 33

b 43

b 14

b 24

b 34

b 44

b 22

k 11

k 21

k 31

k 41

k 12

k 22

k 32

k 42

k 13

k 23

k 33

k 43

k 14

k 24

k 34

k 44

k 22

AddRoundKey

X-OR

Figure 3.5: AES: AddRoundKey

25

Chapter 3 Cryptography

3.4.4 Step: SubBytes

During the SubBytes operation, every byte of the block is transformed using an
8-bit substitution box, the S-Box or Rijndael-Box. This operation ensures the non-
linearity of the encryption, because the S-Box based on the multiplicative inverse
of F2m which is known to have good non-lineary properties. SubBytes has the
functionality of a substitution cipher and as a result attacks depending on basic
algebraic properties can be avoided.

a 11

a 21

a 31

a 41

a 12

a 22

a 32

a 42

a 13

a 23

a 33

a 43

a 14

a 24

a 34

a 44

a 22

b 11

b 21

b 31

b 41

b 12

b 22

b 32

b 42

b 13

b 23

b 33

b 43

b 14

b 24

b 34

b 44

b 22SubBytes

S-Box

Figure 3.6: AES: SubBytes

3.4.5 Step: ShiftRows

The execution of the ShiftRows operation is a cyclic left-shift of the bytes in the
intermediate result. The second row is shifted once, the third twice and the fourth
three times, only the first row will be left untouched. Every overflow on the left
will be continued on the right side of the row. The ShiftRows step provides the
diffusion of the columns.

26

Chapter 3 Cryptography

a 11

a 21

a 31

a 41

a 12

a 22

a 32

a 42

a 13

a 23

a 33

a 43

a 14

a 24

a 34

a 44

a 11

a 22

a 33

a 44

a 12

a 23

a 34

a 41

a 13

a 24

a 31

a 42

a 14

a 21

b 32

b 43

ShiftRows

Figure 3.7: AES: ShiftRows

3.4.6 Step: MixColumns

In the MixColumns operation, every byte of a column is computed in a way that
is affected by all the values in the column. Thereby, the four bytes of the column
are combined by an invertible linear transformation. The transformation works on
the Rijndael Galois field F28 .


b1i

b2i

b3i

b4i

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2




a1i

a2i

a3i

a4i



The multiplication by 1 leaves the byte unchanged, multiplication by 2 is a shift to
the left and the multiplication by 3 means left shift with the byte being combined
by XOR with the initial value at this position. In mathematical terms, each byte
of the column describes a polynomial over F28 , this polynomial is multiplicated
modulo M(x) = x4 + 1 with the fixed polynomial a(x) := a3x

3 + a2x
2 + a1x + a0

with the coefficients a0 = 2, a1 = a2 = 1 and a3 = 3. These coefficients were
chosen to ensure the existence of the inverse elements, which is important for
the decryption. The MixColumns step provides the diffusion of the rows. The
operations MixColumns and ShiftRows ensure the diffusion of the cipher.

27

Chapter 3 Cryptography

a 11

a 21

a 31

a 41

a 12

a 22

a 32

a 42

a 13

a 23

a 33

a 43

a 14

a 24

a 34

a 44

a 22

a 12

a 32

a 42

b 11

b 21

b 31

b 41

b 12

b 22

b 32

b 42

b 13

b 23

b 33

b 43

b 14

b 24

b 34

b 44

b 22

b 12

b 32

b 42

MixColumns

f(x)

Figure 3.8: AES: MixColumns

3.4.7 Decryption

The decryption contains the same steps as the encryption but it is done in inverse
order. During the ShiftRows operation the bytes are shifted in the other direction
and in the SubBytes step an inverse S-Box is used.

3.5 The Secure Socket Layer

The Secure Sockets Layer (SSL) [FKK96, Andd] is an encryption protocol to ensure
a secure data exchange over unsecure channels. Since Version 3.1, the Secure socket
Layer is also know as Transport Layer Security (TLS) [DA99, DR08]. The protocol
has two important funtions:

• Create secure end-to-end connections.

• Authenticate servers and optionally the clients.

SSL is on the one hand a transparent security protocol, easy to use to create secure
connections and on the other hand it has a flexible and forward-looking design, so
that the encryption algorithms and the hash functions can be replaced by a newer
version or by another algorithm or function.

28

Chapter 3 Cryptography

3.5.1 The SSL Architecture

The SSL-Protocol combines different types of encryption mechanisms and offers a
pool of encryption algorithms and hash-functions. Which set of algorithms is used
later depends on the algorithms and key-sizes supported by the client. Generally,
the SSL-Protocol uses:

• Asymmetric encryption for the key-exchange (like RSA) and authentication.

• Symmetric encryption for the data-transfer for example AES or 3DES.

• Hash-functions like SHA256 to ensure the integrity of the data.

In the OSI-Layer-Model, SSL forms a new layer between the Transport-Layer and
the Application-Layer [SG03]. Technically, the protocol establishes a secure con-
nection between two sockets. A socket is a gateway to the TCP/IP-Network.
The function of the second layer is to start an authenticated, secure connection
between client and server and to handle occurring warnings and errors. Therefore,
an agreement on which set of algorithms and functions is used has to be reached
and a common key has to be exchanged. The second layer is the basic layer, han-
dles the data-transport and is responsible for the encryption and the integrity of
the data. These two layers consist of five sub-protocols:

• SSL Record Protocol (forming the first layer)

• SSL Change Cipher Spec. Protocol

• SSL Alert Protocol

• SSL Application Data Protocol

• SSL Handshake Protocol

Figure 3.9 shows the position of SSL in the OSI-Layer-Model in an illustrated
way.

29

Chapter 3 Cryptography

SSL Record Protocol

SSL
Change
Ci. Spec.
Protocol

SSL
Hand-
shake

Protocol

SSL Alert
Protocol

SSL App.
Data

Protocol

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Figure 3.9: SSL: Protocol architecture and the position in the OSI-Model

3.5.2 The SSL Handshake Protocol

The SSL Handshake Protocol is responsible for the authentication of the server
and optionally of the client. The second important function is to reach an agree-
ment with the server about the encryption algorithm which should be used for the
encryption of the communication.
The protocol is executed at the beginning of an SSL session. It has a prescribed set
of messages, which are sent between client and server. At first, the client asks for
a secure socket by sending a plaintext message. This message includes the session
ID, SSL version, 32-bit time-stamp, a 28-byte random number RC and a list of the
supported algorithms.
In a second step, the server sends back his certificate for authentication, the set of
algorithms (cipher suite) which will be used and a time-stamp and random number
RS. Optionally, the server may ask for the client certificate. Many applications do
not make use of the client-authentication as they use the password-authentication
instead.
In the following step, the client has to verify the certificate. In case the certificate
is valid, the client sends back his certificate and a signed hash over all previous
messages for authentication (if required). Additionally, a new random RSec is gen-
erated and sent to the server encrypted with the public key of the server. Then the
client computes the 48 byte Master-Secret based on the random numbers RS, RC ,
RSec. Following that, the keys for encryption are derived from the Master-Secret.

30

Chapter 3 Cryptography

Finally, the client switches to an encrypted connection by starting the SSL Change
Cipher Spec Protocol.

Secure channel

Ask for Secure Socket (Algo., RNC)

Response (SSL Certificate, Algo., RNS)

Send Client Certificate

Signed hash over previous messages

RNsec encrypted with SSL-PK

Change to encrypted connection

Change to encrypted connection

Generate RNC

Generate RNS
Verify
Certificate

Verify
Certificate

Verify Hash
& Signature

Generate
RNSec

Generate MS

Generate MS

Client Server

Figure 3.10: SSL: Handshake Protocol

As a last step, the server has to verify the client certificate and its validity. The
random number RSec is then decrypted and the Master-Secret is calculated based
on the random numbers RS, RC , RSec. The keys for encryption are derived from
the Master-Secret and the SSL Change Cipher Spec Protocol is started. At that
point a secure and authenticated connection is established. Figure 3.10 shows an
illustrated description of the Handshake protocol.

31

Chapter 3 Cryptography

Instead of the RSA variant, which uses the three random numbers for key creation,
SSL also supports the Diffie-Hellman key exchange.

3.5.3 Additional first layer protocols

The Change Cipher Spec Protocol changes the encryption after new parameters
have been exchanged. This happens by sending a single byte, which acts as a signal
to switch to the new mode of encryption. It is also used in the SSL Handshake
Protocol.
SSL Alert Protocol has to end the session by getting the ”close notify” message

and handles occuring warnings and errors. An error causes the immediate termi-
nation of the connection. Errors may be a handshake or an decompression failure.
Warnings normally occur if one side has no or an invalid certificate or if there are
problems with the decryption.

SSL Application Data Protocol manages the data transfer from the application
to the Secure Socket Layer. It has access to the SSL Record Protocol.

3.5.4 The SSL Record Protocol

The SSL Record Protocol is responsible for the data transport. The protocol en-
sures the confidentiality and integrity of the data [Sta98].
Incoming data from the Application-Layer is prepared for the transfer. In that
process the message is split into SSL-Records. Optionally, these records are com-
pressed. Then the MAC (Message Authentication Code) is computed and added
to the record, this ensures the integrity of the data. After that the package is
encrypted. This should ensure the confidentiality of the data. Therefore, the
algorithms and keys both sides have agreed on during execution of the SSL Hand-
shake Protocol are used. Finally, the SSL-header is added. Figure 3.11 shows an
illustrated description of the SSL Record Protocol:

32

Chapter 3 Cryptography

Application
Data

Fragmentation

Compression

Adding MAC

Encryption

Adding
SSL-Header

Figure 3.11: SSL: Record Protocol

33

Chapter 4

Design principles

Designing webpages or applications for smartphones is becoming more and more
important as high-definition displays are supported and complex computations can
be run in background. Information complexity increases and applications have to
present the data in a clear and user-optimized way, or the users will ignore them.
The developers of websites have long lasting experience creating good usability.
Over the years, conventions were devised to create a standard for web development.
Many of these design principles can be easily adapted for application development.
This chapter will give a short overview of the important design principles.

4.1 How to create a good usability

The content of this chapter refers to the first chapter of the book ”Modernes Webde-
sign - Grundgestaltungsprinzipien, Webstandards, Praxis” by Manuela Hoffmann
[Hof10], where she describes design principles in a very general way.
In order to create good usability, two different aspects have to be kept in mind:
the layout of an application and the technical utilities. Good layout ensures a
transparent interface including a clearly arranged composition of the design ele-
ments, called ”views” in Android. Android offers a wide range of special views
to support or achieve a good design. In addition, the developer can make use
of inbuilt technical features to support a good design, for example reading out
addresses automatically from the contact database reduces the need to enter text
manually.

34

Chapter 4 Design principles

Important reasons for a good design:

• Follow the golden ratio to find the best position for the most important
elements.

• Keep the interface transparent.

• Minimize text entry.

• Short ways for the user.

• Take advantage of inbuilt functionality.

4.2 The golden ratio

The golden ratio is a well-known natural law for proportions found in many parts
of the modern world. It describes the proportion 1 : 1+

√
5

2 (≈ 1, 618). Architecture,
photography, or parts of the art have adapted the golden ratio for aesthetic reasons.
In addition, the composition gains a natural order, harmony and stability.

Figure 4.1: The golden ratio in the simplified version (1 : 2)

In web- or application development, a simplified version is commonly used, the
proportion 1 : 2. Thereby, the interface is split into three horizontal and vertical
fields. The most important element(s) should be placed at the intersection points
of the stripline. The top right intersection point is thereby the point the user pays

35

Chapter 4 Design principles

attention to first. Figure 4.1 illustrates this simplified version with the top right
intersection point highlighted in pink.
This method achieves a good result because the view elements of an application
are typically larger and thereby a rough partition is adequate. In a more complex
layout, it is necessary to use a more accurate proportion.

4.3 Keep the interface transparent

A transparent interface should give the impression of an appealing and well-
aranged structure. The user should understand the interface not only by reading,
but rather by seeing it, because shapes and images are noticed before any text
is read. In order to keep the interface transparent, the developer/designer has
multiple options:

• Think about the amount of elements on the screen.

• Present navigation differently.

• Make use of established identifiers.

• Group elements with the same theme.

• Reduce distracting elements to a minimum.

4.3.1 Think about the amount of elements on the screen

The structure of a webpage or an application is a key aspect of the development
process. The designer has to think about the information or functionality he wants
to present and prioritize the elements accordingly. Afterwards, he can create a
basic structure focusing on the most important elements. In this process, the
developer/designer has to find a balance between two aspects: On the one hand,
the user’s way to the desired functionality or information should be as short as
possible (see section 4.5). On the other hand, that can result in more information
per screen. The screen can quickly appear overloaded and overwhelming and the
clear structure is lost. If this balance is disturbed, it is nearly impossible to create

36

Chapter 4 Design principles

an application with good usability, because all design possibilities discussed later
in this section are based on the chosen structure.

4.3.2 Present navigation differently

Navigation is very important to users, because they want to access the desired func-
tionality or information as quickly as possible. Therefore, the navigation should
be clearly visible, and the best way to achieve this, is to choose a special design for
it. Normally the navigation menu is part of a bar, which is a shape the user easily
recognizes and thereby avoids a time-consuming search. There are many ways to
design the navigation, but it should have a distinct shape in order to be clearly
recognizable.

4.3.3 Make use of established identifiers

Established identifiers, like logos, make it much easier for the user to find his way to
the desired information or functionality. The user recognizes pictures and shapes
first, then the contained text. By using established identifiers, the user gets the
information at first sight and doesn’t have to read anything. It creates a clear and
fast way and the user gets an appealing impression of the application.

4.3.4 Group elements with the same theme

Grouping elements dealing with the same theme creates a structured interface
because these shapes are also recognized first. In combination with established
identifiers, the user quickly gets a good overview of the functionality and the
possibilities the application offers.

4.3.5 Reduce distracting elements to a minimum

What are distracting elements? The internet user knows webpage advertisements
using the Adobe Flash-Player. These advertisements are colorful and gaudy design
elements quickly getting the users attention. They are a good example for the

37

Chapter 4 Design principles

impression such elements make on the user. From a marketing point of view, it
is a good idea to present these commercials in the foreground as the user will pay
attention to them. But if there are too many of these elements, users will avoid
the websites or applications because they are permanently distracted and kept
from quickly reaching the functionality or information they seek. This aggressive
advertising may easily overwhelm the user as it catches his eye before any other
design elements and instead of instantly finding the right way to his destination,
he has to take a second look in order to understand the interface. Even if the rest
of the design is well thought-out, it is hard to change the negative impression if
too many of these visually aggressive elements exist.

4.4 Minimize the text input

Older applications sometimes require a long time for initialization and may have
a somewhat confusing user guidance, because the user has to enter any required
information manually. This results in applications containing many views for data
input, making the application very complex and not clearly arranged. In addition,
the ways for the user were very long to get to the required information or func-
tionality.
Nowadays, every modern operating system for smartphones offers functionality to
read-out data automatically. The Telephony package described in section 2.4.3 pro-
vides this functionality for Android smartphones, thereby reducing the described
problems substantially. Evidently, minimizing text input has a large influence on
the design of an application, although it may at first glance seems to be of minor
importance.

4.5 Short ways for the user

Short ways for the user are very important for good usability, because no user
will enjoy an application if he has to spend a lot of time to reach the desired
information or functionality and will quickly switch to another application.
Minimizing text entry is one possibility to create short ways for the user, but most
important to achieving short ways is a well thought-out menu structure. Not all
parts of an application must be accessible from every subpart. The developer and
designer have to think about which connections are frequently used, rarely used

38

Chapter 4 Design principles

or even not used at all. In general, this is not easy, because in larger application
the connections are more complex and every user has other priorities in the way
he handles an application. The TabView offers a good tool for the implementation
of an application which has only a few frequently used functionalities. These core
funtionalities can be accessed by only one click. A more detailed description of the
Tabview will be given in the following section.

4.6 Take advantage of inbuilt functionality

The usage of inbuilt functionality is one very important aspect in the creation of
a user-optimized interface, because these views or functions are adapted to the
specific mobile-phone and can present the information in an even more optimized
way or grant access to special information, for example the contact data of the user.
The modern operating systems for smartphones offer a wide range of these design
elements and functions. The Android-specific package, the Telephony package
managing data access to special phone information, was described in section 2.4.3,
in this section some Android-specific design elements, called ”views”, and the menus
are described.

4.6.1 Application menus

In order to include functionality to change the look of the view or to add special
functions, the Android system offers two types of menus: the option-menu and the
context-menu.
The option-menu may be called by clicking the menu button of the smartphone;

it creates a small box at the bottom of the page containing the buttons. This
type of menu is good for including functions used rarely, because it interrupts the
workflow, since the user has to change from the touchscreen to the menu bar of
the smartphone.

The context-menu on the other hand can be called by a long click on the view
element. The user stays near his point of action and can easily choose the required
functionality. There is one more reason for the use of context-menu: the option-
menu is only clearly arranged if there are not more than six functionalities in
the background; the contextmenu has no such limitation, because the menu is
scrollable and keeps its kind of presentation. Figure ?? shows a picture of an open
option-menu on the left and context-menu on the right.

39

Chapter 4 Design principles

Figure 4.2: Layout: optionmenu and contextmenu

4.6.2 TabView and ListView

Two very popular views are the TabView and ListView. The TabView is especially
suited to avoiding applications using many menus and submenus. The TabView
splits the interface in two parts. At the top or the bottom (depending on the
settings) a small button-bar is displayed. The rest of the interface can be used to
show a view. This view can be easily changed by clicking or touching one button
on the button-bar. It can be said that this view combines up to four views in one
and provides a better level of usability, because it reduces the ways for the user
and makes the interface clearly arranged and transparent. The use of a TabView
with more than four buttons in the bar reduces the usability as the buttons be-
come to small for interaction. Future generations of smartphones will have higher

40

Chapter 4 Design principles

resolutions, this limitation will be mitigated and the TabView will become even
more attractive for developers.
The Listview is an optimized view for the presentation of a large amount of data.
It is a scrollable view and can be connected to a database via an adapter. The
presentation of a single list element can be changed in almost every way, every nor-
mal view element, even an image, can be used to design the list element. Thereby,
a very clear and also user-optimized design can be created. Including graphics
offers the possibility to integrate established identifiers for better ease of use and
to reduce the amount of text in the view. Figure 4.3 show a simple TabView on
the left and ListView on the right.

Figure 4.3: Layout: TabView and ListView

41

Chapter 4 Design principles

4.6.3 The AutoCompleteTextView

Another view which is used regularly is the AutoCompleteTextView. It can be
connected via an adapter with a database or a predefined array to limit the possible
input selection. This view looks like a normal text input field, but on entering a
character, the appropriate preselection is shown below the text field. The selection
is updated every time a change happens in the text field and the user can choose
his favorite by clicking or selecting it using the touchscreen. The view offers a
simple way to find specific information in a wide range of data. Figure 4.4 shows
an AutoCompleteTextView with an open preselection on the left and a closed one
on the right.

Figure 4.4: Layout: AutoCompleteTextView

42

Chapter 5

SmartCom - The Development

In this chapter, the development process of the SmartCom prototype is described;
however, another factor has to be discussed beforehand: The conflict between
privacy and simplicity. This debate has a big influence on the development process
although it has nothing to do with design patterns or the layout of an application.
This debate is essential to estimate the level of privacy a user wants to have.
Developers need to balance two options: on the one hand they can demand a high
level of private information to create an application that is very simple to use or
on the other hand they can ask for almost no private information, but then the
user has to do more by himself to initialize the application. Developers have to
combine both options to create an optimized solution for their target group.

5.1 Conflict between privacy and simplicity

Today in particular, the conflict between usability and privacy concerns is more
and more popular in the media as it is a global discussion. It has an impact on
many aspects of digital life, like online shopping and payment, the usage of free-
ware programs financed by advertising, and social networks. Many people will
avoid applications which demand too much private information and also applica-
tions which are too complicated to use.
An increasing number of people are becoming aware of this conflict due to the
public discussion about privacy on facebook and the user behavior. On facebook,
every user can choose his level of privacy. In defining this level, the user can decide
between strict privacy and a more powerful application, as high privacy settings
will usually restrict the actions available to him. Since many people do not care a
lot about the information they reveal, some of them make their whole life public

43

Chapter 5 SmartCom - The Development

and do not think about the consequences.
In the internet community, two groups of people can be identified: The first con-
sists of people, who like the easy way and are aware or do not care about the
consequences ensuing from a lack of privacy. They want applications they can
start and use quickly and do not wish to think about the handling. Therefore
they reveal a lot about their person, because they allow the program to collect
the information automatically. They only use fast and simple applications, even
if another applications offers a much better solution for the problem. These users
mainly think about how easy an application is to use and its speed. Waiting times
will not be tolerated or accepted.
The second group of people attach great importance to their privacy and are re-
luctant to make even parts of their private life public. They care about security
mechanisms and reflect the programs they use, even if they have to do more to
initialize and configure programs to reach the same level of simplicity. If an ap-
plication demands rights which can be used to collect private data automatically,
the concerned user will often opt to stay away from such applications.
The Android OS offers a mechanism to control access rights. The developer has to
declare the rights the application needs in the AndroidManifest (see section 2.3)
and if the installation is started, the user has to accept these access rights, so that
every user is informed about them and can estimate the consequences installing
this program may have. This mechanism requires high individual responsibility
as via the rights he is granting, it is possible to install malware or data mining
software on his device.
During the next chapters, the development process of the SmartCom prototype
is described, particularly with regard to the design decisions this user behavior
results in.

5.2 Preparation

In order to work with both Android and a Server-Client architectures, it is im-
portant to have a development environment which contains customized tools and
options for both. Eclipse offers a good solution:

• Eclipse Java EE enviroment for server side [Eclb].

• Eclipse extended with the ADT plugin for the client side [Ecla].

44

Chapter 5 SmartCom - The Development

The Eclipse Java EE enviroment has an embedded web-server: the Apache Tom-
cat server [Apa]. The integrated development tools are optimized for programming
servlets and handling errors like connection errors or failures occuring while han-
dling a request or while creating a response for the client. The Eclipse plattform
needs no complex initialization; only for working with ssl-connections a ssl con-
nector has to be added to the ”server.xml” of the Tomcat server:

<Connector SSLEnabled="true"

clientAuth="false"

keystoreFile="D:/SmartCom/SmartComServer/keystore/.keystore"

keystorePass="SmartCom"

maxThreads="150" port="8443"

scheme="https" secure="true" sslProtocol="TLS"/>

In this connector the keystore password can be changed by altering the code
keystorePass="SmartCom", but then the password of the keystore has to be up-
dated, too. This can be done by using a program like ”Protecle” [pro].

Figure 5.1: X.509 certificate

45

Chapter 5 SmartCom - The Development

Additionally the X.509 certificate of the Tomcat server (see figure 5.1) has to be
copied into the trusted keystore of the SmartCom application. The line of code
keystoreFile= "D:/SmartCom/SmartComServer/keystore/.keystore" shows the
path to integrated keystore of the Tomcat server. The trusted keystore of the
SmartCom application can be found in the directory:
"D:/SmartCom/SmartComClient/res/raw/truststore.bks". If the project data
was copied to another directory, the path has to be updated.

Figure 5.2: Android Virtual Device

Eclipse, extended with the ADT plugin, contains the Android libraries and has an
integrated Android emulator tool, the AVD manager. The AVD manager enables
the developer to work with multiple Android Virtual Devices (AVD) (see figure 5.2)
and thereby allows to simulate more complex applications based on a server-client
architecture.
In addition to the standard tools for debugging java code such as the analysis of
data at a specific break-point, the environment has a special program for Android
development. The LogCat is a custom tool for logging and displaying the standard
Android or self defined entries while running the application on the emulator.
This is very similar to log4j for java programs. The Dalvik Debug Monitor Server

46

Chapter 5 SmartCom - The Development

(DDMS) gives a deep insight into the emulator during the test. The DDMS can,
for example, show the heap, running threads or the file explorer. In addition it also
facilitates working with SD Cards on the simulated device in an effective way.

5.3 The development process

After familiarization with the Android Framework to figure out the new posibil-
ities for application development, especially the new design components and the
usage of cryptography, I found out that only an older version of Bouncy Castle
[Bou] crypto package is available in the standard Android libraries. Therefore, I
decided to use the current version. Initially, this led to a problem, because in the
Android Framework an older class is not overwritten if it is part of the Android
libraries and that results in obscure errors. After recompiling the classes using
another name, ”bc2”, the package could be imported the normal way.
The Bouncy Castle crypto package is a powerful library and has a wide range of
supported cryptographic algorithms including algorithms for EC cryptography. It
contains a light-weight API for use in any environment, including the newly re-
leased J2ME. The developers of the library attach great value to working with the
newest specifications. The interested reader will find more detailed information on
the website: http://www.bouncycastle.org/specifications.html.
During previous works, I realized that it is easy to deal with prototypes while
working on a application, because it is easier to detect weak spots in the imple-
mentation and to get a feedback from users. This is very important in order to
find a general solution accepted by most of the potential users.
The first prototype has almost the same functionality as the prototype by Thomas
Berndt [Ber10] containing the Diffie-Hellman key-exchange and the authentication
mechanism. The application was able to send SMS encrypted with AES, but it
was on the same level of usability and therefore complex to handle. At the outset,
I started to figure out what was responsible for the lack of usability. After some
discussions with people who frequently use their smartphones for business, two
main reasons became apparent:

1. The key exchange process takes too much time and cost money.

2. Due to the limited possibilities offered by older generation mobile phones:

• The ways for the user are too long.

47

http://www.bouncycastle.org/specifications.html

Chapter 5 SmartCom - The Development

• No support tools are used to improve the usability.

• No specialized views are used for presentation.

5.3.1 The key exchange process

At first, solutions for a faster key exchange process had to be found since this is the
main disadvantage due to which users prefer other solutions for SMS encryption.
Android offers an additional possibility to develop a solution, the internet flatrate
which normally every smartphone user has. Without a data flatrate, I found
no better ways of dealing with the problem, but when thinking about solutions
using a fast and readily available internet connection, two additional approaches
to addressing the problem become feasible:

• Making use of official public keys from well-known public key servers.

• Using a special key server for SmartCom and generating new keys for every
user at the first start of the application.

The use of the official public keys seems to be the easiest solution for the problem.
However, the user has to reveal some private information. After long discussions
with different people I chose the second option, for two reasons: First, many peo-
ple who have a public key on a server were not willing to reveal their key for any
application, even if it is only a public key which contains no secret information.
Secondly, several people found it very complicated and time-consuming to create
their own key only for using a special application. This discussion is a good exam-
ple for the conflict previously described and the decisions a developer has to make
to find a balance between the two groups.
In order to work with a key server which is not from a trusted key authority, the
authentication has to be managed, because Diffie-Hellman is only secure if the
message cannot be changed during the transfer. Otherwise, an attacker can use
a Man-in-the-Middle attack to draw conclusions about the key used for the SMS
encryption (see section 3.2). The SSL connection offers a mechanism to create an
authenticated connection for both sides, but there are a few points to consider:
If a bidirectional authenticated connection should be used, both sides need cer-
tificates for the connection. Every server normally has such a certificate, but the
question remains what certificate should be used for the client side. Is it better to
use a solution which combines only a server-sided authenticated connection with

48

Chapter 5 SmartCom - The Development

another mechanism for the client authentication? After some research, I found
three possible solutions:

• The client uses the certificate from a trusted key authority like Thawte [Tha].

• The server sends back a self-created certificate to the client for later commu-
nication.

• Only a server-sided authentication with the client using his mobile number
for the authentication.

The first option seems to be the best solution for the problem, because it is easy
to get the public keys from the server and it ensures an authenticated connection.
Nevertheless in the background we have to deal with the same problem as in the
discussion about the public keys: The user has to reveal his certificate to use the
application and normally he does not know what is running in the background and
for this reason many users refuse this option. If the user has no certificate from a
trusted key authority, he has to register to get the certificate and to trust a third
”party”. In addition, the user has to pay for the certificate and that is the most
important point, because only a few people have such certificates or are willing to
spend money to obtain them.
The next step in the development process was to implement and test the second
version. After some tests and longer discussions, it became clear that this would be
a user-optimized solution, but it takes too much time from the perspective of the
test subjects. The creation of the certificate and later the storing of the certificate
takes no longer than ten seconds on the emulator, but if a person makes full use
of the application, it is a tedious and time-consuming act. Especially people with
many contacts, who want everything encrypted, will not use this application. This
can be mitigated in the future as smartphones become more and more powerful.
The third version of the program can be found in web-applications, for example
online-banking, but in this case a password is used instead of the phone number.
The Telephony Package offers a method to read-out the phone data automatically
(see section 2.4.3). As a result, the implementation of the third version is as user-
friendly as the second solution but the interactions are much faster. The user
gets a good start with the application, because the key exchange is the first step
and many users think that fast processes are an important basic quality for an
application with high usability (see section 4.5). The new key exchange process is
described in detail in the following chapter.

49

Chapter 5 SmartCom - The Development

5.3.2 The SmartCom key server

Due to the new version of the key exchange process, the SmartCom application
makes use of a dedicated public key server. The server has a straight structure: In
order to use an SSL connection, the server contains a keystore with trusted certifi-
cates. A servlet handles the requests of the clients and creates an individualized
response for each request containing the requested key or a predefined message
which informs the client that at the moment no key is available for the number
contained in the query. Additionally, the servlet has a connection to the database
to manage the incoming public keys. Every client sends its public key with the
first request to the server. After that, other clients can ask for the key to create a
common secret key for encryption.

5.3.3 Good usability by using specialized views

After the technical adaptations, I had to think about how to integrate the new
possibilities the Android smartphones offer to create a clear and well-arranged ap-
plication combined with short ways for the user (see chapter 4). I tested many
entirely different solutions until I came to the final one. Therefore, I will only
describe the underlying concept of the final version of the SmartCom layout. Dur-
ing the optimization process, I discussed every solution with people who use the
smartphone very frequently, to get solutions for wide range of potential customers.
The final version is based on a TabView layout (see section 4.6.2). This layout
ensures fast access to all three parts of the application, the Send SMS part, the
Last SMS and the History part containing a list of all received or sent SMS. After
the start of the application the Send SMS part is in front by default. The Send

SMS part is the most commonly used component of the application and thus has to
be reachable quickly (see section 4.5). Many users like the short overview about
sent and received SMS. With this layout, the user only needs to click once on the
Last SMS tab to get this overview. In this summary only recent SMS are shown.
If the user wants to find older ones from a special contact, the History tab offers
this option containing a contact overview. After choosing the contact, a summary
of all received and sent SMS becomes visible and the user can select a message to
receive more detailed information about it. Figure 5.3 shows two examples for the
TabView layout used in the SmartCom application.

50

Chapter 5 SmartCom - The Development

Figure 5.3: Layout: TabView

The only weak spot of this layout is the storing of the data in the History tab
because if the ”Back”button is pushed, the application is terminated, but normally
the previous view of the tab should be loaded. In order to solve this problem,
the onBackPressed() method has to be overwritten. I used a list of ”Bundle”
containing the information and the ID of the activity to store the history, so that
the data can be restored. This took the same time, because the new history
has to work correctly in combination with the steps of the Activity Lifecycle (see
section 2.5). This means that the history has to be integrated into the functions
which are buffering the input information.
In order to present the recent SMS and the contact overview in a user-friendly
way, I make use of the ListView (see section 4.6.2) integrated in the TabView
because it is optimized for huge lists of data and the presentation can be changed
in almost every way. Each basic view, including images, can be integrated into
the presentation of a single view element. This offers a wide range of design
possibilities.

51

Chapter 5 SmartCom - The Development

5.3.4 Support tools for improving the layout and usability

The Android OS offers a wide range of special views, the TabView and the ListView
are very popular in application development but there are also other views which
improve the usability substantially.
The AutoCompleteTextView offers a simple way to find a specific information in
a wide range of data; for that reason I use the AutoCompleteTextView (see sec-
tion 4.6.3) in the layout of the Send SMS tab for selecting the contact. Figure 5.3
shows a picture of the Send SMS tab showing an AutoCompleteTextView with an
open preselection on the left.
In order to include additional functionalities, I used the context-menu in the Smart-
Com prototype. In the Last SMS and the History tab the funtions for sorting the
SMS are accessible by the context-menu. This menu was chosen, because it is very
important that the workflow is not interrupted as that provides short ways for
the users. Figure 5.3 shows a picture of an open context-menu of the SmartCom
application.
Many applications for older mobile phones had a serious disadvantage: if an event,
such as receiving an SMS, happened, the corresponding application was started
and the user was interrupted in his work and had no influence on this behavior.
Sometimes, input data of another application was lost. In section 1.4.2 the notifi-
cation service is described. It offers a great flexibility for working with event based
applications and that is the reason why I decided to use this service, too.
In the background of the SmartCom application, the receiver is waiting for an
incoming, encrypted sms. When the receiver is activated, a notification is created
and shown in the top bar of the smartphone. I use the version with the persistent
icon in combination with a short vibration (see section 2.4.2)because it does not
disturb other people in the periphery, but nevertheless the user will be alerted to
the event and can start the application whenever he wants. I personally think that
an event based application can not work without using this service and the people
who were testing SmartCom, confirmed this opinion.
The final layout is based on a simple construction in combination with the special
views described above; it already meets the basic requirements for a user-friendly
design. The TabView ensures very short ways for the users. In combination
with the ListView and the context-menu, a transparent design with a clear, user-
optimized way for presentation of the Last SMS and History tab was found. There
is only one part left to be discussed, the most important one, the Send SMS tab of
the application.
The use of the AutoCompleteTextView for contact selection provides a clear de-
sign, but the position of the input field is important, too. The view for the name,
number and status has to be near the best position for data presentation defined

52

Chapter 5 SmartCom - The Development

by the golden ratio described in section 4.2. In addition these views will grouped
in an contiguous design to improve the overview of the user (see section 4.3.4). In
order to improve this effect the status will be shown by an simple but established
symbol (see section 4.3.3), a white arrow on green background symbolized the ex-
istance of an secure connection and a white cross on red background symbolized an
insecure connection. Many older applications have large button bars, the destroy
the transparence of the layout. To avoid this effect, the key exchange function
is connected to the status icon and the two functions Send SMS/Send encrypted

SMS are combined into one button. This button changes its label depending on
the status of the contact. I chose this solution as the majority of my test subjects
did not want to send unencrypted SMS with the application, if they have the pos-
sibility to send encrypted ones. In a future version, which may lean towards full
organizer functionality, one may have to think about adjusted solution.
The straightforward layout of the Send SMS tab, also fulfills the design principles
described in section 4.3. Figure 5.3 shows the final version of the Send SMS tab on
the left and the final version of the SMS summary of one selected contact on the
right.

5.4 Final processes

After the description of the technical changes and the design decisions, the final
version of the core processes will be presented in this chapter. The reader will get
a detailed description of:

1. The login procedure

2. Storing and loading data

3. The key exchange

4. Sending and receiving SMS

5.4.1 The login procedure

After loading the contact data, the login screen appears. At the first login into the
SmartCom application a password has to be entered and confirmed by entering

53

Chapter 5 SmartCom - The Development

it a second time. After this, a global key is created depending on the password.
During later logins, the user only has to enter this password to start the application.
Figure 5.4 shows a detailed description of the login process:

load GK

Login

key
exist?

load PW

load login
dialog

pw
correct?

unlock
screen

update
login dialog

create first
login dialog

compute
SHA

compute
GK (AES)

store GK
(keystore)

store
global PW

yes

entry

yes

no

entry

no

password entry

Figure 5.4: Process: Login procedure

54

Chapter 5 SmartCom - The Development

5.4.2 Storing and loading data

The process of the activity is protected against access from the outside by the
Android Sandbox Principle (see section 2.3). Moreover, it is also necessary to
encrypt all stored data to ensure the best level of security. During the usage of
the SmartCom application every SMS and public key will be encrypted with the
global key created at the first start. Figure 5.5 illustrates the steps for storing and
loading data:

load GK

Load

key or
SMS?

create
byte array

create enc.
version

encrypt
data

compute
hex value

store data
in DB

load data
(hex)

Store

create
byte array

load GK

decrypt
data

key or
SMS?

create SMS create key

SMS

key

SMS

key

Figure 5.5: Process: Storing and loading data

55

Chapter 5 SmartCom - The Development

5.4.3 The key exchange

The key exchange is the most important process and is responsible for the key
creation to encrypt later SMS. It will also upload the public key of the user on the
first connection. Then, the public key of the contact and the trusted certificates
for the ssl-connection are loaded and a connection is initialized. On the server
side, optionally, the new public key of the user is stored.

load
public key

Client

key
exist?

create
key pair

store
key pair

load
certificates

create SSl -
connection

create
request

requestyes

analyze
request

Server

key
sended?

store
public key

key in
DB?

load
public key

create
response

response

no

analyze
response

Client

key re-
ceived?

load
private key

compute
secret

create
AES key

store
AES key

close SSl -
connection

no

no yes

Figure 5.6: Process: Checking for key

56

Chapter 5 SmartCom - The Development

The requested public key is then loaded from the database. After that, the response
is analyzed on the client side and optionally a new key for encryption is generated.
At the end the SSL connection is closed. Figure 5.6 shows a detailed description
of the whole process.

5.4.4 Sending and receiving SMS

store SMS

load secret
key (SK)

encrypt
SMS (SK)

send load SK

start
SmartCOM

create
notification

ReceiveSend

SK
exist?

checking
for key

store SKdecrypt
SMS (SK)

store SMS

show SMS

yes

no

Figure 5.7: Process: Sending and receiving SMS

57

Chapter 5 SmartCom - The Development

During the process of sending and receiving SMS, the message is encrypted with
the global key and stored in the database of the sending device. Then the secret
key of the contact is loaded, the SMS is encrypted and sent to the second device.
There the secret key of the sender is loaded and the SMS is decrypted. After that,
the SMS is encrypted with the global key of this device and stored in the database.
Figure ?? described the process in an detailed way.

5.5 Challenges during the development

During the development process, there was only one larger problem to handle, but
many small ones. The larger problem was posed by the emulators. At first, it was
hard to find out how to handle two of the emulators for testing, because there are
some extraordinary errors, which can occur:

• The emulator crashes:

– Starting multiple emulaters simultaneously.

– Overlapping emulator windows while starting and sometimes also later.

• The emulator gets weird:

– Too fast usage of Android standard menu.

– Sometimes by starting the device with older data (day before).

– Sometimes by using a service or a function starting another processes
in the background, which calls not supported functionality.

– Long running-time can generate a wide scope of various errors.

After some time I learned to handle these errors, but there were still many ”ghost-
errors” I was chasing, which only occurred because I used the emulator too long or
was too fast for the standard menu, etc. Sometimes it was hard to figure out what
the problem was, especially when these errors were combined with a programming
error. Restarting the emulator every time an error occurs is not the best solution,
because it takes several minutes to start the emulators for the tests one by one.
Please note that I only described the origins and causes of the errors, for a detailed

58

Chapter 5 SmartCom - The Development

description of their remediation would surpass the scope of this thesis as they were
too numerous to explain in depth.
In addition to the problems with emulators, there were also some smaller ones,
based on insufficient or wrong information:

• Getting detailed information about the supported functionality of the emu-
lators.

• Find a way to run the Bouncy Castle crypto package described at the begin-
ning of the chapter.

• Problems after changing the version of the Android OS although the mech-
anism I used should be downward compatible.

• The package integrated in the Android OS does not offer the same function-
ality as the normal java package.

Even at the start of my diploma thesis, the official documentation was very limited,
as soon as more detailed information was needed. During the last one and half
year, however, the Android OS became very popular and so the documentation
becomes more detailed.
In order to work with an SSL connection or, more generally, a client-server archi-
tecture it is important to think about the tests. It took me some time to figure
out that the emulators also have their own ”localhost”; to fix this problem, the IP
address of the server has to be used instead of localhost. The problem is also fixed
if the server has a dedicated domain name like ”www.corsec.de”.
The creation of the interface of the application is an another time consuming
aspect, because the Eclipse version for Android development has an integrated
interface designer, but if a complexer view has to be created, it is very hard to get
the desired results. Aside from that, it took a lot of time to switch between the
two perspectives in Eclipse. After some research, it was much easier to do that by
hand. In addition, the source code was much more clearly and readily adaptable
to new design ideas.

59

Chapter 6

SmartCOM - A demonstration

After the description of the development and the core process, this chapter will
present the final version of the SmartCom prototype. The reader will get an
illustrated and detailed overview of the workflows.

6.1 Login

Figure 6.1: First login screen Figure 6.2: First login error

60

Chapter 6 SmartCOM - A demonstration

In order to work with the SmartCom application, the user has to login. First of
all, the contact data is read-out from the phonebook. During the loading time a
dialog is displayed to inform the user. Then the user has to select and enter his
password. Then the equality of the password is checked and if it matches, the
global encryption key is derived (see 5.4.1) and stored in the database. Figure 6.1
shows the loading dialog and figure 6.2 the login error on the right which can
occur.

Figure 6.3: Standard login screen

During the standard login the contact data is also read-out. Then the user has
to enter his password and if it is valid, the SmartCom application starts and the
Send SMS tab will be in front. Figure 6.3 shows the standard login.

6.2 Key Exchange

After the login, the TabView layout (see 4.6.2) of the SmartCom application is
displayed and the Send SMS tab is in front. As the contact data is read-out, the
users can choose one of their contacts in the AutoCompleteTextView (see 4.6.3)
at the top. Then the users, let me call them Anne and Tim, can start the key
exchange (see 5.4.3) by clicking on status symbol on the right of the name field.

61

Chapter 6 SmartCOM - A demonstration

Figure 6.4: Key exchange part 1 Figure 6.5: Key exchange part 2

Figure 6.6: Key exchange part 3 Figure 6.7: Key exchange part 4

Tim selected Anne (Figure 6.4) and starts the exchange. Since, Anne has not
started any exchange before, no public key is available on the server and Tim

62

Chapter 6 SmartCOM - A demonstration

gets the notification, that the synchronization is finished, but the status will leave
unchanged (Figure 6.5). Then Anne wants to send an encrypted SMS and in order
to do that, she also starts the exchange. In contrast to Tim, she received a public
key, because Tim has started an exchange before and his public key was uploaded.
The status switches to a checkmark on green background and the button label
changes to ”Send encrypted SMS” (Figure 6.6). Later, Tim starts the exchange
again and can receive the public key of Anne (Figure 6.7). Even if Tim does not
start the key exchange again, the public key will be downloaded automatically by
receiving an encrypted SMS from Anne. Henceforth, Anne and Tim can transmit
their informations via encrypted sms.

6.3 Send SMS

Figure 6.8: Send encrypted SMS

After establishing a common secret, encrypted sms can be sent. This takes not
more time as for a standard SMS. The user has to enter the text in the text field
and can send it by clicking on the button ”Send encrypted SMS”. After sending
an SMS, the user is informed about the status by a notification on the screen and
the text field is cleared. Figure 6.8 shows the simple workflow.

63

Chapter 6 SmartCOM - A demonstration

6.4 Receive SMS

Figure 6.9: Receive SMS part 1 Figure 6.10: Receive SMS part 2

Figure 6.11: Receive SMS part 3 Figure 6.12: Receive SMS part 4

64

Chapter 6 SmartCOM - A demonstration

At the time when the user receives a SMS, a notification (see 2.4.2)is show on top
in the notificaten bar (Figure 6.9). Nothing changes to the user, he can continue
his work uninfluenced. In order to open the encrypted SMS, the user can start
the SmartCom application by opening the notification menu and clicking on the
corresponding notification (Figure 6.10). Then the application starts or comes to
the front depending on if the user was working with the application or not. When
the application has to start, the user has to enter his password in the login screen
(Figure 6.11), otherwise if the user was working with SmartCom, the History tab
will open and the received SMS is decrypted and displayed (Figure 6.12).

6.5 Last SMS

Figure 6.13: Last SMS part 1 Figure 6.14: Last SMS part 2

The Last SMS tab offers the user the possibility to see on one click which SMS
he has received in the last time (Figure 6.13) ordered by date. The SMS can be
easily distinguish between incoming and outgoing SMS by the red or green arrow
at the right of the ListView element (see 4.6.2). Aside from this, the user can also
change the view by opening the underlying menu via a long click on a list element
to display only the incoming or outgoing SMS (Figure 6.14).

65

Chapter 6 SmartCOM - A demonstration

6.6 History

The History tab contains all messages of the contacts. At first the contact overview
is in front (Figure 6.16).

Figure 6.15: History part 1 Figure 6.16: History part 2

Figure 6.17: Demo: History part 3 Figure 6.18: Demo: History part 4

66

Chapter 6 SmartCOM - A demonstration

In this view, the user can choose a contact by clicking on it. Then the view will
change and the SMS of the selected contact are displayed on the screen ordered by
date (Figure ??). Via a long click on a message, the user can open the underlying
menu and distinguish between incoming and outgoing SMS (Figure 6.17). When
the user has found the desired SMS, he can open it by a click. The next view
displays the whole SMS and the user has the possibility to delete it (Figure 6.18).
The History tab is a very basic version of an SMS organizer. In future versions
more functionality has to be added.

67

Chapter 7

Conclusion / Further Work

The SmartCom prototype presented in chapter 6 shows that a high level of secu-
rity and good usability can be combined in one application. The application is
compatible to all Android versions higher than 2.1 which means that nearly 50%
of all smartphone user should be able to use this application and communicate
securely via text messages.
The History tab of the application is a small, basic version of an SMS organizer.
In future versions of the application, this functionality will offer a lot of potential
for extension to increase the attractiveness of application. Offering more possibil-
ities for sorting, searching specific SMS and deleting multiple SMS is one option
to do that. Another option is to include the key-exchange funtionality into the
ListView of the contact overview in combination with the contact symbol.
As the read-out mobile number of the smartphone is currently used as a password
for the authentication of the client against the server, the password can not be
changed. This is essentially an adaptation of the password authentificatin used
e.g. in online banking. In the future, this authentication could be changed to
another password based mechanism or a process based on certificates which would
allow the user to update their authentification credentials. A prerequisite for the
latter solution would be, that every user has a certificate from a trusted key au-
thority (e.g. as part of an identity card).
The application was developed in an emulater based development environment. If
the application can be tested in a live environment, it would be easy to extended
the application for MMS encryption, because the emulator does not support the
MMS funtionality.
Voice call encryption is another functionality which would be a powerful extention
of the application; unfortunately the Android API offers no deep level access to
modify the voice channel before it is sent. At that time, the only way to encrypt
a voice channel is via Voice over IP by using the internet connection. However,

68

Chapter 7 Conclusion / Further Work

this solution needs a dedicated server to establish a connection between two users,
because the smartphones have no fixed IP adresses and the server handles this
problem. The described application would be very similar to Skype extended with
an encryption mechanisms. Presently, there is no other possibility to encrypt the
voice channel, but during the next years the IP address will be reformed. Maybe
with more available IP addresses, every smartphone has its own fixed adress and
Voice over IP can be implemented directly.

69

Bibliography

[Anda] Android Activity Lifecycle. Webpage. http://developer.android.
com/reference/android/app/Activity.html

[Andb] Android Contact Provider. Webpage. http://developer.android.
com/reference/android/provider/ContactsContract.html

[Andc] Android Notifications Service. Webpage. http://developer.

android.com/guide/topics/ui/notifiers/notifications.html

[Andd] Android SSL. Webpage. http://developer.android.com/

reference/javax/net/ssl/package-summary.html

[Ande] Android Telephony Service. Webpage. http://developer.android.
com/reference/android/telephony/package-summary.html

[Andf] The AndroidManifest.xml File. Webpage. http://developer.

android.com/guide/topics/manifest/manifest-intro.html

[ANS] ANSI X9.62:2005. Webpage. http://webstore.ansi.org/

RecordDetail.aspx?sku=ANSI+X9.62:2005

[Apa] Apache Tomcat. Webpage. http://tomcat.apache.org/

[Ber10] Berndt, Thomas M.: CryptCOM - Insuring secure communication
on arbitrary GSM phones by applying strong cryptography, Univer-
sität Bonn, Diplomarbeit, 2010

[BJS07] Barker, Elaine ; Johnson, Don ; Smid, Miles: NIST Special Publi-
cation 800-56A. Webpage. http://csrc.nist.gov/publications/
nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf.
Version: March 2007. – NIST Special Publication 800-56A

70

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/provider/ContactsContract.html
http://developer.android.com/reference/android/provider/ContactsContract.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
http://developer.android.com/reference/javax/net/ssl/package-summary.html
http://developer.android.com/reference/javax/net/ssl/package-summary.html
http://developer.android.com/reference/android/telephony/package-summary.html
http://developer.android.com/reference/android/telephony/package-summary.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62:2005
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62:2005
http://tomcat.apache.org/
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

Bibliography

[Bon] Bonn, Institute for Computer Science III University o.: Scotland
Yard - to go! Webpage. http://sam.iai.uni-bonn.de/projects/
amoga/

[Bor08] Bort, Dave: Android is now available as open source. Web-
page. http://web.archive.org/web/20090228170042/http://

source.android.com/posts/opensource. Version: October 2008

[Bou] The Legion of the Bouncy Castle. Webpage. http://www.

bouncycastle.org/

[BP10] Becker, Arno ; Pant, Marcus: Android 2 - Grundlagen und Pro-
grammierung (2te - Auflage). Heidelberg : dpunkt, 2010. – ISBN
978–3898646772

[Bul00] Bulman, Philip: Commerce Department Announces Win-
ner of Global Information Security Competition. Webpage.
http://www.nist.gov/public_affairs/releases/g00-176.cfm.
Version: October 2000

[Bun09] Elliptic Curve Cryptography. Webpage. https://www.bsi.

bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/

TechnischeRichtlinien/TR03111/BSI-TR-03111_pdf.pdf?__

blob=publicationFile. Version: April 2009. – Technical Guideline
TR-03111

[BWBG+06] Blake-Wilson, S. ; Bolyard, N. ; Gupta, V. ; Hawk, C. ;
Moeller, B.: Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS). Webpage. http://www.ietf.

org/rfc/rfc4492.txt. Version: May 2006. – RFC 4492

[DA99] Dierks, T. ; Allen, C.: The TLS Protocol, Version 1.0. Webpage.
ftp://ftp.ietf.org/rfc/rfc2246.txt. Version: January 1999. –
RFC 2246

[DH06] Diffie, Whitfield ; Hellman, Martin E.: New Directions in Cryp-
tography. Webpage. http://www.cs.jhu.edu/~rubin/courses/

sp03/papers/diffie.hellman.pdf. Version: May 2006

[DR02] Daemen, Joan ; Rijmen, Vincent: The Design of Rijndael. AES -

71

http://sam.iai.uni-bonn.de/projects/amoga/
http://sam.iai.uni-bonn.de/projects/amoga/
http://web.archive.org/web/20090228170042/http://source.android.com/posts/opensource
http://web.archive.org/web/20090228170042/http://source.android.com/posts/opensource
http://www.bouncycastle.org/
http://www.bouncycastle.org/
http://www.nist.gov/public_affairs/releases/g00-176.cfm
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03111/BSI-TR-03111_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03111/BSI-TR-03111_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03111/BSI-TR-03111_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03111/BSI-TR-03111_pdf.pdf?__blob=publicationFile
http://www.ietf.org/rfc/rfc4492.txt
http://www.ietf.org/rfc/rfc4492.txt
ftp://ftp.ietf.org/rfc/rfc2246.txt
http://www.cs.jhu.edu/~rubin/courses/sp03/papers/diffie.hellman.pdf
http://www.cs.jhu.edu/~rubin/courses/sp03/papers/diffie.hellman.pdf

Bibliography

The Advanced Encryption Standard. Berlin, Heidelberg, New York :
Springer, 2002. – ISBN 3–540–42580–2

[DR08] Dierks, T. ; Rescorla, E.: The Transport Layer Security
(TLS) Protocol Version 1.2. Webpage. http://www.ietf.org/rfc/
rfc5246.txt. Version: August 2008. – RFC 5246

[Ecla] Android Development with Eclipse. Webpage. http://www.

eclipse.org/resources/resource.php?id=516

[Eclb] Eclipse IDE for Java EE Developers. Webpage. http://www.

eclipse.org/downloads/moreinfo/jee.php

[FKK96] Freier, Alan O. ; Karlton, Philip ; Kocher, Paul C.: The SSL
Protocol, Version 3.0. Webpage. http://web.archive.org/web/

20080206214535/http://wp.netscape.com/eng/ssl3/draft302.

txt. Version: November 1996. – Transport Layer Security Working
Group (IETF)

[Gar10] Gartner Says Worldwide Mobile Phone Sales Grew 35 Percent
in Third Quarter 2010; Smartphone Sales Increased 96 Percent.
Webpage. http://www.gartner.com/it/page.jsp?id=1848514.
Version: November 2010

[Gar11] Gartner Says Sales of Mobile Devices Grew 5.6 Percent in
Third Quarter of 2011; Smartphone Sales Increased 42 Percent.
Webpage. http://www.gartner.com/it/page.jsp?id=1848514.
Version: November 2011

[Hof10] Hoffmann, Manuela: Modernes Webdesign - Grundgestal-
tungsprinzipien, Webstandards, Praxis. 53227 Bonn, Rheinwerkallee
4 : Galileo Press, 2010. – ISBN 978–3–8362–1502–2

[LV00] Lenstra, Arjen K. ; Verheul, Eric R.: Selecting Cryptographic
Key Sizes. In: Public Key Cryptography, 2000

[NIS02] NIST: FIPS 180-2: Announcing the Secure Hash Standard /
Information Technology Laboratory, National Institute of Stan-
dards and Technology. Version: August 2002. http://csrc.

72

http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.eclipse.org/resources/resource.php?id=516
http://www.eclipse.org/resources/resource.php?id=516
http://www.eclipse.org/downloads/moreinfo/jee.php
http://www.eclipse.org/downloads/moreinfo/jee.php
http://web.archive.org/web/20080206214535/http://wp.netscape.com/eng/ssl3/draft302.txt
http://web.archive.org/web/20080206214535/http://wp.netscape.com/eng/ssl3/draft302.txt
http://web.archive.org/web/20080206214535/http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.gartner.com/it/page.jsp?id=1848514
http://www.gartner.com/it/page.jsp?id=1848514
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

Bibliography

nist.gov/publications/fips/fips180-2/fips180-2.pdf. 2002.
– Forschungsbericht

[NIS09] NIST: FIPS 186-3: Digital Signature Standard (DSS) / Information
Technology Laboratory, National Institute of Standards and Tech-
nology. 2009. – Forschungsbericht

[NSA05] NSA Suite B Cryptography. Webpage. http://www.nsa.gov/ia/

programs/suiteb_cryptography/index.shtml. Version: 2005

[NSA09a] The Case for Elliptic Curve Cryptography. Webpage. http:

//www.nsa.gov/business/programs/elliptic_curve.shtml.
Version: Januar 2009

[NSA09b] Suite B Implementer’s Guide to NIST SP 800-56A. Web-
page. http://www.nsa.gov/ia/_files/SuiteB_Implementer_

G-113808.pdf. Version: July 2009

[pro] Protecle. Webpage. http://portecle.sourceforge.net/

[SEC] SECG Released Standards. Webpage. http://www.secg.org/

index.php?action=secg,docs_secg

[SG03] Syme, Matthew ; Goldie, Philip: Optimizing Network Perfor-
mance with Content Switching: Server, Firewall and Cache Load
Balancing. Prentice Hall, 2003 http://www.informit.com/store/

product.aspx?isbn=0131014684. – ISBN 978–0131014688

[Sta98] Stallings, William: The Internet Protocol Journal - Vol-
ume 1, No. 1: SSL: Foundation for Web Security. Webpage.
http://www.cisco.com/web/about/ac123/ac147/archived_

issues/ipj_1-1/ssl.html. Version: June 1998

[Tha] Thawte - Online-Sicherheit, der Millionen in aller Welt
vertrauen. Webpage. http://www.thawte.de/?sl=

t88700282810000007&gclid=CKmZl9a2ka4CFUwf3godbyswhQ

73

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf
http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf
http://portecle.sourceforge.net/
http://www.secg.org/index.php?action=secg,docs_secg
http://www.secg.org/index.php?action=secg,docs_secg
http://www.informit.com/store/product.aspx?isbn=0131014684
http://www.informit.com/store/product.aspx?isbn=0131014684
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html
http://www.thawte.de/?sl=t88700282810000007&gclid=CKmZl9a2ka4CFUwf3godbyswhQ
http://www.thawte.de/?sl=t88700282810000007&gclid=CKmZl9a2ka4CFUwf3godbyswhQ

Index

A
ADT plugin . 46
AES. 23–28, 47

AddRoundKey 25–26
key generation 25
MixColumns 25, 27–28
Rijndael-Algorithm 24
S-Box . 26, 28
ShiftRows 25–28
SubBytes 25–26, 28

Android
activity.14, 51, 55
Activity Lifecycle 12–14, 51
architecture.7–8
Contact Provider 10–11
Dalvik Virtual Machine 8–9
integrated systems.10–14
Manifest 9, 10, 12, 44
Notification 11, 52
Notification Service 11, 52
operating system 6–14
Protecle Principle 55
Sandbox Principle 9
Telephony Package.12

AndroidManifest 9
ANSI . 19
ARM-Processors 8
AVD . 46
AVD manager . 46

B
Bouncy Castle crypto library . . 47, 59

D
Dalvik Debug Monitor Server 47
DES . 24
Diffie-Hellman 19–20, 47, 48
DLP. .18
domain parameters 15
DSA. .21

E
Eclipse

Android.46, 59
Java EE . 45

Elliptic curve.15–19
domain parameters 19
ECDLP 18, 20
NIST curves18–19
point of infinity 16

Elliptic curve cryptography 15–20, 47
embedded systems.7, 8

F
Finite field . 17

binary field 19
prime field . 19

finite field 15, 17, 18
binary field 18
prime field . 18

G
Galois field . 27
Global key . 54, 58
Golden ratio . 53
golden ratio 35–36

74

Index

I
iOS . 6
IP address . 59
iPhone. .6

J
Java . 4
JVM Apache Harmony.8

K
key-agreement . 19
Koblitz curve . 19

L
Linux . 9

M
Man-in-the-Middle attack 20, 48
menu. .39–40

context-menu 39, 52
option-menu 39

N
NIST 18, 19, 21, 24
NSA . 19, 21

O
OSI-Layer-Model 29

R
Receiver . 52
RSA . 18, 32

S
SECG . 19
server-client architecture. . .44, 46, 59
servlet . 50
SHA-256 . 21–23

compression function 22–23
message schedule 21–22

SmartCom.43, 44, 46–58, 65, 68
key exchange 48–49
key server. .50

processes . 53
key exchange 56–57
loading data 55
login procedure 53–54
receiving SMS 58
receiving sms 57
sending SMS. 58
sending sms.57
storing data.55

SSL . 28–33
Alert Protocol 32
Application Data Protocol 32
architecture 29–30
Change Cipher Spec Prot. . 31–32
Handshake Protocol 30–32
Record Protocol 32–33

SSL connection 48, 50, 56, 57, 59
Suite-B . 19
Symbian . 6

T
TCP/IP-Network 29
Thawte . 49
Tomcat server.45, 46

V
view

AutoCompleteTextView . . 42, 52,
61

ListView. . . .40–41, 51, 52, 65, 68
TabView 39–41, 50, 52

Voice over IP 68, 69

W
Weierstrass Equation 16

75

	Declaration
	Abstract / Übersicht
	Introduction
	The Android Operating System
	Architecture of the Android-OS
	The Dalvik Virtual Machine
	The Android Sandbox Principle
	Android integrated systems
	The Contact Provider
	The Notification Service
	The Telephony Package

	The Activity Lifecycycle

	Cryptography
	Elliptic curve cryptography
	Elliptic curves
	The Elliptic Curve Discrete Logarithm Problem
	NIST curves

	Elliptic Curve Diffie-Hellman Key Exchange
	The SHA-256 Algorithm
	Preparation
	The SHA-256 Message Schedule
	The SHA-256 Compression Function

	The AES-Algorithm
	Mode of operation
	Key generation
	Step: AddRoundKey
	Step: SubBytes
	Step: ShiftRows
	Step: MixColumns
	Decryption

	The Secure Socket Layer
	The SSL Architecture
	The SSL Handshake Protocol
	Additional first layer protocols
	The SSL Record Protocol

	Design principles
	How to create a good usability
	The golden ratio
	Keep the interface transparent
	Think about the amount of elements on the screen
	Present navigation differently
	Make use of established identifiers
	Group elements with the same theme
	Reduce distracting elements to a minimum

	Minimize the text input
	Short ways for the user
	Take advantage of inbuilt functionality
	Application menus
	TabView and ListView
	The AutoCompleteTextView

	SmartCom - The Development
	Conflict between privacy and simplicity
	Preparation
	The development process
	The key exchange process
	The SmartCom key server
	Good usability by using specialized views
	Support tools for improving the layout and usability

	Final processes
	The login procedure
	Storing and loading data
	The key exchange
	Sending and receiving SMS

	Challenges during the development

	SmartCOM - A demonstration
	Login
	Key Exchange
	Send SMS
	Receive SMS
	Last SMS
	History

	Conclusion / Further Work
	Bibliography
	Index

