KUMAR SHARAD (2012). Certificateless Encryption Scheme Using Biometric Identity. Master’s thesis, Department of Computer Security, b-it, University of Bonn, Bonn,

Germany.

This document is provided as a means to ensure timely dissemination of scholarly are maintained by the authors or by other copyright holders, notwithstanding that ing any of these documents will adhere to the terms and constraints invoked by poses. These works may not be posted elsewhere without the explicit written per-

and technical work on a non-commercial basis. Copyright and all

these works are posted here electronically. It is understood that all persons copy- each copyright holder, and in particular use them only for noncommercial pur- mission of the copyright holder. (Last update 2017/11/29-18 :22.)

rights therein

RWTHAACHEN

[|
Bonn-Aachen
UNIVERSITY (— I International Center for
Information Technology

DEPARTMENT OF COMPUTER SECURITY, b-it

MEDIA INFORMATICS

MASTER’S THESIS

Certificateless Encryption

Scheme Using Biometric
Identity

Author: Supervisors:
Kumar SHARAD Prof. Dr. Joachim VON ZUR (GATHEN
Matr. Nr. - 298748 Dr. Michael NUSKEN

Bonn, March 13, 2012

Acknowledgement

This master’s thesis is the result of the help and cooperdkiat | received from
my professors, colleagues, friends and family members. uldviike to take this
opportunity to express my gratitude to the people who halgeldane in achieving
my goals. This master’s thesis has been written under thergigpn of Prof. Dr.
Joachim von zur Gathen and the guidance of Dr. Michael N{ské&hout their
contributions this work could not have been completed.

Of the various people who contributed to my work, Dr. Michilgisken was
specially helpful and patient in answering my questions sugbesting improve-
ments. He was always supportive of my work and provided \déufeedback. His
suggestions and ideas have helped in shaping this thesis.

| was first introduced to the field of cryptography when | tob& tourse on ba-
sic cryptography offered by Prof. Dr. Joachim von zur Gatineny first semester.
Ever since | have been fascinated by this area and Prof. Cachilm von zur
Gathen has had a huge influence in driving my interests. luéstd him that |
took subsequent coursework in the area of security andagygaphy and this has
finally culminated as my master’s thesis. | am grateful to famthe inspiration,
motivation and support he has given me.

Over the period of this thesis | have learned many things and Very thankful
to the people oDepartment of Computer Secur#yb-it, Bonn for this. They were
always helpful to me whenever | sought their counsel andritmriied in useful
discussions. Finally, I would like to thank all my friendsdafamily members for
their valuable support and understanding.

Abstract

Often encryption is used to provide data privacy but aloigeribt enough to ensure
it. Generally the key which is used to decrypt an encryptedsage is stored in
the device along with the message itself and in the event\iteeompromise,
privacy of data cannot be guaranteed. This thesis proposeseane which solves
this problem by providing two-factor security for mobilevites. The proposed
scheme generates key-pairs for identity based encrypsiog biometric informa-
tion of the user which is semi-private. The schemeerificatelessand free from
key escrow

The work is mainly based on the ideas developed in the pa@péificateless
Encryption Schemes Strongly Secure in the Standard Mxyde!

(). In this paper the authors proposed a construction basédioear
groupsto generate key-pairs using user’s identity. We have matiifies construc-
tion to includebiometricsof the user. By doing so we further fortify the security
of the scheme and this provides protection in the event dEdeompromise. The
generation of key-pair is based on chosen secrets as wdleasometric identity
of the user.

Decryption of a message requires the private key to be gexaklg combining
pre-computed secrets stored in the device along with thadtidc data which must
be provided by the user every time he wishes to decrypt a mes3ae private key
is deleted after decrypting the message and is never stotée device. So when
an adversary gains possession of the device with the eectypessages in it, the
device does not contain the entire private key to decryptrikesages but only a
part of it. This part would have to be combined with the cart@ometrics to which
only the rightful owner hasasyaccess. This property of the scheme provides two-
factor security where the user needs to not only possessethieedbut also have
the required biometric data. In the proposed attack modeteet biometric data
as semi-private which means that in practice it is not rgali&ilable to the people
who do not know the user, hence even if the device is compeatrits messages
cannot be trivially decrypted.

Contents

Introduction

1.1
1.2
1.3
1.4
1.5

Problem Definition.
Goals
Approach Taken
Results
Organisation i i e

Evolution of Cryptographic Schemes

2.1
2.2
2.3
2.4
2.5
2.6

Symmetric-Key Cryptography.
Public Key Cryptography
Identity-Based Cryptosystems
Fuzzy Identity-Based Encryption.
Self-CertifiedKeys.,
Ceritificateless Public Key Cryptography

Related Work

3.1

Proposed Modification.

Preliminaries

4.1
4.2
4.3

Notation. o e e e
Parties.
Definitions. e e e e e

Overview of the Original Construction

5.1
5.2

Components of the Original CL-PKE.
Protocol Architecture.

Overview of the Derived Construction

6.1
6.2

Components of the Modified CL-PKE
Protocol Architecture. e

Applications of CL-PKE

Advantages of the Modified Scheme

Security Model

9.1
9.2

9.3

Chosen ciphertextsecurity.
Security Model for the Original Scheme.
9.21 Oracles. e
9.2.2 Adversaries e
Security Model for the Modified Scheme
9.3.1 Oracles. e
9.3.2 Adversaries

14
14
14
15
16
16
17

19
20

22
22
22
22

25
25
26

29
29
30

34

37

10 Concrete Original Construction

11

12

13

10.1 The Construction. v i i v i i e i i
10.2 Security Reduction. o

Concrete Derived Construction
11.1 The Construction. o v v v e e e e e e e
11.2 Security Reduction.

Implementation

12.1 Platform. e

12.2 Programming Language and Libraries.
12.2.1 BilinearMaps oo
1222 QRCodes e

12.3 Device Specifications o 0L,

12.4 Original Construction
12.4.1 Application Interface
12.4.2 Class Structure

12.5 Derived Construction oL
12.5.1 Biometricldentity
12.5.2 Application Interface
1253 Class Structure

Conclusion
13.1 Contributions. e
13.2 Challenges and Future Work

Source Code for the Original Construction

A.1 CertificatelessEncAppActivityjava
A.2 ComposeMessage.java v v v i e
A3 Helpjava e
A.4 KeyGenerationCenterjava
A5 Mailjava e
A6 Methods.java. e
A7 ReadMessage.java. v v i e e
A8 Receiverjava. i e e
A9 Senderjava.

Source Code for the Derived Construction

B.1 CertificatelessEncModAppActivity.java

B.2 ComposeMessage.java. v i i
B.3 Decode.java. e
B.4 Encodejava.
B5 Helpjava
B.6 KeyGenerationCenterjava

48
48
51

68
68
71

82
82
82
83
85
85
87
87
93
95
95
97
106

110
110
111

121
121
122

126
127

128
132
134
136
138

B.7 Mailjava 156
B.8 Methods.java. 160
B.9 ReadMessage.java. i v it i i 162
B.10 Receiverjava. e 165
B.1l Scan.java. o i e e 167
B.12 Senderjava. 169
B.13 Services.java. e e 171

B.14 Setup.java.o 174

1. Introduction

1.1. Problem Definition. Traditionally in encryption schemes the encrypted mes-
sage and the key needed to decrypt it are stored in the sarice ded the compro-
mise of the device makes decryption of the message imminethebattacker thus
destroying all privacy. With mobile devices being incregby used by a large por-
tion of the population for communication, the possibiliiyd@vice theft or loss is
even higher. Such threats need to be accounted for and weneggbtion schemes
which provide security even after the device is compromisauke way to safeguard
against these threats is to usen-factor authentication. Awo-factorauthentica-
tion mechanism provides security even after the first lindedénce collapses. In
case of mobile devices this would be equivalent to the adwgigaining control of
the device. Atwo-factorauthentication procedure would ensure that the adversary
can not decrypt the messages stored in the device by usintp@isontents of the
device. To form a second line of defence we propose the usmwfetric data in
the encryption scheme. The encryption scheme would useidinechrics of the
user coupled with secrets stored in the device to encryptdaedypt messages.
Usage of biometric data has several advantages the mo#sicgighones being its
easy availability only to the legitimate user and inherdfficdlty in replicating it.

Although biometric information is not entirely private weagnconsider it as
semi-privatesince it is not readily accessible to an attacker and in nbeaimaum-
stances it should be hard for the attacker to acquire thedirgea of an unknown
user. Hence in order to decrypt a message an attacker wowddtth@ompromise
the device as well as replicate the biometric data of the. LiEkese two factors
combined together pose a significantly harder challeng&doattacker as com-
pared to before where he just had to compromise the device.

1.2. Goals. The issues pointed out in the problem definition requirevesti-
gation of security goals and threat models. The problem iwhpy after device
compromise has not been treated in detail by existing scheme merely ensur-
ing the privacy of data under ideal circumstances is far femaquate. To design
an encryption scheme that refutes such attacks requirefutaonsideration of a
number of aspects . In this section we describe the primataariliary goals that
must be achieved by such a scheme. These goals are discugsatiér detail in
the subsequent sections and here we just introduce theddels are treated in
the text to follow. Below we formalise the primary and awxili goals that such an
encryption scheme should attain.

o The scheme must provide protection against device comgemi

o The scheme must use secrets stored in the device couplediaittetrics
to encrypt and decrypt messages, the advantages that wiagaithis have
been detailed irsection 8

o The scheme must not be resource extensive since it is terfmmtenobile
devices.

10

0]

The scheme must be certificateless thus simplifyingRhbblic Key Infras-
tructure (PKIl)deployment and management. This would also reduce the
computational costs endured by the mobile devices by editirig the need

to validate certificates.

These features provide us a starting point and we may nown begionceptu-
alise the design of an encryption scheme which supporte tpesls.

1.3. Approach Taken. To achieve the goals described in the previous section we
use the ideas introduced @ertificateless Encryption Schemes Strongly Secure in
the Standard Modeby (). This scheme serves as a
basis on which we build our construction, we borrow the preskideas and mod-

ify them to design a scheme that supports our goals. Thercmtish presented by

possess properties that are very well aligned to the targets

that we wish achieve and we highlight them below.

0]

Identity Based Since we intend to use biometric identity to encrypt and
decrypt messages itis only natural to usedamtity-Based Encryption (IBE)
scheme. AlsdBE schemes are certificateless and this meets another very
key requirement hence we chose the construction mentidneekass it fits

our needs well.

No Key Escrow IBE schemes suffer from the drawback of key escrow, how-
ever the construction presented by is free from this
problem. This decreases the trust requirement that a usgtrputiin a third
party and makes it harder for the rogue trusted parties tagaipower.

Certificateless Even after being free from key escrow the scheme retains
the important properties ®BE schemes and is certificateless.

Minimal Trust RequirementsNormally IBE schemes require a high level of
trust to be placed in a central authority which possessepritate keys of
users and hence has the ability to read private communicalioe construc-
tion of is free from such central control and the trust
requirements are comparable to those one normally putsCargfication
Authority (CA), we discuss this point in more detail &ection 9

Lightweight- The scheme is lightweight which is essential since we wish
to design the scheme for mobile devices. Such devices hadeshoom-
putation power and memory and this should be taken into axtcatile
designing the construction.

Security- The scheme is secure in the standard model which is the best
possible security one can achieve.

Due to these factors we have chosen the construction peesbpt

11

Historic Background Cryptographic schemes have evolved continuously to meet
the needs of the current time, it all started wsirmmetric-key cryptographwhich
was followed byasymmetric-key cryptographfhese schemes although effective,
were plagued by problems of proliferation of keys and irtftature management.
To resolve these issues the conceptlehtity-based cryptographyas introduced.
Later the idea obelf-certified keysvas explored and finally this evolution led to
the development ofertificateless Public Key Cryptography (CL-PKQOhe idea

of Certificateless Public Key Encryption (CL-PKEYolved as a result of the work
done in the areas dBE and public key cryptography. Each of the mentioned ap-
proaches tried to solve the problems posed by the previcusrgion of schemes.
We discuss the motivations, history and evolution of thefemes in more detail

in Section 2

New Ideas Our work is mainly based ofBE and CL-PKE, in this thesis we

present a practical solution to counter device compronysesing biometrics of

the legitimate user as a second line of defence. With moleNécds becoming in-
creasingly powerful and affordable we might soon be ablestohiometrics seam-
lessly and hence our work is aimed at the future. We have ranst the scheme
to work on standard hardware and no special set-up is reuifee biometric data
of the user never leaves the device and is neither storeslpitly used while en-

cryption and decryption. This ensures that no one can hamges data and launch
attacks using that information. The introduction of biorizetlata in the original

scheme has very little impact on the computational costaredicby any of the par-
ties involved. These changes have almost no perceivaliease in the encryption
and decryption times.

1.4. Results. We have derived a scheme using the construction proposed by
(), our scheme attains all the goals that we defined
in Section 1.2 We show that our construction is secure in the standard imnode
and retains all the important features introduced sy nTo
demonstrate our scheme we have developeaiatnoid application which provides
a proof of concept of the derived scheme. For sake of compstewe have also
developed arAndroid application implementing the original scheme as proposed
by !
The prototypes developed by us are a proof that the suggeltetes to the
original scheme are practical and achievable, it also thrgyht on the efficiency
and convenience of using such schemes. This informatioitakfar further de-
velopments and improvements to the scheme.

1.5. Organisation. The rest of the paper is organized as follows. First we look
at the evolution of public key cryptography and motivate pineblem at hand in
Section 2 Then we take a detailed look at the work already done in tha af
certificateless encryption ifection 3 The concepts and definitions that have been
used in this paper to construct the certificatelss encmymahemes are defined in

12

Section 4 We present an overview of an existing certificateless guioy scheme
in Section 5and in Section 6propose modifications to it to achieve two-factor
security. Then we look at various applications and advastad certificateless en-
cryption inSection 7andSection &espectively. The security model of the original
and the modified scheme is presentedsittion 9where we define oracles, ad-
versaries and attackers. We present the concrete originatreiction and its secu-
rity reduction inSection 1this is followed by the concrete modified construction
and its security reduction iBection 11 We discuss the implementation details in
Section 12and finally the paper ends with concluding remarkSattion 13

13

14

2. Evolution of Cryptographic Schemes

Several cryptographic schemes exist today which have edabver the years to
meet the privacy goals which encompassed the challenged facthe people at
the time. As technology has evolved not only have the datawaption habits of

people changed but it has also had a profound effect on thewsaypmmunicate.

If we look at these schemes in detail we will discover that goal is common

to them all which is balancing convenience with securitythis section we look

at how new cryptographic schemes have evolved successiVbgre has been a
concerted effort to make data security more and more coememind each new
scheme has tried to achieve this, at times perhaps at thefqmstacy.

2.1. Symmetric-Key Cryptography. This is one of the earliest form of encryp-
tion schemes. The onset 8fymmetric-Key Cryptographgllowed parties to par-
take in private communication, users could now agree on wéysh would allow
them to communicate privately by encrypting messages uhaigkey. But it had
drawbacks like proliferation of keys since each pair of ssexeded a unique key
to communicate privately this lead to every user having asgp key for all his
communication channels. Also key exchange was not simpleiaers had to run
key agreement protocols prior to sending messages to eheh ofhese issues
made key management and off-line communication difficult.

2.2. Public Key Cryptography. To solve the drawbacks &ymmetric-Key Cryp-
tographythe idea ofAsymmetric-Key Cryptographyr Public Key Cryptography
came into existence. It solved the problem of key manageimgaissigning two
keys to each user, @rivate keyand apublic key the user can freely distribute his
public keywhile keeping theprivate keyonly to himself. This allowed him to re-
ceive messages encrypted with pisblic keywhich could be decrypted using his
private key this also solved the problem of key agreement and madéneffebm-
munication possible. However, this scheme presented nalleohes to contend
with. The authenticity of the users became an issue andicatéis issued by @A
were used to verify that a certain key-pair and user identéye linked. During set-
ting up aPKl one of the most challenging aspects is handling trust manage the
conventional solution to this problem is to use certificat€srtificates are issued
by trusted central authorities and cryptographically harébrge but they are not
easy to set-up and pose operational difficulties, thesessbave been illustrated
in further detail in (). DeployingPKIls is a cumbersome task
and many considerations need to be taken in order to makgstiwork, there is
no universal solution to the problem and normally one needake thehorses for
coursesapproach while setting them up. (& () the authors examine
various reasons for the limited successPéfls and make suggestions to deploy
them successfully. They also discuss the application Spegproach which one
needs to take to avoid problems, some of the most serioussigming certificate
revocation, handling authorisation and audit, managintfioate chains, storage

15

and distribution. The computational cost of certificateifigation is also an im-
portant point of contention, specially in the case of molldeices whose usage is
on the rise. These challenges have also been highlightadii

(2002.

2.3. Ildentity-Based Cryptosystems. Due to the factors discussed we see that
improper deployment and management of certifiéfés can potentially compro-
mise the security of a system hence we look further to simpkftificate manage-
ment. In 1984 the notiotdentity-Based Cryptosystems and Signhature Schvesse
proposed by (), it suggested the usage of user’s unique identity like
e-mail address, social security number or IP address tealbis public key which
can be used to send him encrypted messages. This enablied padommunicate
securely without them requiring to exchange public or gevkeys, maintaining
key directories or using services of a third party. The use wlistedPrivate Key
Generator (PKGyvas suggested to provide the user with a smart card on joining
the network, this card was tightly tied to the identity of theer and contained
keys which would allow him to sign and encrypt the messageseheand verify
and decrypt the messages he received. The scheme had \advargages such
as simplifying certificate management which is one of thelésir parts of setting
up PKls, now in order to send encrypted messages the users oniyee ¢ know
the identity of the party to which they intended to send thesage and looking up
information in the certificates was no longer necessary. tDilee involvement of
a trusted”KGin the process the scheme had the drawbadlepfescrowsince the
PKGwas in possession of a master key which was used to genenatepeys of
the users in the system. A rou§&G could destroy all privacy and consequently
the system had a single point of failure whose compromisdduuave devastating
effects on the users. Also in today’s world it is impractitahssume the existence
of such key generation centres due to nature of communicatiking global and
a typical user possesses multiple identities which makepikg a card for each
identity unmanageable.

gave concrete construction only for a signature schemediuonan
encryption scheme. Many approaches were made in the sudrggepars to present
an IBE scheme like (), (),
() () and (). None of
the solutions fully solved the problem and suffered fronuésslike collusion of
users, long turnaround time for private key generatiorPByG and requirement
of tamper-resistant hardware. Finally, the first practgmltion was presented in
2001 in () where the authors proposed kientity-Based
Encryption from the Weil Pairing After this paper there was a surge in the area
of IBE and this resulted in the development of many cryptograptimitives. An
interactive identity-based key exchange protocol wasgmtes by

() followed by a non-interactive version &mart(). Several
signature schemes were also developed €.g: (), ()
and (), a hierarchical identity based scheme was presentégkly

16

(). Work was also carried out in the area of cryptographic
work flows by ¢), ()
and () and identity based cryptography was used as a mechanism to
demonstrate this.

2.4. Fuzzy ldentity-Based Encryption. With IBE schemes becoming popular
attempts were made to use the biometric data of the user atitydand the first
Fuzzy Identity-Based Encrypti@eheme was presented by {).
It allowed for the use biometric identities by incorporatizn error-tolerance prop-
erty which correctly decrypted an encrypted message wherdéntity presented
to decrypt the message was close to the identity used torttiy message. This
was necessary for the scheme to work since biometric igeasibnot be same
every time it is sampled and hence the scheme needs to ali@erite noise. Sub-
sequently more efficient Fuz8E schemes were presented by

() and (). But due tokey
escrowbeing an inherent property ¢BE the PKG could decrypt any cipher text,
this also allowed th@KG to forge any user’s signature and hence non-repudiation
was not guaranteed by design. Use of multipkeGs in anIBE scheme has been
considered to avoid concentration of power but this reguinere effort to manage
communication and infrastructure. Even if tR&G is fully honest the compro-
mise of thePKG's master key would have devastating consequences whicldwou
be more far reaching as compared to the breach ofths signing key in tradi-
tional PKI. Hence deployment dBE schemes on a large scale is not suitable, for
these reasons people continued to look for constructiorishwdimplified certifi-
cate management without handing over too much power t@ Ke.

2.5. Self-Certified Keys. Meanwhile the idea oSelf-Certified Keysvas intro-
duced by () and later enhanced b ()
and (). A self-certified scheme also relies on the existence of a
Trusted Third Party (TTRhere the users generate their oprivate key(sk) and
correspondingublic key(pk) and communicat@k to theTTP who creates avit-
ness(w) by combining the identity {D) of the user withpk. Several ways have
been suggested to produce this witnéss;ult usedT TP's signature on some com-
bination ofpk andID, zised part of a signature and
used the result of inverting a trapdoor one-way functioriveer from
pk andID. This scheme allowed any party to extraét from w and /D while
only making it possible for thé TP to producew from pk andID. Although this
scheme does not make use of certificates in the traditionakseécan be observed
that the witnesswv is a type of lightweight certificate which binds the identitly
the user to the correct public key. The scheme has an adeaatagompared to
the CL-PKC, it does not require any confidential communication betwber TP
and the user. However, the private key needs to be generatec:the public key,
due to this the scheme cannot be used to enforggtographic work flowsas de-
scribed inSection 7 These schemes also lack concrete security proofs as @ointe

17

by () and suffer from drawbacks which allow a rougéP to extract
a user’s private key.

2.6. Ceritificateless Public Key Cryptography. The idea ofCeritificateless Pub-
lic Key Cryptographyemerged from fact that people wanted to avoid the need for
setting up infrastructure to support trust managementgusanrtificates. As we
saw earlieBE schemes did solve this issue however it was not without dioice
ing the problem okey escrowpeople now started working towards eliminating it
without sacrificing the desirable properties of & schemes. In a typicdBE
scheme the private key of a user is entirely generated bipiti@ and this is what
makes the privacy of the system totally dependent uporir#@. However, now
it was suggested that perhaps only a part of the secret beagetdy thePKG
while the user holds on to the other part. This would elirénide possibility of
the PKG misusing his powers, additionally the scheme is kept ceatifless while
also defeating the attempts of a dishonest party to impatean user. AL-PKC
scheme is similar to thiglentity Based Cryptography (IB&cheme in the respect
that it relies on the existence of a trusted third party wigioesesses a master key,
the scheme also uses the identity of the user. These ideadaverally developed
by () and were derived from the scheme presented by
() by making simple modifications. The authors suggested
an intermediate betwedpublic Key Cryptographyndldentity Based Cryptogra-
phy as Certificateless Public Key Cryptograptand it eliminated thé&ey escrow
associated with thEBE schemes without the need of certificates. In principal there
are three parties involved in@L-PKC scheme, the trusted third party callgdy
Generation Center (KGC}he party sending the message cal&shderand the
party who receives the sent message cdRedeiverwe describe these terms for-
mally in Section 4.2 TheKGC uses hisnaster private keglong with the receiver’s
identity to generate partial private keywhich the receiver then combines with a
secret value to derive his full private key. Thus this keynswn only to the re-
ceiver and key escrow is avoided. The receiver needs tomtithte his identity to
the KGC who must then securely transmit the partial private key. hiddle, the
receiver also computes higiblic keyby combining the same secret value with the
public parameters published by tH& C and distributes it freely. The generation
of private key and public key is independent of each otherjastdequires the use
of the same secret value. The sender can thus obtain the fkaylirelated to a
certain identity and use it to send encrypted messages tec¢héeser.

18

19

3. Related Work

Let us take a brief look at the work done in the area of certileas cryptogra-
phy before the notion ofL-PKC was formalized. The idea d@ertificate-Based
Encryption (CBE)was introduced by (), it proposed a construction in
which the user was required to use his secret key along witkpatn-date certifi-
cate to decrypt the message. The scheme tried to combinefiieit certification
of IBE schemes with the no key escrow property of public key cryatplyy. Sub-
sequently, an equivalence theorem betwigkdn, CBE andCertificateless Encryp-

tion (CLE)was presented by (ib). The generic transformations
presented in this paper did not use random oracles but #mitts did not hold in
the full security model developed by () and were also

shown to breakdown in the much weaker security model predeloy
(2009.

Later () formalized the problem of chosen-ciphertext secu-
rity for multiple encryption and presented simple, genama efficient construc-
tions of multiple encryption schemes secure against chogdrertext attacks in
the standard model. They also proved that their methods eapplied to design
CBE schemes without random oracles. However, their design alichold in the
security model presented by () as their constructions
were not designed to withstand the decryption queries foitrary public keys
chosen adaptively by adversaries without the knowledgeat€hing secret.

More recently () highlighted the issue obenial-of-
Decryption Attackwvhere the adversary replaces the user’s public key by someon
else’'s as a result when the user gets a message encryptethatitkey and his
identity, he is no longer able to decrypt it and the sendehehtessage is unaware
of this. They propose a new paradigm callgdlf-Generated-Certificate Public
Key Cryptographywhich addresses this problem and provide a generic construc
tion using certificateless sighature and certificatelessyption as the building
block. Their construction is secure in the standard modeitlioes not hold in
the full model presented b (). ()
presented a construction which is secure against the imadidiut-passiveKG at-
tacker in the standard model but it does not alld8tng Type | Attackettescribed
in Section 9.2.2

As discussed before the concepiGif-PKCwas first introduced by

they presented a scheme which was structurally similar andwed

ideas from self-certified keys presentedruy (),

(), () and more recentllZBE scheme proposed iy
(). In their work the authors specified certificateless enooyp signature and
key exchange schemes and demonstrated how to supportcegetidiss hierarchi-
cal schemes. Their construction was based on bilinear mgpoups as described
in Definition 4.1and the security was reducible to the computational hasdoks
the Bilinear Diffie-Hellman Problem. Later in 2008 the firsincrete and efficient
construction foICLE secure in the standard model against strong adversaries was

20

presented by @). This scheme is secure against both
Strong Type | Attackeand Strong Type 1l Attackeas described ifsection 9.2.2
The construction is modelled upon thigaters IBE scheme presented by

() and modified using ideas fro () the security of

this scheme is based on the hardness offtieeDecisional 3-Party Diffie-Hellman
Problem (3-DDH)defined inDefinition 4.3which is a slight and natural generali-
sation of theThe Decisional Bilinear Diffie-Hellman Problem (DBDIdgscribed
in Definition 4.2 However, a new kind of threat was consideredhin

() where the adversaries maliciously generate system-wide
parameters, the construction being presented here is curtesender this attack.

3.1. Proposed Modification. We propose a maodification to the original con-
struction to achieve two-factor authentication by inabmsof the user biometrics in
the scheme. The derived scheme retains all the propertige afriginal scheme.
In the modified version the receiver authenticates himedti¢KGC by providing
his public identity such as an email or an IP address and thle diahis biometric
identity. TheKGC then responds back in a secure manner transmittingpdne
tial private keyto the receiver which he generates combining a secret vaille w
the receiver’s public identity and biometric identity. Titeeeiver then proceeds to
generate his public key dependent on the partial privateakel/public parame-
ters published by thEGC. Subsequently, this key is freely and widely published.
Since we desire two-factor authentication it must be ndtedlthe full private key
is never stored in the device and is generated only whileygéag a cipher text
and duly deleted after the decryption. The full private kedérived from the par-
tial private key, the biometric identity and a secret valuevgled by the receiver.
The sender can now obtain the public key related to a cedaintity and use it to
send encrypted messages to the receiver. These change#t mglerative to pos-
sess the correct biometric data to encrypt messages. Iticadth the biometrics
the device with stored secrets is also required by the recéivbe able to decrypt
messages and this provides us a system with two-factor ratichton.

21

22

4. Preliminaries

In this section we describe the various preliminaries whiabe been used through-
out the thesis.

4.1. Notation. Certain terms are freely used in various places in the woek pr
sented. Here we define them formally.

o Adversary: The adversary is defined as the party who is trgrgain infor-
mation about the ciphertexts by using the oracles as higskdp

o Challenger: The challenger is defined as the party who piesiea adver-
sary with a challenge based on ciphertexts. After receithiegchallenge the
adversary tries to gain information about the ciphertexts.

4.2. Parties. TheCL-PKE scheme consists of three parties which are

o Sender This is the party which intends to send private message$ance
encrypts them using théL-PKE scheme. In the original scheme the sender
encrypts the message using receiver’s public identityrdic key In the
derived version of the scheme the sender encrypts the neessagg the
receiver’s public identity, biometric identity anqmiblic key

o Receiver This is the party which intends to receive private messayes
crypted using theCL-PKE scheme and then decrypts the messages to read
them, the receiver is also responsible for publishing resiiily along with
public keyso that sender can use them encrypt the message. In thedderive
version of the scheme it is assumed that the sender postkeseseiver’s
biometric identity.

o KGC: TheKGCis the party who is responsible for running the set-up for the
CL-PKE scheme. It's duties include computimgaster public keymaster
secret keyand authenticating an user. TH&C is also responsible for com-
puting and securely communicating tpartial private keyfor each receiver
based on his identity. We define the details of the operatiemormed by
theKGC in Section 1GandSection 11

4.3. Definitions. In this section we formally describe the various definitians
theorems that are used throughout the thesis. The constrsicind security re-
ductions use them widely and this section aims to familatte reader with the
notation used.

DEFINITION 4.1. LetG andG be two groups of ordes for some large prime.
The bilinear mag : G x G — G must satisfy the following properties

(i) Bilinearity: (g%, h?) = e(g, h)® forany(g,h) € G x G anda,b € Z.

23

(i) Non-degeneratez(g, h) # 1g, whenever, h # 1g.

(i) Computable: There is an efficient algorithm to computg, h) for any
g,h €G.

DEFINITION 4.2. The Decisional Bilinear Diffie-Hellman Problem is to decide
whetherT = e(g, g)® or a random element. Givang®,¢®,¢° € G, T € Gr
anda,b,c €r 7. A bilinear map is described by, i.e.e : G x G — G with
properties described inefinition 4.1

DEFINITION 4.3. The Decisional 3-Party Diffie-Hellman Problem was first de-
fined in (2007) and its goal is to decide wheth&r= ¢**° such
thata, b, c €r Z and(g?, ¢°, g%, T) € G* for g € G. We define the advantage of a
probabilistic polynomial-time algorithnd against this problem as

Advil_DDH(k) = ‘Pr <-’4(9a,9bagc,T) =1|T=g% Na,bcep Z;) —

Pr (A(g“,gb,gc,T) =1|TerGAa,bcep Z;>

wherek is the security parameter. We assuré3PPH (k) to be negligible for
all probabilistic polynomial-time algorithm4.

DEFINITION 4.4. A hash functionH randomly selected from a family of hash
functionsH € H(k) is collision resistant if for all probabilistic polynomiéime
algorithmsA the advantage

AdeR(k) =Pr (H(x) =Hy)A Nz #y| (z,y) er AQ*, H) NH € H(k))

is negligible as a function of the security paraméter

24

25

5. Overview of the Original Construction

Our work is based on the construction propose@by (),
in this paper the authors show a way to construct a practaréficateless encryp-
tion scheme which is secure in the standard model and free key escrow. In
this section we describe the constituents of this constmudb give a bird’s eye
view to the reader. The individual components have beenritbestcin detail in
Section 10

5.1. Components of the Original CL-PKE. A CL-PKE scheme is defined by
seven probabilistic, polynomial-time algorithms and isdzhon the ideas first pro-
posed by (). We now take a look into the details of
each of these algorithms. The subsequent algorithms makefulse user identity
denoted ad D which is unique and publicly known, examples of such an itient
could be email address, IP address or any other form of fitstiton.

1. Set up: This algorithm is run by th& GC and takes as input the security
parameter defined by¥. The algorithm returns thenaster public keynpk
and themaster secret keyisk.

2. Ext r act : This algorithm is run by th&GC to extract thepartial private
key The algorithm takes as input theaster public keynpk, the master
secret keymsk and identity of the receivefD € {0,1}*. The algorithm
returns theoartial private keyi;p of the receiver with identity D € {0, 1}*.

3. Set Sec: This algorithm executed by the receiver generates a seagt
x1p, it takes as input theaster public keynpk.

4. Set Pub: This algorithm is run by the receiver and takes as inputthster
public keympk and receiver's secret valug p. The algorithm outputs the
public keypkrp € PK for the receiver.

5. Set Pr i v: This algorithm is run by the receiver to generatefblsprivate
keyskrp. The algorithm takes as input tiheaster public keynpk, the par-
tial private keyd;p, the public identity/ D and the receiver's secret value
xlD.

6. Encrypt : This algorithm is run by the sender. The algorithm takes as
input themaster public keynpk, the receiver’s identity D, the public key
pkrp of the receiver with identity D and the message € M. The algo-
rithm returns the cipher text' € C if pk;p € PK else it returns FAIL.

7. Decr ypt : This algorithm is run by the receiver and takes as input the
master public keynpk, receiver’sfull private keysk;p and a cipher text
C € C. ltreturns the message € M if C is a valid ciphertext else it
returns FAIL.

26

5.2. Protocol Architecture. After discussing the various modules of the encryp-
tion scheme we can now look at how the entire machinery fansti We do this
by describing the protocol involving the sender, the remeand theKGC.

1. The scheme begins with the executionSgft up algorithm by theKGC
which generates the system parameters and keys as desdritest param-
eters and keys are later used by the the subsequent algerithm

2. The next algorithm executed by tie5C is Ext ract and is initiated by
the receiver when he wishes to compute hivate key Before running
this algorithm the receiver must authenticate himself ®KlBEC asiD in
the same way as he would toCA. The computegartial private keyd;p
is communicated to the receiver with identify) in a secure manner. The
computation of the receiverjgrivate keyis independent of the computation
of his public keyand only needs to be done before decrypting a message.

3. The first algorithm executed by the receivefet Sec as described before.
The algorithm is run once by the receiver before he can coenipigipublic
andprivate keys

4. The next algorithm executed by the receiveBéd Pub to compute his pub-
lic key. It is run once by the receiver and the compupedblic keypk;p
is published and freely distributed. It is assumed that thidip key space
PK is publicly recognisable since it is defined using thaster public key
mpk. Public keys with matching private key should be easily gaisable
from the malformed public keys, we show how to achieve thtkéconcrete
construction presented Bection 10

5. Before the receiver can decrypt the encrypted messagdsshim he needs
to run the algorithnmSet Pri v to obtain hisprivate key This algorithm is
run once once by the receiver after he obtainsphsial private keyfrom
the KGC after authenticating himself as seenStep Aand Step Bin the
encryption protocol.

6. To send encrypted messages the sender must ruenthiey pt algorithm.
To do that the sender must first obtain the receivauiglic keywhich is freely
and widely distributed by the receiver after running 8et Pub algorithm.
The messages are encrypted using receiver’s idehfityvhich is public and
his public key

7. To decrypt the encrypted messages the receiver runBabeypt algo-
rithm. This can be only done after the receiver has caladlate full pri-
vate keyby obtaining thepartial private keyfrom the KGC. We include a
hash on the ciphertext because our encryption scheme isrhorpbic. The
hash acts as a signature on the ciphertext and defeats agverattempt
to create valid encryptions by combining other encryptiand winning the

27

Indistinguishability Under Chosen Ciphertext Attack (INICA) game de-
scribed inSection 9.1

[Set Priv| [Set Pub| |Set Sec| Set up

/

Step A.(ID)quthen.

Step B-(dID)secure

4

Step D.m

Encr ypt

StepCCecC

coc
cecl
€¢c

Figure 5.1: After the KGC runSet up the receiver authenticates himselfd3 in
Step ASubsequently, the KGC ruit r act and provides the receiver witly p

in a secure manner as shownStep B After this the receiver runSet Sec and
Set Pub. The computegublic keypk;p is then published by the receiver. The
sender obtaingk;p and encrypts the messageby runningencr ypt . The com-
puted ciphertext' € C is sent to the receiver’s device as showrsiep C Finally,
the receiver run®ecr ypt on his device after computing hggivate keyusing
Set Pri v and obtains the decrypted messag¢hus concluding the protocol.

28

29

6. Overview of the Derived Construction

By modifying the existing construction we aim to provide tfa@tor security such
that even if the device is compromised, the encrypted messstgred in the device
should not be trivially accessible to the attacker. To aehithis we include user
biometric data in the scheme. Thal private keyis never stored on the device and
is generated before decrypting the message by combiningatl private key
and asecret valuestored in the device along with the biometric data of thetfigh
owner. The biometric data of the owner is never stored on #wcd and after
decrypting the message thdl private keyis deleted. This makes it hard for the
attacker to generate tliell private keyagain even if he gains control of the device
thus granting him access to thartial private keyand thesecret valuestored in it.
The subsequent algorithms use the public identity of the deroted ad D
which is unique and publicly known, examples of such an itlerbuld be the
email address, IP address or any other form of identificattana second factor in
our authentication we use the biometric identity of the aesoted a®31D. BID
is derived from the biometric characteristics of the useat @ntherefore unique,
some examples of such a biometric identity could be the fprgdr face picture or
voice. We treat the user’s biometric datssami-privatevhich means that although
it is easily available to the people who know the user stib gignificantly harder
to reproduce by someone who does not know the user. Hencertpromise the
privacy of a user not only should the attacker obtain theadebut also produce the
owner’s biometric data. In practice this is hard to achiawa this is what provides
security to the user even in the event of loss or theft of thécde

6.1. Components of the Modified CL-PKE. Our construction is derived from
the one presented in the last section and is defined by siapiladtic, polynomial-
time algorithms. We now look into the details of each of thalg@rithms.

1. Set up: This is the first algorithm which is executed to set-up thstesy
parameters, it is run by th€GC and takes as input the security parameter
defined byl*. The algorithm returns thenaster public keynpk and the
master secret keyisk.

2. Ext r act : This algorithm is run by th&GC to extract thepartial private
keyd;p. The algorithm takes as input theaster public keynpk, themaster
secret keynsk, public identity of the receivef D € {0, 1}* and the hash of
the receiver’s biometric identity8 D, F},(BID).

3. Set Sec: In this algorithm the receiver generates a secret vajye The
algorithm takes as input thmaster public keynpk.

4. Set Pub: This algorithm is run by the receiver and takes as inpaster
public keympk, partial private keyd;p and the receiver’s secret valuep.
The algorithm outputs theublic keypk;p € PK for the receiver.

30

5.

Encr ypt : This algorithm is run by the sender, the algorithm takespsti
the master public keynpk, receiver’s public identity D, receiver's biomet-
ric identity BID, the public keypk;p of the receiver with public identity
1D and the message € M. The output of this algorithm is the ciphertext
C e Cif pkrp € PK else the algorithm returns FAIL.

. Decr ypt : This algorithm is run by the receiver and takes as inputrias-

ter public keympk, receiver'spartial private keyd; p, receiver’s secret value
x1p, receiver’s public identityl D, receiver's biometric identity3/D and

the ciphertextC' € C. Before decrypting, théull private keysk;p is com-
puted using thenaster public keynpk, thepartial private keyd;p, the hash

of receiver’s public identity D, F,,(I D) and the hash of receiver’s biomet-
ric identity BI D, F,,(BID). This key is then used to decrypt the message.
The algorithm returns the messagec M if C is a valid ciphertext else it
returns FAIL.

6.2. Protocol Architecture.

1.

Just like in the case of original scheme the modified schieegins with
the execution oBSet up algorithm by theKGC which generates the system
parameters and keys as described. These parameters aratddgter used
by the the subsequent algorithms.

. The next algorithm executed by th&C is Ext r act and is initiated by

the receiver when he wishes to computeprisate key Before running this
algorithm the receiver must authenticate himself toKli&C as/D in the
same way as he would to@A and communicaté}, (BID) securely. The
computedpartial private keyd;p is send back to the receiver with identity
1D in a secure manner. Unlike the previous scheme in the modiéiegdon
the receiver must obtai; , before he can compute hsiblic key

. The first algorithm executed by the receiveBet Sec as described before.

The algorithm is run once by the receiver before he can coenlpigipublic
andprivate keys

. The next algorithm executed by the receive®és Pub to compute his pub-

lic key. It is run once by the receiver and the compupedblic keypk;p
is published and freely distributed. It is assumed that tdip key space
PK is publicly recognisable since it is defined using thaster public key
mpk. Public keys with matching private key should be easily gaisable
from the malformed public keys, we show how to achieve thtéconcrete
construction presented Bection 11

. To send encrypted messages the sender must ruenthiey pt algorithm.

To do that the sender must first obtain the receivauiglic keywhich is freely
and widely distributed by the receiver after running 8et Pub algorithm.

31

The messages are encrypted using receiver’s personal hasagbmetric
identity. While personal identity is public and freely dabie, the biomet-
ric identity is semi-privateand is only accessible to people who know the
receiver. Just like in the earlier case, here we assumehbaender knows
the receiver and hence possesses his biometric identitgtarftom which
such an identity can be easily extracted, example of suchwatld be a
face picture.

. To decrypt the encrypted messages the receiver runBgbeypt algo-
rithm. This can be only done after the receiver has caladlbigfull private
key after obtaining thepartial private keyfrom the KGC. This key is then
used to decrypt the message and is deleted subsequentlgiohinetric iden-
tity BID is computed from data provided by the user duringrgption and
is never stored on the device. We include a hash on the cipttdrecause
our encryption scheme is homomorphic. The hash acts as atgigron ci-
phertext and defeats the adversary’s attempt to create eatiryptions by
combining other encryptions and winning thi¢D-CCA game described in
Section 9.1

32

|Decrypt | |Set Pub| [Set Sec |
~ 1/ :
AN 1 , I
N~ Step A.(F,(BID), ID)uuthen. :
Receive @
Step B-(dID)secuTe :
|
I
Step Em Step D.Biometrics

Encr ypt

StepCC ecC

ccc
cecl
€¢c

Figure 6.1: After the KGC runSet up the receiver authenticates himself &3
and provides him with the hash of his biometric idenfity(BI D) in Step A Sub-
sequently, the KGC runBxt r act and provides the receiver witlyp in a secure
manner as shown itep B After this the receiver runSet Sec andSet Pub. The
computedpublic keypk;p is then published by the receiver. The sender obtains
pkrp and encrypts the messageby runningEncr ypt . The computed ciphertext
C € Cis sent to the receiver's device as showrstep C Then receiver proceeds
on to provide his biometric data to the device as show@tap D Finally, the pri-
vate keysk;p is computed by the receiver and the ciphert@xis decrypted using
the Decr ypt algorithm. The receiver then obtains the decrypted messags
shown inStep Ethus concluding the protocol.

33

34

7. Applications of CL-PKE

Due to the identity of the user being tied to the encrypti®@t. schemes can be
used for applications where identity based role separi&inaeded. Our scheme is
an extension of thé8E scheme and is thus applicable to most situations in which
IBE schemes can be employed. The possible applicationBBfschemes have
been explored by (), we present them below along with
some additional applications.

o Revocation of Public Keyd he existingPKls allow the possibility of certifi-
cate expiry and the users need to keep their certificatesteghdar them
to be valid. () propose a way to model this in
IBE schemes by coupling the identity with an expiration date,came ex-
tend the same idea i@L-PKE schemes by issuingartial private keys
based on identity coupled with an expiration date, eg. antitjelike
"bob@onpany. conj | current - year "can be used. This will enforce
the user to refresh his private key every year by obtainingesponding
partial private keyand failure to do so will revoke his ability to decrypt
ciphertexts. It should also be noted that such a mechanikwsakend-
ing messages in the future and Bob can only read those maesshga the
KGC issues him keys corresponding to the date specified. Thugevthat
ephemeral keys can be very easily implemented uSing°KE.

o Managing user credentials The idea presented above can be extended
further and can be employed to manage credentials. An tgelitie
"bob@onpany. coni | current -year| | cl ear ance=secret"”
can be used to encrypt messages, here Bob can only read decngssage
if he has a clearance level of secret for the current year hisdcan be
enforced with the help of KGC.

o Cryptographic Work Flows CL-PKE schemes have the property that the
public key and the private key can be generated indeperndeintiach other,
this property can be used to enforogptographic work flowsThe sender
can encrypt a message using the public key determined bgt¢ké/er and an
identifier coupled with receiver’s identity which the regsi can acquire only
after accomplishing some task. Doing so forces the recéiveomplete the
task to gain access to the said identifier which he can thetowéhenticate
himself to theKGC and thus obtain the valid partial private key to decrypt
the message received. An instance of such a scenario cotidit® sends
a money order t® which is encrypted using'’s public key and his identity
coupled with proof that he sent the goods. Now, afteompletes his part of
the deal he is guaranteed to receive his money by decryptengnoney order
after obtaining the partial private key from th&C, more such applications
have been explored i () and ().

35

The modified version of the scheme does not support this pgsogéce
the public key and the private key can only be generated aftiining the
partial private key from th&GC. However, one must note that the modified
scheme serves an entirely different purpose and hence ttharexpected
provide all the features of the original scheme. The contbm presented
in Section 1lexplains this point in further detail.

o Delegation of Decryption keysThis kind of application is suited to com-
panies where there is a centraliz&&C and he can delegate clearance to
people who are allowed to access a message depending ujpamlie

— Use of ephemeral keys: Suppose one of the company’s engslaye
going on a conference and he needs to take a company laptbp wit
him for that period. Normally all the messages are encrypiithl the
same private key which is stored in the device and its losaatape
recovered from. To ensure protection from loss of devicessages in-
tended for the employee can be encrypted using his email @ment
date. The companyGC can generate partial private keys for the du-
ration of the conference which can be used to extract fuligpei keys
by the employee. In the event of loss of the device only thesagpss
received during the conference period are compromised ldawing
the other messages untouched. On the other hand if the j@ehposd-
ified construction is employed then biometrics would alsaubed in
encryption and none of the messages would be compromised.

— Delegation of duties: The company basédC can also enforce cre-
dential management, messages could be encrypted baseeirosutit
ject and the< GC can generate partial private keys to employees within
whose domain those messages lie. For instance all the nesssagnt
for salesdepartment could be tagged wihlesand all the employees
working in that department could be given one partial pavaty. This
would only give access to the people who possess a partikejato
read a certain message, thus enforcing role based privacy.

o Sharing Facilities The modifiedCL-PKE scheme can be useful in applica-
tions where the users need to share facilities yet requivaqy:. For instance
the same mailbox can be shared by multiple users and the gesssan be
encrypted using email address as the public identity anchéiidc identity
of the intended user. This would allow only the specific userelad the
messages even though they are in the same mailbox. Onedabdéseppli-
cation could be forum moderation where messages can bedposhdicly
but require biometrics to decipher them.

o Certificate-Based Encryptiors proposed by (), CL-PKEschemes
can be modified to provideertificate-based encryptidoy including the ex-
piry information and public keys in the identity strings.

36

37

8. Advantages of the Modified Scheme

IBE schemes have gained popularity due to a number of advantageshe tra-
ditional public key cryptography, as discussed befotePKC evolved fromIBC
to further enhance it hence it also provides many benefitstilea BC schemes
offer. In this section we explore some major advantagesetiibcussedL-PKE
schemes over the traditional public key cryptography.

o Certificateless The deployment oPKls is greatly simplified due to the in-
dependence from issuing certificates to manage trust.nigsgirtificates is
not strictly a technical exercise and involves social fextife proving one’s
identity and setting ugcAs. Such procedures are time consuming and prone
to human error as well as social engineering. Complete émeefdom such a
need hastens the deploymentRifls and makes trust management entirely
technical by removing human intervention and social aspect

o No Key Escrow IBE schemes were successful in providing certificateless
PKls as well but they relied on a trusted third party which passgshe pri-
vate key of the users. This makes the scheme centralizeddigndeith a
single point of failure, also such power in the hands ofRti&s leaves the
possibility of surveillance open and denies the users tuitil of their own
data. These factors deter the adoptioriBiE schemes.CL-PKC success-
fully solves this problem by removinkey escrowand ensures that a rouge
KGC cannot destroy the privacy of the entire system.IB& schemes the
users need to trust tHeKG to not abuse the private keys by launching pas-
sive attacks but iCL-PKC schemes they only need to trust ti&C to not
actively replace the public keys.

o Minimal Set-up Although IBE schemes require no set-up by the users prior
to partaking in private communication, the cost at whicls ttwnvenience
came was too highCL-PKC schemes require prior set-up on the part of
the receiver of the message which is essentially just twpssés seen in
Section 5andSection 6

o Lightweight CL-PKC schemes are well suited to scenarios where compu-
tational power and bandwidth come at a premium, for exampleaobile
computation scenarios. As compared to traditiodPkls the infrastructure
requirements foCL-PKC schemes are significantly low as there is no need
to manage certificates. This saves the effort to transmitdéhngficates and
check them, as shown by
() these factors are of considerable importance in the malgiteain
andCL-PKC schemes give us an advantage.

o Co-existence withBE schemesAs pointed out by
(), the CL-PKE schemes described here are very similar to |iie

38

schemes based on pairings. Thus the same infrastructurbecased to
deploy them and both the schemes can peacefully co-exist.

Protection Against Device Compromidgoth the original scheme as well as
the derived scheme provide perfect forward secrecy. Heheeompromise
of the device along with the stored keys does not jeopartisetivacy of
the stored messages.

Key Size The scheme uses relatively short public and private kegistsare-
fore, is suitable for use in devices with limited resourdesjnstance mobile
phones.

Using Biometrics The usage of biometric data in the encryption makes is
convenient for the user to provide it since it cannot be logbmotten and

is unique to every person. Itis also relatively hard to crgii, readily avail-
able and semi-private. Thus two-factor authenticationctieved without
any significant change in the user behaviour.

Security Both the original and the modifiedL-PKE schemes are secure in
a fully adaptive adversarial model. The schemes providistinduishability
under chosen cipher text attack and the security dependastbpbecisional
3-Party Diffie-Hellman Problemnwvhich we define irDefinition 4.3

39

40

9. Security Model

In the light of the discussion in the previous sections weelsaen how &L-PKE
scheme is defined, now we take a look at the possible adwessand define them
formally. Standard security requirements of public keyrgption schemes require
that the encryptions are indistinguishable against a fadlgptive chosen cipher-
text attacker, i.e. it provideBND-CCA. In this definition there are two parties,
the adversary and the challenger as describefeiction 4.1 who participate in
a sequence of games. The notionldD-CCA security is formally defined in
Section 9.1

The security model that we define here is a natural gendtialisaf the fully
adaptive, multi-user model presented by (). To prove the
security of the scheme in the lack of certificates and theemas of an adversary
who has access to the master key requires defining the seowdel carefully.
We need to allow the possibility of the adversary extracting private keys of
arbitrary users and choose the identit®* of the user on whose public key he
is challenged. The compromise of the private keys of cemsiers should not
jeopardise the privacy of users whose keys are still safecaindecurity model
should encompass this requirement. However, we still neetbtmore to model
the powers of an attacker. In traditiorfalblic key cryptographyhe public key is
bound to the identity of the user by a certificate issued byQhAebut in our case
this is not possible and hence we need to allow the attackeplace the public
key of the user with a key of his choice. By doing so he mighthwiis decipher
the encrypted messages sent to a certain user. But we wihaesuch an attack
is rendered useless since messages are encrypted by dineliingo the identity of
the user. The decryption of messages requires the posseddle correct private
key for a certain identity which can only be obtained with to®peration of the
KGC who provides theartial private keyto derive thefull private key Modelling
the response of a challenger whose public keys have beegathémkey extraction
and decryption queries should be done carefully.

We also need to take into consideration thatkligC might indulge in adver-
sarial activities like eavesdropping on ciphertexts an#ingadecryption queries.
The KGC in our scheme is comparable to tAé\ in traditional PKI schemes. It
is assumed that the A does not generate certificates which authenticate anpitrar
identities and public keys. Similarly, in our scheme we assthat theK GC does
not replace public keys of the users. SincekligC is in possession of theartial
private key he can generate private key of any user and if he chooseplézecthe
public keys as well then he has all the information to impease an user of his
choice. However, we note that in our modified constructiags ithnot possible be-
fore the user communicates the hash of his biometric idetatithe KGC so there
is an additional hurdle which a malicio#s5C must overcome.

There however is a difference to tA&\ scenario, in traditionaPKls if the CA
misbehaves then it is easy to point that out by observingxtstemce of two valid
certificates for same identity but in our scheme a new pulgicdan be created by

41

the user or th&KGC and it is not possible to decide which is the casé!

() showed that this can be avoided by allowing users to choose
identifiers which bind their public keys and identities ttge. This will help to
pinpoint a misbehaving{GC in the event there are two different working public
keys for the same identity. There has been considerableelebathe whether
the security model described here correctly captures tpabilities of an attacker
against certificateless encryption, the issue has beensdisd at length in

(2006H).

9.1. Chosen cipher text security.

DEFINITION 9.1. Chosen cipher text security for Certificateless Public Kaey E
cryption: We say that &L-PKE scheme is semantically secure against an adaptive
chosen ciphertext attack\D-CCA secure) if no polynomially bounded adversary
A of Strong Type |, Strong Type I, New Strong Type | or New Sgdiype Il de-
scribed inSection 9.2.2and Section 9.3.2has a non-negligible advantage against
the challenger in the following game.

Setup The challenger takes a security paramétemd runs theset up algo-
rithm. It gives A the resulting system parameters. Afis of Type |, then the
challenger keeps the master secret key to itself, othenitiggves master secret
key to A.

Phase 1 A issues a sequence of requests, each request being eithtinbgra
vate key extraction, a private key extraction, a requesafpublic key, a replace
public key command or a decryption query for a particular.usbese queries may
be asked adaptively, but should respect the rules on adydrshaviour defined in
Section 9.2.andSection 9.3.2

Challenge Phase Once A decides that Phase 1 is over it outputs the challenge
identity I D* and two equal length plaintexd, M, € M. Again, the adversarial
constraints for the particular set-up apply. The challemgsv picks a random bit

d € {0,1} and computes’™, the encryption ofM; under the current public key
pkip~ for ID*. If the output of the algorithnEncr ypt is FAIL, then A has
immediately lost the game since it has replaced a public kély ome not having

the correct form. Otherwisé,;* is delivered taA.

Phase 2 A issues a second sequence of requests as in Phase 1, agait &ubj
the rules on adversary behaviour for the set-up at hand. riicpiar, no private
key extraction o D* is allowed. Moreover, no decryption query can be made on
the challenge ciphertext* for the combination of the identityD* and its public
keypkp+ that was used to encrypt ;.

42

Guess Finally, A outputs a guesé € {0,1}. The adversary wins the game if
d = d'. We defineA’s advantage in this game to belv, = |Pr(d = d') — 1/2|.

The adversaries have been formally define&drtion 9.2.2and Section 9.3.2
but for the sake of completeness we present the constraipissied on them here.
The constraints imposed on the adversaries to wiriltthie CCA game under dis-
cussion are

Constraints on Strong Type | attacker A Strong Type lattackerA; loses the
game if

o A extracts the private key fdrD* at any point.

o Aj extracts the private key of any identity for which it has em@d the public
key.

o Aj extracts the partial private kel p« of I D* after replacing the public key
pkrp+- and before the challenge being issued.

o In Phase 2A; makes a decryption query on the challenge cipher@éxior
the identityl D* without replacing the public keyk;p~ used to create the
challenge ciphertext.

Constraints on Strong Type |l attacker A Strong Type llattackerA;; loses
the game if

o Ajj extracts the private key fdrD* at any time.

o Ay extracts the private key of any identity for which he has aepl the
public key.

o Ay outputs a challenge identityD* for which he has replaced the public
key.

o In Phase 2A;; makes a decryption query on the challenge ciphettéxior
the identityl D* without replacing the public keyk;p~ used to create the
challenge ciphertext.

Constraints on New Strong Type | attacker All constraints that were imposed
onA; also apply taA7°" except A7 is allowed to extract the partial private key
drp+ of ID* after replacing the public keyk;p~ and before the challenge being
issued. Additionally, &ew Strong Type httackerA7°" loses the game if

o A7 extracts the biometric identitis 1 D* of the target identity D* at any
point.

43

Constraints on New Strong Type Il attacker The constrains imposed off}{*
are exactly same as the ones that were imposed;on

9.2. Security Model for the Original Scheme. In the following pages we try to
model the requirements discussed in this section so far tiyilg oracles, attack-
ers and other key components which complete the securityimod

9.2.1. Oracles. The oracles present at the attacker’s disposal are theviokip

o Request Public Key: The public key of an user is freely atdélao anyone,
here the attacker provides an identit)p and the oracle returns the public
key pk;p corresponding to that identity, the oracle generatgs; if previ-
ously undefined.

o Replace Public Key: The attacker provides an identity and a public key
pki, € PK, and the oracle replaces the previous public key bfwith
pk’ . Note thapk’ , should be of correct shape and thus a valid public key,
such valid keys can be generated with ease by anyone fromakenpublic
key.

o Extract Partial Private Key: The attacker provides an itientD and the
oracle returns the partial private kéyp corresponding to that identity.

o Extract Private Key: The attacker provides an idenfify and the oracle
returns the full private keyk;p corresponding to that identity.

o Decrypt: The attacker provides an identityp and ciphertextC, the oracle
responds by constructing the private kdyp corresponding to the identity
ID and its associated public key:;p. The oracle then returns the decryp-
tion of C under this private key. Here we need to observe that if tlaeledt
has replaced the public key:;p with a key of his choice then the oracle will
not decrypt using a corresponding private key and in genkeatiecryption
will fail. This models a realistic scenario since there isvay for the oracle
to know the secret key corresponding to a replaced public Keyvever, if
we assume that the oracle still decrypts correctly theroafih unrealistic
but this would provide for a better security model. Hence wavige the
attacker with a more powerful decryption oracle than pdesibnder reason-
able conditions by returning correct decryption of messamerypted using
a replaced public key.

9.2.2. Adversaries. We consider two kinds of attackers forGi-PKE scheme
which are

o Strong Type | attacker: This attacker is designed to modstd party who is
trying to gain information about the plaintext by observihg corresponding
ciphertext. Such an attacket; does not have access to thester secret

44

keybut can request public keys, replace public keys with keyssthoice,

extract partial private keys and make decryption querik$ridentities of

his choice. However, there are certain restrictions on ttiers which he
could perform, specifically related to the target identityiet is denoted by
1D*, the restrictions are

— Aj cannot extract private key fdrD* at any point.

— Aj cannot extract the private key of any identity for which isha-
placed the public key. Allowing for such a possibility wouldd unrea-
sonable since the public key has been replaced.

— Ay cannot extract the partial private kéyp- of I D* if he replaced the
public keypk;p+ before the challenge was issued. Allowing this would
enable the attacker to receive ciphertexts encrypted withldic key
of his choice and possession of the partial private key wWalxahim to
trivially decrypt by generating the corresponding priviaty.

— In Phase 2described inSection 9.1 A; cannot make a decryption
query on the challenge cipher teXt for the identity/ D* unless the
public keypk;p+ used to create the challenge ciphertext has been re-
placed.

If a Strong Type | attacker indulges in any of the actions dbed above to
answer the challenges then he might be able to achieve sumgese define
that as a loss.

Strong Type Il attacker: This attacker is designed to mduelotion of an
honest-but-curioukGC and the scheme should be safe from this kind of
attacker. Such an attackdl;; does have access to theaster secret kelgut

is trusted not to replace the public keys of the users. Howexestill allow
A to replace the public keys under certain restrictions, phisvides us a
better model. The adversad;; can computgartial private keydor itself
from themaster secret keyd;; can request public keys, extract private keys
and make decryption queries, all for identities of its choitlowever there
are certain restrictions on the actions which he could perfspecifically
related to the target identity which is denotedly*, the restrictions are

— Ajs cannot extract private key fdrD* at any time.

— Ajr cannot extract the private key of any identity for which he ha
replaced the public key.

— Aj; does not query the partial private key oracle since it canpden
dyp for identity I.D from msk which it possesses.

— Ajr cannot output a challenge identifyD* for which he has replaced
the public key.

45

— In Phase 2described inSection 9.1 A;; cannot make a decryption
query on the challenge cipher teXt for the identity/ D* unless the
public keypk;p+ used to create the challenge ciphertext has been re-
placed.

If a Strong Type Il attacker indulges in any of the actionscdégd above to
answer the challenges then he might be able to achieve sumgese define
that as a loss.

9.3. Security Model for the Modified Scheme. As mentioned earlier by modi-
fying the scheme we aim to provide two-factor security. Weulddike to ensure

that even if the device is compromised the attacker canmuydethe encrypted
messages although he may have the access to the secretingheedevice which

were used to encrypt the messages. We introduced the ushgeradtric data to

achieve this and now we define an appropriate adversariakihvduch captures
the threat of the device being compromised. At this point laautd also note that
we assume that the biometric identity of the user is only s&ibée to him and peo-
ple who know the user, this adds a social factor to the sch&deecannot protect
against an attacker who has easy access to the user’s hipdaa and also man-
ages to compromise the device. Such an attacker has aliviafmm that the user
has and hence there is no way to differentiate him from a waiet. We define
oracles and attackers in the subsequent sections to captutiereat model.

9.3.1. Oracles. In addition to the oracles already definedSection 9.2.1the
attacker has access to one further oracle:

o Extract Biometric Identity: The biometric identity of theser is treated as
a semi-private value, which means that it is easily avadldablthe user and
people who know the user but is significantly harder for aackttr to obtain
who does not know the user. This oracle returns the biomieeitity B1 D
of an user after the attacker provides a public identiby.

9.3.2. Adversaries. Due to inclusion of biometrics our scheme permits for a
strongerStrong Type | AttackehoweverStrong Type |l Attackeessentially re-
mains the same as defined previouslirction 9.2.2We now formally define the
attackers:

o New Strong Type | Attacker: This attacker in our modified sokds simi-
lar to theStrong Type | Attackeapart from a few changes that we describe.
The attackerd7°" tries to model a third party who is trying to gain some
information about the encrypted messagd$” has compromised the de-
vice and hence has access to partial private &gy and the secret value
x1p+, he may also replace the public key;p+ of the identity/ D* whose
device he has gained control of, although this does not giveamy extra
advantage since he already knowg)-. Thus A7 can receive messages

46

encrypted using a public key of his choice while in possessiahe partial
private key, in the original scheme such a scenario woultt@esll privacy
but here due to the scheme using biometric iden8ityD* of identity 7 D*
to encrypt data the attacker gains nothing. Howexgf” does have certain
restrictions imposed on his actions in addition to the ohaswere imposed
on Ay, these are:

— A7°" cannot extract the biometric identify/ D* of the target identity
ID* at any point. This is in line with our previous assumptionttha
A’ does not have access to biometrics of the users unknown to him

New Strong Type Il Attacker: Just like th&trong Type Il Attackethis
attacker is designed to model an honest-but-curid@&C. A77* has all
the powers which4;; had and additionally due to the modifications in the
scheme he can also extract the biometric idenfityD* of the target iden-
tity ID* as well as for the other identities. All the constraints vihigere
applied toA;r also apply here additionally we also assume tht" does
not compromise the device of the target idenfify*.

47

48

10. Concrete Original Construction

10.1. The Construction. The encryption scheme udaitinear map groupsmamely
G of prime orderp for some large prime, the requirements of such a bilinear map
have been formally defined inefinition 4.1 We further require that th8-DDH
for G described irDefinition 4.3is intractable.

The scheme proceeds through a sequence of seven subraukiiodsare de-
scribed in the pages to follow.

ALGORITHM 10.1. Set up.
Performed by th&GC — this is the first step in the encryption scheme in this step
the KGC generates thmaster public keynpk and themaster secret key.sk after
receiving the system security parametesind bit lengthn of the public identity
ID. LetG be a bilinear map group of ordgr> 2* andg be a generator fof.

Input: (1%, n).

Output: (mpk, msk).

1. Choosey <& 7.%.
2. Setg; = ¢".
3. Choosey, <& G.
4. Choose vector&', uy, . .., u,), (V' v1,...,v,) <& G,
5. Write ID = iyia ... i, andw = wiws ... w, as bit strings with;, w; €
{0,1}.
6. Define hash functions
. {0,1}" — G, _
‘" ID — U [Tocjcn v
and
{0’ 1}11 — Ga
Fv: / wj .
w — H0§j§n v;
7. Choose a collision resistant hash functén: {0,1}* — {0,1}" as re-
quired inDefinition 4.4
8. Define thenaster public kegasmpk < (g, 91,92, %, u1, ..., Up, V', 01,. .., 0,).
9. Define themaster secret kegsmsk < ~.

ALGORITHM 10.2. Extract.
Performed by theKGC — this step is executed after tiReceiverauthenticates
himself as/ D to theKGC. TheKGC then generates thgartial private keyd;p
which is subsequently communicated to Receiverin a secure manner.

Input: (mpk, msk, 1D).

Output: d;p.

1. Choose- <& 7).

49

2. Computel;p « (di,ds) = (g9 - Fu(ID)", g").
3. Returnd;p.

ALGORITHM 10.3. Set Sec.
Performed by the Receiver in this step th&Receivercomputes a randomly cho-
sen secret value; p.

Input: mpk.

Output: z;p.

1. Chooser;p <= 7.
2. Returnz;p.

ALGORITHM 10.4. Set Pub.
Performed by the Receiver in this step theReceivercomputes and freely dis-
tributes thepublic keypk;p.

Input: (z;p, mpk).

Output: pkrp.

1. Computek;p < (X,Y) = (g2, g{'P).
2. Returnpk;p.

ALGORITHM 10.5. Set Pri v.
Performed by the Receiver in this step theReceivercomputes higprivate key
skrp which he uses to decrypt messages encrypted ugipg andD.

Input: (;p,drp, mpk, ID).

Output: skrp.

1. Choose’ <& 7%
2. Set(dl,dz) < d[D.
3. Compute private key as

skip < (s1,82) = (df“) -Fu(ID)r/,d;”D -grl) .

4, Returnsk;p.

ALGORITHM 10.6. Encrypt.
Performed by the Sender this step computes the encryption of message

Gr.
Input: (m,pkrp, 1D, mpk).
Output: C.

1. If e(X,q1)/e(g,Y) = 1g, then
2. Chooses < 7.%.

50

3. Set(Co,Cl,Cg) — (m-e(Y,gg)s,gs,Fu([D)s).
4. Computew < H(Cy, C1,Co, ID, pkrp).

5. SetCs + F,(w)*.

6. ReturnC' = (CO,C1,02,03).

7. Else

8. ReturnFAIL .

In Steplin Algorithm 10.6we check for the correctness of the public keyp, if
pkp is of the right shape then the ciphert&xtis computed and returned else the
algorithm aborts with FAIL.

In Step4 in Algorithm 10.6we include the haslk’, (w) of w, since our encryption
scheme is homomorphic this hash acts as a signature onteiphand defeats the
adversary’s attempt to create valid encryptions by comigioither encryptions and
winning thelND-CCA game described iSection 9.1

ALGORITHM 10.7. Decrypt.
Performed by the Receiver this decrypts the message encrypted using receiver’'s
private keypk;p and identityl D.

Input: (C, skrp, mpk).

Output: m.

1. Set(Co,Cl,CQ,Cg) + C.
2. LetweH(CO,Cl,Cg,ID,kaD).
3. If e(C1,Fu(ID) - F,(w)) = e(g,Cs - Cs) then
4, Set(s1, s2) « skip.
5. Computen « Cjy - M.
e(Cl, 81)
6. Returnm.
7. Else
8. ReturnFAIL .

In Step3in Algorithm 10.7we check for the validity of the ciphertext by checking
the hashF, (w), if C'is a valid ciphertext then we proceed with the decryptioe els
the algorithm aborts with FAIL.

We check for completeness by substituting the values@r C,, Cs, s1, s2) in
(s1,52) = (dfw - E,(ID)", d2'> -g’“’) .
This can be rewritten as
(s1,52) = ((93 - Fu(ID)")"'2 - B(ID)", (") - 9")
_ (gngp .Fu(ID)mDJrr”nger’)
= (93”7 - F,(ID)", ")

51

wheret = rzrp + r’. Now, substituting the values we obtain

B(CQ,SQ) e (F; (ID)S,gt
CO'Ci:m B(Kg)s s(’\:;ID FI)Dt
e(C1,51) e (9%, 99 - Fy(ID)")
e (F,(ID)*, gt
=m e(gfID> S) s ’Y$(1Du s) t
e(9%,95 ') e(g®, Fu(ID)")
e(g'Y$ID 95)
= m - e(gsjg;J:ID)
=m.

Thus we conclude that the decryption of an encrypted mesgage us back the
original message: and the scheme functions correctly.

10.2. Security Reduction. In this section we define the security of our scheme.
We base the security of our scheme on the intractability@8tbDH in the groups
which are used by our construction. To capture the idea afrggave first define
theorems which highlight the advantage gained by an attaokéhe described
security model. After that we provide the proofs of thesetbms.

THEOREM 10.8. SupposeA; is a Strong Type | adversary that runs in time
makes at mosj, decryption queriesy,,, partial private key queries, ang. pri-
vate key queries. Then there exists

— an adversary!’ against the3-DDH that has advantagadv’;PP (k) and
runs in timeQ (t) + O (2 In§~') for sufficiently smalk ands, and

— an adversaryd” against the collision resistance of the hash funcfibthat
runs in timeO (t) and has advantagédvq/F (k)

such that the advantagelvG=>““4(k) of A; is bounded by

AdvGECCN k) < 8(qppr + apr)qa(n+1)% - (8- Adv¥PPH (k) + 6) + Adv i (k).

THEOREM 10.9. SupposeA;; is a Strong Type Il adversary that runs in time
makes at mosi, decryption queries ang,, private key queries. Then there exists

— an adversary!’ against the3-DDH that has advantagadv3P"" (k) and
runs in timeQ (t) + O (2 In§~') for sufficiently smalk ands, and

— an adversanA” against the collision resistance of the hash funcfibthat
runs in timeO (t) and has advantagédvq /¥ (k)

such that the advantag&iu%[‘CCA(k) of A;; is bounded by

AdvGECON (k) < Sqprga(n + 1)% - (8 - AdvSPPM (k) + 6) + AdvGF (k).

II

52

Interpretation The advantage of the adversaries against the scheme gregent
Section 10is bound by the results ofheorem 10.8&nd Theorem 10.9 Thus if
either A; or Aj; exist such that it has a significant advantage against brgdke
indistinguishability of the scheme then this would implg thxistence of attackers
with significant advantage against both solving 88®DH and breaking the col-
lision resistant hash functiofl. Such attackers can be used to device algorithms
which solve the3-DDH and find collisions of in polynomial time.

For the algorithms mentioned in the above theorems a solatm be conve-
niently found for whiche ~ 0 or § ~ 0 but such a solution provides no advantage
to the adversary as it is too slow and the equation is rendasathingless. To gain
significant advantage in breaking the security of the schémaeadversary must
find an algorithm with sufficiently sma#lt and such that the algorithm runs in
polynomial time.

Framework The motivation behind our security reduction is that we wantse
the attacker to solve th&eDDH. However, our described protocol cannot be used
to do this in its original form hence to do so we need to feedattacker with
values which are generated differently than in the origpratocol. We create an
environment which interacts with the attacker during tR®-CCA game. The
attacker, assuming that he works within the scheme scersrauld not be able
to detect any difference since that could change his engl@viour. Thus the
main challenge underlying the whole reduction is to chamgeotiginal protocol
to model the3-DDH without inducing changes which the attacker can ascertain.

The idea behind provingheorem 10.8&and Theorem 10.9s that we want to
reduce the challenge presented to the attacker to a seqoicelomly generated
values which model the problem defined refinition 4.3 The argument then
follows that if the attacker cannot differentiate betweeageauine challenge from
the one which models the-DDH then he cannot predict what he is computing.
Thus, in this modified scenario if he manages to win ifki®-CCA game with
a significant advantage then we can conclude that such akattean solve the
3-DDH. Thus we show that the security of our scheme rests on thectatrility
of the3-DDH in G. This is a very generic way of describing things and we define
them formally in pages to follow.

We achieve our agenda by starting with the scenario whicresepts the sit-
uation when the scheme begins and then gradually changeniays which the
attacker cannot detect. Finally, we end up with a scenasedan which we can
draw conclusions about attacker’'s advantage. We presehtcsianges in the form
of games that we describe subsequently.

53

~

7
Oracle Calls, Response // \\

/ \
1 Adversary '

\
Challenge, Guess N y

Figure 10.1: The arrangement of the security reduction. Challengerfeeds
the attack environmenB with values at different stages of game hopping. The
attack environmens is responsible for setting up the scheme and answeringeoracl
calls. TheAdversanyinteracts with the attack environmefito get responses to the
oracle calls that he makes. Finally, the attack environrmBaaresents thédversary
with the indistinguishability challenge and thelversarymakes a guess.

LEMMA 10.10. For alli, let S; denote the event that an attacker is successful in
Gamei and thus outputs the correct guds®f d, the advantage of the attacker is
denoted byAdv; = |Pr (S;) — 1/2|.

Assume that Gameis a game where the attacker wins with success probability
Pr (S;). E denotes an event which may occur during the attacker’s éecsuch
that

o FE is detectable by the simulator;
o FE isindependent af;;

o Gamei and Gamea -+ 1 are identical unles& occurs, in which case the
game halts and outputs a random bit.

Then we have
Advjy1 = Pr(=F) - Adv;.

ProOOF(Lemma 10.10 The proof of the lemma is straight forward and was first
presented by (). We note here that the gameand: + 1 are identical
when E does not occur. Therefore, we have

Sipr1N—-E=5,N-FE,

54

and by the independence assumption
Pr(SiNE)="Pr(S;)- -Pr(E).

During the game + 1 if E occurs then the game halts and outputs a random bit

L . 1
which impliesPr (S;y1 | E) = 7
Thus,

Pr (Si+1 N E) =Pr (Si+1 | E) -Pr (E)

= % -Pr(E).
Similarly, we have
1
Pr(—\ i+1 ﬂE) = 5 PI‘(E)

Now,

1
|PI‘ (SfiJrl) — 1/2| = |Pr (SfiJrl N E) + Pr (SfiJrl N —|E) — 5‘

-Pr(E)+Pr(S;)-Pr(-E)— =

1
2

N~ N

-(Pr(E)—1)+Pr(S;)-Pr (—\E)‘

= —% -Pr(=E)+Pr(S;) Pr (—\E)'
= |Pr(S;) —1/2| - Pr(—E)
and thus we obtainldv; ; = Pr (—F) - Adv;. O

We now proceed to provéheorem 10.8and Theorem 10.9these theorems
were originally presented and proved by (). Our
proof follows the same pattern and we have explained thétsestotained in further
detail.

PrRoOOF(Theorem 10.8 We proceed to prov&heorem 10.&hrough a series of
games which involveType | attacker.A; who tries to guess the hidden hitin
the IND-CCA game described iBection 9.1 The attacker outputs a guegson
conclusion of the sequence of games.

Game 1 After the scheme has been specified as describegkation 10.1we
begin Game 1 in this game we designate the list of identities with whible t
Type |l attackerA; interacts and the manner of those interactions. The actual a
tack environment with which attacker interacts is denoted3bit generates the

55

master key, the public parameters, and the initial userldipkeys and secret
values. It is assumed th& can answer decryption queries without the knowl-
edge of matching secret values for changed public keys. ifnréal attack we
assumePPK = {IDs,...,1D,, ,} be the list of identities for which the at-
tacker asks for artial private keyextraction and le’K = {ID,...,ID; }

be the list of identities for which the attacker asks f@rivate keyextraction. Let

D = {wy,...,wy,} be the list of strings involved in decryption queries, where
w; = H(Cy, Cy,Cy, IDj,pkj). The identity and the public key under attack by
the attacker is denoted By D*, pkrp-). C* = (C, Cy, C5, C3) denotes the chal-
lenge cipher text and™ = H(C§, Cy,C5, ID*, pkrp~). The challenge ciphertext
is handed to the attacker as definedSiection 9.1and the attacker must respond
accordingly, this concludeSame 1

Game 2 In this game we change the generation of thaster public keyn a
way that does not effect its distribution. We achieve thidadlews, the attack
environmentB picks a,b €r Z, and sety; = g%, g2 = g°, choosess,,, K, €

{0,...,n}. Letr,, 7, be integers such thab+1)7,, (n+1)7, < p, we specify the
particular values irGame 7 The environment selects, €z N, ,z) €r N,

and vector(zy,1,...,Tun) €r N2, (Tv1,...,Tom) €r N2 . It also picks
Yus Yy €R Ly and vectorgy, 1, . . ., Yum)s Wo,15 - - -, Tyn) €r Zyr. The remaining
master public keglements are chosen as follows

(10.11) U =gy g = gyt for0 < j <
and
(10.12) W =gy T vy =gy g for0 < j <.

As seen the values &ft),, z),, 2y j, ©, ;) @nd (Y}, Yo, Yu.j» Yv,;) are chosen differ-
ently this is because they are usedqi0.11)and(10.12)to define(v’, u;,v’, v;).

The exponents qf andg, are meaningful modulp only hence we need to restrict
the choice ofz},, z, ;) and(z;, z, ;) to N, andN., respectively.

We note that the number of possible values pandv; arepr, andpr, respec-
tively because of the choice of the exponent§lin.11)and(10.12) However, the
distribution of themaster public keyemains unchanged because all the elements
of G are equally likely to be chosen. This is due to the fact thatdakponents
are randomly chosen from lists containipg, andpr, elements where each expo-
nent appears equally frequently. Therefdgame 1is identical toGame 2 hence
Pr (Sl) = Pr (SQ) and thusAdv, = Advs.

Game 3 This game is the same &ame 2except the environment halts if the
attacker submits a decryption quety’, I D, pk) for a well-formed cipher text
C = (Cy,C1,Cy,Cs) wherew is equal to the value of a previously submit-
ted cipher text ow is equal tow*. Such a legal decryption query means either

56

C # C* or (ID,pk) # (ID*,pk*). Both situations reveal a collision of the hash
function, thus we can construct an algoritbdff such thafPr (Sz) — Pr (S3)| <
Advq}t(k), since the only difference betwe@ame 3andGame s the condition
enforced by the collision of the hash function hence theediffice of the success
probabilities is the lower bound atidv G/ (k).

We note that the algorithnl” which runs in polynomial-time does exist even
though it requires to simulate a decryption oracle whichgaity a non-polynomial-
time function. However, by modifying the way we define the taakey using the
values defined in the previous games it is possible to suitdgsdecrypt using
only the ciphertext and the public key, we show thisSame 8

Game 4 In this game we modify the environment by flipping a cojp,g. €r

{0, 1} at the beginning of the game.df, ;. = 0 then3 expects thatd; will never
extract the matching partial private key and choose to bkertteed on the identity
whose public key was replaced. df,.q. = 1 thenB expects thatd; will extract

the partial private key of the identity under attack at somiatp

After the challenge is issued, df,.q. = 0 and.A; does not replace the public key
then 3 aborts and simulated ;’s output asd’ € {0,1}. Similarly, B aborts if
cmode = 1 and A has replaced the challenge public key. The random variable
Cmode 1S COMpletely hidden from the attackel; thus he cannot know when the

. . - L 1
game is aborteds aborts with a probability of /2, this gives usAdv, = 3 - Advs
according td_.emma 10.10

Game 5 Before modifyingGame 4we redefiner’, (I D) andF, (w) with the help
of specific choice of the valuds:,, ;, y.. j, Zv j, Yv,;) from (10.11)and(10.12) To
this end we define

n n

j=1 J=1
n n
/ /
Jp(w) =z, + E Wiy j — KTy, Ky(w) =y, + E WjiYv,j
j=1 J=1

wherelD =iy ...1, andw = wy ... w, aren-bit strings. For any string
ID,w € {0,1}" we have

n
F,(ID) =1 H u?.
j=1

57

We can rewrite this as

n

Tl —kuT Ty, Nga
Fu(ID) = gy ™™gt - T (g™ g%
J=1
n
_ d—kumu g, 4 3 %u,j ngljyuu
=99 97 9o g
L . n
m;-‘,—jgl GTug TRy S g
=G g =
Ju(ID) K,(ID

Similarly, we obtain

n
Fy(w) =" H U;Uj.

7j=1
This can be rewritten as

Fiw) = g1 e 1P)

=0y .

Game 5is identical toGame 4except when the attacked; outputs its guess
d' of d then the environmenB checks whether,,(ID*) = J,(w*) = 0 mod
p. If J,(ID*) # 0 or J,(w*) # 0 then B aborts and simulategl;’'s output
choosing uniformly randomlyl’ € {0,1}. The values(z!,,z 1, .., %y ,) and
(@), y.1,-..,Typ) are hidden from the attacker and hence it can only come up
with I D* such that/, (ID*) = 0 by chance.

Therefore we have

Pr(J,(ID*) =0 mod p)
=Pr(J,(ID*)=0 modp| J,(ID*) =0 mod 7,)-
Pr(J,(ID*) =0 mod 7,)
1 1
T+l Tu
1
- Tu(n+1)

We note here thatr (J,(ID*) =0 mod p | J,(ID*) =0 mod 7,) is precisely
due to the fact that under the given circumstanégd D*) is a multiple of

n+1
n
7, which would in turn imply thats;, + >~ iz, ; is also a multiple ofr,. Now,
j=1
there is exactly one value out of the possible 1 values thak,, can take to make

1 .
Ju(ID*) = 0. Also, we havePr (J,(ID*) =0 mod 7,) = — because this can

Tu

58

happen only if/,(ID*) = 0 hence there is exactly one choice ffy(1D*) out of
the possibler, choices. This leads us to the given probability.

_

To(n + 1)

purely by chance. Now applying the game hopping describedemmma 10.10
d?}4

TuTo(n +1)2°

Similarly, we obtainPr (J,(w*) =0 mod p) = sinceJ,(w*) =0

leads us tAdvs =

Game 6 In this game we modify the way the environméhgenerates the chal-
lenge ciphertext.3 picks up a random value €r Z, and setsC] = g°. Let
identity 7 D*’s public key at the challenge phase be denotegiyy,- = (X*,Y™).
B flips a coind* €r {0,1} and computes

Cg = Mg+ * B(Y*’g2)c’

C5 = €707 = (g atie)
and
* * Ky (w* oy Ky (w*
G5 = G710 = (g

wherew* = H(C{, C5,Cs, ID*, pkrp-~). The returned ciphertexCy, Cy, Cs, C5)
has the correct distribution sincg,(/D*) = J,(w*) = 0 and hence we have
Ad?)@ = Ad?}5.

Game 7 In this game we modif{§Game 6such that afterd; outputs his guesd’
the environmens3 checks if one of the following conditions are true

© Cmode = 0andJ,(ID;) =0 mod 7, for somelD; € PPK with
1€ {1, . 7Qppk:}-

o Ju(IDj) =0 mod T, forsomelD; € PK with j € {1,...,qp}.
o Jy(we) =0 mod 7, for somew, € Dwith ¢ € {1,...,q4}.

We defineFE as the event that any of the aforementioned conditions Nkl ob-
serve thaDents game hopping technique cannot be applied at this stage siren
though E' is recognisable there is no surety that it is independersi;ofAttacker
A can model his queries by choosifj< and PP K depending upom,, in such
a way thatPr (E) is significantly different in different query sequences. ifge a
re-normalisation technique suggested\iaters() to circumvent this problem.
We derive a non-negligible lower bound B (—F)) for any set of oracle queries.
We estimate the probability thd occurs during a particular set of oracle queries
that are made while runningl; and then addrtificial abortsto ensure thatd;
aborts with exactly the probability given by this lower bdurWwe now derive the
theoretical lower bound.

59

For ¢, 0de = 1 we find

Pr(—-E) =Pr < /\ Ju(ID) #0 mod 7, A /\ Jy(w) #0 mod 7,
IDePK weD

| Ju(ID*) =0 mod 7, A Jy(w*) =0 mod TU>

=Pr < /\ Ju(ID)#0 mod 7, | J,(ID*) =0 mod Tu> :
IDePK

Pr (/\ Jy(w) #0 mod 7, | Jy(w*) =0 mod Tv> .

weD

Now, considering the first term of right hand side

Pr< /\ Ju(ID)#0 mod7,|J,(ID*)=0 mod Tu>
IDePK

:1—Pr< \/ Ju(ID)=0 mod 7, | J,(ID*) =0 modm)

IDePK
>1- Z Pr(J,(ID)=0 mod 7, |J,(ID*)=0 mod 7,)
IDePK
>1 - Ik
Ty,

Similarly, the second term of right hand side

Pr (/\ Jy(w) #0 mod 7, | Jy(w*) =0 mod TU> >1- 4

T
weD v

Hence we have

Pr(-E) > (1 - %) - &%),

Ty Tu

60

For¢,,04e = 0 we obtain

Pr(—E) = Pr (A JuUD)#0 modr, A J\ Jy(w)#0 mod T,
IDePKUPPK weD

| Ju(ID*) =0 mod 7, A Jy(w*) =0 mod Tv>

=Pr (A Ju(ID)#0 mod 7, | J,(ID*) =0 mod Tu> -
IDePKUPPK

Pr (/\ Jy(w) #0 mod 7, | Jy(w*) =0 mod Tv> .

weD
Now, handling the equation just like we did earlier we have

Pr(-E) > (1 — @)(1 _ M)_
Ty Tu

Putting the above results together we get

qd dpk .
1—=—)(1—-——= if =1
Pr(-E) > (5v)(Tu)+q Cmode
- d k k .
(1 - 7__)(1 -2 T Lr) if Cmode = 0.
v U

On settingr, = 2qq4, 7 = 2qpk If Cmode = 1 aNd7, = 2(gpi + Gppk) If Cmode = 0
we obtainPr (—E) > 1/4. This should be done in accordance to the specifications
of 7, andr, provided inGame 2

As mentioned before this is just a theoretical lower bounchfat aborting, to
employ game hopping we need to ensure that the probabilitpoéborting is ex-
actly 1/4. We estimate the probability that a certain sequence ofl@gueries
made by the attacked; may cause an abort by repeatedly picking the values
x,, z,y ;, x, andz, ; and checking if these values cause an abort for the sequence
of oracle queries that; has made. This does not require rerunning the attadker
but simply checking whether the simulator aborts as meatidefore. Also we
do not constraint the values of,, z,, ;, =, andx,, ;. We must note that in order to
have no impact on the attacker’s behaviour due to these esamg have to ensure
that the master public key value stays same. Hence, we magnaghaty values
are chosen so that master public key elements are as in thieabréxecution of
Aj. It might appear at the outset that we need to solve the déstogarithm prob-
lem to achieve this but looking at the definitionadf, z,, ;, 2, andz,, ; in Game 2
it becomes clear that this is not the case. We knowghat ¢° hence a change in
thez values can be adjusted by picking a suitapl@alue without the need to solve
the discreet logarithm problem.

61

The probability that we do not abort for a given sequence atlerqueries
made byA; is given byr/, i.e. Pr (—=FE) = n’. We approximate the probability for
7’ given by the repeated sampling of theralues byn"”.

Using the Chernoff bound we see that (|7’ — | > ¢) < ¢ when we con-
siderO (e~2(né~') samples and, § > 0. To attain a definite abort probability we

e . 0 —1/4
force an artificial abort with probablllt)y% whenevern)” > 1/4. In those
n

cases3 assumes thatl; outputs a randorm’.
Now the probability of the abort can be estimated by

Pr (Abort‘ I —n"| < 5) = Pr (Natural Abor} + Pr (Artificial Abort)

1!
n' —1/4
:(1—77/)+T77/
/
n
=1-n)+0" - 1/4)7
!
<(1-n " _1/4
<=7+ /)n’—€

<(A-7)+0"-1/49)(1 +)

n—e
asn’ > 1/4, we can estimate

4e
<(1-1¢ " —1/4)(1
< (=) + (" =1/ + —)
<A =7)+ (0 +e—1/4)(1 + 5¢),

. 1 .
sincees < 20 for sufficiently smalle

<A =041 4+e—1/4) 4 5e(n —1/4) + 52
< 3/4 4 e+ 5e + 52, since(n’ —1/4) <1

< 3/4 + 6¢ + 5e?

< 3/4+ Te.

Now, we have
Pr (Abort) = Pr (Abort| [/ —n"| < &) - Pr (| = #"| <) +
Pr (Abort‘ ' =" > 5) Pr(ln =n"| >¢)

<(3/4+Te)-1+1-6
<3/4+Te+0.

Therefore, the abort does not occur with a probability obast

1—Pr(Abort) >1-3/4—-7c -0
>1/4—"Te—4.

62

Now employingLemma 10.1Gve obtain
Advr > Advg (1/4 —Te —§)
> (Advg — 0) (1/4 — T¢)
Fore < 1/56, we get
Adv7 > Adv6 (1/4 - 1/8)
Adv6)
>
- 8

Game 8 In this game we change the way we treét's queries. Letd = ¢
wherea € Z,; and unknown ta3. The generation of the master public key is
changedy; is generated depending upon the value,@f,. .

o If ¢ode = 0thenB setsg; = A without the knowledge of the master secret
a.

o If cmode = 1thenBB setsg; = g7 with v €r Z.X, and storeg for later use.
We now model our response to the queries based on the valiie of

o Request Public Kefpr an identity ID:

— If ¢oge = 0, B pickszp €r Z); and retumngkrp < (g7, 97"")
— If cinode = 1, B pickszip €r Z, and returngk;p < (AP, AT¥ID)

o Replace Public Keyor an input(ID, (X,Y)): B checks if(X,Y) of the
correct shape and then replaces the public key/of

o Extract Partial Private Keyor an identity ID:

— If ¢uode = 0, BabortsifJ,(ID) = 0 mod 7, just like previous game.
Otherwise it follows that/,, (/D) # 0 mod 7, and thus/,(ID) # 0
mod p andB picksr €r Z, and returnsiy = (d1,d3) where

dy & Fy(ID) - g; < UP/707)

and
this can be written as
dy = FU(ID) . (g)—aKu(ID)/Ju(ID)
= F,(ID) - (F,(ID)"%«UD).
g;Ju(ID)/Ku(ID))faKu(ID)/Ju(ID)’
since 7, (ID) = gy»!'?) . gHuID)
= F,(ID) - (F,(ID)~*/7«UP) . g3)
=g5-F,(ID)"

63

and

a

herer = r — .
where7 = r 7.0D)

— If e;rode = 1, B usesmsk = ~y to calculate the partial private key using
the construction.

o Extract Private Keyfor an identity ID: B aborts if J,, (/D) = 0 mod 7,
just like previous game. Otherwise it follows tht(/D) # 0 mod 7, and
thus J,(ID) # 0 mod p. Letpkrp = (X,Y') be the original public key
for ID, B pickst € Z; and returnskrp = (s1, s2) where

(s1,82) = (FU(ID)t) YfKu(ID)/Ju(ID)jgt) Yfl/Ju(ID)) _

Now, usingF, (ID) = g7*'P) . ¢Ku(ID) we have
— If e;uode = 0, then the secret value ig p and implicitly defined master
key value isa, hence(sy, so) = <g§m - F,(ID)t, gf) wheref =
axrrp
J7.(ID)’
— If ¢;oqe = 1, then the implicitly defined secret valueds;p and the
master key value is, hence(sy, s) = (gg’ym -FU(ID)E,g'?) where
ayTIp
7.(ID)’

o Decrypta valid ciphertextC' = (Cy, Cy,Cs,C3) encrypted for an iden-
tity 7D using the public keyk;p = (X,Y) which may or may not have
been replaced by the attacker: Let= (Cy, Cy,Co, ID, pkrp), B aborts if
Jy(w) = 0 mod 7, just like the previous game and choogés ; {0,1}.
Otherwise it follows that/,,(w) # 0 mod 7, henceJ,(w) # 0 mod p and

C3 = (9‘2]“(w)9K”(w))s andC) = g° wheres € Z.

1/Jy(w
e 2 /Jv(w)
2 ClKv(w)

and computes(Y, g2)*, this allows for the computation ofi =

t=t—

Now, B extracts

Co

G(Y’ 92)8
regardless of the fact whethgK, Y") is the original public key or not.

Changing the generation of the master key does has no effiettsoability to
answerA;’s queries like inGame 7and the distribution of the master key remains
unchanged, hence we ha¥@vs = Adwvr.

64

Game 9 In this game we modify the generation of the ciphertext agélsing
variablesh, ¢ € Z,; defined inGame 2andGame 6respectively. We set] = ¢¢
and7 = A,

o If ¢pode = 0, letpkrp« = (X*,Y™) be identity] D*'s current public keyB
flips a binary coind* € {0,1} and computes

(10.13) Cy=mg--e
= Myg* - €

(
(
= mgs - 6(9 ")
= mg - e(Y*,gg) .

It then compute€’; = (¢°)%“UP") w* = H(CE, CF, C3, ID*, pkrp-) and
s = (9% 1 Jy(w*) £ 0 mod por J,(ID*) # 0 mod p thenB
aborts like inGame Sotherwise it returngCg, Cy, C5, C3).

o If ¢phode = 1, B retrieveszp+ such thapkrp- = (A*1p*, A7¥10+) flips a
binary coind* €r {0,1} and computes

Co = mq- - e(Y", g2)°
= mg* * B(A’\/‘TID*)C
= mgs - B(QGWCID*)
= mygs - e(g7 abc)’ya:ID*
(10.14) = Mg~ - e(g)WCID*

It then computes’; = (¢°)X«UP") w* = H(CE, C¥,C3, ID*, pkip+) and
s = (¢9)K)If J,(w*) # 0 mod p then B aborts like inGame 5
otherwise it returngCy;, Cy, C5, C3).

Since we havel, (w*) = 0 mod p, these changes do not affect the distribution of
the challenge ciphertext and we haddvg = Aduvs.

Game 10 In this game we change the challenge phase ag&ironly retains
g2 = g® andC} = ¢¢ and forgets the valuds c. Challenge is constructed as shown
in equationg10.13)and(10.14)butT is chosen randomly’ €z G. The simulator
only uses the valueg®, ¢°, ¢° and never touches, b, c. The transition between
Game @andGame 10s based upon the indistinguishability Bf= ¢®¢ fromT €

G and both games are equal unless there exists a probabgidifaomial-time
algorithm A’ which can tell the difference between the two values. Thiddarly

an instance of th&-DDH which we wanted to achieve from the very beginning.
Since the only difference betwe&@ame %andGame 10s the condition enforced
by the indistinguishability of" = g% from T' €r G hence the difference of the

65

success probabilities Game %andGame 10s the lower bound ordv PP (k).
Therefore we have

|Pr (Sg) — Pr(Si0)| < AdvPPH (k)

Additionally Cj now reveals no information about;- and is completely indepen-
dent ofd*, hencePr (S19) = 1/2. This brings game hopping to an end.
We now combine the results obtained from the previous gasvesave

Advr = Advg = Advy < Adv3PPH (k)
and
Ad?}5 = Ad?)@ < 8- AdU7 +4

also

Aduvy

Advy = — 2204
s TuTo(n + 1)2

wherer, < 2(qppr + gpr) @andr, = 2¢4. And thus

Advy < 2(qppr + qpr) - 2qa(n + 1)% - Advs
< 4qa(qppk + qpr) (n +1)* - (8 - Advr + 6).

We also have
Advg =2 Ad?}4
and

Ad’Ul == Ad’U2 == |P1” (52) - 1/2|
< [Pr(Ss) — Pr(S5)| + [Pr(S3) — 1/2|
< AdvSR (k) + Ados.

Combining the above equations we finally have
Advy < 8qa(appk + qpr) (n + 1)% - (8 - Adv3PPH (k) 4 6) + AdvGF (k). O

PrRooOF(Theorem 10.R The proof forTheorem 10.9s similar to the proof of
Theorem 10.8vith differences inGames 7, 8, @and10. We note thatd;; never
makes a partial private key query and has the access to thiemraasret keynsk =
~ at the beginning of the game.

In Game 7andGame 8 BB treats all queries as in case®f,q. = 1 and hands
msk = v to A;;. In Game 9all queries are handled as in the case,@f;. = 1
and the challenge ciphertext is computed ugih@.14) Finally, in Game 10we
combine all the results according to the changes describéshime 8and 9 to
obtain the final equation. O

66

Discussion The proofs ofTheorem 10.&ndTheorem 10.$how that the scheme
is secure against the adversaries describe8eiction 9.2 Thus in a manner of
speaking breaking the scheme under the imposed constvainilsl be equivalent
to solving the3-DDH problem and breaking the collision resistant hash function
H. These are hard problems and basing our security on thera givéea of the
hardness of breaking the indistinguishability of the schem

At this point we should note that at the onset of the games wanas the
knowledge of the number of oracle queries the attacker makeslenote this by
44, 9ppk @Nd g, This might not be possible in general hence to achieve this w
make an assumption about the number of queries made. If sumgion seems
too small or too large then we adjust the values accordingti/tey again. For the
purpose of our proofs we start with the correct assumed sallieese proofs also
show that certificateless schemes can be constructed éhs¢eure in the standard
model. We demonstrate how this construction can be implegdesifficiently in
Section 12.4

67

68

11. Concrete Derived Construction

11.1. The Construction. The new encryption scheme is derived from the scheme
previously described iBection 10 We take the originally proposed construction
and modify it to include biometrics. As discussed earlier thotivation behind
doing so is to achieve an encryption scheme which providesfagator security.
To encrypt messages the sender uses the receiver’s pupliskeell as biometrics
and decryption of messages requires the receiver to prdgttethe private key
and his biometrics. This in turn safe guards the receiveinatjdevice compro-
mise. Since the proposed scheme is an extension of the cressksl earlier, it
also usedbilinear map groupsand we again require tti2e DDH for G described in
Definition 4.3to be intractable in such groups.

The modified scheme proceeds through a sequence of six simeowhich
are described in the pages to follow.

ALGORITHM 11.1. Set up.
Performed by th&GC — this is the first step in the encryption scheme in this step
the KGC generates thenaster public keynpk andmaster secret keyisk after
receiving the system security parametesind bit lengthn of the public identity
ID. LetG define bilinear map group of ordgr> 2% andg be a generator foB.

Input: (1%, n).

Output: (mpk, msk).

Choosey <& Z*.
Setg1 = g’Y.

Choosgy, <Z G.

Choose vector@’, hy, ..., hy), (U ut, ..., up), (V' v, ... 0p,) <& G
Write BID = kiks ... ky, ID = i1i5...1, andw = wywsy ... w, as bit
strings withk;, i, w; € {0,1}.

6. Define hash functions

{0,1}" — G,

Fy: k
BID s W T]pejcnhs

ar®ODNE

7

. {0’1}11 — G>

F, i
/ L
1D — U [[ocjcn)

and

{07 1}11 — G>
FU: / U)J .
w — V' lo<j<n v

7. Choose a collision resistant hash functién: {0,1}* — {0,1}" as re-
quired inDefinition 4.4

8. Define themaster public kewns
mpk < (9,91, 92, W hay oo hp, v Jug, o w00, o).

69

9. Define themaster secret kegsmsk < ~.

ALGORITHM 11.2. Extract.
Performed by theKGC — this step is executed after tiiReceiverauthenticates
himself asl D to theKGC and then securely communicates(BID). TheKGC
then proceeds to compute thartial private keyd; p which is subsequently com-
municated to th&eceivelin a secure manner.

Input: (mpk,msk,ID, F,(BID)).

Output: d;p.

1. Choose- <& 7).
2. Computel;p « (di,dy,ds) = (g) - Fu(ID)", (g - Fy,(BID))", F,(BID)Y).
3. Returnd;p.

ALGORITHM 11.3. Set Sec.
Performed by the Receiver in this step thdReceivercomputes a randomly cho-
sen secret value; p.

Input: mpk.

Output: z;p.

1. Chooser;p <= Z.
2. Returnz;p.

ALGORITHM 11.4. Set Pub.
Performed by the Receiver in this step theReceivercomputes and freely dis-
tributes thepublic keypk;p.
Input: (z;p, mpk,dp).
Output: pkrp.
1. Computepkp < (X,Y, Z) = (¢"12, g7"7, d5'P).
2. Returnpk;p.

ALGORITHM 11.5. Encrypt.
Performed by the Sendet this step computes the encryption of message

Gr.
Input: (m, pk;p, mpk, ID, BID).
Output: C.

1 If e(X,q1)/e(g,Y) = 1g, then

2. Chooses <& 7.%.

3. Set(Cy, C1,C2) « (m-e(Y - Z,g2)°, (g - Fr(BID))*, F,(ID)®).
4 Computew <+ H(Co,cl,CQ,[D,pk[D).

5 SetCs <+ F,(w)*.

70

6. ReturnC = (CQ,Cl,CQ,Cg).
7. Else
8. ReturnFAIL

Just like Stepl in Algorithm 10.6 in Stepl in Algorithm 11.5we check for the
correctness of the public ke p, if pk;p is of the right shape then the ciphertext
C is computed and returned else the algorithm aborts with FAIL

We include the hash;, (w) of w in Step4 in Algorithm 11.5for the reasons previ-
ously described in Stepin Algorithm 10.6

ALGORITHM 11.6. Decr ypt.

Performed by the Receiver- this decrypts the message encrypted udiey
ceivers private keypk;p, public identityl D and the biometric identity3 1 .D.
Input: (C,d;p,xip,mpk,ID,BID).

Output: m.
1. Set(CO,Cl,CQ,C3) +— C.
2. Letw %H(CQ,Cl,CQ,[D,pk[D).
3. If 6(01, Fu([D) . FU(U))) = e(g . Fh(BID), Cy - Cg) then
4. Choose’ <& 7.%.
5. Set(dl, dg) ~—dip.
6. Compute the private key as

skip ¢ (s1,52) = (47 - F(ID)", &5 - (g Fy(BID))"').

7. Computen < Cjy - M
6(01, 81)
8. Deletesk;p.
9. Returnm.
10. Else
11. ReturnFAIL

In Step3in Algorithm 11.6we check for the validity of the ciphertext by checking
the hashF, (w), if C'is a valid ciphertext then we proceed with the decryptioe els
the algorithm aborts with FAIL.

We check for completeness by substituting the valuegdar C1, Cs, s1, s2)

71

(s1,82) = <(gg - E,(ID)")*'" . F,(ID)",

(tg- Fu(BID)Y)™ - (- (BID))")

— (371 - Fu(IDY "% (g Fy(BID)y"i0+)

= (92"'" - Fu(ID)', (g - Fx(BID))")
wheret = rzrp + r’. Now, substituting the values we obtain

e (Fu(ID)*, (g - Fun(BID))")

e(Ca, s2))
e((g- Fn(BID))®, g,""" - F,(ID)?)

A5 Y T ao)
Co o(Cy,51) m - e(. 92)

e (g 5P g)
¢ (FID) (g Fu(BID)))
(g~ Fu(BID))", 7™ - ¢ (9 - Fu(BID)) Fu(ID))

e((g- Fn(BID))™" , g3)
e((g- Fu(BID))*,93"'")

= m -

=m.

Thus we conclude that the decryption of an encrypted mesgage us back the
original messagen and the scheme functions correctly.

11.2. Security Reduction. The security reduction of the derived scheme pro-
ceeds very similar to that of the original scheme presentesection 10.2 The
security of the derived construction is also based on itakdidity of 3-DDH in the
groups that are used by the construction. We again defineeetineto capture the
idea of security in the new model and use games to prove it.

THEOREM11.7. Supposed™<” is either a New Strong Type | or New Strong Type
Il adversary that runs in time makes at mosf; decryption queriesy,;; biometric
identity extraction queries, ang, private key queries. Then there exists

— anadversan/’ against thd-D D H problem that has advantagelv” P (k)
and runs in timed (t) + O (e=2In§~1) for sufficiently smalk ands, and

— an adversaryd” against the collision resistance of the hash funcfibthat
runs in timeO (t) and has advantagédvq /¥ (k)

72

such that the advantageivGE:S¢4 (k) of A" is bounded by

AdvGESCA k) < 8qppqaqpia(n + 1)3 - (16 - Adv%PPH (k) + 6) + AdvGE (k).
A P A A

Interpretation The advantage of the adversaries against the scheme m@sent
in Section 11is bound by the results ofheorem 11.7 Thus if either. A7 or
A7 exist such that it has a significant advantage against brgakie indistin-
guishability of the scheme then this would imply the existewnf attackers with
significant advantage against both solving 8BBDH and breaking the collision
resistant hash functioff. Such attackers can be used to device algorithms which
solve the3-DDH and find collisions ofd in polynomial time.

For the algorithms mentioned in the above theorems a solatm be conve-
niently found for whiche = 0 or § ~ 0 but such a solution provides no advantage
to the adversary as it is too slow and the equation is rendaezthingless. To gain
significant advantage in breaking the security of the schdraeadversary must
find an algorithm with suitable andé such that the algorithm runs in polynomial
time.

Framework The framework is exactly similar to what was earlier presdrin
Section 10.2and we again want to use the attacker to solvesthbe®H. Like earlier,
we change the original protocol by introducing changes twhie undetectable by
the attacker. Finally, we present the attacker with 3f@DH modelled as our
challenge and try to make conclusions about the attackemimgrntheIND-CCA
game. Thus in this modified scenario if he manages to wirlttiz CCA game
with a significant advantage then we can conclude that suetitacker can solve
the3-DDH. Thus we show that the security of our scheme rests on ttetatyility
of the 3-DDH in G. We present the changes to the protocol in the form of games
that we describe subsequently. The arrangement of theityeceduction also
remains same as shownhingure 10.1

PrRooF(Theorem 11.Y. The proof proceeds just like the proof Dfieorem 10.8
through a sequence of games which involves the New Type dkattad?“*” who
tries to guess the hidden kitin the IND-CCA game. The attacker outputs a guess
d’ on conclusion of the sequence of games. Here we highlightibdifications
that we make to the proof dtheorem 10.80 prove the given theorem.

Game 1l This game is same as tlame Idefined in the the proof dfheorem 10.8
but we define one further quantity here. Ik = {ID{,...,ID; } be the set of
identities for which the attacker makes biometric idergityraction queriesBI D*
denotes the biometric identity of the target identit®*. Also, PPK defined in

Game lof the proof ofTheorem 10.8s never used.

73

Game 2 In addition to the values defined earlier @ame 2of the proof of
Theorem 10.8we selecky, € {0,...,n} and letr;, be an integer such thag (n +
1) < p. The environment selecty, €z N.,, and the vectofzy, 1,...,zn,) €R
N2, . Italso picksy) €r Z, and vector(y 1,...,Ynn) €R Z,,- The remaining
master public keglements are chosen as follows:

(11.8) B o= gih gy by = giti g for 0 < j <n

Again, the distribution of thenaster public keyemains unchanged due to the rea-
sons discussed earlier Bame 2of the proof of Theorem 10.8 Thus we have
Pr (S1) = Pr (S2) which impliesAdv; = Advs.

Game 3 Same as$same 3of the proof ofTheorem 10.8

Game 4 In our modified security modell7°* is allowed to make partial private
key queries as well as replace the public key of the sameiigeavien in case of
I1D* hence we do not require to differentiate between the twoschise earlier
done using:,,.¢.- In this game we do nothing but for the ease of understanding
and similarity between other games we just leave it as a plaltker and we have
Ad?}4 = Ad?)g.

Game 5 In addition to the values of, (1 D) and F,(w) redefined inGame 5of

the proof of Theorem 10.8in this game we redefing, (BI1D) before modifying
Game 4 This is done with the help of specific choice of the valies ;, ys ;)

from (11.8) The game proceeds similar @ame 5of Theorem 10.8To this end
we define

n n
Jn(BID) =z, + Y ijaun; — knth, Kn(BID) =y + Y ijyn;,
j=1 J=1

whereBID =k ...k, is an-bit string. For any strind31D € {0, 1}" we define

— / ij
Fy(BID) =1] n5 -
j=1

We can rewrite this as
Fy(BID) = g 1P gR(s1D)

Game 5is identical toGame 4except when the attacked?" outputs its
guessd’ of d then the environmenB checks whether, (ID*) = J,(w*) =
Jn(BID*) = 0 modp. If J,(ID*) # 0 or J,(w*) # 0 or J,(BID*) # 0 then
B aborts and simulated’7“*’s output choosing uniformly randomly €z {0, 1}.

. 1 .
Again we havePr (J,(BID*) =0 mod p) = 1)’ sinceJ,(BID*) = 0
Th

74

purely by chance. The reasons for this are the same as thaséabe been
previously discussed ibame 5of the proof of Theorem 10.8 Hence, we have

A
Advs = — v
TuToTh(n 4+ 1)3

Game 6 In this game we modify the way the environméhgenerates the chal-
lenge ciphertextB picks up a random valuecp Z,; and sets

Cl = (g Fp(BID))*
_ geUKn(BID")+1),
Let identity 7D*'s public key at the challenge phase be denotedpbyp =
(X*, Y™, Z*). Bflips a coind* €r {0,1} and computes

Co = ma--e(Y" - 27, ga)",
;= CfKu(ID*)/(Kh(BID*)H) = (¢°)KuID")

and

Cék — CTKU(W*)/(Kh(BID*)JFl) _ (QC)KU(w*)

wherew* = H(C{, C5,Cs, ID*, pkrp~). The returned ciphertexCy, Cy, Cs, C5)
has the correct distribution sindg (I D*) = J,(w*) = J,(BID*) = 0 and hence
we haveAdvg = Adwvs.

Game 7 In this game we modif{Game 6such that after47° outputs his guess

d’ the environmenf3 checks if one of the conditions described below are true. We
redefine the event previously defined iicame 7of the proof ofTheorem 10.&s
follows

o Ju(IDj) =0 mod 7, forsomel/D; € PK with j € {1,..., gy}
o Jy(we) =0 mod 7, for somew, € Dwith 2 € {1,...,q4}.

o Jy(BIDg) = 0 mod 75, for somelID, € BE with k € {1,...,qpa}
whereBI Dy, is the biometric identity corresponding I®,,.

We defineE as the event that any of the aforementioned conditions lolst like
before we observe thaients game hopping technique cannot be applied at this
stage since even thoudh s recognisable there is no surety that it is independent
of Sg. Attacker.A7° can model his queries by choosifit)k’ and BE depending
uponmy in such a way thaPr (E) is significantly different in different query
sequences. Hence, we again use re-normalisation techsimggested in

() to circumvent this problem. We derive a non-negligible éovibound for

Pr (—E) for any set of oracle queries. We estimate the probabiliag Hroccurs
during a particular set of oracle queries that are made wiileing.A7¢* and then

75

addartificial abortsto ensure thagd’7* aborts with exactly the probability given
by this lower bound. We now derive the theoretical lower lthun

Pr(-E) = Pr (N Ju(ID)#0 modr,A J\ Ju(BID)#0 mod
IDePK IDeBE
A /\ Jy(w) #0 mod 7, | J,(ID*) =0 mod 7,
weD

ANJp(BID*) =0 mod 1, A Jp(w*) =0 mod Tv>

=Pr (/\ Ju(ID)#0 mod T, | J,(ID*) =0 mod Tu> .
IDePK

Pr< /\ Jn(BID)#0 mod 7, | Jo(BID*) =0 mod Th>-
IDeBE

Pr (/\ Jy(w) #0 mod 7, | Jy(w*) =0 mod Tv> .
weD

Following the steps like we did iGame 7of the proof of Theorem 10.8eads us

to

Pr(—-FE)>(1- (]p;k)(l _ @)(1 - Qbid)'

Tu Ty Th

On settingr, = 2q,k, 7, = 2¢q and 7y, = 2q;;4 We obtainPr (—E) > 1/8. This

should be done in accordance to the specifications,of, and r;, provided in

Game 2 Since this is a theoretical lower bound for not abortingertaploy game
hopping we need to ensure that the probability of not abgiirexactlyl /8.

We estimate the probability that a certain sequence of @rgakries made
by the attackerA’}” may cause an abort by repeatedly picking the values
T, Ty j, Th, To j, T, andxzy, ; and checking if these values cause an abort for the
sequence of oracle queries thd}“” has made. This does not require rerunning
the attacketd’7°" but simply checking whether the simulator aborts as meation
before. Also we do not constraint the valuese§f x,, j, z;,, z,j, 2, andzxy, ;. We
must note that in order to have no impact on the attacker's\betir due to these
changes we have to ensure that the master public key valye same. Hence,
we may assume that values are chosen so that master public key elements are
as in the original execution of7¢*. It might appear at the outset that we need to
solve the discrete logarithm problem to achieve this bukilogat the definition of
T, Ty j, Th, To j,) @ndxy, ; in Game 2it becomes clear that this is not the case.
We know thatg, = ¢ hence a change in thevalues can be adjusted by picking a
suitabley value without the need to solve the discreet logarithm bl

76

The probability that we do not abort for a given sequence atlerqueries
made by A7¢" is given byr/, i.e. Pr (=E) = /. As suggested itsame 7of the
proof of Theorem 10.8we approximate the probability fof given by the repeated
sampling of ther values by,”.

Using the Chernoff bound we see that (|7’ — | > ¢) < ¢ when we con-
siderO (e~2¢né~') samples and, § > 0. To attain a definite abort probability we

- . o' —1/8
force an artificial abort with probablllt)y% whenever)” > 1/8. In those
n

casesB assumes thatl}* outputs a randond’.
Now the probability of the abort can be estimated by

Pr (Abort‘ ' —7n"| < s) = Pr (Natural Abor} + Pr (Atrtificial Abort)

/!
n' —1/8
:(1—77,)+T/77,
/
n
:(1—77’)+(77”—1/8)W
/
< 1_/ //_18 77
<@=7)+0 /)n’—e
<SA=7)+ 0" -1/8) 1+ 7 —)
asn’ > 1/8, we can estimate
8¢
<(1-9¢ 7 —1/8)(1
S@=m)+ @ =180+ —)

<@ =7)+ 0 +e—1/8)(1 + 10e),
. 1 .
sincee < 0 for sufficiently smalle
<A =741 4e—-1/8) 4 10e(n —1/8) + 10£*
< 7/8 4 ¢+ 10e + 102, since(’ —1/8) < 1

< 7/8 + 11e + 103
< 7/8+12¢.

Now, we have
Pr (Abort) = Pr <Ab0rt‘ |77’ — 77"| < 5) -Pr (|77' — 77"| < 5) +
Pr (Abort‘ |77' — 77"| > 5) -Pr (|77' — 77"| > 8)
<(7/8+4+12)-1+1-0
< T7/8+ 12 + 6.
Therefore, the abort does not occur with a probability otast
1 —Pr(Abort) >1—-7/8 —12¢ — 6
>1/8 — 12 — 4.

77

Now employingLemma 10.1Gve obtain

Advr > Advg (1/8 — 126 — §)
> (Advg — 9) (1/8 — 12¢)

Fore < 1/192, we get

Advy; > Advg (1/8 — 1/16)
Ad’UG)
> 776 ¢
- 16

Game 8 Just as shown iisame 8of the proof of Theorem 10.8in this game
we change the way we treat}“"’s queries. Letd = g wherea €p Z; and
unknown toB. The generation of the master public key is done as folld$vsets
g1 = g7 wherey €r Z, and storesy for later use.

We now model our response to the queries.

o Replace Public Keyor an input(ID, (X,Y)): B checks if(X,Y) of the
correct shape and then replaces the public key/of

o Extract Partial Private Keyfor an identity ID:

— Busesmsk = v to calculate the partial private key using the construc-
tion.

o Request Public Kefpr an identity ID:
— Bpickszrp €g Z,; and returngk;p < (A®ID AYEID 31D,

o Extract Private Keyfor an identity ID: B aborts if.J,, (/D) = 0 mod 7,
just like previous game. Otherwise it follows tht(/D) # 0 mod 7, and
thus J,(ID) # 0 mod p. Letpkrp = (X,Y) be the original public key
for ID, B pickst € Zg and returnskrp = (s1, s2) where

(s1,52) = (F,(ID)" - Y~ KuID)JUID) (g [(BID))t -y —1/ TPy,

Now, usingF, (ID) = g3*'P) . gKu(ID) we have

— Implicitly defined secret value i&z;p and the master key value is
hence

ayrip
Ju(ID)

(s1,82) = (¢2°1P . F,(IDY, g' - Fy,(BID)") wheref =t —

o Decryptfor a valid ciphertextC' = (Cy, C1, Co, C3) encrypted for an iden-
tity 7D and biometric identityBI D using the public keyk;p = (X,Y)
which may or may not have been replaced by the attacker. ulLet

78

(Co,C1,Co,ID,pkrp), B aborts if J,(w) = 0 mod 7, just like previ-
ous game and choosés € {0,1}. Otherwise it follows that/,(w) # 0

mod 7, and thusJ, (w) # 0 mod p, C3 = <g§]”(w)gKv(w))S and

C1 = (g9 Fn(BID))*
_ <g=2]h(BID)gKh(BID)+1)S

wheres € Z, . Now, B extracts

1
03 Jo (w)— Ky (w)-Jp, (BID)/(Kp,(BID)+1)
S __
92 = R/ R (BID)T)

and computes(Y'-Z, g2)* this allows for the computation of =

__ G
i o . G(Y : Z, 92)8
regardless of the fact whethgK, Y") is the original public key or not.

Changing the generation of the master key does has no effiettsoability to
answerA7"’s queries like inGame 7and and the distribution of the master key
remains unchanged, hence we ha\vtvg = Advy.

Game 9 In this game we modify the generation of the ciphertext agaleing
variablesb, c €g Z, defined inGame 2and Game 6respectively. We sef] =
gc(Kh(BID*)—i—l) and7T = Abc'

B retrievesxp- such thatpk;p« = (A*1p*, A¥*1p* [y, (BID*)7), flips a
binary coind* € {0,1} and computes

Co=mg-e(Y"-Z",g2)°
— g e <A’wa* Fu(BID*Y,)
= Mg* - € <ga$ID"< Fh BID*))PY

Yx *
— mge - e (g - Fy(BID*) Y21 g“bc) '

YTID*

(11.9) — g - e <g . Fy(BID*)V/awip T)

It then compute€; = (¢°)X«UP") w* = H(Cg, Ct,C5, ID*, pkip+) andC; =
(g&) K@) 1f J,(w*) # 0 mod p then B aborts like inGame Sotherwise it
returns(Cg, Ct, C5, C3).

Since we havd, (w*) = 0 mod p, these changes do not affect the distribution
of the challenge ciphertext and we hatdvg = Advs.

79

Game 10 In this game we change the challenge phase aghamly retainsg, =
q° andCfl/(Kh(BID*)“) = ¢° and forgets the valuds c. Challenge is constructed
as shown in11.9)in Game %ut T is chosen randomly’ €r G. The simulator
uses the valueg?, gb, ¢g¢ and never touches, b, c. The transition betwee@Game
9 and Game 10is based upon the indistinguishability &f = ¢*° from T' €
G and both games are equal unless there exists a probabidifaomial-time
algorithm A’ which can tell the difference between the two values. Thiddarly
an instance of th&-DDH which we wanted to achieve from the very beginning.
Since the only difference betwe&@ame %andGame 10s the condition enforced
by the indistinguishability of’ = g% from T' €r G hence the difference of the
success probabilities Game %andGame 10s the lower bound omdv3 PP (k).
Therefore we have

|Pr (Sg) — Pr(Sio)| < AdvPPH (k).

Additionally C; now reveals no information about;« and is completely indepen-
dent ofd*, hencePr (S19) = 1/2. This brings game hopping to an end, we now
combine the results from the games. We have

Advr = Advg = Advg < Adv3PPH (k)
and
Advs = Advg < 16 - Advy + 0

also

wherer, = 2qu, 7» = 2qq and7, = 2qp;q- And thus

Advy = 2qpk - 2qa - 2qpia(n + 1)3 - Advs,
< 8qpeqagria(n +1)* - (16 - Advy + 6).

We also have
Advg = Adv4
and

Ad’Ul == Ad’U2 == |P1” (52) - 1/2|
< [Pr(82) — Pr(83) + [Pr(S3) — 1/2]
< AdvSR (k) + Ados.

80

Combining the above equations we finally have
Advy < 8¢pkqdquia(n + 1)3- (16 . Advi{/DDH(k) + 5) + Advﬁﬁ’(k).

To prove the same result fot}77* we follow the exact same procedure except
A¢* cannot replace the public key of the target idenfity* and never makes
partial private key queries since it has the access to théeemasgvate keymsk =
~ which he uses to compute it. Finally, Bame 10we combine all the results
according to the changes described to obtain the final enuati

O

Discussion The proof of Theorem 11.&hows that the derived scheme is secure
against the adversaries describedsiction 9.3 Just like in case of previous re-
duction breaking the scheme under the imposed constraimiddvibe equivalent
to solving the3-DDH problem and breaking the collision resistant hash function
H. These are hard problems and basing our security on thera giveea of the
hardness of breaking the indistinguishability of the schem

At this point we should note that at the onset of the games wanas the
knowledge of the number of oracle queries the attacker makeslienote this by
44, 9pr @ndgp;q. This might not be possible in general hence to achieve this w
make an assumption about the number of queries made. If sumgdion seems
too small or too large then we adjust the values accordingty tay again. For
the purpose of our proofs we start with the correct assumédesa The proof
shows that the original scheme presentedby. () can be
modified to provide privacy even in the event of device compse. Additionally,
the derived scheme is secure in the standard model. Toyfauif claims further
we also demonstrate a fully functional implementation & terived scheme in
Section 12.5

81

82

12. Implementation

To prove that the ideas developed in this thesis work in m@aate have devel-
oped a prototype for both the schemes discussed. The poethave been devel-
oped onAndroid platform and implement the concrete constructions preseint
Section 10andSection 11 In this section we describe the implementation details,
motivations for the chosen design, internal workings ofgtieemes discussed and
look at the various aspects of the developed applications.

12.1. Platform. As mentioned earlier the target of the modified scheme is to
provide two-factor security for mobile devices hence oypligptions have been
developed for the mobile platform. For implementation msgs we have chosen
Android as the mobile operating system. There are several reasotisfehoice
and we highlight them below.

o AndroidandiOSare the two most common mobile operating systems, while
iOSis not open sourcéindroid is, to a large extent. Being open source is
one of the key aspects which helps in designing secure sgstingrefore
Android seems to be the natural choice.

o Androidis a Linux-based operating system and has been proven torw@pp
diverse array of applications.

o Our applications have been developed using Java as theapmogng lan-
guage since it is very well supported and has open sourcilisrfor almost
every task.Android has native support for Java and our applications do not
need to be ported to suit the development platform.

o Android is the most popular mobile operating system at the mometht avit
smart phone market share close to 50%. Due to being openesandcthus
free, vendors can maodify it to suit their phones. This all@asy adoption
and hence it supports devices in a wide spectrum of pricessd features
will encourage usage of the developed application due tojeiadily avail-
able.

12.2. Programming Language and Libraries. We have chosen Java as the lan-
guage to develop our applications as it provides humeraisaries which are very
beneficial for our development. We enlist these featuresvbel

o Open Source Java is an open source language, this provides the develope
deeper insight into its workings. It is of prime importanoedecurity critical
applications to use open source platforms. As stated veigubately by

() that one must not attempt to achieve security by obscurity,
the security of a system must only depend upon the keys andmtte
secrecy of the system itself.

83

o Platform IndependentJava is completely platform independent and the de-
veloped applications can be easily ported to mobile devéceks desktops
either of which could be running on various operating systeirhis saves
additional development effort and facilitates the acaegdeof applications.

o Object Oriented Java provides object oriented application development en
vironment which is easy to maintain and scale. Due to beinduiao the
applications can be conveniently integrated with othediegtions and this
increases its value.

o Application Programming Interface (APS)- Java has variou8PI's which
can be used for a number of purposes, this saves developiifiertamd
improves efficiency.

o Well Supported Since Java is a widely used language it is well supported
and new versions are rolled out with improvements regularly

These reasons make a very compelling case for using Javeoaesdquently it is
our programming language of choice. As a result our appdioatcan be run on
mobile devices running Android as well as desktops.

Almost all the libraries used by our applications are stathdava and Android
libraries. However we do require some special librariestplément pairing-based
cryptosystems and read QR codes. We discuss the detailes# libraries below.

12.2.1. Bilinear Maps. Apart from the standard Java libraries the application
uses thedava Pairing Based Cryptography (jPHibary developed by-aro().
jPBCis an open source Java porting of theiring-Based Cryptography (PB({)
brary written in C and developed hyynn (). The PBClibrary is an open
source C library built on th&NU Multiple Precision Arithmetic Library (GMPR)
The GMP is responsible for performing the mathematical operatiamderlying
pairing-based cryptosystems. TRB8Clibrary is designed to support implementa-
tion of pairing-based cryptosystems, it provides good ddeng with portability.
Some of the routines it provides are elliptic curve generatelliptic curve arith-
metic and pairing computation. THeP| is abstract and allows the programmer to
use thePBClibrary with basic knowledge of pairings and group theory.

The jPBC library was written by () to port the functionalities pro-
vided by thePBClibrary to Java platform and it consists of two parts.

o A Java portingof the PBClibrary which supports computations of symmet-
ric and asymmetric pairings.

o A Java wrapperof the PBClibrary to delegate all the computation to the C
library.

Since our application i&ndroid based therefore we only use the Java porting
for development. The Java porting is further divided inteesal modules which
are

84

o j pbc- api : This module contains th&PI| exposed by thg?BC.

o j pbc-pl af : This module includes the defaulPI’s implementation and
PBCs Java porting.

o j pbc-pbc: This module contains théPl's implementation to be used
whenPBCis chosen as the computation engine, it also include®BiEs
Java wrapper.

o j pbc- crypt o: This module provides the implementation of some sample
cryptosystems.

Our application uses onlypbc- pl af andj pbc- pl af modules for devel-
opment.

jPBC Internals ThejPBC library allows usage of several types of pairings by
defining curve type and other values in a parameter file. Thaség types are
defined by default and are a part of the library. We use paifiyjge Afor our
applications.

The Type Apairings are constructed on the curfe= 2> + z over the fieldF,,
for some prime; = 3 mod 4. The pairing is symmetric and constructed using G1
as the base group which is the group of poifi(§,). Hence we havetE(F,) =
g+ land#E(Fpz) = (q+ 1)2. Thus the embedding degree2isand hence the
target groupGy is a subgroup oF ;.. The orderr of Gt is some prime factor of
g+ 1.

We can writeg + 1 = r - h. For efficiency,r is picked to be a Solinas prime,
that is,r has the forma + 2b + 1 for some integere < b < a. Below is a sam-
ple parameter file where the bit lengths are= 181 bits,q = 1027 bits
andh = 845 bi ts. This provides good security for most applications.

param type_a. t xt

type a

g 4658099876865284564338205090976805738342736417617866254
2484004353807687623420656289364751121298709295797714806
4442773937804178448677347985356293095456645127477393452
7992685401786815085428211467783641470348441066697220226
4657659699246414298853054598111748055398024993402692990
5052860956552125783505432963737819

r 3064991081731777716716683913095816541402266270741561343

85

h 1519775996944620914990926334378964172671239667073301220
6423651330324808247605766731643170628533886446313147949
6744469238202934278366549234322011829000890272345051427
1296836981494105129119971147234831463774054426514160647
41977609291895013018610051943208740

expl 103

exp2 181

sign0 -1

signl -1

12.2.2. QR Codes. We discuss the simulation of biometric identities using QR
codes in sectiorsection 12.5.1 The application developed for the derived con-
struction uses QR Droid services to read the QR codes. Tleegiees are part
of a third party application called QR Droid developed by (). The
services provide functionality to scan and decode a QR cedeet as encode text
into a QR code.

For the derived version of the application we need to deco@® aode after
scanning it. The decoded text string is then passed on tqblesation for further
processing. The library has been conveniently integratéu aur application and
works seamlessly. On calling a method of the library therabig passed to the QR
Droid application and the result is returned to the pareptiegtion on conclusion
of the method. Details of each class file contained in thisatip is provided in
Section 12.5.3

12.3. Device Specifications. The development of both the original scheme and
the modified scheme has been doneHarC Incredible Svhich has Android 2.3.5
running on it. However our application is independent of desice and would
work on any device which has an Android 1.6 or higher instiatia it. Our appli-
cation requires a camera to read the QR codes and the QR DioRlapplication
developed by () installed on the mobile device to decode the read QR
code. The application can be installed free of charge freenfthdroid market, it
occupies 3.3 Mbs of space and is extremely light weight. Ténécg should have

a working internet connection to use email services, apamn fthis there are no
special requirements.

86

Figure 12.1: The HTC Incredible S.

36 A il 2 11:26

Software information

Android version

-
235

HTC Sense version

3.0

Software number
05.3

More

Baseband, Kernel version, etc.

Figure 12.2: The software specification of the device.

87

399 P A il T 11:28
Hardware information

Processor
1 GHz

Memory
768MB

Display
4 inch WVGA resolution

Main camera
8M

Front camera
1.3M

Wi-Fi

802.11 b/g/n

Wi-Fi MAC address

Unavailable

Bluetooth
2.1+ EDR

Figure 12.3: The hardware specification of the device.

12.4. Original Construction. In this section we discuss the various aspects of
the implementation of the construction originally presehby

(). First we take a look at the interface of the application #reh we
discuss the class structure where we provide the detaileafle played by each
class as well as the methods implemented by them.

12.4.1. Application Interface. Our application is a prototype of a mail client
which implements the original scheme. For simulation pagsoall three parties
involved in the scheme namely the sender, receiveraB& have been imple-
mented in the same device. It allows a user to send encryptld osing the
receiver's email address. The email address is treated @sigure identifier which

is used to encrypt the messages send to the owner of thasadditee receiver can
decrypt the encrypted messages by following the scheme latathing necessary
values from theKGC after he has authenticated himself as the owner of the email
address. We now present the application interface to extiaifunctioning of the
scheme.

88

Ho s 11:32

d [~

Compose Mai Read Mail

Generate Key About App

Figure 12.4: The main screen of the application providesutez with the option
to read mail, compose mail, generate key and read about fhieajon.

Hoal& 11:34

d [~

Compose Mail Read Mail

Generate Key About App

Setup Complete

Figure 12.5: The first step in the scheme is to generate thersysrameters. This
is done by the KGC on tapping tligenerate Keyputton.

89

BEagdn H a3 11:33
Compose Message

]Emer Recipient Email

Subject

Write Message ...

Figure 12.6: After the system parameters have been gedetthie sender can
compose messages by tapping @@mpose Maibutton from the main screen.

05 P M £ 11:30
Compose Message

This is a demo messagel

Encrypt Send

Figure 12.7: A sample message.

90

035 PN Al 2= 11:30
Compose Message

k.sharad@gmail.com

Demo message

©or GONOFU-6>0660-9
Rivolo o elXelRCe<0060e
he@EleiMjiVebledleé:
Mo&:

1o ©06 ¢{DeVIe2e|w/
00o{WeB5ke4e 1680000
0Ky790 0026

loDoleb/

90 01006TovadloeW:
000€@0"0F&: &% & € efi-
©OOWIPQHOO_ 660 0cloe
Q410906067980 |19©0e
oLU

e'vkel i i Qi6/

Encrypt ‘ Send

Figure 12.8: After obtaining the receiver’s private key seader encrypts the mes-
sage by tapping thEncryptbutton.

a8 9PN & s 113

d (=

Compose Mail Read Mail

Generate Key About App

Email was sent successfully.

Figure 12.9: The sender can now send the encrypted messdgpgiyg theSend
button.

91

Baof M H ol 5 11:33

Read Message

Empty ...

Decrypt | Load Message

Figure 12.10: On tapping thkead Mailbutton from the main screen the receiver
is directed to the interface to read messages.

2 B89 PA H a8 11:33
Read Message

©or GONOFIU~9>900©0=9R0
©100601X0IRCo<60006he
@Ele1jlvebledlee:Mee:
9 006 o{DeVIere|w/
Q1O {WeB5Cke40 1680010 HK
V27272 7 ¥4 74
l@De]e6/
9O ©1000TovaeleoeW
000@0"0Fe:. & %o eefi-
QOOVWIPr0ee. 0000clocds
OWQlO9067€ Q0| 19Hoe &l
©lolYoveoellleeulGlee
©'VKeLUSO91ooCl 9Uiele
g
[0/ Ve"e=-9,
939060u' 1601006060
IONG 9 GaleXgWoH 9 009602
ebGOOOOR+@pwiweS}zDo@*xOIQAD
©0900]0000ll00l114/0ee>
#/9P009 19oPlO9QUCILG

Decrypt Load Message

Figure 12.11: The receiver loads the encrypted messagepintatheLoad but-
ton.

92

2 B89 PA & = 11:34
Read Message

This is a demo message.

Message Decrypted

Decrypt | Load Message

Figure 12.12: Finally, receiver decrypts the encryptedsags by tapping thBe-
crypt button and is presented with readable text as send by thersend

525 JF A\ il 5 20:25
About App

This Android application has been developed as
a part of the thesis titled Certificateless
Encryption Scheme Using Biometric Identity
and implements the certificateless encryption
scheme presented by Dent, Libert and
Paterson (2008)in paper titled Certificateless
Encryption Schemes Strongly Secure in the
Standard Model.

Figure 12.13: The user can read more about the applicatidagping theAbout
Appbutton from the main screen.

93

12.4.2. Class Structure. The Android application of the original construction
consists of 9 modules. These modules implement the varigosithms executed
by the sender, receiver aidsC in form of classes. In this section we describe
these classes and then present the class diagram to giveire gtthe class struc-
ture.

1. Certificatel essEncAppActivity.java: This is the main class
file of the application as described Atppendix A.1L It provides an interface
to access other modules of the application.

2. ConposeMessage. j ava: This class as described &ppendix A.2im-
plements the interface for composing, encrypting and senhiails.

3. Hel p. j ava: This class as describedAppendix A.3 provides an interface
with information about the application.

4. KeyGenerationCenter.java: In this class as described in
Appendix A.4 we implement the algorithms executed by #@C. It con-
tains the logic foiSet up andExt r act algorithms.

5. Mai | . java: This class as described ippendix A.5 implements the
logic to send out mails. It is accessible to thenposeMessage. j ava
class which uses it to send messages when called by the user.

6. Met hods. j ava: This class as described Atppendix A.§ provides imple-
mentation of several methods that are used by other clagsbhsas convert-
ing a string to binary, SHA-1 hash function, converting Isytiebinary string
and hash function used by the encryption scheme.

7. ReadMessage. j ava: This class as described Appendix A.7, provides
an interface to read encrypted messages after decrypting. th

8. Recei ver. j ava: This class as described Appendix A.§ implements
the algorithms executed by the receiver. The logicSet Sec, Set Pub,
Set Pri v andDecr ypt algorithms is contained in this class.

9. Sender. j ava: This class as described #&kppendix A.9 implements the
Encr ypt algorithm executed by the sender.

94

Figure 12.14: The class diagram showing the relationshiprandifferent classes

<<Java Class>>
@ ReadMessage
cerificateless. encryplion.app
& read_msg_bd: TextView
d: ReadMessage()
< onCreate{Bundie):void
@ onClick{View):void

a7

<<java Class>>

® Mail

certificateless. encryption.spp

o _user: String

o _pass: String

o _to: String]]

o _from: String

o _port: Siring

o _sport: String

o _host: String

o _subject: String

o _body: Siring

o _auth: boolean

o _debuggable: boolean
o _multipart: Multipart

& Maill)

& Mail(String, String)

& send():boolean

@ addAttachment{String):void
@ getPasswordAuthentication():PasswordAuthentication
m _setProperties():Properties
@ getBody():String

@ setBody{String):void

@ setTo(String(]):void

@ setFrom(String):void

@ setSubject{String):void

<<Java Class>>
@ Sender

cerificateless . encrypltion. app
0° C: Element]
of Fu_|D: Element
%F BIT_LENGTH: int
& Sender()
@ enCrypt(String, CurveParams, Element):Element]]

<<Java Class>>
@ Receiver
certificaleless. encryplion.app

% pk_ID: Element]]

of sk_ID: Element]
%F BIT_LENGTH: int

& Receiver()

& setSecPub{CurveParams):void

ES setPrivi CurveParams] void

gs deCrypt{Element]] CurveParams):Element

= x_ID: Element

<<Java Class>>

@ Help

cerificateless enoryplion. spp

@ Help{)

<» onCreate{Bundle):void
AR

<<Java Class>>
=5 G CertificatelessEncAppActivity
cerificateless . encryplion.spp
& CertificatelessEncAppActivity()
@ onCreate(Bundie):void
@ onClick{View):void
A

<<Java Class>>

G ComposeMessage
cerificateles 5. encryplion.app

"| of enc_message _list: List<Element])>
"1 of enc_teut: String

of email String

%F BIT_LENGTH: int

é ComposeMessage!{)

< onCreate{Bundle):void

| @ enClick{View):void

)
<<Java Class>>
(3 Methods
certificateless. encryption. app

%F BIT_LENGTH: int

Methods()
stringtoBinary{ String):String

sha1Hash(String):String

bytesToHex({byte{]):String

bytetoBinarySiring{byte): String
newHash{List<Element> String, CurveParams):Element

Yeooooa,

A A

<<lava Class>>
(® KeyGenerationCenter
cerificateless. encryplion.app
o8 g: Element
o° g1: Element
& g2: Element
of Fu_|D: Element

of msk: Element

o gamma: Element

&f u: List<Element>

o8 v List<Element>

o8 |D: String

%F BIT_LENGTH: int

& KeyGenerationCenter()

(-)s setup(Context CurveParams):void

(-)s extract(String, CurveParams): Element]

95

12.5. Derived Construction. After discussing the implementation of the origi-
nal scheme in detail we are now ready to look at the changagybtamn by the
derived scheme and the impact of those changes. First, vweegiliieshe imple-
mentation details of extracting biometric identity of theer then we present the
application interface to understand the flow of the algamith_astly, we discuss
the class structure which explains the modular design oafigication and the
function of each module.

12.5.1. Biometric Identity. As discussed earlier the derived construction uses
biometric identities to provide two-factor authenticatioThere are several possi-
ble ways to extract biometric identity of the user, most @nthuse physiological
characteristics like fingerprint, DNA, face recognitiomlm print, hand geometry,
iris recognition, etc. We aimed to design the encryptioresoh for standard smart
phones and this leaves us only with the option of using facegmition or hand
geometry, since measuring all the other characteristiggines special equipment
and therefore is beyond the capabilities of a mobile device.

We decided to go with face recognition for our scheme siniserlatively well
researched field as compared to hand geometry. Also sofpreateages exist that
provide basic face recognition whereas there are hardlyfrasyy available soft-
ware packages which implement biometric identity deroratising hand geome-
try. To use face recognition for deriving the biometric itignfrom facial pictures
we thought of using the existing open source libraries. Wiigally needed a
library that provides feature extraction of facial images feasons we elaborate
later. We came across many hurdles in achieving this and wedescribe them in
detail.

Face recognition is an evolving field and not yet mature ehdagrovide fool
prove solutions. Recognising a face is a challenging tadkequires considerable
effort. For our scheme we needed to extract an identity fréex@picture, however
we had certain requirements that needed to be fulfilled ferntethod to be of
practical use to the scheme. We list the requirements ofah@mse and challenges
faced below.

o Feature Extractiort For our application the only method to obtain a biomet-
ric identity from a face picture is by using feature extrantias the device
should store no information about the biometrics. Henaeddrived scheme
needed a library to extract features from a face picture ardhose features
to generate a unique identity. None of the existing opencgodiava libraries
support this feature and this is a serious impediment.

o Existing Libraries- The libraries that implement face recognition do so by
comparing the input image of the face to a database of imdigesls stored
in the device. This mechanism cannot be employed for ourgaap since
this will not protect against device compromise. If the @tta gains control
of the device then he would have access to the stored sedrts device
as well as the raw data from which biometrics is extractechddéne would

96

possess all the information that is needed to decrypt a messad such an
attacker could not be stopped.

o Performance- We need to ensure a certain level of performance for our
schemes to be functional. Face recognition is reasonabtyrfalesktop en-
vironments however the performance drops appreciably doilendevices.
This is mainly due to the use of Java and limited resourcefi@iiobile
devices. The libraries that provide fast face recognitiom generally de-
veloped in C/C++ and Java porting although convenient danraich the
performance of the libraries written in C/C++. This makes #pplication
sluggish and depreciates user experience.

o Picture Quality- Ideally face recognition is employed on biometric images
to ensure best results. This is not possible in our case siceameras
installed on mobile devices are not advanced enough. Alsoamaot ex-
pect an user to take perfect images every time, such a reggiitewould
be unreasonable and make the scheme unusable. The applinads to
work with relatively crude images of the user and still ssstelly extract
the same unique identity every time. This is a very stiff isgnent and not
possible to achieve with the currently existing librariééso using multiple
crude versions of a face picture to derive the same idergjpgatedly im-
pacts the entropy of the data extracted and thus leaves #sibpiby of the
attacker exploiting this drawback open.

Due to these challenges we were unable to achieve the goaipbéinenting
feature extraction using facial images. Face recognitioa involved process and
developing a solution from scratch is a huge task. The pribjective of this the-
sis was to design and implement an encryption scheme whihdas security in
the event of device compromise. Developing a completeisoldibr face recogni-
tion is a very challenging research problem which is out efshope of the work
presented.

However, to prove that the ideas developed in the modifiedraehdo work in
principle we have simulated the facial images using QR codibss the applica-
tion developed provides a proof of concept for our derivdiesre. For demon-
stration purposes QR codes are quite similar to face pEtasefar as our scheme
is concerned. Some of the key features which make them ufsefprototyping
our construction are

o QR codes can be considered as a face picture and they helplairgng the
idea of our scheme.

o Unique QR codes can be generated to model unique facialatbesdic of
each person.

o QR codes can be easily read and used for extracting the samesudentity
every time.

97

o The time taken to read and decode a QR code is very low and ttaalbkyi
no effect on the user experience.

Hence these features help us in demonstrating the exadidnality of our scheme.
It shows how the actual scheme would function if there was ataaxtract bio-
metric identities using faces in an efficient way on mobileices. Apart from this
change the scheme is complete and implements the derivettuction efficiently.

Figure 12.15: A sample QR code.

12.5.2. Application Interface. The application we have developed implements
a proof of concept of the derived scheme. The applicationlsites the derived
construction. For demonstration all three parties invblirethe scheme namely
the sender, receiver aid>C have been implemented in the same device. The ap-
plication allows the sender to send messages encrypted tngrreceiver’s public
key, facial picture and unique public identity, we use eradilress of the receiver
as his unique public identity. The receiver can decrypt tlessages after gener-
ating his private key using his face picture and values aobthifrom theKGC as
specified in the scheme.

The interface of the derived construction is very similatttat of the applica-
tion presented earlier, however there are some key diifeewhich we elaborate
in the following pages. We now present the application fatar to explain the
functioning of the scheme.

98

Hoala 11:32

d [~

Compose Mai Read Mail

Generate Key About App

Figure 12.16: The main screen of the application providesuier with the option
to read mail, compose mail, generate key and read about fhieajon.

5 829 P A H & 12:02
Generate Key

nter Email Id

Generate

Figure 12.17: The generate key screen is started on tappir@dnerate Keyput-
ton and requires the receiver to enter his email id to geadeys.

99

B39 A Ho a1 12:03
Generate KEy

k.sharad@gmail.con’l

Generate

Figure 12.18: After the email id is entered, tapping @eneratebutton generates
the system parameters and the receiver’s public key.

Figure 12.19: Before the keys can be generated the receivstratso provide his
face picture which has been simulated using a QR code in @& ca

100

Hoal& 11:34

Compose Mail Read Mail

Generate Key About App

Setup Complete

Figure 12.20: The public key is generated once the QR codmdh r

Bao A Hoalc= 11:33
Compose Message

}Enier’ Recipient Email

Write Message ...

Figure 12.21: The sender can how compose messages by tappi@pmpose
Mail button from the main screen.

101

035 PN il 22 11:30
Compose Message

k.sharad@gmail.com

Demo message

This is a demo messagel

Encrypt | Send

Figure 12.22: A sample message.

Figure 12.23: After obtaining the receiver’s public key semder encrypts the mes-

sage by tapping thEncryptbutton. Then he is prompted to provide the receiver’s
face picture.

102

035 PN Al 2= 11:30
Compose Message

k.sharad@gmail.com

Demo message

©or GONOFU-6>0660-9
Rivolo o elXelRCe<0060e
he@EleiMjiVebledleé:
Mo&:

1o ©06 ¢{DeVIe2e|w/
00o{WeB5ke4e 1680000
0Ky790 0026

loDoleb/

90 01006TovadloeW:
000€@0"0F&: &% & € efi-
©OOWIPQHOO_ 660 0cloe
Q410906067980 |19©0e
oLU

e'vkel i i Qi6/

Encrypt ‘ Send

Figure 12.24: Onreading the QR code the message is enciygitagithe receiver's
public key, email id and face picture.

a8 9PN & s 113

d (=

Compose Mail Read Mail

Generate Key About App

Email was sent successfully.

Figure 12.25: The encrypted message is sent by tappin§ehdbutton.

103

Baof M H ol 5 11:33

Read Message

Empty ...

Decrypt | Load Message

Figure 12.26: On tapping theead Mailbutton from the main screen the receiver
is directed to the interface to read messages.

2 B89 PA H a8 11:33
Read Message

©or GONOFIU~9>900©0=9R0
©100601X0IRCo<60006he
@Ele1jlvebledlee:Mee:
9 006 o{DeVIere|w/
Q1O {WeB5Cke40 1680010 HK
V27272 7 ¥4 74
l@De]e6/
9O ©1000TovaeleoeW
000@0"0Fe:. & %o eefi-
QOOVWIPr0ee. 0000clocds
OWQlO9067€ Q0| 19Hoe &l
©lolYoveoellleeulGlee
©'VKeLUSO91ooCl 9Uiele
g
[0/ Ve"e=-9,
939060u' 1601006060
IONG 9 GaleXgWoH 9 009602
ebGOOOOR+@pwiweS}zDo@*xOIQAD
©0900]0000ll00l114/0ee>
#/9P009 19oPlO9QUCILG

Decrypt Load Message

Figure 12.27: The receiver loads the encrypted messagepintatheLoad but-
ton.

104

Figure 12.28: On tapping thBecryptbutton the receiver is prompted to provide
his face picture to decrypt the encrypted message.

289 PN & = 11:34

Read Message

This is a demo message.

Message Decrypted

Decrypt | Load Message

Figure 12.29: Finally, the receiver decrypts the messaggraviding the correct
QR code and is presented with readable text as send by thersend

105

B89 P A H alcs 12:24

Read Message

PROBLEM DECRYPTING

OFRqli2 @@ FENENEE

437 ARSE 05 BAE AL B 18 5 '0E eIRE0
B 48 18 008 D 0B fE o0 @ 4d

e 102 02 ISh

$R S A e 000Y S

=0T DR EIE MG R 2R R Fis
R 5 2 DIEZE | DRKKER I 2002
OB §RIAN

it 244 DI0DFA0TE00® 0B O S FA TR
oh) O FE QRS B 22 5500

Decrypt | Load Message

Figure 12.30: An error message is received if someone trigsdrypt by providing
an incorrect face picture.

529 & A il €51 20:26
AboutApp

This Android application has been developed as
a part of the thesis titled Certificateless
Encryption Scheme Using Biometric Identity
and implements a proof of concept of a
certificateless encryption scheme which uses
biometrics to encrypt and decrypt messages.

Figure 12.31: The user can read more about the applicatidagping theAbout
Appbutton from the main screen.

106

12.5.3. Class Structure. The class structure of the derived scheme is very sim-
ilar to that of original scheme as discussed previously. &l@x the methods that
are defined in the classes are as per the specifications oétived scheme. We
also use some additional classes to simulate face recmgniing QR Codes.
These classes are part of the library which implements mgatie QR codes using
the third party application calleQR Droid developed by ().

Below we list all the classes that are used and define the baeare new to
this scheme.

1.

10.

11.

12.

Certificatel essEncMbdAppActivity.java: This is the main
class file of the application as describedAippendix B.1 It provides an
interface to access other modules of the application.

. ConposeMessage. j ava: This class has same functionality as presented

earlier inSection 12.4.and is described iAppendix B.2

Decode. j ava: This class as shown iAppendix B.3 implements the
methods to decode the QR code entered from the camera.

Encode. j ava: This class as shown iAppendix B.4 implements the
methods to encode a text into a QR code entered from the cakiveraever

use this class but it is part of the libra@R Droid and hence included for
completeness.

Hel p. j ava: This class has same functionality as presented earlier in
Section 12.4.and is described iAppendix B.5

. KeyGener ati onCent er. java: This class has same functionality as

presented earlier iBection 12.4.and is described iAppendix B.6

Mai | . j ava: This class has same functionality as presented earlier in
Section 12.4.2nd is described iAppendix B.7

Met hods. j ava: This class has same functionality as presented earlier in
Section 12.4.2nd is described iAppendix B.8

ReadMessage. j ava: This class has same functionality as presented ear-
lier in Section 12.4.2nd is described iAppendix B.9

Recei ver . j ava: This class has same functionality as presented earlier in
Section 12.4.2nd is described iAppendix B.10

Scan. j ava: This class as shown iappendix B.11 provides the function-
ality to scan the QR code entered from the camera.

Sender . j ava: This class has same functionality as presented earlier in
Section 12.4.2nd is described iAppendix B.12

107

13. Servi ces. java: This class as shown iAppendix B.13 implements
the interface to access the clasf@code. j ava, Encode. j ava and
Scan. j ava.

14. Set up. j ava: This class as shown iAppendix B.14 generates the var-
ious system parameters as well as the public and the priete for the
encryption scheme.

108

<<Java Class>>
(3 KeyGenerationCenter
ercrypion.mod.app

o g: Element
o gl: Element
o g2 Element
o° Fu_ID; Element
<<Java Class»> ©° Fh_BID: Element
(3 sender ofd_|D: Element]]
eeryplon med app o msk: Element

< G Bement] oS gamma: Blement
o° Fu_ID: Blement o8 u; List<Element>
F BIT LENGTH: int o v: List<Element>
& sender() &f h; List<Element>
@ enCrypt(String,CurveParams, Elsment, Element):Element] o ID: String

A A o BID: String

P S BIT_LENGTH: int
& KeyGenerationCenter()
& setup(Conte, GurveParams| voxd
& exracl(String Slring, CurveParams):Element]

<<java Class>>
(@ ComposeMessage

encryption mod.app

o enc_message_list: List<Element]}>

s Ny
of enc_text: String <=lava Chss>>
m—— ciione <<lava Class>>
el © Methods (® Receiver
%F BIT_LENGTH: int o ryption.mod.app encryption.mod.app
% ACTIVITY_RESULT_OR_DRDROID: int J& BIT_LENGTH: int £ x_ID: Element
& Composshessage() . & Mathads) o° pk_|D: Element]]
< onCreate(Bundie):void @ stringtoBinary(String):String [5 sk_ID: Element]]
@ onClick{View):void @ shaHash(String):String le...._..|%F BIT_LENGTH int
& onActivityResutt{intint,Intent):void b @ bytesToHex(byte[]):String o Receiver()
7 £ @ bytetoBinaryString(byte):String & setSecPub(CurveParams)void
K @ newHash(List<Element> String, CurveParams) Element| & selPriv(Element,CurveParams) void
LR & deCrypt|Element, Element]].CurveParams):Element
<<lava Class>>
@ Mail
& e B R i <<lava Class=>
T Smng <ava Classr (3 ReadMessage
o
’(DG o g (® CertificatelessEncModAppActivity encyption mod app
2 ’fo fg‘él] certificateless encryption mod.app. & read_msg_xt: TextView
from:; String SF o
: Tort Skmgg & CertificatelessEncModAppActivity() ‘o ACTIVITY RESULT QR DRDROID: int
i & onCreate(Bundie)-void % BIT_LENGTH:int
& host! St & onClick{View):void & Readllessags()
T 53‘") < enCreate(Bundie):void
E ,ije Strin 9 @ onClick(View):void
: :m;:'mzﬂ & onActivityResult{intint Intent):void
o _dsbuggabie: hoolean
o _muttipart: Multipart Y
o Mai() “<Java Class>>
& Mail(String,String) (@ setup i
@ send{):bootean 7 ncryplion.mod app — (3 Help
& addAttachment(String) void ACTIVITY_RESULT_GR_DRDROID: int] i
- od 1P i & curveParams: CurveParams Frren
@ _sstProperties():Properties o Setup() + onCreate(Bundie) ol
@ gelBody():String @ onCreate(Bundie):vod
@ setBody(String) void @ onClick{View):void
@ setTo{String[]):void ¢ onActivityResut{int int, Intent) :void
@ setFrom(String) void
@ setSubject(String):void
<<lava Class*> <<Java Class>>
® Encode @ services
00,3 encryption mod.app
5 ACTIVITY_RESULT_QR_DRDROID: int % SCAN: String
o image: bookean %f ENCODE: String
& Encoda() b % DECODE: String
- onCreate(Bundie) void & %7 COMPLETE: String
- onActivityResult(int int, Intent):void __|% CODE: string
@ onConfigurationChanged(Configuration]:void % SIZE: String

% IMAGE: String

%f RESULT: String

| & Senvices()

-+ @ onCreate(Bundie):oid

& arDrokdRequired{ Activity):void

@ onC: hanged(C oid

<<Java Class>>
(® scan
enceyplion.mod.agp
% ACTIVITY RESULT OR DROROID: int
& Sean{) Yy
& onCreate(Bundle):void <<Java Class">
& onActityResuit{int,int,Intent):void (3 Decode
@ onConfigurationChanged(Configuration):vaid i t

“F ACTIVITY_RESULT QR DRDROID: int

o dialog: ProgressDialog

& Deoadel)

& onCreate(Bundle):vord

& onActivityResult{int int, Intent):void

@ onConfigurationChanged(Configuration):vaid

Figure 12.32: The class diagram showing the relationshiprandifferent classes

109

110

13. Conclusion

In this thesis we presented a new approach to identity basagption based on a
certificateless scheme. As we saw the scheme has been adkfsigmmbile devices
and protects the privacy of users in the event of device comjze. We saw the
motivations and reasons behind developing such a schenes. W looked at the
advantages and applications that our schemes have andezkfieir constructions
in detail. We presented the security proofs for the origaral the derived scheme
followed by the implementation details. The Android apations developed for
the original and the derived schemes proves the practigadiitance of these con-
structions. It also provides the proof that the ideas argusbttheoretical but also
work in practice. In this section we try to give an overviewtloé work presented
and explore the areas for future work.

13.1. Contributions. Our work demonstrates the implementation of the scheme
presented by (). We developed an Android applica-
tion which is fully functional and can be used as a practicatfon to communi-
cate privately. Subsequently, we saw how this constructzmbe modified to meet
a different security goal. We presented a construction wbsed biometric identi-
ties to encrypt and decrypt messages and provided a tworfagthentication. We
derived this construction from the work done by to pro-
tect the privacy of users even if an adversary gains confrtiedevice with the
stored secrets. This scheme safeguards the privacy of¢h@ube event of device
compromise. Additionally, we also proved that the derivedstruction is secure
in the standard model. An Android prototype demonstrathmg derived scheme
was also developed. This proves that our new scheme is gahatid efficiently
implementable on mobile devices which have limited resesiigs compared to a
desktop.

We showed both the schemes can be implemented efficiently opien source
libraries developed bizynn () and (). Before our work no previous
Android application implementingertificateless Encryption Schemes Strongly
Secure in the Standard Modekisted. The developed application can be used
to learn more about the scheme and improve it further. Oukwan be seen
as a guideline which provides future developers with batteterstanding of the
challenges faced when implementing pairing-based crypfiiac applications on
mobile devices. Android is still a relatively new platformdait gets updated rather
frequently. The developed applications can give an ingigtite open source com-
munity in developing features for Android which readily popt cryptographic
work. At the moment not all Java libraries are well supporgdthe Android
platform. We live in a world where surveillance has neverrbeasier and this
has spurred the growth of applications which provide pghvaied secrecy. These
factors are going to be instrumental in shaping the devedopraof Android as a
complete operating system for mobile devices. Our apjdinathelp in highlight-
ing the scope for further development to support cryptdgyagatively in Android.

111

13.2. Challenges and Future Work. Although we have made considerable strides
in providing privacy even in the event of device compromgi, there are certain
facets of the scheme that can be improved. As we saw the laockesf source
face recognition libraries in Android platform made impkemation of biomet-
rics difficult. Feature extraction is a extremely hard pewsbland clever solutions
are needed for it to work successfully even with basic casmirat normal smart
phones have. Ideally, a biometric picture is required tchitohiut for the scheme to
be acceptable on a large scale other solutions need to bd.f®amhaps we could
also look at the possibility of extracting biometric idéptirom other data sources,
the voice of the user could be an option. Android is a relétinew platform and
functionalities like voice identification are not well supped. Voice identification
is also a tricky problem which has not been fully solved pexgive of the platform
we consider. Hopefully as the mobile phone technology neatwre will see more
solutions, future work can try to solve these issues.

Further improvements could also be done by making the etiorygcheme
faster. The applications developed by us use the Javayiigreloped by
() for all the pairing-based cryptography related operatiomhis library is
a Java porting of the C library library originally written bynn (). Since
Java has native Android support it is very convenient to hegPBC library and it
works out of the box however we do lose out on speed. Andragdédeently started
providing native C/C++ support througtative Development Khut this increases
the application complexity and there are issues which nedoktcircumvented
before one can switch completely to C/C++. Also, a perforoeaimprovement
is not guaranteed by merely switching to a C/C++ library aackful design is
required to derive any gains. This can be looked as an areatb&f investigation
that would improve the performance of the scheme.

A new problem calledenial-of-Decryption (DoDAttack inCL-PKCschemes
was presented by (). In this attack the adversary replaces
the receiver’s public key by someone else’s public key. Sewthe sender tries
to send an encrypted message to the receiver he uses theetkplablic key and
the receiver’s identity to encrypt the message. Conselyu¢ne receiver cannot
decrypt the message and the sender remains unaware of thésauthors have
coined the ternDenial-of-Decryption Attackor this kind of threat and the name
has been inspired from commonly knoienial-of-Service AttackBoth the orig-
inal scheme and the derived scheme are vulnerable agaicistasuattack. To
circumvent this problem propose a new paradigm call&elf-
Generated-Certificate Public Key Cryptographpd provide a generic construc-
tion of a self-generated-certificate public key encrypgscheme which is secure in
the standard model. Their scheme uses certificatelesstsigrand certificateless
encryption as the building blocks. Also, the authors haveedeed a certificate-
less encryption scheme with concrete implementation ghatdvably secure in the
standard model. The work done hy is worth exploring and can
improve the discussed constructions further. Howeverponst carefully consider
the impact of such ideas on the discussed constructions akd sure that we do

112

not lose the benefits for which the schemes were originakygted.

In both the constructions discussed in this thesis we asshaméheKGC does
not actively launch attacks. A new kind of threat model wassatered by:

(), this model did not impose such constraints
on theKGC. The authors proceed on to show that the exishgPKE schemes
are insure in such a security model where the adversariesiowsly generate
system-wide parameters. Both the original as well as thigatkconstruction are
vulnerable against suchkeGC. have claimed
that the existing schemes still suffer from the key escrawbf@m. They also give
new proofs to show that there are generic constructionshwidee been recently
proposed for certificateless signature and certificatedasgyption that are secure
under the new threat models. The work done/hy

merits careful study and evaluation in the light of the cautdtons presented
in this thesis. If we can find concrete constructions whidh sgcure in the new
model then this will further strengthen the security. Agdive modifications must
be done with care and attention to detail so that we can comgbe beneficial
properties of the work discussed in this thesis.

Thus we see that the area©f-PKE s relatively young and it is still evolving.
This presents us with the scope for further improvements.didsussed the im-
provements can be structural as well as implementationdba®&h our work we
solved some important problems but there is always scopamijarovement and
we need to do more to achieve perfection. We hope that our imsgires growth
in the area oCL-PKC and people come up with ingenious solutions which further
paves the path for knowledge and learning in the area oficattless schemes.

113

114

Acronyms

3-DDH The Decisional 3-Party Diffie-Hellman Problera0, 48, 51, 52, 64, 66,
68, 71, 72,79, 80

API Application Programming Interfac&3, 84

CA Certification Authority.10, 14, 16, 26, 30, 37, 40
CBE Certificate-Based Encryptiori9
CL-PKC Certificateless Public Key Cryptographyl, 16, 17, 19, 37, 111, 112

CL-PKE Certificateless Public Key Encryptiofil, 22, 25, 34, 35, 37, 38, 40, 41,
43,112

CLE Certificateless Encryptiorl.9

DBDH The Decisional Bilinear Diffie-Hellman Problera0

DoD Denial-of-Decryption.111
GMP GNU Multiple Precision Arithmetic Library83

IBC Identity Based Cryptographyt.7, 37
IBE Identity-Based Encryptionl0, 11, 15-17, 19, 20, 34, 37

IND-CCA Indistinguishability Under Chosen Ciphertext Attack?, 31, 4042,
50, 52,54, 72

jPBC Java Pairing Based Cryptograpl®g, 84, 111

KGC Key Generation Centerl7, 20, 22, 25, 26, 29-31, 34, 35, 37, 40, 41, 44,
46, 48, 68, 69, 87, 93, 97, 112

PBC Pairing-Based Cryptograph§3, 84
PKG Private Key Generatol5-17, 19, 37

PKI Public Key Infrastructurel0, 14-16, 34, 37, 40

TTP Trusted Third Partyl6, 17

115

116

References

C. ADAMS & S. LLOYD (2002). Understanding PKI: concepts, standards, and deploy-
ment considerationsAddison-Wesley Longman Publishing Co., Inc.

SATTAM S. AL-RIYAMI & KENNETH G. PATERSON (2003). Certificateless Public Key
Cryptography. IPASIACRYPTCHI-SUNG LAIH, editor, volume 2894 dfecture Notes in
Computer Scienc&52—-473. Springer. ISBN 3-540-20592-6.

M.H. Au, Y. Mu, J. CHEN, D.S. WONG, J.K. Liu & G. YANG (2007). Malicious KGC
attacks in certificateless cryptography. Pnoceedings of the 2nd ACM symposium on
Information, computer and communications secu3y2—-311. ACM.

JOONSANG BAEK, WILLY SUSILO & JIANYING ZHOU (2007). New constructions of
fuzzy identity-based encryption. IASIACCSFENG BAO & STEVEN MILLER, editors,
368—-370. ACM. ISBN 1-59593-574-6.

DAN BONEH & M ATTHEW K. FRANKLIN (2001). Identity-Based Encryption from the
Weil Pairing. INCRYPTQJOE KILIAN , editor, volume 2139 dfecture Notes in Computer
Science213-229. Springer. ISBN 3-540-42456-3.

ANGELO DE CARO (2010). Java Pairing-Based Cryptography Library. URL p: //
gas.dia.unisa.it/projects/]jpbc/.

JAE CHOON CHA & JUNG HEE CHEON (2003). An Identity-Based Signature from Gap
Diffie-Hellman Groups. InPublic Key CryptographyYvo DESMEDT, editor, volume
2567 ofLecture Notes in Computer Sciend8-30. Springer. ISBN 3-540-00324-X.

L. CHEN, KEITH HARRISON, A. MOSS DAVID SOLDERA & NIGEL P. SMART (2002).
Certification of Public Keys within an Identity Based SystdmProceedings of the 5th In-
ternational Conference on Information Securif$C '02, 322—-333. Springer-Verlag, Lon-
don, UK, UK. ISBN 3-540-44270-7. URht t p: / / dl . acm org/ ci tati on. cf n?

i d=648026. 744529.

J. DANKERS, T. GAREFALAKIS, R. SCHAFFELHOFER& T. WRIGHT (2002). Public key
infrastructure in mobile systemBlectronics & Communication engineering jourriad(5),
180-190.

ALEXANDER W. DENT (2006a). A Note On Game-Hopping ProofiACR Cryptology
ePrint Archive2006 260.

ALEXANDER W. DENT (2006b). A Survey of Certificateless Encryption Schemes and
Security ModelslACR Cryptology ePrint Archiv2006 211.

ALEXANDER W. DENT, BENOIT LIBERT & KENNETH G. PATERSON (2008). Certifi-
cateless Encryption Schemes Strongly Secure in the SthiMizdel. InPublic Key Cryp-
tography RONALD CRAMER, editor, volume 4939 ofecture Notes in Computer Science
344-359. Springer. ISBN 978-3-540-78439-5.

Yvo DESMEDT & JEAN-JACQUES QUISQUATER (1986). Public-Key Systems Based on
the Difficulty of Tampering (Is There a Difference Between®&nd RSA?). ICRYPTO
ANDREW M. ODLYZKO, editor, volume 263 oEecture Notes in Computer Sciendd 1—
117. Springer.

http://gas.dia.unisa.it/projects/jpbc/
http://gas.dia.unisa.it/projects/jpbc/
http://dl.acm.org/citation.cfm?id=648026.744529
http://dl.acm.org/citation.cfm?id=648026.744529

117

YEVGENIY DoDIS & JONATHAN KATZ (2005). Chosen-Ciphertext Security of Multiple
Encryption. InTCC, JoE KILIAN, editor, volume 3378 of.ecture Notes in Computer
Science188-209. Springer. ISBN 3-540-24573-1.

DRroibLA (2012). QR Droid. URLht t ps:// mar ket . androi d. com detai | s?
i d=I a. droi d. gr &l =en.

JUN FURUKAWA, NUTTAPONG ATTRAPADUNG, RYUICHI SAKAI & GOICHIRO
HANAOKA (2008). A Fuzzy ID-Based Encryption Efficient When Error &a$ Low.
In INDOCRYPT DIPANWITA ROY CHOWDHURY, VINCENT RIJMEN & ABHIJIT DAS,
editors, volume 5365 ofecture Notes in Computer Sciendd 6-129. Springer. ISBN
978-3-540-89753-8.

DAVID GALINDO, PAz MORILLO & CARLA RAFOLS (2006). Breaking Yum and Lee
Generic Constructions of Certificate-Less and Certifi&dsed Encryption Schemes. In
EuroPKI, ANDREA S. ATZENI & ANTONIO L10Y, editors, volume 4043 dfecture Notes
in Computer Scien¢&1-91. Springer. ISBN 3-540-35151-5.

C. GENTRY & A. SILVERBERG (2002). Hierarchical ID-based cryptographdvances
in Cryptology — ASIACRYPT 20029-155.

CRAIG GENTRY (2003). Certificate-Based Encryption and the CertificatgoRation
Problem. IEUROCRYPTJELI BiHAM, editor, volume 2656 dfecture Notes in Computer
Science272—-293. Springer. ISBN 3-540-14039-5.

MARC GIRAULT (1991). Self-Certified Public Keys. IEUROCRYPTDONALD W.
DaviEs, editor, volume 547 of.ecture Notes in Computer Sciene®0-497. Springer.
ISBN 3-540-54620-0.

P. GUTMANN (2002). PKI: it's not dead, just restincomputer35(8), 41-49.

F. HEss(2003). Efficient identity based signature schemes baseaivimgs. InSelected
Areas in Cryptography310-324. Springer.

QIONG HUANG & DUNCAN S. WONG (2007). Generic Certificateless Encryption in the
Standard Model. IWSEGC ATSUKO MIYAJI, HIROAKI KIKUCHI & K Al RANNENBERG,
editors, volume 4752 ofecture Notes in Computer Scien@y8-291. Springer. ISBN
978-3-540-75650-7.

DETLEF HUHNLEIN, MICHAEL J. ACOBSON JR. & DAMIAN WEBER (2000). To-
wards Practical Non-interactive Public Key Cryptosystddsing Non-maximal Imagi-
nary Quadratic Orders. I8elected Areas in Cryptograph®POUGLAS R. STINSON &
STAFFORD E. TAVARES, editors, volume 2012 ofecture Notes in Computer Science
275-287. Springer. ISBN 3-540-42069-X.

A. KERCKHOFFS(1883). La cryptographie militairelournal des sciences militair€g1),
5-38.

JosePHK. Liu, MAN HO Au & WILLY SusiLO (2006). Self-Generated-Certificate Pub-
lic Key Cryptography and Certificateless Signature / EnttoypScheme in the Standard
Model. IACR Cryptology ePrint Archiv2006 373.

https://market.android.com/details?id=la.droid.qr&hl=en
https://market.android.com/details?id=la.droid.qr&hl=en

118

BENJAMIN LYNN (2007). Pairing-Based Cryptography Library. URittp://
crypto. stanford. edu/ pbc/.

UELI M. MAURER & YACOV YACOBI (1991). Non-interactive Public-Key Cryptography.
In EUROCRYPTDONALD W. DAVIES, editor, volume 547 off ecture Notes in Computer
Science498-507. Springer. ISBN 3-540-54620-0.

K.G. PATERSON (2002a). Cryptography from pairings: a snapshot of curres¢arch.
Information Security Technical Repait3), 41-54.

K.G. PATERSON(2002b). ID-based signatures from pairings on elliptiovesst Electron-
ics Letters38(18), 1025-1026.

HOLGER PETERSEN PATRICK HORSTER& DELTA PATRICK HORSTER(1997). Self-
certified keys - Concepts and Applications. linProc. Communications and Multimedia
Security’97 102-116. Chapman & Hall.

S. SAEEDNIA (2003). A note on Girault's self-certified modelnformation Processing
Letters86(6), 323—-327.

SHAHROKH SAEEDNIA (1997). Identity-Based and Self-Certified Key-Exchangat®r
cols. InACISP, V1IJAY VARADHARAJAN, JOSEFPIEPRZYK & Y I Mu, editors, volume
1270 ofLecture Notes in Computer Scien883—-313. Springer. ISBN 3-540-63232-8.

AMIT SAHAI & BRENT WATERS (2005). Fuzzy ldentity-Based Encryption. BEURO-
CRYPT RONALD CRAMER, editor, volume 3494 ofecture Notes in Computer Science
457-473. Springer. ISBN 3-540-25910-4.

R. SakAl, K. OHGISHI & M. K ASAHARA (2000). Cryptosystems based on pairing. In
The 2000 Symposium on Cryptography and Information Sgc@kinawa, Japanl35—
148.

ADI SHAMIR (1984). Identity-Based Cryptosystems and Signature SeeemCRYPTO
G. R. BLAKLEY & DAvID CHAUM, editors, volume 196 ofecture Notes in Computer
Science47-53. Springer. ISBN 3-540-15658-5.

NIGEL P. SVART (2003). Access control using pairing based cryptographyrbceed-
ings of the 2003 RSA conference on The cryptographers’ tragdkRSA03, 111-121.
Springer-Verlag, Berlin, Heidelberg. ISBN 3-540-008470RL http://dl.acm
org/citation. cfni d=1767011. 1767023.

NP SVART (2002). Identity-based authenticated key agreement pobtmased on Weil
pairing. Electronics Letter88(13), 630-632.

HATSUKAZU TANAKA (1987). A Realization Scheme for the Identity-Based Crgpse
tem. INCRYPTQ CARL POMERANCE, editor, volume 293 oEecture Notes in Computer
Science340-349. Springer. ISBN 3-540-18796-0.

S. Tsudn & T. I TOH (1989). An ID-based cryptosystem based on the discreteitbga
problem.Selected Areas in Communications, IEEE Journa¥f@), 467-473.

B. WATERS (2005). Efficient identity-based encryption without randoracles Advances
in Cryptology—EUROCRYPT 20@57-557.

http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://dl.acm.org/citation.cfm?id=1767011.1767023
http://dl.acm.org/citation.cfm?id=1767011.1767023

119

DAE HYUN YuUM & PIL JOONG LEE (2004a). Generic Construction of Certificateless
Encryption. INCCSA (1) ANTONIO LAGANA, MARINA L. GAVRILOVA , VIPIN KUMAR,
YOUNGSONGMUN, CHIH JENG KENNETH TAN & OSVALDO GERVASI, editors, volume
3043 ofLecture Notes in Computer Scien882—-811. Springer. ISBN 3-540-22054-2.

DAE HYUN YUM & PIL JOONG LEE (2004b). Identity-Based Cryptography in Public Key
Management. IfeuroPKI, SOKRATIS K. KATSIKAS, STEFANOS GRITZALIS & JAVIER
LopPEez editors, volume 3093 ofecture Notes in Computer Scienc&l—-84. Springer.
ISBN 3-540-22216-2.

120

121

A. Source Code for the Original Construction

A.l. CertificatelessEncAppActivity.java

/1 This is the main class of the application and inplenents
the main screen

package certificatel ess. encryption. app;

i mport it.unisa.dia.gas.plaf.jpbc.pairing. CurveParans;
i mport android. app. Activity;

i mport android.content.|ntent;

i mport androi d. os. Bundl e;

i mport android. view. Vi ew,

i mport android. view. View. OnC i ckLi st ener;

i mport androi d. wi dget. Toast;

public class Certificatel essEncAppActivity extends Activity
i mpl ement s
Ond i ckLi st ener {
[+x Called when the activity is first created. =/
@verride
public void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceSt at e) ;
set Content View(R | ayout . mai n_I| ayout) ;

Vi ew composeButton =
findviewByl d(R. i d. conpose_nessage_button);
composeButt on. set Ond i ckLi stener(this);

Vi ew readButton = findViewByld(R id.read nessage button);
readBut t on. set OnCl i ckLi st ener(this);

Vi ew setupButton = findViewByl d(R id.setup_button);
set upButt on. set OnCl i ckLi st ener (this);

Vi ew hel pButton = findViewByld(R id. hel p_button);
hel pButt on. set OnCl i ckLi st ener(this);

}

/'l Declaring the buttons
public void onCick(Viewv) {

switch (v.getld()) {

case R id. hel p_button:
Intent il = new Intent(this, Help.class);
startActivity(il);
br eak;

122

case R id.conpose nessage button:
Intent i2 = new Intent(this, ConposeMessage. cl ass);
startActivity(i?2);
br eak;

case R id.read nessage button
Intent i3 = new Intent(this, ReadMessage.cl ass);
startActivity(i3);
br eak;

case R id.setup_button
CurvePar ans curveParans = new
CurvePar ans() . | oad(get Resour ces()
. openRawResource(R raw. a_181_603));

KeyGener at i onCent er. set up(v. get Context (), curveParans);
Recei ver. set SecPub(cur vePar ans) ;

Toast . makeText (Certifi cat el essEncAppActivity.this,
"Setup Conpl ete", Toast.LENGTH LONG . show();
br eak;

A.2. ComposeMessage.java

11

pac

i mp
i mp
i mp
i mp

i mp
i mp
i mp

i mp
i mp
i mp
i mp
i mp

This class inplenents the conpose nmail interface and
provi des the functionality to conpose, encrypt and send
nessages

kage certificatel ess.encryption. app

ort it.unisa.dia.gas.jpbc. El enent;

ort it.unisa.dia.gas.jpbc.Pairing

ort it.unisa.dia.gas.plaf.jpbc. pairing. CurvePar ars;
ort it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

ort java.io.UnsupportedEncodi ngExcepti on;
ort java.util.ArraylList;
ort java.util.List;

ort android. app. Activity;
ort android.content.Intent;
ort androi d. os. Bundl e;

ort android.util.Log;

ort android. view. Vi ew,

123

i mport android. view. View. OnC i ckLi st ener;
i mport androi d. wi dget. Edi t Text;
i mport androi d. wi dget. Toast;

public class ConposeMessage extends Activity inplenents
Ond i ckLi stener {

public static List<Elenment[]> enc_nessage_list = new
ArraylLi st<El ement[]>();

public static String enc_text = "";

public static String email ="";

public static final int BIT_LENGTH = 100;

@verride

protected void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceSt at e) ;
set Cont ent Vi ewm(R | ayout . conpose_nessage) ;

Vi ew encButton = findVi ewByl d(R. i d. conpose_nessage_enc);
encButton. set Ond i ckLi stener(this);

Vi ew sendButton =
findviewByl d(R. i d. conpose_nessage_send) ;
sendButt on. set OnC i ckLi stener(this);

}

public void onCick(Viewv) {

Cur vePar ans curveParans = new
CurvePar ans() .| oad(get Resour ces()
. openRawResource(R raw. a_181 603));
Pairing pairing = PairingFactory. getPairing(curveParans);

final EditText conpose_mnessage_to = (Edit Text)
findviewByl d(R i d. conpose_nessage_t o) ;

final EditText conpose_nessage_subject = (EditText)
findviewByl d(R i d.conpose_nessage_subj ect);

final EditText conpose nessage text = (EditText)
findviewByl d(R. i d. conpose_nessage_t ext);

switch (v.getld()) {
/1 Encrypting the nessage
case R id.conpose_nessage_enc:
int nessage_len = 76;
int pad_len = 0;

emai | = conpose_nessage_to.getText().toString();
String encoding = "UTF- 16BE";

124

String nessage =
conpose_nessage_text.getText().toString();

String nessage_final = nmessage

String value = "00"

String str_add = String.format(
String. format ("%0%d", nessage len - 2),

0).replace("0",

ety

if (message.length() % nmessage_len = 0) {
i nt message_| en_quo = nessage. |l ength() / nessage | en
pad |l en = (nmessage |l en_quo + 1) * nmessage_| en

int pad_count = pad_len - nessage.length();

String pad = String.format(String.formt("%0%ld",
pad _count),
0).replace("0", "~"

message_final = nessage + pad

i f (pad_count < 10)

value = "0" + pad_count;
el se
val ue = new | nteger(pad_count).toString();
}
message_final = nessage final + str_add + val ue
try {

byte[] message_final _bytes =
nmessage_fi nal . get Byt es(encodi ng);

enc_nessage list.clear();
for (int i =0; i < nessage final.length() /
nmessage_len; i++) {
byte[] newarr = new byte[2 * message_l en];
System arraycopy(nessage _final _bytes, i * 2 =
nessage_| en,

newarr, 0, 2 * nmessage_len);

El ement el enent _tenp = pairing. get GI().newEl ement () ;
el ement _tenp. set FronByt es(newarr);

El ement enc_nessage[] = new El enment[4];
Sender sender = new Sender();

Met hods net hod = new Met hods();

125

String ID =

net hod. st ri ngt oBi nary(enai |l). substring(O0,
Bl T_LENGTH) ;

enc_nessage = sender.enCrypt (I D, curveParans,
el ement _tenp. duplicate());

enc_nessage_| i st.add(enc_nessage. cl one());

}

} catch (UnsupportedEncodi ngException e) {
System out. println("Encoding Error");

}
for (int i = 0; i < enc_message_list.size(); i++) {

try {
String enc_text_inter = "";

enc_text_inter = new String(
enc_nessage list.get(i)[0].toBytes(), "UTF-8")

+ new
String(enc_nessage list.get(i)[1].toBytes(),
" UTF-8")

+ new
String(enc_message_list.get(i)[2].toBytes(),
"UTF-8")

+ new
String(enc_nessage |list.get(i)[3].toBytes(),
"UTF-8");

enc_text = enc_text + enc_text_inter;
} catch (UnsupportedEncodi ngException e) {
System out. println("Encoding Error");
}
}
conpose_mnessage_t ext. set Text (enc_text);
Toast . makeText (ConposeMessage. this, "Message
Encrypt ed",
Toast. LENGTH_LONG . show() ;

br eak;

/'l Sending the mail on tapping send button
case R id.conpose _nessage_send:

Mail m = new Mail ("certificatel ess. enc@oogl erail.conf,
"t hesi s1234");

String[] toArr = {

conpose_nessage_to.get Text().toString() };
m set To(t OArr);

126

m set Fron("certificatel ess. enc@oogl enail.cont);
m set Subj ect (conmpose_nessage_subj ect. get Text().toString());
m set Body(" ***BEG N ENCRYPTED MESSAGE***\n\n\n" +

enc_t ext

+ "\ n\n\n*x++END OF ENCRYPTED MESSAGE***");

try {
if (msend()) {

Toast . makeText (ConposeMessage. t hi s,
"Emai |l was sent successfully.",
Toast . LENGTH _LONG

.show();

Intent i5 = new Intent(this,
Certificatel essEncAppActivity.class);
startActivity(ib);

} else {
Toast . makeText (ConposeMessage. this, "Email was not
sent. ",
Toast. LENGTH_LONG) . show() ;
}
} catch (Exception e) {
Log.e("Email", "Could not send email", e);
}
br eak;
}
}
}
A.3. Help.java

/1 This class inplenents the Help interface
package certificatel ess. encryption. app;

i mport android. app. Activity;
i mport andr oi d. os. Bundl e;

public class Help extends Activity {
@verride
protected void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceSt at e) ;
set Content Vi ew(R | ayout . hel p);
}
}

127

A.4. KeyGenerationCenter.java

/1 This class inplenents the algorithnms run by the KGC
package certificatel ess. encryption. app

i mport it.unisa.dia.gas.]jpbc.El enment;

i mport it.unisa.dia.gas.]jpbc.Pairing

i mport it.unisa.dia.gas.plaf.jpbc.pairing. CurveParans;

i mport it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

i mport java.util.Arraylist;
i mport java.util.List;

i mport android. app. Activity;
i mport androi d. content. Cont ext;

public class KeyGenerationCenter extends Activity {

public static Element g, g1, g2, Fu_ID;

private static El enent nsk, ganmsg;

public static List<Elenment> u = new ArrayLi st <El ement>();
public static List<Elenment> v = new ArraylLi st<El ement>();
public static String ID;

public static final int BIT_LENGIH = 100;

[~~—m———~ Step 1 - Setup: Perfornmed by KGC cal |l ed at
startup ~~~~~~~~

public static void setup(Context context, CurveParans
curvePar ans) ({

Pairing pairing = PairingFactory. getPairing(curveParans);

g = pairing.getGl().newRandonEtl enent () ;

g2 = pairing.getGL().newRandonEl enent () ;

gamma = pairing. get Zr (). newRandonEl enent () ;

gl = g.duplicate().powzZn(gamma. duplicate());
msk = g2.duplicate().powzZn(gamra. duplicate());

for (int i = 0; i <= BIT_LENGTH, i++) {
El ement u_tenp = pairing.getGl(). newRandonEl erment () ;
u. add(u_t enp. duplicate());

}

for (int i = 0; i <= BIT_LENGTH, i++) {
El ement v_tenp = pairing.get GL().newRandonEl erment () ;
v.add(v_tenp.duplicate());

128

}
}
[~~~ Step 2 - Extract: Perfornmed by KGC cal |l ed by
Recei ver ~~~~~~~~
public static Element[] extract(String email, CurveParans

curvePar ans) ({
Pairing pairing = PairingFactory. getPairing(curveParans);

Met hods net hod = new Met hods();

I D = nethod. stringtoBinary(enail).substring(0,
Bl T_LENGTH) ;

Fu_I D = net hod. newHash(u, |D, curveParans);

El ement r = pairing.getZr().newRandonEl ement () ;

Element d_ID] = new Elenent[2];
d_1po] =

nmsk. duplicate().mul (Fu_l D. duplicate().powZn(r.duplicate()));
d ID1] = g.duplicate().powzZn(r.duplicate());

return d_ID. clone();

}
}

A.5. Mail.java

[+ This class provides the functionality for sending mails.
* The author of this class is John Sinbn and the code is

avail abl e
* at http://ww. jondev. net/
* %/

package certificatel ess. encryption. app;

i mport java.util.Date;

i mport java.util.Properties;

i mport javax.activation. ConmandMap;

i mport javax.activation. Dat aHandl er;

i mport javax.activation. Dat aSour ce;

i mport javax.activation. Fil eDat aSour ce;

i mport javax.activation. Mai | capConmandMap;
i mport javax.nail.BodyPart;

i mport javax.mail.Miltipart;

i mport javax. mail.Passwor dAut henti cati on;
i mport javax. mail . Session;

129

i mport javax.mail.Transport;

i mport javax.mail.internet.|nternet Address;

i mport javax.mail.internet. M nmeBodyPart;

i mport javax.mail.internet. M meMessage;

i mport javax.mail.internet. M meMiltipart;

public class Mail extends javax.mail.Authenticator {

pri
pri

pri
pri

pri
pri

pri

pri
pri

pri
pri

pri

vate String _user;
vate String _pass;

vate String[] _to;
vate String _from

vate String _port;
vate String _sport;

vate String _host;

vate String _subject;
vate String _body;

vat e bool ean _aut h;
vat e bool ean _debuggabl e;

vate Multipart _multipart;

public Ml () {

host = "sntp.gmail.coni; // default sntp server
port = "465"; // default sntp port

sport = "465"; // default socketfactory port
user = ""; [/ usernane

pass = ""; // password

from=""; // email sent from

subject =""; // email subject

body = ""; // enmail|l body

debuggabl e = false; // debug node on or off - default
of f
auth = true; // sntp authentication - default on

multipart = new M nmeMil tipart();

Mai | capCommandMap nc = (Mai | capCommandMap) ConmandMap

. get Def aul t CommandMap() ;

nc. addMai | cap("text/htnm ;;

X-j ava- cont ent - handl er=com sun. mai | . handl ers. text _htm");

nc. addMai | cap("text/xm ;;

130

X-j ava- cont ent - handl er=com sun. mai | . handl ers. text _xm ");
nc. addMai | cap("text/plain;;

X-]j ava-cont ent - handl er=com sun. nai | . handl ers. text _plain");
nc. addMai | cap("mul ti part/ *;

X-j ava- cont ent - handl er=com sun. mai | . handl ers. mul ti part _m xed");
nc. addMai | cap(" nessage/ rfc822;

X-j ava- cont ent - handl er=com sun. mai | . handl ers. nessage_r fc822");
ConmandMap. set Def aul t CommandMap(nt) ;

}

public Ml (String user, String pass) {
this();
_user = user;
_pass = pass;

}

public bool ean send() throws Exception {
Properties props = _setProperties();

if (! _user.equals("") & ! pass.equals("") & to.length
>0
&% ! fromequal s("") && ! _ subject.equal s("")
&& ! _body. equal s("")) {
Sessi on session = Session. getlnstance(props, this);

M neMessage nsg = new M neMessage(session);
nsg. set Fron(new I nt er net Address(_from);

I nt er net Address[] addressTo = new
I nt er net Address[_to. | ength];
for (int i =0; i < _to.length; i++) {
addressTo[i] = new Internet Address(_to[i]);
}
nsg. set Reci pi ent s(M meMessage. Reci pi ent Type. TO,
addr essTo) ;

nsg. set Subj ect (_subj ect);
nsg. set Sent Dat e(new Date());

/'l setup nmessage body

BodyPart nessageBodyPart = new M neBodyPart();
nessageBodyPart. set Text (_body);

_mul tipart.addBodyPart (nmessageBodyPart);

/1 Put parts in nessage
nsg. set Content (_nultipart);

131

/'l send email
Transport.send(nsq);

return true;
} else {
return false;
}
}

public void addAttachnent(String fil enanme) throws
Exception {
BodyPart nessageBodyPart = new M neBodyPart();
Dat aSour ce source = new Fil eDat aSource(fil enane);
nmessageBodyPart . set Dat aHandl er (new Dat aHandl er (source));
nmessageBodyPart . set Fi | eName(fil enane);

_mul tipart.addBodyPart (nessageBodyPart);
}

@verride
publ i ¢ Passwor dAut henti cati on get Passwor dAut henti cati on()

{

return new Passwor dAut hentication(_user, _pass);

}

private Properties _setProperties() {
Properties props = new Properties();

props. put ("mail.sntp. host", _host);

i f (_debuggabl e) {
props. put ("nail.debug", "true");

}
if (_auth) {
props. put ("mail.sntp.auth", "true");
}
props. put ("mail.sntp.port", _port);
props. put ("mail.sntp. socket Factory. port", _sport);

props. put ("mail.sntp. socket Fact ory. cl ass",
"j avax. net . ssl. SSLSocket Fact ory");
props. put ("mail.sntp. socket Factory. fal | back", "false");

return props;

}

/1l the getters and setters
public String getBody() {

132

return _body;

}

public void setBody(String _body) {
this. body = _body;
}

public void setTo(String[] toArr) {
this. to = toArr;
}

public void setFron(String string) {
this. _from= string

}

public void setSubject(String string) {
this. subject = string
}
}

A.6. Methods.java

/1l This class inplenents various nethods used by the
di fferent classes

package certificatel ess. encryption. app

i mport it.unisa.dia.gas.]jpbc.El enment;

i mport it.unisa.dia.gas.]jpbc.Pairing

i mport it.unisa.dia.gas.plaf.jpbc.pairing. CurvePar arns;

i mport it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

i nport java.security. MessageDi gest;
i mport java.util.List;

public class Methods {
public static final int BIT_LENGIH = 100;
public String stringtoBinary(String text) {

byte[] bytes = text.getBytes();
String binarystr ="";
for (int i =0; i < bytes.length; i++) {
bi narystr = binarystr + bytetoBinaryString(bytes[i]);
}

return binarystr;

133

}

/1 Computing the SHA-1 hash
public String shalHash(String input) {

byte[] output;
String binarystr = "";

try {
MessageDi gest nd = MessageDi gest. getl nstance(" SHAL");

nd. updat e(i nput. get Bytes());
out put = nd. di gest();

for (int i =
bi narystr =

}

} catch (Exception e) {
System out. println("Exception: " + e);
}

return binarystr;

}

| *
* Converting bytes to hexadecimal. The code for this
nmet hod has been taken
* fromhttp://ww. herongyang. com
*/
public String bytesToHex(byte[] b) {
char hexbDigit[] ={ 0, "1, "2, "3, "4, 5, "6,
7T, '8, 9,
A, 'B, 'C, 'D, 'E, "F };
StringBuffer buf = new StringBuffer();
for (int j =0; j < b.length; j++) {
buf . append(hexDigit[(b[j] >> 4) & 0x0f]);
buf . append(hexDigit[b[j] & 0x0f]);
}
return buf.toString();

}

| *
* Converting a byte to binary string. The code for this
nmet hod has been
* taken from http://hel pdesk. obj ects.com au
* |
public String bytetoBinaryString(byte n) {
StringBuil der sb = new StringBuil der("00000000");
for (int bit =0; bit <8; bit++) {
if (((n > bit) &1) > 0) {

0; i < output.length; i++) {
bi narystr + bytetoBi naryString(output[i]);

134

sb.setCharAt (7 - bit, "1');
}
}
return sb.toString();

}

/1 Calculating the hash used by the schene

public El enent newHash(Li st<El ement> vector, String
bitstr,
CurvePar ans curveParans) {

Pairing pairing = PairingFactory. getPairing(curveParans);
El ement hash_val = pairing.get GL().newOneEl enent ();
hash_val . mul (vector.get (0).duplicate());

for (int i = 0; i < BIT_LENGTH, i++) {
if (bitstr.charAt(i) =="1") {
hash_val . mul (vector.get (i + 1).duplicate());
}
}
return hash_val;
}
}

A.7. ReadMessage.java

/1 This class inplenents the interface to read nessages
package certificatel ess. encryption. app;

i mport it.unisa.dia.gas.jpbc.El ement;
i mport it.unisa.dia.gas.plaf.jpbc.pairing. CurvePar arns;

i mport java.io. UnsupportedEncodi ngExcepti on;
import java.util.Arraylist;
i mport java.util.List;

i mport androi d. app. Activity;

i mport andr oi d. os. Bundl e;

i mport android.text. met hod. Scrol | i ngMovenent Met hod;
i mport android. view. Vi ew,

i mport android. view. Vi ew. Ond i ckLi st ener;

i mport androi d. wi dget. Text Vi ew,

i mport androi d. wi dget . Toast ;

public class ReadMessage extends Activity inplenents
OnCl i ckLi st ener {

135

Text Vi ew read_nsg_t xt;

@verride
protected void onCreate(Bundl e savedl nstanceState) {

super. onCr eat e(savedl nst anceSt at e) ;
set Content Vi ewm(R | ayout . read_nessage) ;

read_nsg_txt = (TextView)
findviewByl d(R i d.read_message_text);

Vi ew decButton = findViewByl d(R i d.read_nmessage_dec);
decBut t on. set Ond i ckLi st ener(this);

Vi ew | oadButton = findViewByld(R id.read_nessage_| oad);
| oadBut t on. set OnC i ckLi stener(this);

}

public void onCick(View v) {

final TextViewread nessage text = (TextView)
findviewByld(R id.read_nessage_text);

String encoding = "UTF- 16BE";
Cur vePar ans curveParans = new
CurvePar ans() .| oad(get Resour ces()
. openRawResource(R raw. a_181 603));
int nessage_|en = 76;

switch (v.getld()) {

case R id.read nessage dec:
Li st<El enent[] > enc_nessage_list = new
ArraylLi st<El ement[]>();
enc_nessage_| i st = ConposeMessage. enc_nessage | i st;
String dec_nsg _padded = "";
for (int i =0; i < enc_nessage_list.size(); i++) {
El ement dec_nessage =
Recei ver. deCrypt (enc_message_list.get (i),
curvePar ans) ;

try {
String msg_inter = new
String(dec_nessage. duplicate()
.toBytes(), encoding);
dec_nsg_padded = dec_nsg_padded + nsg_inter;

} catch (UnsupportedEncodi ngException e) {

136

Systemout. println("Encoding Error");

}
}

String nsg_end _num = dec_nsg_padded. substri ng(
dec_nsg_padded. l ength() - 2,
dec_msg_padded. | ength());
int dec_nsg_pad_l en = Integer.parselnt(nsg_end_nunj;

String dec_nsg = dec_nsg_padded. substri ng(O,
dec_nsg_padded. |l ength() - dec_nsg pad_|len -
nessage | en);

read_nessage_t ext. set Text (dec_nsqg);

Toast . nakeText (ReadMessage. this, "Message Decrypted",
Toast. LENGTH_LONG . show() ;

br eak;

case R id.read nessage | oad:
read_nsg_t xt. set Movenent Met hod(new
Scrol | i ngMovenent Met hod()) ;
read_nessage_t ext. set Text (ConposeMessage. enc_t ext);

br eak;
}
}
}

A.8. Receiver.java

/1 This class inplenents the al gorithnms executed by the
Recei ver

package certificatel ess. encryption. app;

i mport it.unisa.dia.gas.jpbc.El enment;

i mport it.unisa.dia.gas.jpbc. Pairing;

i mport it.unisa.dia.gas.plaf.jpbc.pairing. CurveParans;

i mport it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

public class Receiver {
private static Element x_ID;

public static Element pk_ID] = new El ement[2];
private static Elenment sk _ID] = new El erment[2];

137

public static final int BIT_LENGIH = 100;

/[l Step 3 & 4 - SetSec & SetPub: Performed and cal |l ed by
Recei ver

public static void setSecPub(CurveParans curveParans) {

Pairing pairing = PairingFactory. getPairing(curveParans);

X_I D = pairing.getZr(). newRandonEl enent () ;

pk_I D 0] =
KeyGener ati onCenter. g. duplicate().powzZn(x_ID. duplicate());
pk_IDf1] =
KeyGener ati onCent er. g1. dupli cate(). powzZn(x_I D. duplicate());
}
[~~~ Step 5 - SetPriv: Perfornmed and cal |l ed by

Recei ver ~~~~~~~~
private static void setPriv(CurveParans curveParans) {

Pairing pairing = PairingFactory. getPairing(curveParans);

El ement r_prine = pairing.getZr().newRandonEl enent () ;

Element d_ID] =
KeyGener ati onCent er. ext ract (ConposeMessage. enai | ,
curvePar ans) ;

sk_1D0] = (d_IDO0O].duplicate().powzZn(x_ID.duplicate()))
. mul (KeyGenerationCenter. Fu_I D. duplicate().powZn(
r_prine.duplicate()));
sk ID1] = (d_ID1].duplicate().powzZn(x_ID.duplicate()))
. mul (KeyGenerationCenter.g.duplicate().powzZn(
r_prinme.duplicate()));

[~~~ Step 7 - Decrypt: Performed by Receiver ~~~~~
public static Elenment deCrypt(El enent cipherText[],
CurvePar anms curvePar ans) {

Pairing pairing = PairingFactory. getPairing(curveParans);

set Priv(curveParans);

String str_to_hash = ci pherText[0].duplicate().toString()
+ ci pherText[1].duplicate().toString()

+ cipherText[2].duplicate().toString()
+ Receiver.pk_ID[O].duplicate().toString()

138

+ Receiver.pk_I D[1] .duplicate().toString()
+ KeyGenerationCenter. | D

Met hods net hod = new Met hods();
String w = nmethod. shalHash(str_to_hash);

El ement Fv_W = net hod. newHash(KeyGener ati onCenter. v,
w. substring(0, BIT_LENGTH), curveParans)

El ement tenmpl =
KeyGener ati onCenter. Fu_I D. duplicate(). mul (
Fv_Wduplicate());

El ement tenp2 = ci pherText[2].duplicate()
.mul (ci pherText[3].duplicate());

if (pairing.pairing(cipherText[1].duplicate(),
tenpl. duplicate())
.1 sEqual (
pai ri ng. pairi ng(KeyGenerati onCenter.g.duplicate(),
tenp2. duplicate())) == false) {

Systemout. println("ABORT: problemmatching ...");

return pairing.get GI().newZer oEl ement ()
} else {

El enent dec_nsg = ci pherText[0].duplicate().nul(
pai ring. pai ri ng(ci pherText[2].duplicate(),
sk_1D1].duplicate()).div(
pai ri ng. pai ring(ci pherText[1].duplicate(),
sk IDO].duplicate())));

return dec_nsg. duplicate()
}

}
}

A.9. Sender.java

/1 This class inplenents the al gorithnms executed by the
Sender

package certificatel ess. encryption. app

i mport it.unisa.dia.gas.jpbc.El ement;
i mport it.unisa.dia.gas.jpbc.Pairing

139

i mport it.unisa.dia.gas.plaf.jpbc.pairing. CurveParans;
i mport it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

public class Sender {

public static Element C[] = new El enent[4];
public static El enent Fu_lD

public static final int BIT_LENGTH = 100;

[~~~ Step 6 - Encrypt: Perforned and cal |l ed by
Sender ~~~~~~~~~

public Elenent[] enCrypt(String I D, CurveParamns
curveParans, Element n) ({

Pairing pairing = PairingFactory. getPairing(curveParans);

i f (pairing.pairing(Receiver.pk_IDO0].duplicate(),
KeyGener ati onCent er. gl. duplicate()).isEqual (
pai ri ng. pai ri ng(Recei ver.pk_|I D[1] .duplicate(),
KeyGenerationCenter.g.duplicate())) == false) {

System out. println("ABORT: Incorrect Shape");

return null;
} else {

El enent s = pairing.getZr().newRandonEl enment () ;

C 0] = mduplicate().nul(
(pairing. pai ring(Recei ver. pk_I D[1] . duplicate(),
KeyGener ati onCenter. g2.duplicate())).powZn(s
.duplicate()));

a1 =
KeyGener ati onCent er. g. duplicate().powzZn(s. duplicate());

Met hods net hod = new Met hods();

El ement Fu_Il D = net hod. newHash(KeyGener ati onCent er. u,
| D,
curvePar ans) ;

2] = Fu_ID. duplicate().powZn(s.duplicate());

String str_to_hash = C[0].duplicate().toString()
+ (1] .duplicate().toString() +
g 2].duplicate().toString()
+ Receiver.pk_I D[O] .duplicate().toString()

140

+ Receiver.pk_I D 1] .duplicate().toString() + ID;
String w = met hod. shalHash(str_to_hash);

El ement Fv_W = net hod. newHash(KeyGener ati onCenter. v,
w. substring(0, BIT _LENGTH), curveParans);

3] = Fv_Wduplicate().powZn(s. duplicate());

return C. clone();
}
}
}

141

142

B. Source Code for the Derived Construction

B.1. CertificatelessEncModAppActivity.java

/1 This is the main class of the application and inplenents
the main screen

package certificatel ess. encryption. nod. app;

i mport androi d. app. Activity;

i mport android.content.|ntent;

i mport androi d. os. Bundl e;

i mport android. view. Vi ew,

i mport android. view. View. OnC i ckLi st ener;

public class Certificatel essEncMbdAppActivity extends

Activity inplenents
Ondl i ckLi stener {

[+x Called when the activity is first created. =/

@verride

public void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceSt at e) ;
set Content Vi e R | ayout . mai n_I| ayout) ;

Vi ew conposeButton =
findviewByl d(R. i d. conpose_nessage_button);
conmposeButton. set Ond i ckLi stener(this);

Vi ew readButton = findViewByld(R id.read_nmessage_button);
readButt on. set Ond i ckLi stener(this);

Vi ew setupButton = findViewByl d(R id.setup_button);
set upBut t on. set Ond i ckLi st ener (this);

Vi ew hel pButton = findViewByld(R id. hel p_button);
hel pButton. set OnCl i ckLi stener(this);

}

/'l Declaring the buttons
public void onCick(Viewv) {

switch (v.getld()) {

case R id. hel p_button:
Intent i1l = new Intent(this, Help.class);
startActivity(il);
br eak;

case R id.conpose_nessage_button:
Intent i2 = new Intent(this, ConposeMessage. cl ass);

143

startActivity(i?2);
br eak;

case R id.read_nessage_ button:
Intent i3 = new Intent(this, ReadMessage.cl ass);
startActivity(i3);
br eak;

case R id.setup_button:
Intent i4 = new Intent(this, Setup.class);
startActivity(id);

br eak;

}

B.2. ComposeMessage.java

/1 This class inplenents the conpose nmail interface and
provi des the functionality to conpose, encrypt and send
nessages

package certificatel ess. encryption. nod. app;

i mport it.unisa.dia.gas.jpbc.El ement;

i mport it.unisa.dia.gas.jpbc. Pairing;

i mport it.unisa.dia.gas.plaf.jpbc.pairing. CurveParans;

i mport it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

i mport java.io. UnsupportedEncodi ngExcepti on;
import java.util.Arraylist;
i mport java.util.List;

i mport android. app. Activity;

i mport android.content. Acti vityNot FoundExcepti on;
i mport android.content.|ntent;

i mport andr oi d. os. Bundl e;

i mport android.util.Log;

i mport android. view. Vi ew,

i mport android. view. Vi ew. Ond i ckLi st ener;

i mport android. w dget. Edi t Text;

i mport androi d. wi dget . Toast ;

public class ConposeMessage extends Activity inplenents
OnCl i ckLi st ener {

144

public static List<Element[]> enc_nessage_list = new
ArraylLi st<El ement[]>();

public static String enc_text = "";

public static String email ="";

public static final int BIT_LENGIH = 100;
private static final int ACTIVITY_RESULT_QR DRDRO D = 0;

@verride

protected void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceSt at e) ;
set Cont ent Vi ew{ R | ayout . conpose_nessage) ;

Vi ew encButton = findVi ewByl d(R. i d. conpose_nessage_enc);
encButton. set Ond i ckLi stener(this);

Vi ew sendButton =
findviewByl d(R. i d. conpose_nessage_send) ;
sendButt on. set OnC i ckLi stener(this);

}
public void onCick(Viewv) {

final EditText conpose_mnessage_to = (Edit Text)
findviewByl d(R. i d. conpose_nessage_t o) ;

final EditText conpose _nessage_subject = (EditText)
findviewByl d(R i d.conpose_nessage_subj ect);

switch (v.getld()) {
/1 Encrypting the nessage
case R id.conpose_nessage_enc:

Intent grDroid = new I ntent(Services. SCAN);

try {
start ActivityForResult(qrDroid,

ACTI VI TY_RESULT_QR DRDRO D) ;
} catch (ActivityNot FoundException activity) {
Servi ces. qr Droi dRequi r ed(ConposeMessage. t hi s);

}

br eak;

/1 Sending the mail on tapping send button
case R id.conpose_nessage_send:
Mail m = new Mail ("certificatel ess. enc@oogl enail.cont,
"t hesi s1234");

145

String[] toArr = {
conpose_nessage_to.get Text().toString() };
m set To(t O0Arr);
m set Fron{"certificatel ess. enc@oogl enai |l .cont);
m set Subj ect (conmpose_nessage_subj ect. get Text().toString());
m set Body("*** BEG N ENCRYPTED MESSAGE***\n\n\n" +
enc_t ext
+ "\ n\n\nx**END OF ENCRYPTED MESSAGE*=**");

try {
if (msend()) {

Toast . makeText (ConposeMessage. t hi s,
"Emai |l was sent successfully.",
Toast. LENGTH_LONG

. show();

Intent i5 = new Intent(this,
Certificatel essEncModAppActivity.class);
startActivity(ib);

} else {
Toast . makeText (ConposeMessage. this, "Email was not
sent.",
Toast. LENGTH _LONG) . show() ;
}
} catch (Exception e) {
Log.e("Email", "Could not send email", e);
}
br eak;

/'l Reading the QR code
protected void onActivityResult(int requestCode, int

resul t Code, Intent data) {
super. onActivi tyResul t (request Code, resultCode, data);

if (ACTIVITY_RESULT_QR DRDRO D == request Code && null !=
dat a
&& data.getExtras() '= null) {

Cur vePar ans curveParanms = new

CurvePar ans() . | oad(get Resour ces()

. openRawResource(R raw. a_181 603));
Pairing pairing =

Pai ri ngFact ory. get Pai ri ng(curvePar ans) ;

final EditText conpose _nessage_ text = (EditText)
findViewByl d(R i d. conpose_nessage_text);
final EditText conpose nessage to = (EditText)

146

findViewByl d(R i d.conpose_nessage to);

/1 Read result fromQrR Droid (it’s stored in
la.droid.gr.result)
String bionetrics =

dat a. get Extras().get String(Services. RESULT) ;

Met hods net hod = new Met hods();

String BID =

nmet hod. st ri ngt oBi nary(bi ometrics).substring(O0,

BI T_LENGTH);

El ement Fh_BI D = net hod. newHash(KeyGener ati onCent er. h,

Bl D,
curvePar ans) ;

int nessage_len = 76;
int pad_len = 0;

emai | = conpose_mnessage_to.getText().toString();

String encoding = "UTF- 16BE";
String nessage =
conpose_nessage_text.get Text().toString();
String nessage final = nmessage;
String value = "00";
String str_add = String.format(
String. format ("%0%d", nessage len - 2),
0).replace("0",
ety

if (message.length() % nmessage_len = 0) {

i nt message_| en_quo = nessage. |l ength() / nessage |en;
pad |l en = (message_|len_quo + 1) * nessage_| en;

int pad_count = pad_len - nessage.length();

String pad = String.format(String.formt("%0%ld",

pad _count),
0).replace("0", "~");
message_final = nessage + pad;

i f (pad_count < 10)

value = "0" + pad_count;
el se
val ue = new | nteger(pad_count).toString();
}
nmessage_final = nessage_final + str_add + val ue;

try {

147

byte[] message final bytes =
nmessage_fi nal . get Byt es(encodi ng);

enc_nessage list.clear();

for (int i =0; i < nessage final.length() /
message_len; i++) {
byte[] newarr = new byte[2 * nmessage_l en];

System arraycopy(nmessage_final _bytes, i * 2 =
nessage_| en,
newarr, 0, 2 * nessage_len);

El ement el enent _tenp = pairing. get GI().newEl ement () ;
el ement _t enp. set FronByt es(newarr);

El ement enc_nessage[] = new El enment[4];
Sender sender = new Sender();

String ID =
net hod. st ri ngt oBi nary(emai |l). substring(O0,
Bl T_LENGTH) ;

enc_nessage = sender.enCrypt (I D, curveParans,
Fh_BI D
el ement _tenp. duplicate());

enc_nessage | i st.add(enc_nessage. clone());

}

} catch (UnsupportedEncodi ngException e) ({
System out. println("Encoding Error");

}
for (int i = 0; i < enc_message_list.size(); i++) {

try {
String enc_text _inter = "";
enc_text_inter = new String(
enc_nessage list.get(i)[0].toBytes(), "UTF-8")

+ new
String(enc_message_list.get(i)[1].toBytes(),
"UTF-8")

+ new
String(enc_nessage list.get(i)[2].toBytes(),
"UTF-8")

+ new

String(enc_nessage |list.get(i)[3].toBytes(),
"UTF-8");

148

enc_text = enc_text + enc_text_inter;
} catch (UnsupportedEncodi ngException e) {
System out . println("Encoding Error");

}
}

conpose_nessage_t ext. set Text (enc_text);

Toast . makeText (ConposeMessage. this, "Message
Encrypt ed",
Toast . LENGTH_LONG) . show() ;

B.3. Decode.java

/1 This is part of "QRDroidServices", by DroidLa.
package certificatel ess. encryption. nod. app;

i mport android. app. Activity;

i mport androi d. app. ProgressDi al og;

i mport androi d. content. Acti vityNot FoundExcepti on;
i mport android.content.|ntent;

i nport android.content.res. Configuration;
i mport androi d. os. Bundl e;

i mport android. view. Vi ew,

i mport android. view View. Ond i ckLi st ener;
i mport andr oi d. wi dget . Butt on;

i mport androi d. wi dget. Edi t Text;

i mport androi d. wi dget. Spi nner;

i mport androi d. wi dget. Toast;

public class Decode extends Activity {

private static final int ACTIVITY_RESULT QR DRDRO D = 0;
private ProgressDi al og di al og;

@verride
protected void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceSt at e) ;

set Cont ent Vi e R | ayout . decode) ;
/'l Get Spinner instance

final Spinner spinner = (Spinner)
findviewByl d(R. i d. spin_conpl ete);

149

/'l "Decode" button
final Button button = (Button)
findviewByl d(R i d. button_decode);
/1l Set action to button
button. set OnCl i ckLi st ener(new OnCl i ckLi stener() {
@verride
public void onCick(Viewv) {
/'l Has the user entered i mage path?
String path = ((EditText) findViewByld(R id.txt_path))
.getText().toString();
[l TODGO This path should not be entered manual ly by
the user!

if (0 ==path.trim).length()) {
Toast . makeText (Decode. t hi s,
getString(R string.enter_url),
Toast. LENGTH _LONG . show() ;
return;

}

/'l Create a new Intent to send to QR Droi d
Intent grDroid = new I ntent(Services. DECODE); // Set
action
/1 "la.droid. gr.decode"

gr Droi d. put Ext ra(Servi ces. | MAGE, path);

/'l Check whether a conplete or displayable result is
needed
if (spinner.getSelectedltemd() ==0) { // First item
sel ected
/1 ("Conplete content")
/1 Notify we want conplete results (default is
FALSE)
gr Droi d. put Ext ra(Servi ces. COWPLETE, true);

}

/1 Send intent and wait result
try {
start Acti vityFor Resul t(qrDroid,
ACTI VI TY_RESULT_QR _DRDRO D) ;

/1 Wait for result
if (null == dialog || !dialog.isShow ng()) {
di al og = ProgressbhDi al og. show(Decode.this, "",
get String(R string.procesing), true);
di al og. set Cancel abl e(true);
di al og. show();

}

150

} catch (ActivityNot FoundException activity) {
Servi ces. gr Droi dRequi r ed(Decode. t hi s);
}
}
1
}

@verride

| **
* Reads data decoded frominage and returned by QR Droid
* |
protected void onActivityResult(int requestCode, int
resul t Code, Intent data) ({
super. onActivityResul t (request Code, resultCode, data);

/1 Cl ose dial og
if (null !'= dialog & dial og.isShowi ng()) {
di al og. cancel ();

}

if (ACTIVITY_RESULT_QR DRDRO D == request Code && null !=
dat a
&& data.getExtras() '= null) {
/1 Read result fromQrR Droid (it’s stored in
la.droid.gr.result)
String result =

dat a. get Extras().get String(Services. RESULT) ;

if (resultCode !'= RESULT K || null == result
|| O ==result.length()) {
/1 1mage coul d not been | oaded or decoded
Toast . nakeText (Decode.this, R string.not _decoded,
Toast. LENGTH_LONG . show() ;
return;

}

/] Just set result to EditText to be able to view it
((EditText) findViewByld(R id.result)).setText(result);
}

}
@verride
public void onConfi gurationChanged(Confi guration
newConfig) {
super. onConfi gur ati onChanged(newConfi g);
/'l Not hi ng

}

151

B.4. Encode.java

/1 This is part of "QRDroidServices", by DroidLa.
package certificatel ess. encryption. nod. app;

i mport androi d. app. Activity;

i mport androi d. content. Acti vit yNot FoundExcepti on;
i mport android.content.|ntent;

i mport android.content.res. Configuration;
i mport android.net.Uri;

i mport androi d. os. Bundl e;

i mport android. view. Vi ew,

i mport android. view. View. OnC i ckLi st ener;
i mport andr oi d. wi dget . Button;

i mport android. w dget. Edi t Text;

i mport androi d. wi dget. | mageVi ew;

i mport androi d. wi dget . Spi nner;

i mport androi d. wi dget . Toast ;

public class Encode extends Activity {

private static final int ACTIVITY_RESULT_QR DRDRO D = 0;
private bool ean i mage = fal se;

@verride
protected void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceSt at e) ;

set Cont ent Vi ew(R | ayout . encode) ;

/'l Get Spinner instance
final Spinner spinner = (Spinner)
findviewByld(R id.spin_url);

/' "Encode" button
final Button button = (Button)
findviewByl d(R. i d. button_encode);
/1l Set action to button
butt on. set OnCl i ckLi st ener(new OnCl i ckLi stener() {
@verride
public void onCick(View v) {
/1 1s there sonething to encode?
String code = ((EditText) findViewByld(R id.txt_code))
.getText().toString();
if (0 == code.trinm().length()) {
Toast . makeText (Encode.this, R string.enter_code,
Toast . LENGTH_SHORT) . show() ;

152

1)

}

return;

}

/'l Create a new Intent to send to QR Droi d
Intent grDroid = new I ntent(Services. ENCODE); // Set
action
/1 "la.droid.qgr.encode"

/'l Set text to encode
gr Droi d. put Ext ra(Servi ces. CODE, code);

/'l Check whether an URL or an inge is required
if (spinner.getSelectedltemd() == 0) { // First item
sel ected
/1 ("Get Bitmap")
/1 Notify we want conplete results (default is
FALSE)
i mge = true
gr Droi d. put Extra(Services. | MAGE, true);
/1 Optionally, set requested i nage size. 0 neans
/1 "Fit Screen"
gr Droi d. put Extra(Services. Sl ZE, 0);
} else {
i mge = fal se

}

/1 Send intent and wait result
try {
start Acti vit yFor Resul t(qrDroid,
ACTI VI TY_RESULT_QR _DRDRO D) ;
} catch (ActivityNot FoundException activity) {
Servi ces. gr Droi dRequi r ed(Encode. t hi s);
}

@verride

[*x*

*

*/

Reads generated QR code

protected void onActivityResult(int requestCode, int

resul t Code, Intent data) {

super. onActivi tyResul t (request Code, resultCode, data);

if (ACTIVITY_RESULT QR DRDRO D == request Code && null !=

dat a
&& data.getExtras() '= null) {

/1 Read result fromQR Droid (it's stored in

153

la.droid.gqr.result)
/1 Result is a string or a bitmap, accordi ng what was
request ed
| mageVi ew i ngResult = (1 mageVi ew)
findvViewByld(R id.ing result);
Edit Text txtResult = (EditText)
findviewByld(R id.txt_result);

if (imge) {
String gqrCode =
dat a. get Extras().getString(Services. RESULT) ;

/1 1f image path was not returned, it could not be
saved. Check
/1 SD card is munted and is witable
if (null == qrCode || O == grCode.trim().length()) {
Toast . makeText (Encode. this, R string.not_saved,
Toast. LENGTH _LONG) . show() ;
return;

}

/'l Show success nessage

Toast . nakeText (Encode. t hi s,
getString(R string.saved) + " " + qgrCode,
Toast . LENGTH_LONG) . show() ;

/1 Load QR code inmage from given path
i mgResul t. set |l mageURI (Uri . parse(qr Code));

i mgResul t. setVisibility(View VISIBLE);
txt Result.setVisibility(View GONE);

} else {

String result =
dat a. get Extras().get String(Servi ces. RESULT) ;

/1 Just set result to EditText to be able to view it
t xt Resul t. set Text(result);
txt Result.setVisibility(View VISIBLE);
i mgResul t.setVisibility(Vi ew. GONE);

}

}
}

@verride
public void onConfi gurationChanged(Confi guration
newConfi g) ({
super . onConfi gur ati onChanged(newConfi g);
/'l Not hi ng

}

154

B.5. Help.java

/1 This class inplenents the Help interface
package certificatel ess. encryption. nod. app;

i mport android. app. Activity;
i mport andr oi d. os. Bundl e;

public class Help extends Activity {
@verride
protected void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceSt at e) ;
set Content Vi ew(R | ayout . hel p);

}
}

B.6. KeyGenerationCenter.java

/1 This class inplenents the algorithnms run by the KGC
package certificatel ess. encryption. nod. app;

i mport it.unisa.dia.gas.]jpbc.El enment;

i mport it.unisa.dia.gas.jpbc. Pairing;

i mport it.unisa.dia.gas.plaf.jpbc.pairing. CurvePar arns;

i mport it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

import java.util.Arraylist;
i mport java.util.List;

i mport android. app. Activity;
i mport androi d. content. Cont ext;

public class KeyGenerationCenter extends Activity {

public static Element g, g1, g2, Fu_ID, Fh_BID;

public static Element d_ID] = new El enent][3];

private static El enent nsk, ganmsg;

public static List<Elenent> u = new ArraylLi st<El ement>();
public static List<Elenent> v = new ArraylLi st<El ement>();
public static List<Elenment> h = new ArrayLi st<El ement>();
public static String ID, BID

155

public static final int BIT_LENGIH = 100;

[~~—m———~ Step 1 - Setup: Perfornmed by KGC cal |l ed at
startup ~~~~~~~~

public static void setup(Context context, CurveParans
curvePar ans) {

Pairing pairing = PairingFactory. getPairing(curveParans);

g = pairing.getGl().newRandonEl enent () ;

g2 = pairing.getGL().newRandonEl enent () ;

gamma = pairing. get Zr (). newRandonEl enent () ;

gl = g.duplicate().powzZn(gamma. duplicate());
msk = g2.duplicate().powzZn(gamra. duplicate());

for (int i = 0; i <= BIT_LENGTH, i++) {
El ement u_tenp = pairing.get GL().newRandonEl erment () ;
u. add(u_t enp. duplicate());

}

for (int i = 0; i <= BIT_LENGTH, i++) {
El ement v_tenp = pairing.get GL().newRandonEl erment () ;
v.add(v_tenp.duplicate());

}

for (int i = 0; i <= BIT_LENGTH, i++) {
El ement h_tenp = pairing.get GL(). newRandonEl erment () ;
h. add(h_t enp. duplicate());
}
}

[~~~ Step 2 - Extract: Perfornmed by KGC cal |l ed by
Recei ver ~~~~~~~~

public static Element[] extract(String email, String
bi onetri cs,
CurvePar ans curveParans) {

Pairing pairing = PairingFactory. getPairing(curveParans);

Met hods net hod = new Met hods();

I D = nethod. stringtoBinary(email).substring(0,
Bl T_LENGTH) ;

Bl D = net hod. stringtoBi nary(bi ometrics).substring(O0,
Bl T_LENGTH) ;

Fu_I D = net hod. newHash(u, |D, curveParans);
Fh_BI D = net hod. newHash(h, BID, curveParans);

156

El ement r = pairing.getZr().newRandonEl ement () ;

dIDo] =

nmsk. duplicate().mul (Fu_I D. duplicate().powzZn(r.duplicate()));
dID1] =

g.duplicate().mul (Fh_BID). duplicate().powZn(r.duplicate());
d 1D2] = Fh_BID. duplicate().powzZn(ganma. duplicate());

return d_ID. clone();

B.7. Mail.java

/* This class provides the functionality for sending mails.
* The author of this class is John Sinon and the code is

avail abl e
* at http://ww.]jondev. net/
* %/

package certificatel ess. encryption. nod. app;

i mport java.util.Date;

i mport java.util.Properties;

i mport javax.activation. CormandMap;

i mport javax.activation. Dat aHandl er;

i mport javax.activation. Dat aSour ce;

i mport javax.activation. Fil eDataSource;

i mport javax.activation. Mail capCommandMap;
i mport javax. mail.BodyPart;

i mport javax.mail.Miltipart;

i mport javax. mail.Passwor dAut henti cati on;
i mport javax. mail . Session;

i mport javax.mail.Transport;

i mport javax.mail.internet.|nternetAddress;
i mport javax.mail.internet. M nmeBodyPart;

i mport javax.mail.internet. M meMessage;

i mport javax.mail.internet. M meMiltipart;

public class Mail extends javax.mail.Authenticator {
private String _user;
private String _pass;

private String[] _to;
private String from

private String _port;

157

private String _sport;
private String _host;

private String _subject;
private String _body;

private bool ean _auth;
privat e bool ean _debuggabl e;
private Multipart nultipart;

public Mail() {

_host = "sntp.gmail.con; // default sntp server
_port = "465"; // default sntp port

_sport = "465"; // default socketfactory port
_user = ""; [/ usernane

_pass = ""; // password

from=""; // email sent from

_subject =""; // email subject

_body = ""; // email|l body

_debuggabl e = fal se; // debug node on or off - default
of f
_auth = true; // sntp authentication - default on

_multipart = new M neMiltipart()

/1l There is sonething wong with Mail Cap, javanail can
not find a
/1 handler for the nultipart/mxed part, so this bit
needs to be added.
i | capCommandMap nt = (Mail capCommandMap) ComandMap
. get Def aul t ConmandMap() ;
nc. addMai | cap("text/htnm ;;
X-j ava- cont ent - handl er=com sun. mai | . handl ers. text _htm");
nc. addMai | cap("text/xm ;;
X-j ava-cont ent - handl er=com sun. nmai | . handl ers. text _xm");
nc. addMai | cap("text/plain;;
X-j ava-cont ent - handl er=com sun. nai | . handl ers. text _plain");
nc. addMai | cap("mul tipart/=;;
X-j ava- cont ent - handl er=com sun. nai | . handl ers. mul ti part _mi xed");
nc. addMai | cap(" nessage/ rfc822;
X-j ava- cont ent - handl er=com sun. nmai | . handl er s. nessage_rfc822");
CommandMap. set Def aul t ConmandMap(nt) ;

5

158

public Ml (String user, String pass) {

this();
_user = user;
_pass = pass;
}
public bool ean send() throws Exception {
Properties props = _setProperties();

if (! _user.equals("") & ! pass.equals("") & to.length
>0
&% ! _fromequal s("") && ! _subject.equal s("")
&& ! _body. equal s("")) {
Sessi on session = Session. getlnstance(props, this);

M neMessage nsg = new M neMessage(session);
nsg. set Fron(new I nt er net Address(_from);

I nt er net Address[] addressTo = new
I nt er net Address[_to. | ength];
for (int i =0; i < _to.length; i++) {
addressTo[i] = new Internet Address(_to[i]);
}
nsg. set Reci pi ent s(M meMessage. Reci pi ent Type. TO,
addressTo) ;

nsg. set Subj ect (_subj ect) ;
nsg. set Sent Dat e(new Date());

/'l setup message body

BodyPart nessageBodyPart = new M neBodyPart();
nessageBodyPart. set Text (_body);

_mul tipart.addBodyPart (messageBodyPart);

/1l Put parts in nessage
nsg. set Content (_nultipart);

/1 send emil
Transport. send(nsg) ;

return true
} else {
return fal se
}
}

public void addAttachnent(String fil enane) throws

159

Exception {
BodyPart nessageBodyPart = new M neBodyPart();
Dat aSour ce source = new Fil eDat aSource(fil enane);
nmessageBodyPart . set Dat aHandl er (new Dat aHandl er (source));
messageBodyPart. set Fi | eNanme(fil enane);

_mul tipart.addBodyPart (nessageBodyPart) ;
}

@verride
publ i ¢ Passwor dAut henti cati on get Passwor dAut henti cati on()

{

return new Passwor dAut hentication(_user, _pass);

}

private Properties _setProperties() {
Properties props = new Properties();

props. put ("mail.sntp. host", _host);

i f (_debuggabl e) {
props. put ("nail.debug", "true");

}
if (_auth) {
props. put ("mail.sntp.auth", "true");
}
props. put ("mail.snmtp.port", _port);
props. put ("mail.sntp. socket Factory. port", _sport);

props. put ("mail.sntp. socket Fact ory. cl ass",
"j avax. net . ssl . SSLSocket Factory");
props. put ("mai |l .sntp. socket Factory. fal |l back", "false");

return props;

}

/1l the getters and setters
public String getBody() {
return _body;

}

public void setBody(String _body) {
this. body = _body;
}

public void setTo(String[] toArr) {
this. to = toArr;
}

160

public void setFron(String string) {
this. _from= string;

}

public void setSubject(String string) {
this. subject = string;
}
}

B.8. Methods.java

/1 This class inplenents various nethods used by the
di fferent classes

package certificatel ess. encryption. nod. app;

i mport it.unisa.dia.gas.jpbc.El enment;

i mport it.unisa.dia.gas.jpbc. Pairing;

i mport it.unisa.dia.gas.plaf.jpbc. pairing. CurvePar arns;

i mport it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

i mport java.security. MessageDi gest;
i mport java.util.List;

public class Methods {
public static final int BIT_LENGIH = 100;
public String stringtoBinary(String text) {

byte[] bytes = text.getBytes();
String binarystr = "";

for (int i =0; i < bytes.length; i++) {

bi narystr = binarystr + bytetoBinaryString(bytes[i]);
}
return binarystr;

}

/1 Computing the SHA-1 hash
public String shalHash(String input) {

byte[] output;
String binarystr = "";

try {
MessageDi gest nd = MessageDi gest. getl nstance("SHAL");

161

nd. updat e(i nput. get Bytes());
out put = nd. di gest();

for (int i =0; i < output.length; i++) {
bi narystr = binarystr + bytetoBinaryString(output[i]);
}

} catch (Exception e) {
System out. println("Exception: " + e);
}

return binarystr;

}

| *
* Converting bytes to hexadecinmal. The code for this
met hod has been taken
* fromhttp://ww. herongyang. com
*/
public String bytesToHex(byte[] b) {
char hexbDigit[] ={ 0, "1, "2, "3, "4, 5, "6,
7T, '8, 9,
A, 'B, 'C, 'D, 'E, "F };
StringBuffer buf = new StringBuffer();
for (int j =0; j < b.length; j++) {
buf . append(hexDigit[(b[j] >> 4) & 0x0f]);
buf . append(hexDigit[b[j] & 0x0f]);
}
return buf.toString();

}

| *
* Converting a byte to binary string. The code for this
nmet hod has been
* taken from http://hel pdesk. obj ects.com au
* |
public String bytetoBinaryString(byte n) {
StringBuilder sb = new StringBuil der("00000000");
for (int bit =0; bit <8; bit++) {
if (((n>>bit) &1) > 0) {
sb.setCharAt (7 - bit, "1");
}
}
return sb.toString();

}

/1l Cal culating the hash used by the schene

public El enent newHash(Li st<El ement> vector, String
bitstr,
CurvePar ans curveParans) {

162

Pairing pairing = PairingFactory. getPairing(curveParans);
El ement hash_val = pairing.get GL().newOneEl enent ();
hash_val . mul (vector.get (0).duplicate());

for (int i =0; i < BIT_LENGTH, i++) {
if (bitstr.charAt(i) =="1") {
hash_val . mul (vector.get (i + 1).duplicate());
}
}
return hash_val;

}
}

B.9. ReadMessage.java

/1 This class inplenents the interface to read nessages
package certificatel ess. encryption. nod. app;

i mport it.unisa.dia.gas.jpbc.El ement;
i mport it.unisa.dia.gas.plaf.jpbc.pairing. CurvePar ars;

i mport java.io. UnsupportedEncodi ngExcepti on;
i mport java.util.Arraylist;
i mport java.util.List;

i mport androi d. app. Activity;

i mport androi d. content. Acti vit yNot FoundExcepti on;

i nport androi d. content.|ntent;

i mport androi d. os. Bundl g;

i mport android.text. method. Scrol | i ngMovenent Met hod,
i mport android. view. Vi ew,

i mport android. view. Vi ew. OnC i ckLi st ener;

i mport androi d. wi dget. Text Vi ew,

i mport androi d. w dget. Toast;

public class ReadMessage extends Activity inplenments
Ond i ckLi stener {

Text Vi ew read_nsg_t xt;
private static final int ACTIVITY_RESULT QR DRDRO D = O0;
public static final int BI T_LENGTH = 100;

@verride
protected void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceSt at e) ;

163

set Content Vi ewm R | ayout. read_nessage) ;

read_nsg_txt = (TextView)
findviewByl d(R i d.read_message_text);

Vi ew decButton = findViewByl d(R i d.read_nmessage_dec);
decButton. set Ond i ckLi stener(this);

Vi ew | oadButton = findViewByld(R id.read_nessage_| oad);
| oadBut t on. set OnCl i ckLi st ener(this);

}

public void onCick(View v) {

final TextView read_nessage_text = (TextView)
findviewByld(R id.read_nessage_text);

switch (v.getld()) {
case R id.read_nessage_dec:

Intent grDroid = new I ntent(Services. SCAN);

try {
start ActivityForResult(qrDroid,

ACTI VI TY_RESULT_QR DRDRA D) ;
} catch (ActivityNot FoundException activity) {
Servi ces. gr Droi dRequi r ed(ReadMessage. t hi s) ;
}

br eak;

case R id.read nessage | oad:
read_nsg_t xt. set Movenent Met hod(new
Scrol | i ngMovenent Met hod()) ;
read_nessage_t ext. set Text (ConposeMessage. enc_t ext);
br eak;
}
}

protected void onActivityResult(int requestCode, int
resul t Code, Intent data) ({
super. onActivi tyResul t (request Code, resultCode, data);

if (ACTIVITY_RESULT_QR DRDRO D == request Code && null !=
dat a
&& data.getExtras() !'= null) {

String encodi ng
i nt nmessage_| en

" UTF- 16BE";
76;

164

CurvePar ans curveParans = new
CurvePar ans() . | oad(get Resour ces()
. openRawResource(R raw. a_181_603));

Li st<El enent[] > enc_nessage_list = new
ArraylLi st<El ement[]>();

enc_nessage_| i st = ConposeMessage. enc_nessage | i st;

final TextView read nessage_text = (TextView)
findViewByl d(R i d.read_nessage_text);

/1l Read result fromQR Droid (it’'s stored in
la.droid.gqr.result)
String bionetrics =
dat a. get Extras().get Stri ng(Servi ces. RESULT) ;
Met hods net hod = new Met hods();

String BID =
net hod. st ri ngt oBi nary(bi ometrics).substring(O0,
Bl T_LENGTH) ;

El enent Fh_BI D = net hod. newHash(KeyGener ati onCent er. h,
BI D,
curvePar ans) ;

String dec_nsg_padded = "";
for (int i = 0; i < enc_message_list.size(); i++) {
El ement dec_nessage = Receiver. deCrypt (Fh_BI D,
enc_nessage |ist.get(i), curveParans);

try {
String neg_i nter = new
String(dec_nessage. duplicate()
.toBytes(), encoding);
dec_nsg_padded = dec_nsg_padded + nsg_inter;

} catch (UnsupportedEncodi ngException e) {
Systemout. println("Encoding Error");
}

}

String nsg_end_num = dec_nsg_padded. substri ng(
dec_nsg_padded. l ength() - 2,
dec_msg_padded. | ength());

String dec_nsg = dec_nsg_padded;

try {
int dec_nsg pad_| en = Integer.parselnt(nsg_end _nunj;
dec_nsg = dec_mnsg_padded. substri ng(0,

165

}

dec_nsg padded. | engt h()
- dec_msg_pad_|len - nessage_len);

catch (Nunber For mat Excepti on nFE) {

}

Systemout. println("Not an |nteger");
dec_nsg = "x+xPROBLEM DECRYPTI NGe**\n\n\n" + dec_nsg;

read_nessage_t ext. set Text (dec_nsQ);

Toast . makeText (ReadMessage. this, "Message Decrypted",

Toast. LENGTH_LONG . show() ;

B.10. Receiver.java

/1 This class inplenments the al gorithnms executed by the
Recei ver

package certificatel ess. encryption. nod. app;

i mport
i mport
i mport
i mport

i t.unisa.dia.gas.jpbc. El ement;

i t.unisa.dia.gas.jpbc.Pairing;

i t.unisa.dia.gas.plaf.jpbc.pairing. CurvePar arns;
it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

public class Receiver {

private static Element x_ID;
public static Elenment pk _ID[] = new El enment[3];
private static Elenent sk ID] = new El enment[2];

public static final int BIT_LENGIH = 100;

/[l Step 3 & 4 - SetSec & SetPub: Performed and cal |l ed by
Recei ver
public static void setSecPub(CurveParans curveParans) {

Pairing pairing = PairingFactory. getPairing(curveParans);

Xx_|I D = pairing.getZr().newRandontl erment () ;

pk_ID O] =

KeyGener ati onCenter. g. duplicate().powzZn(x_ID. duplicate());

166

pk_ID(1] =

KeyGener ati onCent er. gl. duplicate().powzZn(x_|ID. duplicate());
pk_1 D[2] = KeyGenerationCenter.d_ID 2].duplicate().powzZn(

X_I D.duplicate());

[~~~ SetPriv: Performed and call ed by Receiver

private static void setPriv(E ement Fh_BI D, CurveParans
curvePar ans) {

Pairing pairing = PairingFactory. getPairing(curveParans);

El ement r_prine = pairing.getZr().newRandonEl enent () ;

sk_1D0] =
(KeyGenerationCenter.d_|I D[O] . duplicate().powzZn(x_ID
.duplicate())). mul (KeyGenerationCenter.Fu_ID. duplicate().powZn(
r_prime.duplicate()));

sk_ID1] =
(KeyGenerationCenter.d_|I D[1] . duplicate(). powzZn(x_I D
.duplicate())). mul (KeyGenerationCenter.g.duplicate()
.mul (Fh_BI D. duplicate()).powzZn(r_prine.duplicate()));

[~~~ Step 6 - Decrypt: Perfornmed by Receiver ~~~~~
public static Elenment deCrypt(El enment Fh_BI D, El enent

ci pher Text[],

CurvePar ans curveParans) {

Pairing pairing = PairingFactory. getPairing(curveParans);
set Priv(Fh_BI D, curveParans);

String str_to_hash = ci pherText[0].duplicate().toString()
+ ci pherText[1].duplicate().toString()

ci pher Text[2].duplicate().toString()

Recei ver. pk_I D[0] .duplicate().toString()

Recei ver. pk_I D[1] .duplicate().toString()

Recei ver. pk_I D 2].duplicate().toString()

KeyGener ati onCenter. | D,

+ 4+ + + +

Met hods net hod = new Met hods();
String w = nethod. shalHash(str_to_hash);

El ement Fv_W = net hod. newHash(KeyGener ati onCent er. v,
w. substring(0, BIT_LENGTH), curveParans);

El ement tenmpl =

167

KeyCGener ati onCenter. Fu_I D. duplicate(). mul (
Fv_Wduplicate());

El ement tenp2 = ci pherText[2].duplicate()
.mul (ci pherText[3].duplicate());

if (pairing
. pairing(ci pher Text[1] .duplicate(), tenpl.duplicate())
.1 sEqual (

pai ring. pairing(
KeyGenerationCenter. g.duplicate(). ml (

KeyGener ati onCenter. Fh_BI D. duplicate()),

temp2. duplicate())) == false) {

System out. println("ABORT: problemmmatching ...");

return pairing.getGI().newZer oEl ement ()
} else {

El ement dec_nsg = ci pherText[O0]. duplicate(). nul(

pairing.

pai ri ng(ci pher Text[2].duplicate(),

sk _1D1].duplicate()).div(
pai ring. pai ring(ci pherText[1].duplicate(),
sk_IDO].duplicate())));

return dec_nsg. duplicate()

}
}
}

B.11. Scan.java

/1 This is part of "QRDroidServices", by DroidLa

package certificatel ess. encryption. nod. app

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

andr oi d.
andr oi d.
andr oi d.
andr oi d.
andr oi d.
andr oi d.
andr oi d.
andr oi d.
andr oi d.
andr oi d.

app. Activity;

content. Acti vi t yNot FoundExcepti on;
content. | ntent;

content.res. Configuration;

os. Bundl e;

Vi ew. Vi ew,

vi ew. Vi ew. OnCl i ckLi st ener;

wi dget . But t on;

wi dget . Edi t Text;

wi dget . Spi nner;

168

public class Scan extends Activity {

private static final int ACTIVITY_RESULT_ QR DRDROD = 0

@verride

protected voi d onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceSt at e) ;

set Content Vi el R | ayout . scan) ;

/[l Get Spinner instance
final Spinner spinner = (Spinner)
findviewByl d(R i d. spin_conplete);

/1 "Scan" button
final Button button = (Button)
findVvi ewByl d(R. i d. button_scan);
/1l Set action to button
butt on. set OnC i ckLi st ener (new OnC i ckLi stener() {
@verride
public void onCick(Viewv) {
/'l Create a new Intent to send to QR Droi d
Intent grDroid = new I ntent(Services. SCAN; // Set
action
/1 "la.droid.qr.scan"

/'l Check whether a conplete or displayable result is
needed
if (spinner.getSelectedltemd() ==0) { // First item
sel ected
/1 ("Conplete content")
/1 Notify we want conplete results (default is

FALSE)
gr Droi d. put Ext ra(Servi ces. COWLETE, true);
}
/1 Send intent and wait result
try {

start Acti vityForResul t(qrDroid,
ACTI VI TY_RESULT_QR _DRDRO D) ;
} catch (ActivityNot FoundException activity) {
Servi ces. gr Droi dRequi r ed(Scan. t hi s) ;
}
}
1)
}

@verride

| **

169

* Reads data scanned by user and returned by QR Droid
* |
protected void onActivityResult(int requestCode, int
resul t Code, Intent data) ({
super. onActivi tyResul t (request Code, resultCode, data);

if (ACTIVITY_RESULT_QR DRDRO D == request Code && null !=
dat a
&& data.getExtras() !'= null) {
/1 Read result fromQrR Droid (it’s stored in
la.droid.qr.result)
String result =
dat a. get Extras().get String(Servi ces. RESULT) ;

// Just set result to EditText to be able to view it

Edi t Text

resul t Txt = (Edit Text)

findviewByld(R id.result);
resul t Txt.set Text(result);
resultTxt.setVisibility(View VISIBLE)

}
}
@wverride
public void onConfi gurationChanged(Confi guration
newConfi g) ({

super . onConfi gur ati onChanged(newConfi g);

}
}

B.12. Sender.java

/1 This class inplenments the al gorithnms executed by the

Sender

package certificatel ess. encryption. nod. app

i mport it.unisa.dia.gas.jpbc.El ement;

i mport it.unisa.dia.gas.jpbc.Pairing

i mport it.unisa.dia.gas.plaf.jpbc.pairing. CurveParans;

i mport it.unisa.dia.gas.plaf.]jpbc.pairing.PairingFactory;

public class Sender {

public static Element C[] = new El enent[4];
public static Elenment Fu_lD
public static final int BIT_LENGIH = 100;

Step 5 - Encrypt: Perfornmed and cal |l ed by

170

Sender ~~~~~~~~~

public Elenent[] enCrypt(String I D, CurveParans
curvePar ans,
El ement Fh_BI D, Elenent m {

Pairing pairing = PairingFactory. getPairing(curveParans);

if (pairing.pairing(Receiver.pk IDO0].duplicate(),
KeyGener ati onCent er. gl. duplicate()).isEqual (
pai ri ng. pai ri ng(Recei ver.pk_|I D[1].duplicate(),
KeyGenerationCenter.g.duplicate())) == false) {

System out. println("ABORT: |ncorrect Shape");

return null;
} else {

El ement s = pairing.getZr().newRandonEl enent () ;

C 0] = mduplicate().nul(
(pairing. pairing(
Recei ver. pk_I D[1] . duplicate(). mul (
Recei ver. pk_I D 2] .duplicate()),
KeyGener ati onCent er. g2. duplicate())).powZn(s
.duplicate()));

a1 =
KeyGener ati onCenter. g.duplicate().nmul (Fh_BID. duplicate())
. powZn(s. duplicate());

Met hods net hod = new Met hods();

El ement Fu_I D = net hod. newHash(KeyGener ati onCent er. u,
I D,
curvePar ans) ;

2] = Fu_ID. duplicate().powZn(s.duplicate());

String str_to _hash = C[0].duplicate().toString()
+ (1] .duplicate().toString() +
2] .duplicate().toString()
+ Receiver.pk_ID[0].duplicate().toString()
+ Receiver.pk_I D[1] . duplicate().toString()
+ Receiver.pk_I D[2].duplicate().toString() + ID;

String w = met hod. shalHash(str_to_hash);

El ement Fv_W = nmet hod. newHash(KeyGener ati onCenter. v,
w. substring(0, BIT_LENGTH), curveParans);

171

C[3] = Fv_Wduplicate().powzZn(s. duplicate());

return C. clone();
}
}
}

B.13. Services.java

package certificatel ess. encryption. nod. app;

i mport androi d. app. Activity;

i mport androi d. app. Al ert Di al og;

i mport androi d. app. TabActivity;

i mport android.content. Acti vityNot FoundExcepti on;
i mport android.content. Di al ogl nterface;

i mport android.content.|ntent;

i mport android.content.res. Configuration;
i mport android.content.res. Resources;

i mport android.net.Uri;

i mport andr oi d. os. Bundl e;

i mport androi d. wi dget . TabHost ;

| **

* Shows three Tabs with options to Scan, Decode and Encode
R codes using

* services provided by "QR Droid"

* This is part of "QRDroidServices", by DroidLa. If you're

creating an Android app

* whi ch uses one or nore services provided by "QR Droid",
you can use this code for

* free, and nodify it as you need, for personal and
comerci al use.

Any ot her use of this code is forbidden.

* %k ok

@ut hor DroidLa

* @ersion 1.0

* [

public class Services extends TabActivity {

/1 Actions
public static final String SCAN = "l a.droid.qr.scan";
public static final String ENCODE = "l a.droid.gr.encode";

172

public static final String DECODE = "l a.droid. gqr.decode";

/| Par anet ers

/| SCAN / DECODE

public static final String COMPLETE =
"la.droid.gr.conplete"; //Default: false

/ | ENCODE
public static final String CODE = "l a.droid.qr.code";
/I Requi r ed

public static final String SIZE = "l a.droid.qr.size";
//Default: Fit screen

/ | ENCODE / DECODE

public static final String | MAGE = "l a.droid.qgr.inmge";

/I Default for encode: false / Required for decode

/I Resul t
public static final String RESULT = "la.droid.qgr.result";

@verride

public void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceSt at e) ;
set Content Vi ew(R | ayout . t abs);

/I Recycl ed obj ects
Resources res = get Resources();
TabHost tabHost = get TabHost ();
TabHost . TabSpec spec;
Intent intent;

/1 Scan Activity
intent = new Intent().setC ass(this, Scan.class);
spec = tabHost. newTabSpec(" Scan"). setlndicator("",
res. get Drawabl e(R drawabl e. canera)). set Content (i ntent);

t abHost . addTab(spec);

/1 Encode Activity
intent = new Intent().setC ass(this, Encode.class);
spec = tabHost. newTabSpec("Encode").setlndicator("",
res. get Drawabl e(R drawabl e. text)).set Content (i ntent);

t abHost . addTab(spec);

/1 Decode Activity
intent = new Intent().setC ass(this, Decode.class);
spec = tabHost. newTabSpec(" Decode").setlndicator("",
res. get Drawabl e(R drawabl e. i mage)). set Content (i ntent);
t abHost . addTab(spec) ;

/1 Show DEMO al ert di al og
Al ertDi al og. Bui | der bui |l der = new

173

Al ert Di al og. Bui |l der(this);
bui | der. set Message(getString(R string.denp))
. set Cancel abl e(true)
.set NegativeButton(R string.close, new
Di al ogl nterface. OnC i ckLi stener() {
public void onClick(Dial oglnterface dialog, int
id) {
di al og. cancel ();
}
b

.setNeutral Button(R string.source, new
Di al ogl nterface. OnC i ckLi stener() {
@verride
public void onClick(Di al oglnterface dial og, int
whi ch) {
startActivity(new Intent(|ntent.ACTI ON_VI EW
Uri.parse(getString(R string.url_source)))
);
}
})
.setPositiveButton(R string.qrDroid, new
Di al ogl nterface. OnC i ckLi stener() {
public void onClick(Dial oglnterface dialog, int
id) {
try {
startActivity(new Intent(Intent.ACTI ON_VI EW
Ui.parse(getString(R string.url_market)
)))i
finish();
} catch (ActivityNot FoundException e) {
startActivity(new Intent(Intent.ACTI ON_VI EW
Ui.parse(getString(R string.url _direct)

)))
finish();
}
}
1)
bui | der.create().show);
}
[* %

* Display a nmessage stating that QR Droid is requi ered,
and lets the user download it for free

* @aramactivity

*/

public static void grDroidRequired(final Activity
activity) {

/I Apparently, QR Droid is not installed, or it’s
previous to version 3.5

174

Al ert Di al og. Bui | der buil der = new
Al ert Di al og. Bui | der (activity);
bui | der. set Message(
activity.getString(R string.qgrdroid_m ssing))
. set Cancel abl e(true)
. set Negat i veBut t on(
activity.getString(R string.cancel), new
Di al ogl nterface. OnCl i ckLi stener() {
public void onCick(Di al oglnterface dial og, int
id) {

di al og. cancel ();

}
})
.set PositiveButton(
activity.getString(R string.frommarket), new
Di al ogl nterface. OnC i ckLi stener() {
public void onClick(Di al oglnterface dialog, int
id) {
activity.startActivity(new I ntent(
Intent. ACTION_VIEW Uri . parse(
activity.getString(R string.url_market)))

)
}
b
.setNeutral Button(activity.getString(R string.direct),
new Di al ogl nterface. OnCl i ckLi stener() {
public void onClick(Di al oglnterface dial og, int
id) {
activity.startActivity(new I ntent(
Intent. ACTION._ VIEW Uri . parse(
activity.getString(R string.url_direct))
))
}
1
bui |l der. create().show);
}
@verride
public voi d onConfi gurati onChanged(Confi guration
newConfi g) {
super. onConfi gur ati onChanged(newConfi g);
}

B.14. Setup.java

/1 This class inplenents the interface to generate keys

175

after entering email id
package certificatel ess. encryption. nod. app;

i mport it.unisa.dia.gas.plaf.jpbc.pairing. CurveParans;
i mport androi d. app. Activity;

i mport androi d. content. Acti vit yNot FoundExcepti on;

i nport androi d.content.|ntent;

i mport andr oi d. os. Bundl g;

i mport androi d. vi ew. Vi ew,

i mport android. view. Vi ew. OnC i ckLi st ener;

i mport androi d. w dget. Edi t Text;

i mport androi d. wi dget. Toast;

public class Setup extends Activity inplenents
Ond i ckLi stener {

private static final int ACTIVITY_RESULT QR DRDRO D = 0;
Cur vePar anrs curvePar ans;

@verride
public void onCreate(Bundl e savedl nstanceState) {

super. onCr eat e(savedl nst anceSt at e) ;
set Content Vi e R | ayout . set up) ;

Vi ew generateButton = findViewByl d(R id.setup_generate);
gener at eBut t on. set OnCl i ckLi st ener(this);

}

public void onCick(View v) {

/'l Cenerating Keys
switch (v.getld()) {
case R id.setup_generate:

curveParans = new CurveParans().| oad(get Resources()
. openRawResource(R raw. a_181 603));

KeyGener at i onCent er. set up(v. get Context (), curveParans);

Intent grDroid = new I ntent(Services. SCAN);

try {
start ActivityForResult(qrDroid,

ACTI VI TY_RESULT_QR DRDRO D) ;
} catch (ActivityNot FoundException activity) {
Servi ces. qr Droi dRequi red(Set up. this);
}

br eak;

176

}
}

@verride

| **
* Reads data scanned by user and returned by QR Droid
*/
protected void onActivityResult(int requestCode, int
resul t Code, Intent data) ({
super. onActivi tyResul t (request Code, resultCode, data);

if (ACTIVITY_RESULT_QR DRDRO D == request Code && null !=
dat a
&& data.getExtras() !'= null) {
/! Read result fromQrR Droid (it’s stored in
la.droid.gqr.result)
String bionetrics =
dat a. get Extras().get String(Services. RESULT) ;

final EditText setup_message_to = (EditText)
findViewByld(R id.setup_nessage to);

KeyCGenerationCenter.d_I D = KeyGenerationCenter. extract(
setup_nessage_to.get Text().toString(), biometrics,
curvePar ans) ;

Recei ver. set SecPub(cur vePar ans) ;

Toast . makeText (Setup.this, "Setup Conplete",
Toast . LENGTH_LONG

.show();

Intent i = new Intent(this,
Certificatel essEncModAppActivity. class);
startActivity(i);

177

