
Department of Computer Security, b-it

Media Informatics

Master’s Thesis

Certificateless Encryption
Scheme Using Biometric

Identity

Author:
Kumar Sharad
Matr. Nr. - 298748

Supervisors:
Prof. Dr. Joachim von zur Gathen

Dr. Michael Nüsken

Bonn, March 13, 2012

K
U

M
A

R
S

H
A

R
A

D
(2

01
2)

.
C

er
tifi

ca
te

le
ss

E
nc

ry
pt

io
n

Sc
he

m
e

U
si

ng
B

io
m

et
ri

c
Id

en
tit

y.
M

as
te

r’
s

th
es

is
,D

ep
ar

tm
en

to
fC

om
pu

te
rS

ec
ur

ity
,b

-i
t,

U
ni

ve
rs

ity
of

B
on

n,
B

on
n,

G
er

m
an

y.
T

hi
sd

oc
um

en
ti

sp
ro

vi
de

d
as

a
m

ea
ns

to
en

su
re

tim
el

y
di

ss
em

in
at

io
n

of
sc

ho
la

rl
y

an
d

te
ch

ni
ca

lw
or

k
on

a
no

n-
co

m
m

er
ci

al
ba

si
s.

C
op

yr
ig

ht
an

d
al

lr
ig

ht
s

th
er

ei
n

ar
e

m
ai

nt
ai

ne
d

by
th

e
au

th
or

s
or

by
ot

he
rc

op
yr

ig
ht

ho
ld

er
s,

no
tw

ith
st

an
di

ng
th

at
th

es
e

w
or

ks
ar

e
po

st
ed

he
re

el
ec

tr
on

ic
al

ly
.I

ti
s

un
de

rs
to

od
th

at
al

lp
er

so
ns

co
py

-
in

g
an

y
of

th
es

e
do

cu
m

en
ts

w
ill

ad
he

re
to

th
e

te
rm

s
an

d
co

ns
tr

ai
nt

s
in

vo
ke

d
by

ea
ch

co
py

ri
gh

t
ho

ld
er

,a
nd

in
pa

rt
ic

ul
ar

us
e

th
em

on
ly

fo
r

no
nc

om
m

er
ci

al
pu

r-
po

se
s.

T
he

se
w

or
ks

m
ay

no
tb

e
po

st
ed

el
se

w
he

re
w

ith
ou

tt
he

ex
pl

ic
it

w
ri

tte
n

pe
r-

m
is

si
on

of
th

e
co

py
ri

gh
th

ol
de

r.
(L

as
tu

pd
at

e
20

17
/1

1/
29

-1
8

:2
2.

)

Acknowledgement

This master’s thesis is the result of the help and cooperation that I received from
my professors, colleagues, friends and family members. I would like to take this
opportunity to express my gratitude to the people who have helped me in achieving
my goals. This master’s thesis has been written under the supervision of Prof. Dr.
Joachim von zur Gathen and the guidance of Dr. Michael Nüsken, without their
contributions this work could not have been completed.

Of the various people who contributed to my work, Dr. MichaelNüsken was
specially helpful and patient in answering my questions andsuggesting improve-
ments. He was always supportive of my work and provided valuable feedback. His
suggestions and ideas have helped in shaping this thesis.

I was first introduced to the field of cryptography when I took the course on ba-
sic cryptography offered by Prof. Dr. Joachim von zur Gathenin my first semester.
Ever since I have been fascinated by this area and Prof. Dr. Joachim von zur
Gathen has had a huge influence in driving my interests. It is due to him that I
took subsequent coursework in the area of security and cryptography and this has
finally culminated as my master’s thesis. I am grateful to himfor the inspiration,
motivation and support he has given me.

Over the period of this thesis I have learned many things and Iam very thankful
to the people ofDepartment of Computer Securityatb-it, Bonn for this. They were
always helpful to me whenever I sought their counsel and contributed in useful
discussions. Finally, I would like to thank all my friends and family members for
their valuable support and understanding.

2

3

Abstract

Often encryption is used to provide data privacy but alone itis not enough to ensure
it. Generally the key which is used to decrypt an encrypted message is stored in
the device along with the message itself and in the event of device compromise,
privacy of data cannot be guaranteed. This thesis proposes ascheme which solves
this problem by providing two-factor security for mobile devices. The proposed
scheme generates key-pairs for identity based encryption using biometric informa-
tion of the user which is semi-private. The scheme iscertificatelessand free from
key escrow.

The work is mainly based on the ideas developed in the paperCertificateless
Encryption Schemes Strongly Secure in the Standard Modelby Dent, Libert & Pa-
terson(2008). In this paper the authors proposed a construction based onbilinear
groupsto generate key-pairs using user’s identity. We have modified this construc-
tion to includebiometricsof the user. By doing so we further fortify the security
of the scheme and this provides protection in the event of device compromise. The
generation of key-pair is based on chosen secrets as well as thebiometric identity
of the user.

Decryption of a message requires the private key to be generated by combining
pre-computed secrets stored in the device along with the biometric data which must
be provided by the user every time he wishes to decrypt a message. The private key
is deleted after decrypting the message and is never stored in the device. So when
an adversary gains possession of the device with the encrypted messages in it, the
device does not contain the entire private key to decrypt themessages but only a
part of it. This part would have to be combined with the correct biometrics to which
only the rightful owner haseasyaccess. This property of the scheme provides two-
factor security where the user needs to not only possess the device but also have
the required biometric data. In the proposed attack model wetreat biometric data
as semi-private which means that in practice it is not readily available to the people
who do not know the user, hence even if the device is compromised its messages
cannot be trivially decrypted.

4

5

Contents

1 Introduction 9
1.1 Problem Definition . 9
1.2 Goals . 9
1.3 Approach Taken. 10
1.4 Results. 11
1.5 Organisation. 11

2 Evolution of Cryptographic Schemes 14
2.1 Symmetric-Key Cryptography. 14
2.2 Public Key Cryptography. 14
2.3 Identity-Based Cryptosystems. 15
2.4 Fuzzy Identity-Based Encryption. 16
2.5 Self-Certified Keys. 16
2.6 Ceritificateless Public Key Cryptography. 17

3 Related Work 19
3.1 Proposed Modification. 20

4 Preliminaries 22
4.1 Notation. 22
4.2 Parties. 22
4.3 Definitions. 22

5 Overview of the Original Construction 25
5.1 Components of the Original CL-PKE. 25
5.2 Protocol Architecture. 26

6 Overview of the Derived Construction 29
6.1 Components of the Modified CL-PKE. 29
6.2 Protocol Architecture. 30

7 Applications of CL-PKE 34

8 Advantages of the Modified Scheme 37

9 Security Model 40
9.1 Chosen cipher text security. 41
9.2 Security Model for the Original Scheme. 43

9.2.1 Oracles. 43
9.2.2 Adversaries. 43

9.3 Security Model for the Modified Scheme. 45
9.3.1 Oracles. 45
9.3.2 Adversaries. 45

6

10 Concrete Original Construction 48
10.1 The Construction. 48
10.2 Security Reduction. 51

11 Concrete Derived Construction 68
11.1 The Construction. 68
11.2 Security Reduction. 71

12 Implementation 82
12.1 Platform. 82
12.2 Programming Language and Libraries. 82

12.2.1 Bilinear Maps. 83
12.2.2 QR Codes. 85

12.3 Device Specifications. 85
12.4 Original Construction. 87

12.4.1 Application Interface. 87
12.4.2 Class Structure. 93

12.5 Derived Construction. 95
12.5.1 Biometric Identity . 95
12.5.2 Application Interface. 97
12.5.3 Class Structure. 106

13 Conclusion 110
13.1 Contributions . 110
13.2 Challenges and Future Work. 111

A Source Code for the Original Construction 121
A.1 CertificatelessEncAppActivity.java. 121
A.2 ComposeMessage.java. 122
A.3 Help.java . 126
A.4 KeyGenerationCenter.java. 127
A.5 Mail.java . 128
A.6 Methods.java . 132
A.7 ReadMessage.java. 134
A.8 Receiver.java . 136
A.9 Sender.java . 138

B Source Code for the Derived Construction 142
B.1 CertificatelessEncModAppActivity.java. 142
B.2 ComposeMessage.java. 143
B.3 Decode.java. 148
B.4 Encode.java. 151
B.5 Help.java . 154
B.6 KeyGenerationCenter.java. 154

7

B.7 Mail.java . 156
B.8 Methods.java . 160
B.9 ReadMessage.java. 162
B.10 Receiver.java . 165
B.11 Scan.java . 167
B.12 Sender.java. 169
B.13 Services.java . 171
B.14 Setup.java. 174

8

9

1. Introduction

1.1. Problem Definition. Traditionally in encryption schemes the encrypted mes-
sage and the key needed to decrypt it are stored in the same device and the compro-
mise of the device makes decryption of the message imminent by the attacker thus
destroying all privacy. With mobile devices being increasingly used by a large por-
tion of the population for communication, the possibility of device theft or loss is
even higher. Such threats need to be accounted for and we needencryption schemes
which provide security even after the device is compromised. One way to safeguard
against these threats is to usetwo-factorauthentication. Atwo-factorauthentica-
tion mechanism provides security even after the first line ofdefence collapses. In
case of mobile devices this would be equivalent to the adversary gaining control of
the device. Atwo-factorauthentication procedure would ensure that the adversary
can not decrypt the messages stored in the device by using just the contents of the
device. To form a second line of defence we propose the use of biometric data in
the encryption scheme. The encryption scheme would use the biometrics of the
user coupled with secrets stored in the device to encrypt anddecrypt messages.
Usage of biometric data has several advantages the most significant ones being its
easy availability only to the legitimate user and inherent difficulty in replicating it.

Although biometric information is not entirely private we may consider it as
semi-privatesince it is not readily accessible to an attacker and in normal circum-
stances it should be hard for the attacker to acquire the biometrics of an unknown
user. Hence in order to decrypt a message an attacker would have to compromise
the device as well as replicate the biometric data of the user. These two factors
combined together pose a significantly harder challenge to the attacker as com-
pared to before where he just had to compromise the device.

1.2. Goals. The issues pointed out in the problem definition require reinvesti-
gation of security goals and threat models. The problem of privacy after device
compromise has not been treated in detail by existing schemes and merely ensur-
ing the privacy of data under ideal circumstances is far fromadequate. To design
an encryption scheme that refutes such attacks requires careful consideration of a
number of aspects . In this section we describe the primary and auxiliary goals that
must be achieved by such a scheme. These goals are discussed in further detail in
the subsequent sections and here we just introduce the ideaswhich are treated in
the text to follow. Below we formalise the primary and auxiliary goals that such an
encryption scheme should attain.

◦ The scheme must provide protection against device compromise.

◦ The scheme must use secrets stored in the device coupled withbiometrics
to encrypt and decrypt messages, the advantages that we gainfrom this have
been detailed inSection 8.

◦ The scheme must not be resource extensive since it is targeted for mobile
devices.

10

◦ The scheme must be certificateless thus simplifying thePublic Key Infras-
tructure (PKI)deployment and management. This would also reduce the
computational costs endured by the mobile devices by eliminating the need
to validate certificates.

These features provide us a starting point and we may now begin to conceptu-
alise the design of an encryption scheme which supports these goals.

1.3. Approach Taken. To achieve the goals described in the previous section we
use the ideas introduced inCertificateless Encryption Schemes Strongly Secure in
the Standard Modelby Dent, Libert & Paterson(2008). This scheme serves as a
basis on which we build our construction, we borrow the presented ideas and mod-
ify them to design a scheme that supports our goals. The construction presented by
Dent, Libert & Patersonpossess properties that are very well aligned to the targets
that we wish achieve and we highlight them below.

◦ Identity Based- Since we intend to use biometric identity to encrypt and
decrypt messages it is only natural to use anIdentity-Based Encryption (IBE)
scheme. AlsoIBE schemes are certificateless and this meets another very
key requirement hence we chose the construction mentioned above as it fits
our needs well.

◦ No Key Escrow- IBE schemes suffer from the drawback of key escrow, how-
ever the construction presented byDent, Libert & Patersonis free from this
problem. This decreases the trust requirement that a user must put in a third
party and makes it harder for the rogue trusted parties to misuse power.

◦ Certificateless- Even after being free from key escrow the scheme retains
the important properties ofIBE schemes and is certificateless.

◦ Minimal Trust Requirements- Normally IBE schemes require a high level of
trust to be placed in a central authority which possesses theprivate keys of
users and hence has the ability to read private communication. The construc-
tion of Dent, Libert & Patersonis free from such central control and the trust
requirements are comparable to those one normally puts in aCertification
Authority (CA), we discuss this point in more detail inSection 9.

◦ Lightweight - The scheme is lightweight which is essential since we wish
to design the scheme for mobile devices. Such devices have modest com-
putation power and memory and this should be taken into account while
designing the construction.

◦ Security- The scheme is secure in the standard model which is the best
possible security one can achieve.

Due to these factors we have chosen the construction presented byDent, Libert &
Paterson.

11

Historic Background Cryptographic schemes have evolved continuously to meet
the needs of the current time, it all started withsymmetric-key cryptographywhich
was followed byasymmetric-key cryptography. These schemes although effective,
were plagued by problems of proliferation of keys and infrastructure management.
To resolve these issues the concept ofidentity-based cryptographywas introduced.
Later the idea ofself-certified keyswas explored and finally this evolution led to
the development ofCertificateless Public Key Cryptography (CL-PKC). The idea
of Certificateless Public Key Encryption (CL-PKE)evolved as a result of the work
done in the areas ofIBE and public key cryptography. Each of the mentioned ap-
proaches tried to solve the problems posed by the previous generation of schemes.
We discuss the motivations, history and evolution of these schemes in more detail
in Section 2.

New Ideas Our work is mainly based onIBE and CL-PKE, in this thesis we
present a practical solution to counter device compromise by using biometrics of
the legitimate user as a second line of defence. With mobile devices becoming in-
creasingly powerful and affordable we might soon be able to use biometrics seam-
lessly and hence our work is aimed at the future. We have constructed the scheme
to work on standard hardware and no special set-up is required. The biometric data
of the user never leaves the device and is neither stored, it is only used while en-
cryption and decryption. This ensures that no one can harvest user data and launch
attacks using that information. The introduction of biometric data in the original
scheme has very little impact on the computational costs endured by any of the par-
ties involved. These changes have almost no perceivable increase in the encryption
and decryption times.

1.4. Results. We have derived a scheme using the construction proposed by
Dent, Libert & Paterson(2008), our scheme attains all the goals that we defined
in Section 1.2. We show that our construction is secure in the standard model
and retains all the important features introduced byDent, Libert & Paterson. To
demonstrate our scheme we have developed anAndroidapplication which provides
a proof of concept of the derived scheme. For sake of completeness we have also
developed anAndroid application implementing the original scheme as proposed
by Dent, Libert & Paterson.

The prototypes developed by us are a proof that the suggestedchanges to the
original scheme are practical and achievable, it also throws light on the efficiency
and convenience of using such schemes. This information is vital for further de-
velopments and improvements to the scheme.

1.5. Organisation. The rest of the paper is organized as follows. First we look
at the evolution of public key cryptography and motivate theproblem at hand in
Section 2. Then we take a detailed look at the work already done in the area of
certificateless encryption inSection 3. The concepts and definitions that have been
used in this paper to construct the certificatelss encryption schemes are defined in

12

Section 4. We present an overview of an existing certificateless encryption scheme
in Section 5and in Section 6propose modifications to it to achieve two-factor
security. Then we look at various applications and advantages of certificateless en-
cryption inSection 7andSection 8respectively. The security model of the original
and the modified scheme is presented inSection 9where we define oracles, ad-
versaries and attackers. We present the concrete original construction and its secu-
rity reduction inSection 10this is followed by the concrete modified construction
and its security reduction inSection 11. We discuss the implementation details in
Section 12and finally the paper ends with concluding remarks inSection 13.

13

14

2. Evolution of Cryptographic Schemes

Several cryptographic schemes exist today which have evolved over the years to
meet the privacy goals which encompassed the challenges faced by the people at
the time. As technology has evolved not only have the data consumption habits of
people changed but it has also had a profound effect on the waywe communicate.
If we look at these schemes in detail we will discover that onegoal is common
to them all which is balancing convenience with security. Inthis section we look
at how new cryptographic schemes have evolved successively. There has been a
concerted effort to make data security more and more convenient and each new
scheme has tried to achieve this, at times perhaps at the costof privacy.

2.1. Symmetric-Key Cryptography. This is one of the earliest form of encryp-
tion schemes. The onset ofSymmetric-Key Cryptographyallowed parties to par-
take in private communication, users could now agree on keyswhich would allow
them to communicate privately by encrypting messages usingthat key. But it had
drawbacks like proliferation of keys since each pair of users needed a unique key
to communicate privately this lead to every user having a separate key for all his
communication channels. Also key exchange was not simple and users had to run
key agreement protocols prior to sending messages to each other. These issues
made key management and off-line communication difficult.

2.2. Public Key Cryptography. To solve the drawbacks ofSymmetric-Key Cryp-
tographythe idea ofAsymmetric-Key Cryptographyor Public Key Cryptography
came into existence. It solved the problem of key managementby assigning two
keys to each user, aprivate keyand apublic key, the user can freely distribute his
public keywhile keeping theprivate keyonly to himself. This allowed him to re-
ceive messages encrypted with hispublic keywhich could be decrypted using his
private key, this also solved the problem of key agreement and made off-line com-
munication possible. However, this scheme presented new challenges to contend
with. The authenticity of the users became an issue and certificates issued by aCA
were used to verify that a certain key-pair and user identitywere linked. During set-
ting up aPKI one of the most challenging aspects is handling trust management, the
conventional solution to this problem is to use certificates. Certificates are issued
by trusted central authorities and cryptographically hardto forge but they are not
easy to set-up and pose operational difficulties, these issues have been illustrated
in further detail inAdams & Lloyd(2002). DeployingPKIs is a cumbersome task
and many considerations need to be taken in order to make things work, there is
no universal solution to the problem and normally one needs to take thehorses for
coursesapproach while setting them up. InGutmann(2002) the authors examine
various reasons for the limited success ofPKIs and make suggestions to deploy
them successfully. They also discuss the application specific approach which one
needs to take to avoid problems, some of the most serious issues being certificate
revocation, handling authorisation and audit, managing certificate chains, storage

15

and distribution. The computational cost of certificate verification is also an im-
portant point of contention, specially in the case of mobiledevices whose usage is
on the rise. These challenges have also been highlighted inDankers, Garefalakis,
Schaffelhofer & Wright(2002).

2.3. Identity-Based Cryptosystems. Due to the factors discussed we see that
improper deployment and management of certificatePKIs can potentially compro-
mise the security of a system hence we look further to simplify certificate manage-
ment. In 1984 the notionIdentity-Based Cryptosystems and Signature Schemewas
proposed byShamir(1984), it suggested the usage of user’s unique identity like
e-mail address, social security number or IP address to derive his public key which
can be used to send him encrypted messages. This enabled parties to communicate
securely without them requiring to exchange public or private keys, maintaining
key directories or using services of a third party. The use ofa trustedPrivate Key
Generator (PKG)was suggested to provide the user with a smart card on joining
the network, this card was tightly tied to the identity of theuser and contained
keys which would allow him to sign and encrypt the messages hesent and verify
and decrypt the messages he received. The scheme had variousadvantages such
as simplifying certificate management which is one of the hardest parts of setting
upPKIs, now in order to send encrypted messages the users only required to know
the identity of the party to which they intended to send the message and looking up
information in the certificates was no longer necessary. Dueto the involvement of
a trustedPKGin the process the scheme had the drawback ofkey escrow, since the
PKGwas in possession of a master key which was used to generate private keys of
the users in the system. A rougePKG could destroy all privacy and consequently
the system had a single point of failure whose compromise would have devastating
effects on the users. Also in today’s world it is impracticalto assume the existence
of such key generation centres due to nature of communication being global and
a typical user possesses multiple identities which makes keeping a card for each
identity unmanageable.

Shamirgave concrete construction only for a signature scheme but not for an
encryption scheme. Many approaches were made in the subsequent years to present
an IBE scheme likeDesmedt & Quisquater(1986), Tsujii & Itoh (1989), Tanaka
(1987), Maurer & Yacobi (1991) and Hühnlein, Jr. & Weber(2000). None of
the solutions fully solved the problem and suffered from issues like collusion of
users, long turnaround time for private key generation byPKG and requirement
of tamper-resistant hardware. Finally, the first practicalsolution was presented in
2001 inBoneh & Franklin(2001) where the authors proposed anIdentity-Based
Encryption from the Weil Pairing. After this paper there was a surge in the area
of IBE and this resulted in the development of many cryptographic primitives. An
interactive identity-based key exchange protocol was presented bySakai, Ohgishi
& Kasahara(2000) followed by a non-interactive version bySmart(2002). Several
signature schemes were also developed e.g.Cha & Cheon(2003), Hess(2003)
andPaterson(2002b), a hierarchical identity based scheme was presented byGen-

16

try & Silverberg (2002). Work was also carried out in the area of cryptographic
work flows byChen, Harrison, Moss, Soldera & Smart(2002), Paterson(2002a)
and Smart(2003) and identity based cryptography was used as a mechanism to
demonstrate this.

2.4. Fuzzy Identity-Based Encryption. With IBE schemes becoming popular
attempts were made to use the biometric data of the user as identity and the first
Fuzzy Identity-Based Encryptionscheme was presented bySahai & Waters(2005).
It allowed for the use biometric identities by incorporating an error-tolerance prop-
erty which correctly decrypted an encrypted message when the identity presented
to decrypt the message was close to the identity used to encrypt the message. This
was necessary for the scheme to work since biometric identity cannot be same
every time it is sampled and hence the scheme needs to allow for some noise. Sub-
sequently more efficient FuzzyIBE schemes were presented byBaek, Susilo &
Zhou(2007) andFurukawa, Attrapadung, Sakai & Hanaoka(2008). But due tokey
escrowbeing an inherent property ofIBE thePKG could decrypt any cipher text,
this also allowed thePKGto forge any user’s signature and hence non-repudiation
was not guaranteed by design. Use of multiplePKGs in anIBE scheme has been
considered to avoid concentration of power but this requires more effort to manage
communication and infrastructure. Even if thePKG is fully honest the compro-
mise of thePKG’s master key would have devastating consequences which would
be more far reaching as compared to the breach of theCA’s signing key in tradi-
tional PKI. Hence deployment ofIBE schemes on a large scale is not suitable, for
these reasons people continued to look for constructions which simplified certifi-
cate management without handing over too much power to thePKG.

2.5. Self-Certified Keys. Meanwhile the idea ofSelf-Certified Keyswas intro-
duced byGirault (1991) and later enhanced byPetersen, Horster & Horster(1997)
and Saeednia(1997). A self-certified scheme also relies on the existence of a
Trusted Third Party (TTP), here the users generate their ownprivate key(sk) and
correspondingpublic key(pk) and communicatepk to theTTP who creates awit-
ness(w) by combining the identity (ID) of the user withpk. Several ways have
been suggested to produce this witness,GiraultusedTTP’s signature on some com-
bination ofpk andID, Petersen, Horster & Horsterused part of a signature and
Saeedniaused the result of inverting a trapdoor one-way function derived from
pk andID. This scheme allowed any party to extractpk from w andID while
only making it possible for theTTP to producew from pk andID. Although this
scheme does not make use of certificates in the traditional sense it can be observed
that the witnessw is a type of lightweight certificate which binds the identityof
the user to the correct public key. The scheme has an advantage as compared to
theCL-PKC, it does not require any confidential communication betweentheTTP
and the user. However, the private key needs to be generated before the public key,
due to this the scheme cannot be used to enforcecryptographic work flowsas de-
scribed inSection 7. These schemes also lack concrete security proofs as pointed

17

by Saeednia(2003) and suffer from drawbacks which allow a rougeTTPto extract
a user’s private key.

2.6. Ceritificateless Public Key Cryptography. The idea ofCeritificateless Pub-
lic Key Cryptographyemerged from fact that people wanted to avoid the need for
setting up infrastructure to support trust management using certificates. As we
saw earlierIBE schemes did solve this issue however it was not without introduc-
ing the problem ofkey escrow, people now started working towards eliminating it
without sacrificing the desirable properties of theIBE schemes. In a typicalIBE
scheme the private key of a user is entirely generated by thePKG and this is what
makes the privacy of the system totally dependent upon thePKG. However, now
it was suggested that perhaps only a part of the secret be generated by thePKG
while the user holds on to the other part. This would eliminate the possibility of
thePKGmisusing his powers, additionally the scheme is kept certificateless while
also defeating the attempts of a dishonest party to impersonate an user. ACL-PKC
scheme is similar to theIdentity Based Cryptography (IBC)scheme in the respect
that it relies on the existence of a trusted third party whichpossesses a master key,
the scheme also uses the identity of the user. These ideas were formally developed
by Al-Riyami & Paterson(2003) and were derived from the scheme presented by
Boneh & Franklin(2001) by making simple modifications. The authors suggested
an intermediate betweenPublic Key CryptographyandIdentity Based Cryptogra-
phy asCertificateless Public Key Cryptographyand it eliminated thekey escrow
associated with theIBE schemes without the need of certificates. In principal there
are three parties involved in aCL-PKC scheme, the trusted third party calledKey
Generation Center (KGC), the party sending the message calledSenderand the
party who receives the sent message calledReceiver, we describe these terms for-
mally in Section 4.2. TheKGCuses hismaster private keyalong with the receiver’s
identity to generate apartial private keywhich the receiver then combines with a
secret value to derive his full private key. Thus this key is known only to the re-
ceiver and key escrow is avoided. The receiver needs to authenticate his identity to
theKGC who must then securely transmit the partial private key. Meanwhile, the
receiver also computes hispublic keyby combining the same secret value with the
public parameters published by theKGC and distributes it freely. The generation
of private key and public key is independent of each other andjust requires the use
of the same secret value. The sender can thus obtain the public key related to a
certain identity and use it to send encrypted messages to thereceiver.

18

19

3. Related Work

Let us take a brief look at the work done in the area of certificateless cryptogra-
phy before the notion ofCL-PKC was formalized. The idea ofCertificate-Based
Encryption (CBE)was introduced byGentry(2003), it proposed a construction in
which the user was required to use his secret key along with anup-to-date certifi-
cate to decrypt the message. The scheme tried to combine the implicit certification
of IBE schemes with the no key escrow property of public key cryptography. Sub-
sequently, an equivalence theorem betweenIBE, CBE andCertificateless Encryp-
tion (CLE) was presented byYum & Lee (2004a,b). The generic transformations
presented in this paper did not use random oracles but their results did not hold in
the full security model developed byAl-Riyami & Paterson(2003) and were also
shown to breakdown in the much weaker security model presented by Galindo,
Morillo & Ràfols (2006).

LaterDodis & Katz(2005) formalized the problem of chosen-ciphertext secu-
rity for multiple encryption and presented simple, genericand efficient construc-
tions of multiple encryption schemes secure against chosen-ciphertext attacks in
the standard model. They also proved that their methods can be applied to design
CBE schemes without random oracles. However, their design did not hold in the
security model presented byAl-Riyami & Paterson(2003) as their constructions
were not designed to withstand the decryption queries for arbitrary public keys
chosen adaptively by adversaries without the knowledge of matching secret.

More recentlyLiu, Au & Susilo (2006) highlighted the issue ofDenial-of-
Decryption Attackwhere the adversary replaces the user’s public key by someone
else’s as a result when the user gets a message encrypted withthat key and his
identity, he is no longer able to decrypt it and the sender of the message is unaware
of this. They propose a new paradigm calledSelf-Generated-Certificate Public
Key Cryptographywhich addresses this problem and provide a generic construc-
tion using certificateless signature and certificateless encryption as the building
block. Their construction is secure in the standard model but it does not hold in
the full model presented byAl-Riyami & Paterson(2003). Huang & Wong(2007)
presented a construction which is secure against the malicious-but-passivePKGat-
tacker in the standard model but it does not allow aStrong Type I Attackerdescribed
in Section 9.2.2.

As discussed before the concept ofCL-PKCwas first introduced byAl-Riyami
& Patersonthey presented a scheme which was structurally similar and borrowed
ideas from self-certified keys presented byPetersen, Horster & Horster(1997), Gi-
rault (1991), Saeednia(1997) and more recentlyCBEscheme proposed byGentry
(2003). In their work the authors specified certificateless encryption, signature and
key exchange schemes and demonstrated how to support certificateless hierarchi-
cal schemes. Their construction was based on bilinear map ongroups as described
in Definition 4.1and the security was reducible to the computational hardness of
the Bilinear Diffie-Hellman Problem. Later in 2008 the first concrete and efficient
construction forCLE secure in the standard model against strong adversaries was

20

presented byDent, Libert & Paterson(2008). This scheme is secure against both
Strong Type I AttackerandStrong Type II Attackeras described inSection 9.2.2.
The construction is modelled upon theWaters’ IBE scheme presented byWaters
(2005) and modified using ideas fromAl-Riyami & Paterson(2003) the security of
this scheme is based on the hardness of theThe Decisional 3-Party Diffie-Hellman
Problem (3-DDH)defined inDefinition 4.3which is a slight and natural generali-
sation of theThe Decisional Bilinear Diffie-Hellman Problem (DBDH)described
in Definition 4.2. However, a new kind of threat was considered inAu, Mu, Chen,
Wong, Liu & Yang(2007) where the adversaries maliciously generate system-wide
parameters, the construction being presented here is not secure under this attack.

3.1. Proposed Modification. We propose a modification to the original con-
struction to achieve two-factor authentication by inclusion of the user biometrics in
the scheme. The derived scheme retains all the properties ofthe original scheme.
In the modified version the receiver authenticates himself to theKGC by providing
his public identity such as an email or an IP address and the hash of his biometric
identity. TheKGC then responds back in a secure manner transmitting thepar-
tial private keyto the receiver which he generates combining a secret value with
the receiver’s public identity and biometric identity. Thereceiver then proceeds to
generate his public key dependent on the partial private keyand public parame-
ters published by theKGC. Subsequently, this key is freely and widely published.
Since we desire two-factor authentication it must be noted that the full private key
is never stored in the device and is generated only while decrypting a cipher text
and duly deleted after the decryption. The full private key is derived from the par-
tial private key, the biometric identity and a secret value provided by the receiver.
The sender can now obtain the public key related to a certain identity and use it to
send encrypted messages to the receiver. These changes makeit imperative to pos-
sess the correct biometric data to encrypt messages. In addition to the biometrics
the device with stored secrets is also required by the receiver to be able to decrypt
messages and this provides us a system with two-factor authentication.

21

22

4. Preliminaries

In this section we describe the various preliminaries whichhave been used through-
out the thesis.

4.1. Notation. Certain terms are freely used in various places in the work pre-
sented. Here we define them formally.

◦ Adversary: The adversary is defined as the party who is tryingto gain infor-
mation about the ciphertexts by using the oracles as his disposal.

◦ Challenger: The challenger is defined as the party who presents the adver-
sary with a challenge based on ciphertexts. After receivingthe challenge the
adversary tries to gain information about the ciphertexts.

4.2. Parties. TheCL-PKEscheme consists of three parties which are

◦ Sender: This is the party which intends to send private messages andhence
encrypts them using theCL-PKEscheme. In the original scheme the sender
encrypts the message using receiver’s public identity andpublic key. In the
derived version of the scheme the sender encrypts the message using the
receiver’s public identity, biometric identity andpublic key.

◦ Receiver: This is the party which intends to receive private messagesen-
crypted using theCL-PKE scheme and then decrypts the messages to read
them, the receiver is also responsible for publishing his identity along with
public keyso that sender can use them encrypt the message. In the derived
version of the scheme it is assumed that the sender possessesthe receiver’s
biometric identity.

◦ KGC: TheKGC is the party who is responsible for running the set-up for the
CL-PKE scheme. It’s duties include computingmaster public key, master
secret keyand authenticating an user. TheKGC is also responsible for com-
puting and securely communicating thepartial private keyfor each receiver
based on his identity. We define the details of the operationsperformed by
theKGC in Section 10andSection 11.

4.3. Definitions. In this section we formally describe the various definitionsand
theorems that are used throughout the thesis. The constructions and security re-
ductions use them widely and this section aims to familiarize the reader with the
notation used.

DEFINITION 4.1. LetG andGT be two groups of orderp for some large primep.
The bilinear mape : G×G→ GT must satisfy the following properties

(i) Bilinearity: e(ga, hb) = e(g, h)ab for any(g, h) ∈ G×G anda, b ∈ Z.

23

(ii) Non-degenerate:e(g, h) 6= 1GT
wheneverg, h 6= 1G.

(iii) Computable: There is an efficient algorithm to computee(g, h) for any
g, h ∈ G.

DEFINITION 4.2. The Decisional Bilinear Diffie-Hellman Problem is to decide
whetherT = e(g, g)abc or a random element. Giveng, ga, gb, gc ∈ G, T ∈ GT

anda, b, c ∈R Z. A bilinear map is described bye, i.e. e : G × G → GT with
properties described inDefinition 4.1.

DEFINITION 4.3. The Decisional 3-Party Diffie-Hellman Problem was first de-
fined inBoneh & Franklin(2001) and its goal is to decide whetherT = gabc such
thata, b, c ∈R Z and(ga, gb, gc, T) ∈ G

4 for g ∈ G. We define the advantage of a
probabilistic polynomial-time algorithmA against this problem as

Adv3-DDH
A (k) =

∣

∣

∣
Pr
(

A(ga, gb, gc, T) = 1 | T = gabc ∧ a, b, c ∈R Z
×
p

)

−

Pr
(

A(ga, gb, gc, T) = 1 | T ∈R G ∧ a, b, c ∈R Z
×
p

)
∣

∣

∣

wherek is the security parameter. We assumeAdv3-DDH
A (k) to be negligible for

all probabilistic polynomial-time algorithmsA.

DEFINITION 4.4. A hash functionH randomly selected from a family of hash
functionsH ∈R H(k) is collision resistant if for all probabilistic polynomial-time
algorithmsA the advantage

AdvCR
A (k) = Pr

(

H(x) = H(y) ∧ x 6= y | (x, y) ∈R A(1
k,H) ∧H ∈R H(k)

)

is negligible as a function of the security parameterk.

24

25

5. Overview of the Original Construction

Our work is based on the construction proposed byDent, Libert & Paterson(2008),
in this paper the authors show a way to construct a practical certificateless encryp-
tion scheme which is secure in the standard model and free from key escrow. In
this section we describe the constituents of this construction to give a bird’s eye
view to the reader. The individual components have been described in detail in
Section 10.

5.1. Components of the Original CL-PKE. A CL-PKE scheme is defined by
seven probabilistic, polynomial-time algorithms and is based on the ideas first pro-
posed byAl-Riyami & Paterson(2003). We now take a look into the details of
each of these algorithms. The subsequent algorithms make use of the user identity
denoted asID which is unique and publicly known, examples of such an identity
could be email address, IP address or any other form of identification.

1. Setup: This algorithm is run by theKGC and takes as input the security
parameter defined by1k. The algorithm returns themaster public keympk
and themaster secret keymsk.

2. Extract: This algorithm is run by theKGC to extract thepartial private
key. The algorithm takes as input themaster public keympk, the master
secret keymsk and identity of the receiverID ∈ {0, 1}∗. The algorithm
returns thepartial private keydID of the receiver with identityID ∈ {0, 1}∗.

3. SetSec: This algorithm executed by the receiver generates a secretvalue
xID, it takes as input themaster public keympk.

4. SetPub: This algorithm is run by the receiver and takes as input themaster
public keympk and receiver’s secret valuexID. The algorithm outputs the
public keypkID ∈ PK for the receiver.

5. SetPriv: This algorithm is run by the receiver to generate hisfull private
keyskID. The algorithm takes as input themaster public keympk, thepar-
tial private keydID, the public identityID and the receiver’s secret value
xID.

6. Encrypt: This algorithm is run by the sender. The algorithm takes as
input themaster public keympk, the receiver’s identityID, thepublic key
pkID of the receiver with identityID and the messagem ∈ M. The algo-
rithm returns the cipher textC ∈ C if pkID ∈ PK else it returns FAIL.

7. Decrypt: This algorithm is run by the receiver and takes as input the
master public keympk, receiver’sfull private keyskID and a cipher text
C ∈ C. It returns the messagem ∈ M if C is a valid ciphertext else it
returns FAIL.

26

5.2. Protocol Architecture. After discussing the various modules of the encryp-
tion scheme we can now look at how the entire machinery functions. We do this
by describing the protocol involving the sender, the receiver and theKGC.

1. The scheme begins with the execution ofSetup algorithm by theKGC
which generates the system parameters and keys as described. These param-
eters and keys are later used by the the subsequent algorithms.

2. The next algorithm executed by theKGC is Extract and is initiated by
the receiver when he wishes to compute hisprivate key. Before running
this algorithm the receiver must authenticate himself to the KGC asID in
the same way as he would to aCA. The computedpartial private keydID
is communicated to the receiver with identityID in a secure manner. The
computation of the receiver’sprivate keyis independent of the computation
of hispublic keyand only needs to be done before decrypting a message.

3. The first algorithm executed by the receiver isSetSec as described before.
The algorithm is run once by the receiver before he can compute hispublic
andprivate keys.

4. The next algorithm executed by the receiver isSetPub to compute his pub-
lic key. It is run once by the receiver and the computedpublic keypkID
is published and freely distributed. It is assumed that the public key space
PK is publicly recognisable since it is defined using themaster public key
mpk. Public keys with matching private key should be easily recognisable
from the malformed public keys, we show how to achieve this inthe concrete
construction presented inSection 10.

5. Before the receiver can decrypt the encrypted messages send to him he needs
to run the algorithmSetPriv to obtain hisprivate key. This algorithm is
run once once by the receiver after he obtains thepartial private keyfrom
the KGC after authenticating himself as seen inStep Aand Step Bin the
encryption protocol.

6. To send encrypted messages the sender must run theEncrypt algorithm.
To do that the sender must first obtain the receiver’spublic keywhich is freely
and widely distributed by the receiver after running theSetPub algorithm.
The messages are encrypted using receiver’s identityID which is public and
his public key.

7. To decrypt the encrypted messages the receiver runs theDecrypt algo-
rithm. This can be only done after the receiver has calculated his full pri-
vate keyby obtaining thepartial private keyfrom theKGC. We include a
hash on the ciphertext because our encryption scheme is homomorphic. The
hash acts as a signature on the ciphertext and defeats adversary’s attempt
to create valid encryptions by combining other encryptionsand winning the

27

Indistinguishability Under Chosen Ciphertext Attack (IND-CCA) game de-
scribed inSection 9.1.

Receiver KGC

Sender

Setup

Extract

SetSecSetPubSetPriv

Decrypt

Encrypt

Step A.(ID)authen.

Step B.(dID)secure

Step D.m

Step C.C ∈ C

Figure 5.1: After the KGC runsSetup the receiver authenticates himself asID in
Step A. Subsequently, the KGC runsExtract and provides the receiver withdID
in a secure manner as shown inStep B. After this the receiver runsSetSec and
SetPub. The computedpublic keypkID is then published by the receiver. The
sender obtainspkID and encrypts the messagem by runningEncrypt. The com-
puted ciphertextC ∈ C is sent to the receiver’s device as shown inStep C. Finally,
the receiver runsDecrypt on his device after computing hisprivate keyusing
SetPriv and obtains the decrypted messagem thus concluding the protocol.

28

29

6. Overview of the Derived Construction

By modifying the existing construction we aim to provide two-factor security such
that even if the device is compromised, the encrypted messaged stored in the device
should not be trivially accessible to the attacker. To achieve this we include user
biometric data in the scheme. Thefull private keyis never stored on the device and
is generated before decrypting the message by combining thepartial private key
and asecret valuestored in the device along with the biometric data of the rightful
owner. The biometric data of the owner is never stored on the device and after
decrypting the message thefull private keyis deleted. This makes it hard for the
attacker to generate thefull private keyagain even if he gains control of the device
thus granting him access to thepartial private keyand thesecret valuestored in it.

The subsequent algorithms use the public identity of the user denoted asID
which is unique and publicly known, examples of such an identity could be the
email address, IP address or any other form of identification. As a second factor in
our authentication we use the biometric identity of the userdenoted asBID. BID
is derived from the biometric characteristics of the user and is therefore unique,
some examples of such a biometric identity could be the fingerprint, face picture or
voice. We treat the user’s biometric data assemi-privatewhich means that although
it is easily available to the people who know the user still itis significantly harder
to reproduce by someone who does not know the user. Hence to compromise the
privacy of a user not only should the attacker obtain the device but also produce the
owner’s biometric data. In practice this is hard to achieve and this is what provides
security to the user even in the event of loss or theft of the device.

6.1. Components of the Modified CL-PKE. Our construction is derived from
the one presented in the last section and is defined by six probabilistic, polynomial-
time algorithms. We now look into the details of each of thesealgorithms.

1. Setup: This is the first algorithm which is executed to set-up the system
parameters, it is run by theKGC and takes as input the security parameter
defined by1k. The algorithm returns themaster public keympk and the
master secret keymsk.

2. Extract: This algorithm is run by theKGC to extract thepartial private
keydID. The algorithm takes as input themaster public keympk, themaster
secret keymsk, public identity of the receiverID ∈ {0, 1}∗ and the hash of
the receiver’s biometric identityBID, Fh(BID).

3. SetSec: In this algorithm the receiver generates a secret valuexID. The
algorithm takes as input themaster public keympk.

4. SetPub: This algorithm is run by the receiver and takes as inputmaster
public keympk, partial private keydID and the receiver’s secret valuexID.
The algorithm outputs thepublic keypkID ∈ PK for the receiver.

30

5. Encrypt: This algorithm is run by the sender, the algorithm takes as input
themaster public keympk, receiver’s public identityID, receiver’s biomet-
ric identity BID, the public keypkID of the receiver with public identity
ID and the messagem ∈ M. The output of this algorithm is the ciphertext
C ∈ C if pkID ∈ PK else the algorithm returns FAIL.

6. Decrypt: This algorithm is run by the receiver and takes as input themas-
ter public keympk, receiver’spartial private keydID, receiver’s secret value
xID, receiver’s public identityID, receiver’s biometric identityBID and
the ciphertextC ∈ C. Before decrypting, thefull private keyskID is com-
puted using themaster public keympk, thepartial private keydID, the hash
of receiver’s public identityID, Fu(ID) and the hash of receiver’s biomet-
ric identityBID, Fh(BID). This key is then used to decrypt the message.
The algorithm returns the messagem ∈ M if C is a valid ciphertext else it
returns FAIL.

6.2. Protocol Architecture.

1. Just like in the case of original scheme the modified schemebegins with
the execution ofSetup algorithm by theKGC which generates the system
parameters and keys as described. These parameters and keysare later used
by the the subsequent algorithms.

2. The next algorithm executed by theKGC is Extract and is initiated by
the receiver when he wishes to compute hisprivate key. Before running this
algorithm the receiver must authenticate himself to theKGC asID in the
same way as he would to aCA and communicateFh(BID) securely. The
computedpartial private keydID is send back to the receiver with identity
ID in a secure manner. Unlike the previous scheme in the modifiedversion
the receiver must obtaindID before he can compute hispublic key.

3. The first algorithm executed by the receiver isSetSec as described before.
The algorithm is run once by the receiver before he can compute hispublic
andprivate keys.

4. The next algorithm executed by the receiver isSetPub to compute his pub-
lic key. It is run once by the receiver and the computedpublic keypkID
is published and freely distributed. It is assumed that the public key space
PK is publicly recognisable since it is defined using themaster public key
mpk. Public keys with matching private key should be easily recognisable
from the malformed public keys, we show how to achieve this inthe concrete
construction presented inSection 11.

5. To send encrypted messages the sender must run theEncrypt algorithm.
To do that the sender must first obtain the receiver’spublic keywhich is freely
and widely distributed by the receiver after running theSetPub algorithm.

31

The messages are encrypted using receiver’s personal as well as biometric
identity. While personal identity is public and freely available, the biomet-
ric identity is semi-privateand is only accessible to people who know the
receiver. Just like in the earlier case, here we assume that the sender knows
the receiver and hence possesses his biometric identity or data from which
such an identity can be easily extracted, example of such data would be a
face picture.

6. To decrypt the encrypted messages the receiver runs theDecrypt algo-
rithm. This can be only done after the receiver has calculated hisfull private
keyafter obtaining thepartial private keyfrom theKGC. This key is then
used to decrypt the message and is deleted subsequently. Thebiometric iden-
tity BID is computed from data provided by the user during decryption and
is never stored on the device. We include a hash on the ciphertext because
our encryption scheme is homomorphic. The hash acts as a signature on ci-
phertext and defeats the adversary’s attempt to create valid encryptions by
combining other encryptions and winning theIND-CCA game described in
Section 9.1.

32

Receiver KGC

Sender

Setup

Extract

SetSecSetPubDecrypt

Encrypt

Step A.(Fh(BID), ID)authen.

Step B.(dID)secure

Step D.BiometricsStep E.m

Step C.C ∈ C

Figure 6.1: After the KGC runsSetup the receiver authenticates himself asID
and provides him with the hash of his biometric identityFh(BID) in Step A. Sub-
sequently, the KGC runsExtract and provides the receiver withdID in a secure
manner as shown inStep B. After this the receiver runsSetSec andSetPub. The
computedpublic keypkID is then published by the receiver. The sender obtains
pkID and encrypts the messagem by runningEncrypt. The computed ciphertext
C ∈ C is sent to the receiver’s device as shown inStep C. Then receiver proceeds
on to provide his biometric data to the device as shown inStep D. Finally, the pri-
vate keyskID is computed by the receiver and the ciphertextC is decrypted using
theDecrypt algorithm. The receiver then obtains the decrypted messagem as
shown inStep Ethus concluding the protocol.

33

34

7. Applications of CL-PKE

Due to the identity of the user being tied to the encryption,IBE schemes can be
used for applications where identity based role separationis needed. Our scheme is
an extension of theIBE scheme and is thus applicable to most situations in which
IBE schemes can be employed. The possible applications ofIBE schemes have
been explored byBoneh & Franklin(2001), we present them below along with
some additional applications.

◦ Revocation of Public Keys: The existingPKIs allow the possibility of certifi-
cate expiry and the users need to keep their certificates updated for them
to be valid. Boneh & Franklin (2001) propose a way to model this in
IBE schemes by coupling the identity with an expiration date, wecan ex-
tend the same idea inCL-PKE schemes by issuingpartial private keys
based on identity coupled with an expiration date, eg. an identity like
"bob@company.com||current-year" can be used. This will enforce
the user to refresh his private key every year by obtaining corresponding
partial private keyand failure to do so will revoke his ability to decrypt
ciphertexts. It should also be noted that such a mechanism allows send-
ing messages in the future and Bob can only read those messages when the
KGC issues him keys corresponding to the date specified. Thus we see that
ephemeral keys can be very easily implemented usingCL-PKE.

◦ Managing user credentials: The idea presented above can be extended
further and can be employed to manage credentials. An identity like
"bob@company.com||current-year||clearance=secret"
can be used to encrypt messages, here Bob can only read decrypt a message
if he has a clearance level of secret for the current year and this can be
enforced with the help of aKGC.

◦ Cryptographic Work Flows: CL-PKE schemes have the property that the
public key and the private key can be generated independently of each other,
this property can be used to enforcecryptographic work flows. The sender
can encrypt a message using the public key determined by the receiver and an
identifier coupled with receiver’s identity which the receiver can acquire only
after accomplishing some task. Doing so forces the receiverto complete the
task to gain access to the said identifier which he can then useto authenticate
himself to theKGC and thus obtain the valid partial private key to decrypt
the message received. An instance of such a scenario could bethatA sends
a money order toB which is encrypted usingA’s public key and his identity
coupled with proof that he sent the goods. Now, afterA completes his part of
the deal he is guaranteed to receive his money by decrypting the money order
after obtaining the partial private key from theKGC, more such applications
have been explored inSmart(2003) andPaterson(2002a).

35

The modified version of the scheme does not support this property since
the public key and the private key can only be generated afterobtaining the
partial private key from theKGC. However, one must note that the modified
scheme serves an entirely different purpose and hence cannot be expected
provide all the features of the original scheme. The construction presented
in Section 11explains this point in further detail.

◦ Delegation of Decryption keys: This kind of application is suited to com-
panies where there is a centralizedKGC and he can delegate clearance to
people who are allowed to access a message depending upon their role.

– Use of ephemeral keys: Suppose one of the company’s employees is
going on a conference and he needs to take a company laptop with
him for that period. Normally all the messages are encryptedwith the
same private key which is stored in the device and its loss cannot be
recovered from. To ensure protection from loss of device, messages in-
tended for the employee can be encrypted using his email and current
date. The company’sKGC can generate partial private keys for the du-
ration of the conference which can be used to extract full private keys
by the employee. In the event of loss of the device only the messages
received during the conference period are compromised thusleaving
the other messages untouched. On the other hand if the proposed mod-
ified construction is employed then biometrics would also beused in
encryption and none of the messages would be compromised.

– Delegation of duties: The company basedKGC can also enforce cre-
dential management, messages could be encrypted based on their sub-
ject and theKGC can generate partial private keys to employees within
whose domain those messages lie. For instance all the messages meant
for salesdepartment could be tagged withsalesand all the employees
working in that department could be given one partial private key. This
would only give access to the people who possess a particularkey to
read a certain message, thus enforcing role based privacy.

◦ Sharing Facilities: The modifiedCL-PKE scheme can be useful in applica-
tions where the users need to share facilities yet require privacy. For instance
the same mailbox can be shared by multiple users and the messages can be
encrypted using email address as the public identity and biometric identity
of the intended user. This would allow only the specific user to read the
messages even though they are in the same mailbox. One foreseeable appli-
cation could be forum moderation where messages can be posted publicly
but require biometrics to decipher them.

◦ Certificate-Based Encryption: As proposed byGentry(2003), CL-PKEschemes
can be modified to providecertificate-based encryptionby including the ex-
piry information and public keys in the identity strings.

36

37

8. Advantages of the Modified Scheme

IBE schemes have gained popularity due to a number of advantagesover the tra-
ditional public key cryptography, as discussed beforeCL-PKC evolved fromIBC
to further enhance it hence it also provides many benefits that the IBC schemes
offer. In this section we explore some major advantages of the discussedCL-PKE
schemes over the traditional public key cryptography.

◦ Certificateless: The deployment ofPKIs is greatly simplified due to the in-
dependence from issuing certificates to manage trust. Issuing certificates is
not strictly a technical exercise and involves social factors like proving one’s
identity and setting upCAs. Such procedures are time consuming and prone
to human error as well as social engineering. Complete freedom from such a
need hastens the deployment ofPKIs and makes trust management entirely
technical by removing human intervention and social aspects.

◦ No Key Escrow: IBE schemes were successful in providing certificateless
PKIs as well but they relied on a trusted third party which possessed the pri-
vate key of the users. This makes the scheme centralized by design with a
single point of failure, also such power in the hands of thePKG leaves the
possibility of surveillance open and denies the users full control of their own
data. These factors deter the adoption ofIBE schemes.CL-PKC success-
fully solves this problem by removingkey escrowand ensures that a rouge
KGC cannot destroy the privacy of the entire system. InIBE schemes the
users need to trust thePKG to not abuse the private keys by launching pas-
sive attacks but inCL-PKC schemes they only need to trust theKGC to not
actively replace the public keys.

◦ Minimal Set-up: AlthoughIBE schemes require no set-up by the users prior
to partaking in private communication, the cost at which this convenience
came was too high.CL-PKC schemes require prior set-up on the part of
the receiver of the message which is essentially just two steps as seen in
Section 5andSection 6.

◦ Lightweight: CL-PKC schemes are well suited to scenarios where compu-
tational power and bandwidth come at a premium, for example in mobile
computation scenarios. As compared to traditionalPKIs the infrastructure
requirements forCL-PKC schemes are significantly low as there is no need
to manage certificates. This saves the effort to transmit thecertificates and
check them, as shown byDankers, Garefalakis, Schaffelhofer & Wright
(2002) these factors are of considerable importance in the mobiledomain
andCL-PKCschemes give us an advantage.

◦ Co-existence withIBE schemes: As pointed out byAl-Riyami & Paterson
(2003), the CL-PKE schemes described here are very similar to theIBE

38

schemes based on pairings. Thus the same infrastructure canbe used to
deploy them and both the schemes can peacefully co-exist.

◦ Protection Against Device Compromise: Both the original scheme as well as
the derived scheme provide perfect forward secrecy. Hence,the compromise
of the device along with the stored keys does not jeopardise the privacy of
the stored messages.

◦ Key Size: The scheme uses relatively short public and private keys and there-
fore, is suitable for use in devices with limited resources,for instance mobile
phones.

◦ Using Biometrics: The usage of biometric data in the encryption makes is
convenient for the user to provide it since it cannot be lost or forgotten and
is unique to every person. It is also relatively hard to duplicate, readily avail-
able and semi-private. Thus two-factor authentication is achieved without
any significant change in the user behaviour.

◦ Security: Both the original and the modifiedCL-PKEschemes are secure in
a fully adaptive adversarial model. The schemes provide indistinguishability
under chosen cipher text attack and the security depends upon theDecisional
3-Party Diffie-Hellman Problemwhich we define inDefinition 4.3.

39

40

9. Security Model

In the light of the discussion in the previous sections we have seen how aCL-PKE
scheme is defined, now we take a look at the possible adversaries and define them
formally. Standard security requirements of public key encryption schemes require
that the encryptions are indistinguishable against a fully-adaptive chosen cipher-
text attacker, i.e. it providesIND-CCA. In this definition there are two parties,
the adversary and the challenger as described inSection 4.1, who participate in
a sequence of games. The notion ofIND-CCA security is formally defined in
Section 9.1.

The security model that we define here is a natural generalisation of the fully
adaptive, multi-user model presented byBoneh & Franklin(2001). To prove the
security of the scheme in the lack of certificates and the presence of an adversary
who has access to the master key requires defining the security model carefully.
We need to allow the possibility of the adversary extractingthe private keys of
arbitrary users and choose the identityID∗ of the user on whose public key he
is challenged. The compromise of the private keys of certainusers should not
jeopardise the privacy of users whose keys are still safe andour security model
should encompass this requirement. However, we still need to do more to model
the powers of an attacker. In traditionalpublic key cryptographythe public key is
bound to the identity of the user by a certificate issued by theCA but in our case
this is not possible and hence we need to allow the attacker toreplace the public
key of the user with a key of his choice. By doing so he might wish to decipher
the encrypted messages sent to a certain user. But we will seethat such an attack
is rendered useless since messages are encrypted by bindingthem to the identity of
the user. The decryption of messages requires the possession of the correct private
key for a certain identity which can only be obtained with thecooperation of the
KGC who provides thepartial private keyto derive thefull private key. Modelling
the response of a challenger whose public keys have been changed to key extraction
and decryption queries should be done carefully.

We also need to take into consideration that theKGC might indulge in adver-
sarial activities like eavesdropping on ciphertexts and making decryption queries.
The KGC in our scheme is comparable to theCA in traditionalPKI schemes. It
is assumed that theCA does not generate certificates which authenticate arbitrary
identities and public keys. Similarly, in our scheme we assume that theKGC does
not replace public keys of the users. Since theKGC is in possession of thepartial
private key, he can generate private key of any user and if he chooses to replace the
public keys as well then he has all the information to impersonate an user of his
choice. However, we note that in our modified construction this is not possible be-
fore the user communicates the hash of his biometric identity to theKGC so there
is an additional hurdle which a maliciousKGC must overcome.

There however is a difference to theCA scenario, in traditionalPKIs if theCA
misbehaves then it is easy to point that out by observing the existence of two valid
certificates for same identity but in our scheme a new public key can be created by

41

the user or theKGC and it is not possible to decide which is the case.Al-Riyami
& Paterson(2003) showed that this can be avoided by allowing users to choose
identifiers which bind their public keys and identities together. This will help to
pinpoint a misbehavingKGC in the event there are two different working public
keys for the same identity. There has been considerable debate on the whether
the security model described here correctly captures the capabilities of an attacker
against certificateless encryption, the issue has been discussed at length inDent
(2006b).

9.1. Chosen cipher text security.

DEFINITION 9.1. Chosen cipher text security for Certificateless Public Key En-
cryption: We say that aCL-PKEscheme is semantically secure against an adaptive
chosen ciphertext attack (IND-CCA secure) if no polynomially bounded adversary
A of Strong Type I, Strong Type II, New Strong Type I or New Strong Type II de-
scribed inSection 9.2.2andSection 9.3.2has a non-negligible advantage against
the challenger in the following game.

Setup The challenger takes a security parameterk and runs theSetup algo-
rithm. It givesA the resulting system parameters. IfA is of Type I, then the
challenger keeps the master secret key to itself, otherwise, it gives master secret
key toA.

Phase 1 A issues a sequence of requests, each request being either a partial pri-
vate key extraction, a private key extraction, a request fora public key, a replace
public key command or a decryption query for a particular user. These queries may
be asked adaptively, but should respect the rules on adversary behaviour defined in
Section 9.2.2andSection 9.3.2.

Challenge Phase OnceA decides that Phase 1 is over it outputs the challenge
identity ID∗ and two equal length plaintextsM0,M1 ∈ M. Again, the adversarial
constraints for the particular set-up apply. The challenger now picks a random bit
d ∈ {0, 1} and computesC∗, the encryption ofMd under the current public key
pkID∗ for ID∗. If the output of the algorithmEncrypt is FAIL, thenA has
immediately lost the game since it has replaced a public key with one not having
the correct form. Otherwise,C∗ is delivered toA.

Phase 2 A issues a second sequence of requests as in Phase 1, again subject to
the rules on adversary behaviour for the set-up at hand. In particular, no private
key extraction onID∗ is allowed. Moreover, no decryption query can be made on
the challenge ciphertextC∗ for the combination of the identityID∗ and its public
keypkID∗ that was used to encryptMd.

42

Guess Finally, A outputs a guessd ∈ {0, 1}. The adversary wins the game if
d = d′. We defineA’s advantage in this game to beAdvA = |Pr (d = d′)− 1/2|.

The adversaries have been formally defined inSection 9.2.2andSection 9.3.2
but for the sake of completeness we present the constraints imposed on them here.
The constraints imposed on the adversaries to win theIND-CCA game under dis-
cussion are

Constraints on Strong Type I attacker A Strong Type IattackerAI loses the
game if

◦ AI extracts the private key forID∗ at any point.

◦ AI extracts the private key of any identity for which it has replaced the public
key.

◦ AI extracts the partial private keydID∗ of ID∗ after replacing the public key
pkID∗ and before the challenge being issued.

◦ In Phase 2,AI makes a decryption query on the challenge cipher textC∗ for
the identityID∗ without replacing the public keypkID∗ used to create the
challenge ciphertext.

Constraints on Strong Type II attacker A Strong Type IIattackerAII loses
the game if

◦ AII extracts the private key forID∗ at any time.

◦ AII extracts the private key of any identity for which he has replaced the
public key.

◦ AII outputs a challenge identityID∗ for which he has replaced the public
key.

◦ In Phase 2,AII makes a decryption query on the challenge ciphertextC∗ for
the identityID∗ without replacing the public keypkID∗ used to create the
challenge ciphertext.

Constraints on New Strong Type I attacker All constraints that were imposed
onAI also apply toAnew

I except,Anew
I is allowed to extract the partial private key

dID∗ of ID∗ after replacing the public keypkID∗ and before the challenge being
issued. Additionally, aNew Strong Type IattackerAnew

I loses the game if

◦ Anew
I extracts the biometric identityBID∗ of the target identityID∗ at any

point.

43

Constraints on New Strong Type II attacker The constrains imposed onAnew
II

are exactly same as the ones that were imposed onAII .

9.2. Security Model for the Original Scheme. In the following pages we try to
model the requirements discussed in this section so far by defining oracles, attack-
ers and other key components which complete the security model.

9.2.1. Oracles. The oracles present at the attacker’s disposal are the following

◦ Request Public Key: The public key of an user is freely available to anyone,
here the attacker provides an identityID and the oracle returns the public
key pkID corresponding to that identity, the oracle generatespkID if previ-
ously undefined.

◦ Replace Public Key: The attacker provides an identityID and a public key
pk′ID ∈ PK, and the oracle replaces the previous public key ofID with
pk′ID. Note thatpk′ID should be of correct shape and thus a valid public key,
such valid keys can be generated with ease by anyone from the master public
key.

◦ Extract Partial Private Key: The attacker provides an identity ID and the
oracle returns the partial private keydID corresponding to that identity.

◦ Extract Private Key: The attacker provides an identityID and the oracle
returns the full private keyskID corresponding to that identity.

◦ Decrypt: The attacker provides an identityID and ciphertextC, the oracle
responds by constructing the private keyskID corresponding to the identity
ID and its associated public keypkID. The oracle then returns the decryp-
tion of C under this private key. Here we need to observe that if the attacker
has replaced the public keypkID with a key of his choice then the oracle will
not decrypt using a corresponding private key and in generalthe decryption
will fail. This models a realistic scenario since there is noway for the oracle
to know the secret key corresponding to a replaced public key. However, if
we assume that the oracle still decrypts correctly then although unrealistic
but this would provide for a better security model. Hence we provide the
attacker with a more powerful decryption oracle than possible under reason-
able conditions by returning correct decryption of messages encrypted using
a replaced public key.

9.2.2. Adversaries. We consider two kinds of attackers for aCL-PKE scheme
which are

◦ Strong Type I attacker: This attacker is designed to model a third party who is
trying to gain information about the plaintext by observingthe corresponding
ciphertext. Such an attackerAI does not have access to themaster secret

44

keybut can request public keys, replace public keys with keys ofhis choice,
extract partial private keys and make decryption queries, all for identities of
his choice. However, there are certain restrictions on the actions which he
could perform, specifically related to the target identity which is denoted by
ID∗, the restrictions are

– AI cannot extract private key forID∗ at any point.

– AI cannot extract the private key of any identity for which it has re-
placed the public key. Allowing for such a possibility wouldbe unrea-
sonable since the public key has been replaced.

– AI cannot extract the partial private keydID∗ of ID∗ if he replaced the
public keypkID∗ before the challenge was issued. Allowing this would
enable the attacker to receive ciphertexts encrypted with apublic key
of his choice and possession of the partial private key will allow him to
trivially decrypt by generating the corresponding privatekey.

– In Phase 2described inSection 9.1, AI cannot make a decryption
query on the challenge cipher textC∗ for the identityID∗ unless the
public keypkID∗ used to create the challenge ciphertext has been re-
placed.

If a Strong Type I attacker indulges in any of the actions described above to
answer the challenges then he might be able to achieve success but we define
that as a loss.

◦ Strong Type II attacker: This attacker is designed to model the notion of an
honest-but-curiousKGC and the scheme should be safe from this kind of
attacker. Such an attackerAII does have access to themaster secret keybut
is trusted not to replace the public keys of the users. However, we still allow
AII to replace the public keys under certain restrictions, thisprovides us a
better model. The adversaryAII can computepartial private keysfor itself
from themaster secret key. AII can request public keys, extract private keys
and make decryption queries, all for identities of its choice. However there
are certain restrictions on the actions which he could perform, specifically
related to the target identity which is denoted byID∗, the restrictions are

– AII cannot extract private key forID∗ at any time.

– AII cannot extract the private key of any identity for which he has
replaced the public key.

– AII does not query the partial private key oracle since it can compute
dID for identity ID from msk which it possesses.

– AII cannot output a challenge identityID∗ for which he has replaced
the public key.

45

– In Phase 2described inSection 9.1, AII cannot make a decryption
query on the challenge cipher textC∗ for the identityID∗ unless the
public keypkID∗ used to create the challenge ciphertext has been re-
placed.

If a Strong Type II attacker indulges in any of the actions described above to
answer the challenges then he might be able to achieve success but we define
that as a loss.

9.3. Security Model for the Modified Scheme. As mentioned earlier by modi-
fying the scheme we aim to provide two-factor security. We would like to ensure
that even if the device is compromised the attacker cannot decrypt the encrypted
messages although he may have the access to the secret valuesin the device which
were used to encrypt the messages. We introduced the usage ofbiometric data to
achieve this and now we define an appropriate adversarial model which captures
the threat of the device being compromised. At this point we should also note that
we assume that the biometric identity of the user is only accessible to him and peo-
ple who know the user, this adds a social factor to the scheme.We cannot protect
against an attacker who has easy access to the user’s biometric data and also man-
ages to compromise the device. Such an attacker has all information that the user
has and hence there is no way to differentiate him from a validuser. We define
oracles and attackers in the subsequent sections to captureour threat model.

9.3.1. Oracles. In addition to the oracles already defined inSection 9.2.1the
attacker has access to one further oracle:

◦ Extract Biometric Identity: The biometric identity of the user is treated as
a semi-private value, which means that it is easily available to the user and
people who know the user but is significantly harder for an attacker to obtain
who does not know the user. This oracle returns the biometricidentityBID
of an user after the attacker provides a public identityID.

9.3.2. Adversaries. Due to inclusion of biometrics our scheme permits for a
strongerStrong Type I AttackerhoweverStrong Type II Attackeressentially re-
mains the same as defined previously inSection 9.2.2. We now formally define the
attackers:

◦ New Strong Type I Attacker: This attacker in our modified scheme is simi-
lar to theStrong Type I Attackerapart from a few changes that we describe.
The attackerAnew

I tries to model a third party who is trying to gain some
information about the encrypted messages.Anew

I has compromised the de-
vice and hence has access to partial private keydID∗ and the secret value
xID∗ , he may also replace the public keypkID∗ of the identityID∗ whose
device he has gained control of, although this does not give him any extra
advantage since he already knowsxID∗ . ThusAnew

I can receive messages

46

encrypted using a public key of his choice while in possession of the partial
private key, in the original scheme such a scenario would destroy all privacy
but here due to the scheme using biometric identityBID∗ of identity ID∗

to encrypt data the attacker gains nothing. However,Anew
I does have certain

restrictions imposed on his actions in addition to the ones that were imposed
onAI , these are:

– Anew
I cannot extract the biometric identityBID∗ of the target identity

ID∗ at any point. This is in line with our previous assumption that
Anew

I does not have access to biometrics of the users unknown to him.

◦ New Strong Type II Attacker: Just like theStrong Type II Attackerthis
attacker is designed to model an honest-but-curiousKGC. Anew

II has all
the powers whichAII had and additionally due to the modifications in the
scheme he can also extract the biometric identityBID∗ of the target iden-
tity ID∗ as well as for the other identities. All the constraints which were
applied toAII also apply here additionally we also assume thatAnew

II does
not compromise the device of the target identityID∗.

47

48

10. Concrete Original Construction

10.1. The Construction. The encryption scheme usesbilinear map groupsnamely
G of prime orderp for some large primep, the requirements of such a bilinear map
have been formally defined inDefinition 4.1. We further require that the3-DDH
for G described inDefinition 4.3is intractable.

The scheme proceeds through a sequence of seven subroutineswhich are de-
scribed in the pages to follow.

ALGORITHM 10.1. Setup.
Performed by theKGC— this is the first step in the encryption scheme in this step
theKGCgenerates themaster public keympk and themaster secret keymsk after
receiving the system security parameterk and bit lengthn of thepublic identity
ID. LetG be a bilinear map group of orderp > 2k andg be a generator forG.

Input: (1k, n).
Output: (mpk,msk).

1. Chooseγ ←− Z
×
p .

2. Setg1 = gγ .
3. Chooseg2 ←− G.
4. Choose vectors(u′, u1, . . . , un), (v′, v1, . . . , vn)←− G

n+1.
5. Write ID = i1i2 . . . in andw = w1w2 . . . wn as bit strings withij , wj ∈

{0, 1}.
6. Define hash functions

Fu :
{0, 1}n −→ G,

ID 7−→ u′
∏

0≤j≤n u
ij
j

and

Fv :
{0, 1}n −→ G,

w 7−→ v′
∏

0≤j≤n v
wj

j
.

7. Choose a collision resistant hash functionH : {0, 1}∗ → {0, 1}n as re-
quired inDefinition 4.4.

8. Define themaster public keyasmpk ← (g, g1, g2, u
′, u1, . . . , un, v

′, v1, . . . , vn).
9. Define themaster secret keyasmsk ← γ.

ALGORITHM 10.2. Extract.
Performed by theKGC — this step is executed after theReceiverauthenticates
himself asID to theKGC. TheKGC then generates thepartial private keydID
which is subsequently communicated to theReceiverin a secure manner.

Input: (mpk,msk, ID).
Output: dID.

1. Chooser←− Z
×
p .

49

2. ComputedID ← (d1, d2) = (gγ2 · Fu(ID)r, gr).
3. ReturndID.

ALGORITHM 10.3. SetSec.
Performed by the Receiver— in this step theReceivercomputes a randomly cho-
sen secret valuexID.

Input: mpk.
Output: xID.

1. ChoosexID ←− Z
×
p .

2. ReturnxID.

ALGORITHM 10.4. SetPub.
Performed by the Receiver— in this step theReceivercomputes and freely dis-
tributes thepublic keypkID.

Input: (xID,mpk).
Output: pkID.

1. ComputepkID ← (X,Y) = (gxID , gxID
1).

2. ReturnpkID.

ALGORITHM 10.5. SetPriv.
Performed by the Receiver— in this step theReceivercomputes hisprivate key
skID which he uses to decrypt messages encrypted usingpkID andID.

Input: (xID, dID,mpk, ID).
Output: skID.

1. Chooser′ ←− Z
×
p .

2. Set(d1, d2)← dID.
3. Compute private key as

skID ← (s1, s2) =
(

dxID
1 · Fu(ID)r

′

, dxID
2 · gr

′

)

.

4. ReturnskID.

ALGORITHM 10.6. Encrypt.
Performed by the Sender— this step computes the encryption of messagem ∈
GT .

Input: (m, pkID, ID,mpk).
Output: C.

1. If e(X, g1)/e(g, Y) = 1GT
then

2. Chooses←− Z
×
p .

50

3. Set(C0, C1, C2)← (m · e(Y, g2)
s, gs, Fu(ID)s).

4. Computew ← H(C0, C1, C2, ID, pkID).
5. SetC3 ← Fv(w)

s.
6. ReturnC = (C0, C1, C2, C3).
7. Else
8. ReturnFAIL .

In Step1 in Algorithm 10.6we check for the correctness of the public keypkID, if
pkID is of the right shape then the ciphertextC is computed and returned else the
algorithm aborts with FAIL.
In Step4 in Algorithm 10.6we include the hashFv(w) of w, since our encryption
scheme is homomorphic this hash acts as a signature on ciphertext and defeats the
adversary’s attempt to create valid encryptions by combining other encryptions and
winning theIND-CCA game described inSection 9.1.

ALGORITHM 10.7. Decrypt.
Performed by the Receiver— this decrypts the message encrypted using receiver’s
private keypkID and identityID.

Input: (C, skID,mpk).
Output: m.

1. Set(C0, C1, C2, C3)← C.
2. Letw ← H(C0, C1, C2, ID, pkID).
3. If e(C1, Fu(ID) · Fv(w)) = e(g,C2 · C3) then
4. Set(s1, s2)← skID.

5. Computem← C0 ·
e(C2, s2)

e(C1, s1)
.

6. Returnm.
7. Else
8. ReturnFAIL .

In Step3 in Algorithm 10.7we check for the validity of the ciphertext by checking
the hashFv(w), if C is a valid ciphertext then we proceed with the decryption else
the algorithm aborts with FAIL.

We check for completeness by substituting the values for(C0, C1, C2, s1, s2) in

(s1, s2) =
(

dxID
1 · Fu(ID)r

′

, dxID
2 · gr

′

)

.

This can be rewritten as

(s1, s2) =
(

(gγ2 · Fu(ID)r)xID · Fu(ID)r
′

, (gr)xID · gr
′

)

=
(

gγxID
2 · Fu(ID)rxID+r′ , grxID+r′

)

=
(

gγxID
2 · Fu(ID)t, gt

)

51

wheret = rxID + r′. Now, substituting the values we obtain

C0 ·
e(C2, s2)

e(C1, s1)
= m · e(Y, g2)

s ·
e
(

Fu(ID)s, gt
)

e (gs, gγxID
2 · Fu(ID)t)

= m · e (gxID
1 , gs2) ·

e
(

Fu(ID)s, gt
)

e (gs, gγxID
2) · e (gs, Fu(ID)t)

= m ·
e (gγxID , gs2)

e (gs, gγxID
2)

= m.

Thus we conclude that the decryption of an encrypted messagegives us back the
original messagem and the scheme functions correctly.

10.2. Security Reduction. In this section we define the security of our scheme.
We base the security of our scheme on the intractability of the3-DDH in the groups
which are used by our construction. To capture the idea of security we first define
theorems which highlight the advantage gained by an attacker in the described
security model. After that we provide the proofs of these theorems.

THEOREM 10.8. SupposeAI is a Strong Type I adversary that runs in timet,
makes at mostqd decryption queries,qppk partial private key queries, andqpk pri-
vate key queries. Then there exists

– an adversaryA′ against the3-DDH that has advantageAdv3-DDH
A′ (k) and

runs in timeO (t) +O
(

ε−2 ln δ−1
)

for sufficiently smallε andδ, and

– an adversaryA′′ against the collision resistance of the hash functionH that
runs in timeO (t) and has advantageAdvCR

A′′ (k)

such that the advantageAdvCL-CCA
AI

(k) of AI is bounded by

AdvCL-CCA
AI

(k) < 8(qppk+ qpk)qd(n+1)2 · (8 ·Adv3-DDH
A′ (k)+ δ)+AdvCR

A′′ (k).

THEOREM 10.9. SupposeAII is a Strong Type II adversary that runs in timet,
makes at mostqd decryption queries andqpk private key queries. Then there exists

– an adversaryA′ against the3-DDH that has advantageAdv3-DDH
A′ (k) and

runs in timeO (t) +O
(

ε−2 ln δ−1
)

for sufficiently smallε andδ, and

– an adversaryA′′ against the collision resistance of the hash functionH that
runs in timeO (t) and has advantageAdvCR

A′′ (k)

such that the advantageAdvCL-CCA
AII

(k) of AII is bounded by

AdvCL-CCA
AII

(k) < 8qpkqd(n+ 1)2 · (8 · Adv3-DDH
A′ (k) + δ) +AdvCR

A′′ (k).

52

Interpretation The advantage of the adversaries against the scheme presented in
Section 10is bound by the results ofTheorem 10.8andTheorem 10.9. Thus if
eitherAI orAII exist such that it has a significant advantage against breaking the
indistinguishability of the scheme then this would imply the existence of attackers
with significant advantage against both solving the3-DDH and breaking the col-
lision resistant hash functionH. Such attackers can be used to device algorithms
which solve the3-DDH and find collisions ofH in polynomial time.

For the algorithms mentioned in the above theorems a solution can be conve-
niently found for whichε ≈ 0 or δ ≈ 0 but such a solution provides no advantage
to the adversary as it is too slow and the equation is renderedmeaningless. To gain
significant advantage in breaking the security of the schemethe adversary must
find an algorithm with sufficiently smallε andδ such that the algorithm runs in
polynomial time.

Framework The motivation behind our security reduction is that we wantto use
the attacker to solve the3-DDH. However, our described protocol cannot be used
to do this in its original form hence to do so we need to feed theattacker with
values which are generated differently than in the originalprotocol. We create an
environment which interacts with the attacker during theIND-CCA game. The
attacker, assuming that he works within the scheme scenario, should not be able
to detect any difference since that could change his entire behaviour. Thus the
main challenge underlying the whole reduction is to change the original protocol
to model the3-DDH without inducing changes which the attacker can ascertain.

The idea behind provingTheorem 10.8andTheorem 10.9is that we want to
reduce the challenge presented to the attacker to a sequenceof randomly generated
values which model the problem defined inDefinition 4.3. The argument then
follows that if the attacker cannot differentiate between agenuine challenge from
the one which models the3-DDH then he cannot predict what he is computing.
Thus, in this modified scenario if he manages to win theIND-CCA game with
a significant advantage then we can conclude that such an attacker can solve the
3-DDH. Thus we show that the security of our scheme rests on the intractability
of the3-DDH in G. This is a very generic way of describing things and we define
them formally in pages to follow.

We achieve our agenda by starting with the scenario which represents the sit-
uation when the scheme begins and then gradually change it inways which the
attacker cannot detect. Finally, we end up with a scenario based on which we can
draw conclusions about attacker’s advantage. We present such changes in the form
of games that we describe subsequently.

53

B

Challenger

Adversary

Challenge, Guess

Oracle Calls, Response

Figure 10.1: The arrangement of the security reduction. TheChallenger feeds
the attack environmentB with values at different stages of game hopping. The
attack environmentB is responsible for setting up the scheme and answering oracle
calls. TheAdversaryinteracts with the attack environmentB to get responses to the
oracle calls that he makes. Finally, the attack environmentB presents theAdversary
with the indistinguishability challenge and theAdversarymakes a guess.

LEMMA 10.10. For all i, let Si denote the event that an attacker is successful in
Gamei and thus outputs the correct guessd′ of d, the advantage of the attacker is
denoted byAdvi = |Pr (Si)− 1/2|.
Assume that Gamei is a game where the attacker wins with success probability
Pr (Si). E denotes an event which may occur during the attacker’s execution such
that

◦ E is detectable by the simulator;

◦ E is independent ofSi;

◦ Gamei and Gamei + 1 are identical unlessE occurs, in which case the
game halts and outputs a random bit.

Then we have

Advi+1 = Pr (¬E) ·Advi.

PROOF (Lemma 10.10). The proof of the lemma is straight forward and was first
presented byDent (2006a). We note here that the gamesi andi + 1 are identical
whenE does not occur. Therefore, we have

Si+1 ∩ ¬E = Si ∩ ¬E,

¬Si+1 ∩ ¬E = ¬Si ∩ ¬E

54

and by the independence assumption

Pr (Si ∩ E) = Pr (Si) · Pr (E) .

During the gamei + 1 if E occurs then the game halts and outputs a random bit

which impliesPr (Si+1 | E) =
1

2
.

Thus,

Pr (Si+1 ∩ E) = Pr (Si+1 | E) · Pr (E)

=
1

2
· Pr (E) .

Similarly, we have

Pr (¬Si+1 ∩ E) =
1

2
· Pr (E) .

Now,

|Pr (Si+1)− 1/2| =

∣

∣

∣

∣

Pr (Si+1 ∩ E) + Pr (Si+1 ∩ ¬E)−
1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
· Pr (E) + Pr (Si) · Pr (¬E)−

1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
· (Pr (E)− 1) + Pr (Si) · Pr (¬E)

∣

∣

∣

∣

=

∣

∣

∣

∣

−
1

2
· Pr (¬E) + Pr (Si) · Pr (¬E)

∣

∣

∣

∣

= |Pr (Si)− 1/2| · Pr (¬E)

and thus we obtainAdvi+1 = Pr (¬E) ·Advi. �

We now proceed to proveTheorem 10.8and Theorem 10.9, these theorems
were originally presented and proved byDent, Libert & Paterson(2008). Our
proof follows the same pattern and we have explained the results obtained in further
detail.

PROOF (Theorem 10.8). We proceed to proveTheorem 10.8through a series of
games which involveType I attackerAI who tries to guess the hidden bitd in
the IND-CCA game described inSection 9.1. The attacker outputs a guessd′ on
conclusion of the sequence of games.

Game 1 After the scheme has been specified as described inSection 10.1we
begin Game 1, in this game we designate the list of identities with which the
Type I attackerAI interacts and the manner of those interactions. The actual at-
tack environment with which attacker interacts is denoted by B, it generates the

55

master key, the public parameters, and the initial user’s public keys and secret
values. It is assumed thatB can answer decryption queries without the knowl-
edge of matching secret values for changed public keys. In this real attack we
assumePPK = {ID1, . . . , IDqppk} be the list of identities for which the at-
tacker asks for apartial private keyextraction and letPK = {ID′

1, . . . , ID
′
qpk
}

be the list of identities for which the attacker asks for aprivate keyextraction. Let
D = {w1, . . . , wqd} be the list of strings involved in decryption queries, where
wj = H(C0, C1, C2, IDj , pkj). The identity and the public key under attack by
the attacker is denoted by(ID∗, pkID∗). C∗ = (C∗

0 , C
∗
1 , C

∗
2 , C

∗
3) denotes the chal-

lenge cipher text andw∗ = H(C∗
0 , C

∗
1 , C

∗
2 , ID

∗, pkID∗). The challenge ciphertext
is handed to the attacker as defined inSection 9.1and the attacker must respond
accordingly, this concludesGame 1.

Game 2 In this game we change the generation of themaster public keyin a
way that does not effect its distribution. We achieve this asfollows, the attack
environmentB picks a, b ∈R Z

×
p and setsg1 = ga, g2 = gb, choosesκu, κv ∈

{0, . . . , n}. Letτu, τv be integers such that(n+1)τu, (n+1)τv < p, we specify the
particular values inGame 7. The environment selectsx′u ∈R N<τu , x

′
v ∈R N<τv

and vectors(xu,1, . . . , xu,n) ∈R N
n
<τu , (xv,1, . . . , xv,n) ∈R N

n
<τv . It also picks

y′u, y
′
v ∈R Zp and vectors(yu,1, . . . , yu,n), (yv,1, . . . , xy,n) ∈R Z

n
p . The remaining

master public keyelements are chosen as follows

u′ = g
x′

u−κuτu
2 gyu′ , uj = g

xu,j

2 gyu,j for 0 ≤ j ≤ n(10.11)

and

v′ = g
x′

v−κvτv
2 gyv′ , vj = g

xv,j

2 gyv,j for 0 ≤ j ≤ n.(10.12)

As seen the values of(x′u, x
′
v, xu,j , xv,j) and(y′u, y

′
v, yu,j, yv,j) are chosen differ-

ently this is because they are used in(10.11)and(10.12)to define(u′, uj , v′, vj).
The exponents ofg andg2 are meaningful modulop only hence we need to restrict
the choice of(x′u, xu,j) and(x′v, xv,j) to N<τu andN<τv respectively.

We note that the number of possible values ofuj andvj arepτu andpτv respec-
tively because of the choice of the exponents in(10.11)and(10.12). However, the
distribution of themaster public keyremains unchanged because all the elements
of G are equally likely to be chosen. This is due to the fact that the exponents
are randomly chosen from lists containingpτu andpτv elements where each expo-
nent appears equally frequently. Therefore,Game 1is identical toGame 2, hence
Pr (S1) = Pr (S2) and thusAdv1 = Adv2.

Game 3 This game is the same asGame 2except the environment halts if the
attacker submits a decryption query(C, ID, pk) for a well-formed cipher text
C = (C0, C1, C2, C3) wherew is equal to the value of a previously submit-
ted cipher text orw is equal tow∗. Such a legal decryption query means either

56

C 6= C∗ or (ID, pk) 6= (ID∗, pk∗). Both situations reveal a collision of the hash
function, thus we can construct an algorithmA′′ such that|Pr (S2)− Pr (S3)| ≤
AdvCR

A′′ (k), since the only difference betweenGame 3andGame 2is the condition
enforced by the collision of the hash function hence the difference of the success
probabilities is the lower bound onAdvCR

A′′ (k).

We note that the algorithmA′′ which runs in polynomial-time does exist even
though it requires to simulate a decryption oracle which is clearly a non-polynomial-
time function. However, by modifying the way we define the master key using the
values defined in the previous games it is possible to successfully decrypt using
only the ciphertext and the public key, we show this inGame 8.

Game 4 In this game we modify the environment by flipping a coincmode ∈R
{0, 1} at the beginning of the game. Ifcmode = 0 thenB expects thatAI will never
extract the matching partial private key and choose to be challenged on the identity
whose public key was replaced. Ifcmode = 1 thenB expects thatAI will extract
the partial private key of the identity under attack at some point.
After the challenge is issued, ifcmode = 0 andAI does not replace the public key
thenB aborts and simulatesAI ’s output asd′ ∈R {0, 1}. Similarly, B aborts if
cmode = 1 andAI has replaced the challenge public key. The random variable
cmode is completely hidden from the attackerAI thus he cannot know when the

game is aborted.B aborts with a probability of1/2, this gives usAdv4 =
1

2
·Adv3

according toLemma 10.10.

Game 5 Before modifyingGame 4we redefineFu(ID) andFv(w) with the help
of specific choice of the values(xu,j, yu,j, xv,j , yv,j) from (10.11)and(10.12). To
this end we define

Ju(ID) = x′u +
n
∑

j=1

ijxu,j − κuτu, Ku(ID) = y′u +
n
∑

j=1

ijyu,j,

Jv(w) = x′v +

n
∑

j=1

wjxv,j − κvτv, Kv(w) = y′v +

n
∑

j=1

wjyv,j,

whereID = i1 . . . in andw = w1 . . . wn aren-bit strings. For any string
ID,w ∈ {0, 1}n we have

Fu(ID) = u′ ·

n
∏

j=1

u
ij
j .

57

We can rewrite this as

Fu(ID) = g
x′

u−κuτu
2 gyu′ ·

n
∏

j=1

(g
xu,j

2 gyu,j)ij

= g
x′

u−κuτu
2 gyu′g

n∑

j=1
ijxu,j

2 g

n∑

j=1
ijyu,j

= g
x′

u+
n∑

j=1
ijxu,j−κuτu

2 g
yu′+

n∑

j=1
ijyu,j

= g
Ju(ID)
2 · gKu(ID).

Similarly, we obtain

Fv(w) = v′ ·
n
∏

j=1

v
wj

j .

This can be rewritten as

Fv(w) = g
Jv(ID)
2 · gKv(ID).

Game 5is identical toGame 4except when the attackerAI outputs its guess
d′ of d then the environmentB checks whetherJu(ID∗) = Jv(w

∗) = 0 mod
p. If Ju(ID

∗) 6= 0 or Jv(w∗) 6= 0 thenB aborts and simulatesAI ’s output
choosing uniformly randomlyd′ ∈R {0, 1}. The values(x′u, xu,1, . . . , xu,n) and
(x′v, xv,1, . . . , xv,n) are hidden from the attacker and hence it can only come up
with ID∗ such thatJu(ID∗) = 0 by chance.

Therefore we have

Pr (Ju(ID
∗) = 0 mod p)

= Pr (Ju(ID
∗) = 0 mod p | Ju(ID

∗) = 0 mod τu) ·

Pr (Ju(ID
∗) = 0 mod τu)

=
1

n+ 1
·
1

τu

=
1

τu(n+ 1)
.

We note here thatPr (Ju(ID∗) = 0 mod p | Ju(ID
∗) = 0 mod τu) is precisely

1

n+ 1
due to the fact that under the given circumstancesJu(ID

∗) is a multiple of

τu which would in turn imply thatx′u +
n
∑

j=1
ijxu,j is also a multiple ofτu. Now,

there is exactly one value out of the possiblen+1 values thatκu can take to make

Ju(ID
∗) = 0. Also, we havePr (Ju(ID∗) = 0 mod τu) =

1

τu
because this can

58

happen only ifJu(ID∗) = 0 hence there is exactly one choice forJu(ID
∗) out of

the possibleτu choices. This leads us to the given probability.

Similarly, we obtainPr (Jv(w∗) = 0 mod p) =
1

τv(n+ 1)
sinceJv(w∗) = 0

purely by chance. Now applying the game hopping described inLemma 10.10

leads us toAdv5 =
Adv4

τuτv(n+ 1)2
.

Game 6 In this game we modify the way the environmentB generates the chal-
lenge ciphertext.B picks up a random valuec ∈R Z

×
p and setsC∗

1 = gc. Let
identityID∗’s public key at the challenge phase be denoted bypkID∗ = (X∗, Y ∗).
B flips a coind∗ ∈R {0, 1} and computes

C∗
0 = md∗ · e(Y

∗, g2)
c,

C∗
2 = C

∗Ku(ID∗)
1 = (gc)Ku(ID∗)

and

C∗
3 = C

∗Kv(w∗)
1 = (gc)Kv(w∗)

wherew∗ = H(C∗
0 , C

∗
1 , C

∗
2 , ID

∗, pkID∗). The returned ciphertext(C∗
0 , C

∗
1 , C

∗
2 , C

∗
3)

has the correct distribution sinceJu(ID∗) = Jv(w
∗) = 0 and hence we have

Adv6 = Adv5.

Game 7 In this game we modifyGame 6such that afterAI outputs his guessd′

the environmentB checks if one of the following conditions are true

◦ cmode = 0 andJu(IDi) = 0 mod τu for someIDi ∈ PPK with
i ∈ {1, . . . , qppk}.

◦ Ju(IDj) = 0 mod τu for someIDj ∈ PK with j ∈ {1, . . . , qpk}.

◦ Jv(wℓ) = 0 mod τv for somewℓ ∈ D with ℓ ∈ {1, . . . , qd}.

We defineE as the event that any of the aforementioned conditions hold.We ob-
serve thatDent’s game hopping technique cannot be applied at this stage since even
thoughE is recognisable there is no surety that it is independent ofS6. Attacker
AI can model his queries by choosingPK andPPK depending uponmd in such
a way thatPr (E) is significantly different in different query sequences. Weuse a
re-normalisation technique suggested inWaters(2005) to circumvent this problem.
We derive a non-negligible lower bound forPr (¬E) for any set of oracle queries.
We estimate the probability thatE occurs during a particular set of oracle queries
that are made while runningAI and then addartificial aborts to ensure thatAI

aborts with exactly the probability given by this lower bound. We now derive the
theoretical lower bound.

59

For cmode = 1 we find

Pr (¬E) = Pr

(

∧

ID∈PK

Ju(ID) 6= 0 mod τu ∧
∧

w∈D

Jv(w) 6= 0 mod τv

| Ju(ID
∗) = 0 mod τu ∧ Jv(w

∗) = 0 mod τv

)

= Pr

(

∧

ID∈PK

Ju(ID) 6= 0 mod τu | Ju(ID
∗) = 0 mod τu

)

·

Pr

(

∧

w∈D

Jv(w) 6= 0 mod τv | Jv(w
∗) = 0 mod τv

)

.

Now, considering the first term of right hand side

Pr

(

∧

ID∈PK

Ju(ID) 6= 0 mod τu | Ju(ID
∗) = 0 mod τu

)

= 1− Pr

(

∨

ID∈PK

Ju(ID) = 0 mod τu | Ju(ID
∗) = 0 mod τu

)

≥ 1−
∑

ID∈PK

Pr (Ju(ID) = 0 mod τu | Ju(ID
∗) = 0 mod τu)

≥ 1−
qpk
τu

.

Similarly, the second term of right hand side

Pr

(

∧

w∈D

Jv(w) 6= 0 mod τv | Jv(w
∗) = 0 mod τv

)

≥ 1−
qd
τv

.

Hence we have

Pr (¬E) ≥ (1−
qd
τv

)(1 −
qpk
τu

).

60

For cmode = 0 we obtain

Pr (¬E) = Pr

(

∧

ID∈PK∪PPK

Ju(ID) 6= 0 mod τu ∧
∧

w∈D

Jv(w) 6= 0 mod τv

| Ju(ID
∗) = 0 mod τu ∧ Jv(w

∗) = 0 mod τv

)

= Pr

(

∧

ID∈PK∪PPK

Ju(ID) 6= 0 mod τu | Ju(ID
∗) = 0 mod τu

)

·

Pr

(

∧

w∈D

Jv(w) 6= 0 mod τv | Jv(w
∗) = 0 mod τv

)

.

Now, handling the equation just like we did earlier we have

Pr (¬E) ≥ (1−
qd
τv

)(1−
qpk + qppk

τu
).

Putting the above results together we get

Pr (¬E) ≥











(1−
qd
τv

)(1 −
qpk
τu

) if cmode = 1

(1−
qd
τv

)(1 −
qpk + qppk

τu
) if cmode = 0.

On settingτv = 2qd, τu = 2qpk if cmode = 1 andτu = 2(qpk + qppk) if cmode = 0
we obtainPr (¬E) ≥ 1/4. This should be done in accordance to the specifications
of τu andτv provided inGame 2.

As mentioned before this is just a theoretical lower bound for not aborting, to
employ game hopping we need to ensure that the probability ofnot aborting is ex-
actly 1/4. We estimate the probability that a certain sequence of oracle queries
made by the attackerAI may cause an abort by repeatedly picking the values
x′u, xu,j, x

′
v andxv,j and checking if these values cause an abort for the sequence

of oracle queries thatAI has made. This does not require rerunning the attackerAI

but simply checking whether the simulator aborts as mentioned before. Also we
do not constraint the values ofx′u, xu,j, x

′
v andxv,j . We must note that in order to

have no impact on the attacker’s behaviour due to these changes we have to ensure
that the master public key value stays same. Hence, we may assume thaty values
are chosen so that master public key elements are as in the original execution of
AI . It might appear at the outset that we need to solve the discrete logarithm prob-
lem to achieve this but looking at the definition ofx′u, xu,j, x

′
v andxv,j in Game 2

it becomes clear that this is not the case. We know thatg2 = gb hence a change in
thex values can be adjusted by picking a suitabley value without the need to solve
the discreet logarithm problem.

61

The probability that we do not abort for a given sequence of oracle queries
made byAI is given byη′, i.e.Pr (¬E) = η′. We approximate the probability for
η′ given by the repeated sampling of thex values byη′′.

Using the Chernoff bound we see thatPr (|η′ − η′′| ≥ ε) ≤ δ when we con-
siderO

(

ε−2ℓnδ−1
)

samples andε, δ ≥ 0. To attain a definite abort probability we

force an artificial abort with probability
η′′ − 1/4

η′′
wheneverη′′ ≥ 1/4. In those

casesB assumes thatAI outputs a randomd′.
Now the probability of the abort can be estimated by

Pr
(

Abort
∣

∣

∣

∣

∣η′ − η′′
∣

∣ < ε
)

= Pr (Natural Abort) + Pr (Artificial Abort)

= (1− η′) +
η′′ − 1/4

η′′
η′

= (1− η′) + (η′′ − 1/4)
η′

η′′

≤ (1− η′) + (η′′ − 1/4)
η′

η′ − ε

≤ (1− η′) + (η′′ − 1/4)(1 +
ε

η′ − ε
)

asη′ ≥ 1/4, we can estimate

≤ (1− η′) + (η′′ − 1/4)(1 +
4ε

1− 4ε
)

≤ (1− η′) + (η′ + ε− 1/4)(1 + 5ε),

sinceε ≤
1

20
for sufficiently smallε

≤ (1− η′ + η′ + ε− 1/4) + 5ε(η′ − 1/4) + 5ε2

≤ 3/4 + ε+ 5ε+ 5ε2, since(η′ − 1/4) ≤ 1

≤ 3/4 + 6ε+ 5ε2

≤ 3/4 + 7ε.

Now, we have

Pr (Abort) = Pr
(

Abort
∣

∣

∣

∣

∣η′ − η′′
∣

∣ < ε
)

· Pr
(∣

∣η′ − η′′
∣

∣ < ε
)

+

Pr
(

Abort
∣

∣

∣

∣

∣η′ − η′′
∣

∣ ≥ ε
)

· Pr
(
∣

∣η′ − η′′
∣

∣ ≥ ε
)

≤ (3/4 + 7ε) · 1 + 1 · δ

≤ 3/4 + 7ε+ δ.

Therefore, the abort does not occur with a probability of at least

1− Pr (Abort) ≥ 1− 3/4 − 7ε− δ

≥ 1/4 − 7ε− δ.

62

Now employingLemma 10.10we obtain

Adv7 ≥ Adv6 (1/4 − 7ε − δ)

≥ (Adv6 − δ) (1/4− 7ε)

Forε ≤ 1/56, we get

Adv7 ≥ Adv6 (1/4− 1/8)

≥
Adv6 − δ

8

Game 8 In this game we change the way we treatAI ’s queries. LetA = ga

wherea ∈R Z
×
p and unknown toB. The generation of the master public key is

changed,g1 is generated depending upon the value ofcmode.

◦ If cmode = 0 thenB setsg1 = A without the knowledge of the master secret
a.

◦ If cmode = 1 thenB setsg1 = gγ with γ ∈R Z
×
p , and storesγ for later use.

We now model our response to the queries based on the value ofcmode.

◦ Request Public Keyfor an identity ID:

– If cmode = 0, B picksxID ∈R Z
×
p and returnspkID ← (gxID , gxID

1)

– If cmode = 1, B picksxID ∈R Z
×
p and returnspkID ← (AxID , AγxID)

◦ Replace Public Keyfor an input(ID, (X̃, Ỹ)): B checks if(X̃, Ỹ) of the
correct shape and then replaces the public key ofID.

◦ Extract Partial Private Keyfor an identity ID:

– If cmode = 0,B aborts ifJu(ID) = 0 mod τu just like previous game.
Otherwise it follows thatJu(ID) 6= 0 mod τu and thusJu(ID) 6= 0
mod p andB picksr ∈R Z

×
p and returnsdA = (d1, d2) where

d1 ← Fu(ID) · g
−Ku(ID)/Ju(ID)
1

and

d2 ← gr · g
−1/Ju(ID)
1 ,

this can be written as

d1 = Fu(ID) · (g)−aKu(ID)/Ju(ID)

= Fu(ID) · (Fu(ID)1/Ku(ID)·

g
−Ju(ID)/Ku(ID)
2)−aKu(ID)/Ju(ID),

sinceFu(ID) = g
Ju(ID)
2 · gKu(ID)

= Fu(ID) · (Fu(ID)−a/Ju(ID) · ga2)

= ga2 · Fu(ID)r̃

63

and

d2 = gr · (ga)−1/Ju(ID)

= gr̃,

wherer̃ = r −
a

Ju(ID)
.

– If cmode = 1, B usesmsk = γ to calculate the partial private key using
the construction.

◦ Extract Private Keyfor an identity ID:B aborts ifJu(ID) = 0 mod τu
just like previous game. Otherwise it follows thatJu(ID) 6= 0 mod τu and
thusJu(ID) 6= 0 mod p. Let pkID = (X,Y) be the original public key
for ID, B pickst ∈R Z

×
p and returnsskID = (s1, s2) where

(s1, s2) =
(

Fu(ID)t · Y −Ku(ID)/Ju(ID), gt · Y −1/Ju(ID)
)

.

Now, usingFu(ID) = g
Ju(ID)
2 · gKu(ID) we have

– If cmode = 0, then the secret value isxID and implicitly defined master

key value isa, hence(s1, s2) =
(

gaxID
2 · Fu(ID)t̃, gt̃

)

where t̃ =

t−
axID

Ju(ID)
.

– If cmode = 1, then the implicitly defined secret value isaxID and the

master key value isγ, hence(s1, s2) =
(

gaγxID
2 · Fu(ID)t̃, gt̃

)

where

t̃ = t−
aγxID
Ju(ID)

.

◦ Decrypt a valid ciphertextC = (C0, C1, C2, C3) encrypted for an iden-
tity ID using the public keypkID = (X,Y) which may or may not have
been replaced by the attacker: Letw = (C0, C1, C2, ID, pkID), B aborts if
Jv(w) = 0 mod τv just like the previous game and choosesd′ ∈R {0, 1}.
Otherwise it follows thatJv(w) 6= 0 mod τv henceJv(w) 6= 0 mod p and

C3 =
(

g
Jv(w)
2 gKv(w)

)s
andC1 = gs wheres ∈R Z

×
p .

Now,B extracts

gs2 =

(

C3

C
Kv(w)
1

)1/Jv(w)

and computese(Y, g2)s, this allows for the computation ofm =
C0

e(Y, g2)s

regardless of the fact whether(X,Y) is the original public key or not.

Changing the generation of the master key does has no effect on B’s ability to
answerAI ’s queries like inGame 7and the distribution of the master key remains
unchanged, hence we haveAdv8 = Adv7.

64

Game 9 In this game we modify the generation of the ciphertext again. Using
variablesb, c ∈R Z

×
p defined inGame 2andGame 6respectively. We setC∗

1 = gc

andT = Abc.

◦ If cmode = 0, let pkID∗ = (X∗, Y ∗) be identityID∗’s current public key.B
flips a binary coind∗ ∈R {0, 1} and computes

C∗
0 = md∗ · e(X

∗, T)(10.13)

= md∗ · e(g
x∗

, gabc)

= md∗ · e(g
ax∗

, gbc)

= md∗ · e(Y
∗, g2)

c.

It then computesC∗
2 = (gc)Ku(ID∗), w∗ = H(C∗

0 , C
∗
1 , C

∗
2 , ID

∗, pkID∗) and
C∗
3 = (gc)Kv(w∗). If Jv(w∗) 6= 0 mod p or Ju(ID∗) 6= 0 mod p thenB

aborts like inGame 5otherwise it returns(C∗
0 , C

∗
1 , C

∗
2 , C

∗
3).

◦ If cmode = 1, B retrievesxID∗ such thatpkID∗ = (AxID∗ , AγxID∗), flips a
binary coind∗ ∈R {0, 1} and computes

C∗
0 = md∗ · e(Y

∗, g2)
c

= md∗ · e(A
γxID∗ , gb)c

= md∗ · e(g
aγxID∗ , gbc)

= md∗ · e(g, g
abc)γxID∗

= md∗ · e(g, T)
γxID∗(10.14)

It then computesC∗
2 = (gc)Ku(ID∗), w∗ = H(C∗

0 , C
∗
1 , C

∗
2 , ID

∗, pkID∗) and
C∗
3 = (gc)Kv(w∗). If Jv(w

∗) 6= 0 mod p thenB aborts like inGame 5
otherwise it returns(C∗

0 , C
∗
1 , C

∗
2 , C

∗
3).

Since we haveJv(w∗) = 0 mod p, these changes do not affect the distribution of
the challenge ciphertext and we haveAdv9 = Adv8.

Game 10 In this game we change the challenge phase again.B only retains
g2 = gb andC∗

1 = gc and forgets the valuesb, c. Challenge is constructed as shown
in equations(10.13)and(10.14)butT is chosen randomly,T ∈R G. The simulator
only uses the valuesga, gb, gc and never touchesa, b, c. The transition between
Game 9andGame 10is based upon the indistinguishability ofT = gabc fromT ∈R
G and both games are equal unless there exists a probabilisticpolynomial-time
algorithmA′ which can tell the difference between the two values. This isclearly
an instance of the3-DDH which we wanted to achieve from the very beginning.
Since the only difference betweenGame 9andGame 10is the condition enforced
by the indistinguishability ofT = gabc from T ∈R G hence the difference of the

65

success probabilities ofGame 9andGame 10is the lower bound onAdv3-DDH
A′ (k).

Therefore we have

|Pr (S9)− Pr (S10)| ≤ Adv3-DDH
A′ (k)

AdditionallyC∗
0 now reveals no information aboutmd∗ and is completely indepen-

dent ofd∗, hencePr (S10) = 1/2. This brings game hopping to an end.
We now combine the results obtained from the previous games.We have

Adv7 = Adv8 = Adv9 ≤ Adv3-DDH
A′ (k)

and

Adv5 = Adv6 ≤ 8 ·Adv7 + δ

also

Adv5 =
Adv4

τuτv(n + 1)2

whereτu ≤ 2(qppk + qpk) andτv = 2qd. And thus

Adv4 ≤ 2(qppk + qpk) · 2qd(n+ 1)2 ·Adv5

≤ 4qd(qppk + qpk)(n+ 1)2 · (8 · Adv7 + δ).

We also have

Adv3 = 2 ·Adv4

and

Adv1 = Adv2 = |Pr (S2)− 1/2|

≤ |Pr (S2)− Pr (S3)|+ |Pr (S3)− 1/2|

≤ AdvCR
A′′ (k) +Adv3.

Combining the above equations we finally have

Adv1 < 8qd(qppk + qpk)(n + 1)2 · (8 · Adv3-DDH
A′ (k) + δ) +AdvCR

A′′ (k). �

PROOF (Theorem 10.9). The proof forTheorem 10.9is similar to the proof of
Theorem 10.8with differences inGames 7, 8, 9and10. We note thatAII never
makes a partial private key query and has the access to the master secret keymsk =
γ at the beginning of the game.

In Game 7andGame 8, B treats all queries as in case ofcmode = 1 and hands
msk = γ toAII . In Game 9all queries are handled as in the case ofcmode = 1
and the challenge ciphertext is computed using(10.14). Finally, in Game 10we
combine all the results according to the changes described in Game 8and 9 to
obtain the final equation. �

66

Discussion The proofs ofTheorem 10.8andTheorem 10.9show that the scheme
is secure against the adversaries described inSection 9.2. Thus in a manner of
speaking breaking the scheme under the imposed constraintswould be equivalent
to solving the3-DDH problem and breaking the collision resistant hash function
H. These are hard problems and basing our security on them gives an idea of the
hardness of breaking the indistinguishability of the scheme.

At this point we should note that at the onset of the games we assume the
knowledge of the number of oracle queries the attacker makes, we denote this by
qd, qppk andqpk. This might not be possible in general hence to achieve this we
make an assumption about the number of queries made. If our assumption seems
too small or too large then we adjust the values accordingly and try again. For the
purpose of our proofs we start with the correct assumed values. These proofs also
show that certificateless schemes can be constructed that are secure in the standard
model. We demonstrate how this construction can be implemented efficiently in
Section 12.4.

67

68

11. Concrete Derived Construction

11.1. The Construction. The new encryption scheme is derived from the scheme
previously described inSection 10. We take the originally proposed construction
and modify it to include biometrics. As discussed earlier the motivation behind
doing so is to achieve an encryption scheme which provides two-factor security.
To encrypt messages the sender uses the receiver’s public key as well as biometrics
and decryption of messages requires the receiver to provideboth the private key
and his biometrics. This in turn safe guards the receiver against device compro-
mise. Since the proposed scheme is an extension of the one discussed earlier, it
also usesbilinear map groupsand we again require the3-DDH for G described in
Definition 4.3to be intractable in such groups.

The modified scheme proceeds through a sequence of six subroutines which
are described in the pages to follow.

ALGORITHM 11.1. Setup.
Performed by theKGC— this is the first step in the encryption scheme in this step
the KGC generates themaster public keympk andmaster secret keymsk after
receiving the system security parameterk and bit lengthn of thepublic identity
ID. LetG define bilinear map group of orderp > 2k andg be a generator forG.

Input: (1k, n).
Output: (mpk,msk).

1. Chooseγ ←− Z
∗
p.

2. Setg1 = gγ .
3. Chooseg2 ←− G.
4. Choose vectors(h′, h1, . . . , hn), (u′, u1, . . . , un), (v′, v1, . . . , vn)←− G

n+1.
5. WriteBID = k1k2 . . . kn, ID = i1i2 . . . in andw = w1w2 . . . wn as bit

strings withkj , ij , wj ∈ {0, 1}.
6. Define hash functions

Fh :
{0, 1}n −→ G,

BID 7−→ h′
∏

0≤j≤n h
kj
j

,

Fu :
{0, 1}n −→ G,

ID 7−→ u′
∏

0≤j≤n u
ij
j

and

Fv :
{0, 1}n −→ G,

w 7−→ v′
∏

0≤j≤n v
wj

j
.

7. Choose a collision resistant hash functionH : {0, 1}∗ → {0, 1}n as re-
quired inDefinition 4.4.

8. Define themaster public keyas
mpk ← (g, g1, g2, h

′, h1, . . . , hn, u
′, u1, . . . , un, v

′, v1, . . . , vn).

69

9. Define themaster secret keyasmsk ← γ.

ALGORITHM 11.2. Extract.
Performed by theKGC — this step is executed after theReceiverauthenticates
himself asID to theKGC and then securely communicatesFh(BID). TheKGC
then proceeds to compute thepartial private keydID which is subsequently com-
municated to theReceiverin a secure manner.

Input: (mpk,msk, ID,Fh(BID)).
Output: dID.

1. Chooser←− Z
×
p .

2. ComputedID ← (d1, d2, d3) = (gγ2 · Fu(ID)r, (g · Fh(BID))r, Fh(BID)γ).
3. ReturndID.

ALGORITHM 11.3. SetSec.
Performed by the Receiver— in this step theReceivercomputes a randomly cho-
sen secret valuexID.

Input: mpk.
Output: xID.

1. ChoosexID ←− Z
×
p .

2. ReturnxID.

ALGORITHM 11.4. SetPub.
Performed by the Receiver— in this step theReceivercomputes and freely dis-
tributes thepublic keypkID.

Input: (xID,mpk, dID).
Output: pkID.

1. ComputepkID ← (X,Y,Z) = (gxID , gxID
1 , dxID

3).
2. ReturnpkID.

ALGORITHM 11.5. Encrypt.
Performed by the Sender— this step computes the encryption of messagem ∈
GT .

Input: (m, pkID,mpk, ID,BID).
Output: C.

1. If e(X, g1)/e(g, Y) = 1GT
then

2. Chooses←− Z
×
p .

3. Set(C0, C1, C2)← (m · e(Y · Z, g2)
s, (g · Fh(BID))s, Fu(ID)s).

4. Computew ← H(C0, C1, C2, ID, pkID).
5. SetC3 ← Fv(w)

s.

70

6. ReturnC = (C0, C1, C2, C3).
7. Else
8. ReturnFAIL

Just like Step1 in Algorithm 10.6, in Step1 in Algorithm 11.5we check for the
correctness of the public keypkID, if pkID is of the right shape then the ciphertext
C is computed and returned else the algorithm aborts with FAIL.
We include the hashFv(w) of w in Step4 in Algorithm 11.5for the reasons previ-
ously described in Step4 in Algorithm 10.6.

ALGORITHM 11.6. Decrypt.
Performed by the Receiver— this decrypts the message encrypted usingRe-
ceiver’s private keypkID, public identityID and the biometric identityBID.

Input: (C, dID, xID,mpk, ID,BID).
Output: m.

1. Set(C0, C1, C2, C3)← C.
2. Letw ← H(C0, C1, C2, ID, pkID).
3. If e(C1, Fu(ID) · Fv(w)) = e(g · Fh(BID), C2 · C3) then
4. Chooser′ ←− Z

×
p .

5. Set(d1, d2)← dID.
6. Compute the private key as

skID ← (s1, s2) =
(

dxID
1 · Fu(ID)r

′

, dxID
2 · (g · Fh(BID))r

′

)

.

7. Computem← C0 ·
e(C2, s2)

e(C1, s1)
.

8. DeleteskID.
9. Returnm.

10. Else
11. ReturnFAIL

In Step3 in Algorithm 11.6we check for the validity of the ciphertext by checking
the hashFv(w), if C is a valid ciphertext then we proceed with the decryption else
the algorithm aborts with FAIL.

We check for completeness by substituting the values for(C0, C1, C2, s1, s2)

71

in

(s1, s2) =
(

(gγ2 · Fu(ID)r)
xID · Fu(ID)r

′

,

((g · Fh(BID))r)xID · (g · Fh(BID))r
′

)

=
(

gγxID
2 · Fu(ID)rxID+r′ , (g · Fh(BID))rxID+r′

)

=
(

gγxID
2 · Fu(ID)t, (g · Fh(BID))t

)

wheret = rxID + r′. Now, substituting the values we obtain

C0 ·
e(C2, s2)

e(C1, s1)
= m · e(Y · Z, g2)

s ·
e
(

Fu(ID)s, (g · Fh(BID))t
)

e ((g · Fh(BID))s , gγxID
2 · Fu(ID)t)

= m · e (gxID
1 · dxID

3 , g2)
s ·

e
(

Fu(ID)s, (g · Fh(BID))t
)

e ((g · Fh(BID))s, gγxID
2) · e ((g · Fh(BID))s, Fu(ID)t)

= m ·
e ((g · Fh(BID))γxID , gs2)

e ((g · Fh(BID))s , gγxID
2)

= m.

Thus we conclude that the decryption of an encrypted messagegives us back the
original messagem and the scheme functions correctly.

11.2. Security Reduction. The security reduction of the derived scheme pro-
ceeds very similar to that of the original scheme presented in Section 10.2. The
security of the derived construction is also based on intractablility of 3-DDH in the
groups that are used by the construction. We again define a theorem to capture the
idea of security in the new model and use games to prove it.

THEOREM 11.7. SupposeAnew is either a New Strong Type I or New Strong Type
II adversary that runs in timet, makes at mostqd decryption queries,qbid biometric
identity extraction queries, andqpk private key queries. Then there exists

– an adversaryA′ against the3-DDH problem that has advantageAdv3-DDH
A′ (k)

and runs in timeO (t) +O
(

ε−2 ln δ−1
)

for sufficiently smallε andδ, and

– an adversaryA′′ against the collision resistance of the hash functionH that
runs in timeO (t) and has advantageAdvCR

A′′ (k)

72

such that the advantageAdvCL-CCA
Anew (k) of Anew is bounded by

AdvCL-CCA
Anew (k) < 8qpkqdqbid(n + 1)3 · (16 ·Adv3-DDH

A′ (k) + δ) +AdvCR
A′′ (k).

Interpretation The advantage of the adversaries against the scheme presented
in Section 11is bound by the results ofTheorem 11.7. Thus if eitherAnew

I or
Anew

II exist such that it has a significant advantage against breaking the indistin-
guishability of the scheme then this would imply the existence of attackers with
significant advantage against both solving the3-DDH and breaking the collision
resistant hash functionH. Such attackers can be used to device algorithms which
solve the3-DDH and find collisions ofH in polynomial time.

For the algorithms mentioned in the above theorems a solution can be conve-
niently found for whichε ≈ 0 or δ ≈ 0 but such a solution provides no advantage
to the adversary as it is too slow and the equation is renderedmeaningless. To gain
significant advantage in breaking the security of the schemethe adversary must
find an algorithm with suitableε andδ such that the algorithm runs in polynomial
time.

Framework The framework is exactly similar to what was earlier presented in
Section 10.2and we again want to use the attacker to solve the3-DDH. Like earlier,
we change the original protocol by introducing changes which are undetectable by
the attacker. Finally, we present the attacker with the3-DDH modelled as our
challenge and try to make conclusions about the attacker winning theIND-CCA
game. Thus in this modified scenario if he manages to win theIND-CCA game
with a significant advantage then we can conclude that such anattacker can solve
the3-DDH. Thus we show that the security of our scheme rests on the intractability
of the3-DDH in G. We present the changes to the protocol in the form of games
that we describe subsequently. The arrangement of the security reduction also
remains same as shown inFigure 10.1.

PROOF (Theorem 11.7). The proof proceeds just like the proof ofTheorem 10.8
through a sequence of games which involves the New Type I attackerAnew

I who
tries to guess the hidden bitd in theIND-CCA game. The attacker outputs a guess
d′ on conclusion of the sequence of games. Here we highlight themodifications
that we make to the proof ofTheorem 10.8to prove the given theorem.

Game 1 This game is same as theGame 1defined in the the proof ofTheorem 10.8
but we define one further quantity here. LetBE = {ID′′

1 , . . . , ID
′′
qbid
} be the set of

identities for which the attacker makes biometric identityextraction queries.BID∗

denotes the biometric identity of the target identityID∗. Also, PPK defined in
Game 1of the proof ofTheorem 10.8is never used.

73

Game 2 In addition to the values defined earlier inGame 2of the proof of
Theorem 10.8, we selectκh ∈ {0, . . . , n} and letτh be an integer such thatτh(n+
1) < p. The environment selectsx′h ∈R N<τh and the vector(xh,1, . . . , xh,n) ∈R
N
n
<τh

. It also picksy′h ∈R Zp and vector(yh,1, . . . , yh,n) ∈R Z
n
p . The remaining

master public keyelements are chosen as follows:

h′ = g
x′

h−κhτh
2 gyq′ , hj = g

xh,j

2 gyh,j . for 0 ≤ j ≤ n(11.8)

Again, the distribution of themaster public keyremains unchanged due to the rea-
sons discussed earlier inGame 2of the proof ofTheorem 10.8. Thus we have
Pr (S1) = Pr (S2) which impliesAdv1 = Adv2.

Game 3 Same asGame 3of the proof ofTheorem 10.8.

Game 4 In our modified security modelAnew
I is allowed to make partial private

key queries as well as replace the public key of the same identity even in case of
ID∗ hence we do not require to differentiate between the two cases like earlier
done usingcmode. In this game we do nothing but for the ease of understanding
and similarity between other games we just leave it as a placeholder and we have
Adv4 = Adv3.

Game 5 In addition to the values ofFu(ID) andFv(w) redefined inGame 5of
the proof ofTheorem 10.8, in this game we redefineJh(BID) before modifying
Game 4. This is done with the help of specific choice of the values(xh,j , yh,j)
from (11.8). The game proceeds similar toGame 5of Theorem 10.8. To this end
we define

Jh(BID) = x′h +
n
∑

j=1

ijxh,j − κhτh, Kh(BID) = y′h +
n
∑

j=1

ijyh,j,

whereBID = k1 . . . kn is an-bit string. For any stringBID ∈ {0, 1}n we define

Fh(BID) = h′ ·

n
∏

j=1

h
ij
j .

We can rewrite this as

Fh(BID) = g
Jh(BID)
2 · gKh(BID).

Game 5is identical toGame 4except when the attackerAnew
I outputs its

guessd′ of d then the environmentB checks whetherJu(ID∗) = Jv(w
∗) =

Jh(BID∗) = 0 modp. If Ju(ID∗) 6= 0 or Jv(w∗) 6= 0 or Jh(BID∗) 6= 0 then
B aborts and simulatesAnew

I ’s output choosing uniformly randomlyd′ ∈R {0, 1}.

Again we havePr (Jh(BID∗) = 0 mod p) =
1

τh(n+ 1)
, sinceJh(BID∗) = 0

74

purely by chance. The reasons for this are the same as those that have been
previously discussed inGame 5of the proof ofTheorem 10.8. Hence, we have

Adv5 =
Adv4

τuτvτh(n+ 1)3
.

Game 6 In this game we modify the way the environmentB generates the chal-
lenge ciphertext.B picks up a random valuec ∈R Z

×
p and sets

C∗
1 = (g · Fh(BID∗))c

= gc(Kh(BID∗)+1).

Let identity ID∗’s public key at the challenge phase be denoted bypkID∗ =
(X∗, Y ∗, Z∗). B flips a coind∗ ∈R {0, 1} and computes

C∗
0 = md∗ · e(Y

∗ · Z∗, g2)
c,

C∗
2 = C

∗Ku(ID∗)/(Kh(BID∗)+1)
1 = (gc)Ku(ID∗)

and

C∗
3 = C

∗Kv(w∗)/(Kh(BID∗)+1)
1 = (gc)Kv(w∗)

wherew∗ = H(C∗
0 , C

∗
1 , C

∗
2 , ID

∗, pkID∗). The returned ciphertext(C∗
0 , C

∗
1 , C

∗
2 , C

∗
3)

has the correct distribution sinceJu(ID∗) = Jv(w
∗) = Jh(BID∗) = 0 and hence

we haveAdv6 = Adv5.

Game 7 In this game we modifyGame 6such that afterAnew
I outputs his guess

d′ the environmentB checks if one of the conditions described below are true. We
redefine the eventE previously defined inGame 7of the proof ofTheorem 10.8as
follows

◦ Ju(IDj) = 0 mod τu for someIDj ∈ PK with j ∈ {1, . . . , qpk}.

◦ Jv(wℓ) = 0 mod τv for somewℓ ∈ D with ℓ ∈ {1, . . . , qd}.

◦ Jh(BIDk) = 0 mod τh for someIDk ∈ BE with k ∈ {1, . . . , qbid}
whereBIDk is the biometric identity corresponding toIDk.

We defineE as the event that any of the aforementioned conditions hold.Just like
before we observe thatDent’s game hopping technique cannot be applied at this
stage since even thoughE is recognisable there is no surety that it is independent
of S6. AttackerAnew

I can model his queries by choosingPK andBE depending
uponmd in such a way thatPr (E) is significantly different in different query
sequences. Hence, we again use re-normalisation techniquesuggested inWaters
(2005) to circumvent this problem. We derive a non-negligible lower bound for
Pr (¬E) for any set of oracle queries. We estimate the probability that E occurs
during a particular set of oracle queries that are made whilerunningAnew

I and then

75

addartificial aborts to ensure thatAnew
I aborts with exactly the probability given

by this lower bound. We now derive the theoretical lower bound.

Pr (¬E) = Pr

(

∧

ID∈PK

Ju(ID) 6= 0 mod τu ∧
∧

ID∈BE

Jh(BID) 6= 0 mod τh

∧
∧

w∈D

Jv(w) 6= 0 mod τv | Ju(ID
∗) = 0 mod τu

∧ Jh(BID∗) = 0 mod τh ∧ Jv(w
∗) = 0 mod τv

)

= Pr

(

∧

ID∈PK

Ju(ID) 6= 0 mod τu | Ju(ID
∗) = 0 mod τu

)

·

Pr

(

∧

ID∈BE

Jh(BID) 6= 0 mod τh | Jh(BID∗) = 0 mod τh

)

·

Pr

(

∧

w∈D

Jv(w) 6= 0 mod τv | Jv(w
∗) = 0 mod τv

)

.

Following the steps like we did inGame 7of the proof ofTheorem 10.8leads us
to

Pr (¬E) ≥ (1−
qpk
τu

)(1−
qd
τv

)(1−
qbid
τh

).

On settingτu = 2qpk, τv = 2qd andτh = 2qbid we obtainPr (¬E) ≥ 1/8. This
should be done in accordance to the specifications ofτu, τv and τh provided in
Game 2. Since this is a theoretical lower bound for not aborting, toemploy game
hopping we need to ensure that the probability of not aborting is exactly1/8.

We estimate the probability that a certain sequence of oracle queries made
by the attackerAnew

I may cause an abort by repeatedly picking the values
x′u, xu,j, x

′
v, xv,j , x

′
h andxh,j and checking if these values cause an abort for the

sequence of oracle queries thatAnew
I has made. This does not require rerunning

the attackerAnew
I but simply checking whether the simulator aborts as mentioned

before. Also we do not constraint the values ofx′u, xu,j, x
′
v , xv,j , x

′
h andxh,j. We

must note that in order to have no impact on the attacker’s behaviour due to these
changes we have to ensure that the master public key value stays same. Hence,
we may assume thaty values are chosen so that master public key elements are
as in the original execution ofAnew

I . It might appear at the outset that we need to
solve the discrete logarithm problem to achieve this but looking at the definition of
x′u, xu,j, x

′
v, xv,j , x

′
h andxh,j in Game 2it becomes clear that this is not the case.

We know thatg2 = gb hence a change in thex values can be adjusted by picking a
suitabley value without the need to solve the discreet logarithm problem.

76

The probability that we do not abort for a given sequence of oracle queries
made byAnew

I is given byη′, i.e. Pr (¬E) = η′. As suggested inGame 7of the
proof ofTheorem 10.8, we approximate the probability forη′ given by the repeated
sampling of thex values byη′′.

Using the Chernoff bound we see thatPr (|η′ − η′′| ≥ ε) ≤ δ when we con-
siderO

(

ε−2ℓnδ−1
)

samples andε, δ ≥ 0. To attain a definite abort probability we

force an artificial abort with probability
η′′ − 1/8

η′′
wheneverη′′ ≥ 1/8. In those

casesB assumes thatAnew
I outputs a randomd′.

Now the probability of the abort can be estimated by

Pr
(

Abort
∣

∣

∣

∣

∣η′ − η′′
∣

∣ < ε
)

= Pr (Natural Abort) + Pr (Artificial Abort)

= (1− η′) +
η′′ − 1/8

η′′
η′

= (1− η′) + (η′′ − 1/8)
η′

η′′

≤ (1− η′) + (η′′ − 1/8)
η′

η′ − ε

≤ (1− η′) + (η′′ − 1/8)(1 +
ε

η′ − ε
)

asη′ ≥ 1/8, we can estimate

≤ (1− η′) + (η′′ − 1/8)(1 +
8ε

1− 8ε
)

≤ (1− η′) + (η′ + ε− 1/8)(1 + 10ε),

sinceε ≤
1

40
for sufficiently smallε

≤ (1− η′ + η′ + ε− 1/8) + 10ε(η′ − 1/8) + 10ε2

≤ 7/8 + ε+ 10ε+ 10ε2, since(η′ − 1/8) ≤ 1

≤ 7/8 + 11ε + 10ε2

≤ 7/8 + 12ε.

Now, we have

Pr (Abort) = Pr
(

Abort
∣

∣

∣

∣

∣η′ − η′′
∣

∣ < ε
)

· Pr
(∣

∣η′ − η′′
∣

∣ < ε
)

+

Pr
(

Abort
∣

∣

∣

∣

∣η′ − η′′
∣

∣ ≥ ε
)

· Pr
(∣

∣η′ − η′′
∣

∣ ≥ ε
)

≤ (7/8 + 12ε) · 1 + 1 · δ

≤ 7/8 + 12ε + δ.

Therefore, the abort does not occur with a probability of at least

1− Pr (Abort) ≥ 1− 7/8 − 12ε− δ

≥ 1/8− 12ε − δ.

77

Now employingLemma 10.10we obtain

Adv7 ≥ Adv6 (1/8 − 12ε− δ)

≥ (Adv6 − δ) (1/8 − 12ε)

Forε ≤ 1/192, we get

Adv7 ≥ Adv6 (1/8− 1/16)

≥
Adv6 − δ

16

Game 8 Just as shown inGame 8of the proof ofTheorem 10.8, in this game
we change the way we treatAnew

I ’s queries. LetA = ga wherea ∈R Z
×
p and

unknown toB. The generation of the master public key is done as follows,B sets
g1 = gγ whereγ ∈R Z

×
p and storesγ for later use.

We now model our response to the queries.

◦ Replace Public Keyfor an input(ID, (X̃, Ỹ)): B checks if(X̃, Ỹ) of the
correct shape and then replaces the public key ofID.

◦ Extract Partial Private Keyfor an identity ID:

– B usesmsk = γ to calculate the partial private key using the construc-
tion.

◦ Request Public Keyfor an identity ID:

– B picksxID ∈R Z
×
p and returnspkID ← (AxID , AγxID , dxID

3).

◦ Extract Private Keyfor an identity ID:B aborts ifJu(ID) = 0 mod τu
just like previous game. Otherwise it follows thatJu(ID) 6= 0 mod τu and
thusJu(ID) 6= 0 mod p. Let pkID = (X,Y) be the original public key
for ID, B pickst ∈R Z

×
p and returnsskID = (s1, s2) where

(s1, s2) = (Fu(ID)t · Y −Ku(ID)/Ju(ID), (g · Fh(BID))t · Y −1/Ju(ID)).

Now, usingFu(ID) = g
Ju(ID)
2 · gKu(ID) we have

– Implicitly defined secret value isaxID and the master key value isγ,
hence

(s1, s2) = (gaγxID
2 · Fu(ID)t̃, gt̃ · Fh(BID)t) wheret̃ = t−

aγxID
Ju(ID)

.

◦ Decrypt for a valid ciphertextC = (C0, C1, C2, C3) encrypted for an iden-
tity ID and biometric identityBID using the public keypkID = (X,Y)
which may or may not have been replaced by the attacker. Letw =

78

(C0, C1, C2, ID, pkID), B aborts if Jv(w) = 0 mod τv just like previ-
ous game and choosesd′ ∈R {0, 1}. Otherwise it follows thatJv(w) 6= 0

mod τv and thusJv(w) 6= 0 mod p, C3 =
(

g
Jv(w)
2 gKv(w)

)s
and

C1 = (g · Fh(BID))s

=
(

g
Jh(BID)
2 gKh(BID)+1

)s

wheres ∈R Z
×
p . Now,B extracts

gs2 =

(

C3

C
Kv(w)/(Kh(BID)+1)
1

)
1

Jv(w)−Kv(w)·Jh(BID)/(Kh(BID)+1)

and computese(Y ·Z, g2)s this allows for the computation ofm =
C0

e(Y · Z, g2)s

regardless of the fact whether(X,Y) is the original public key or not.

Changing the generation of the master key does has no effect on B’s ability to
answerAnew

I ’s queries like inGame 7and and the distribution of the master key
remains unchanged, hence we haveAdv8 = Adv7.

Game 9 In this game we modify the generation of the ciphertext again. Using
variablesb, c ∈R Z

×
p defined inGame 2andGame 6respectively. We setC∗

1 =

gc(Kh(BID∗)+1) andT = Abc.
B retrievesxID∗ such thatpkID∗ = (AxID∗ , AγxID∗ , Fh(BID∗)γ), flips a

binary coind∗ ∈R {0, 1} and computes

C∗
0 = md∗ · e (Y

∗ · Z∗, g2)
c

= md∗ · e
(

AγxID∗ · Fh(BID∗)γ , gb
)c

= md∗ · e
(

gaxID∗ · Fh(BID∗), gbc
)γ

= md∗ · e
(

g · Fh(BID∗)1/axID∗ , gabc
)γxID∗

= md∗ · e
(

g · Fh(BID∗)1/axID∗ , T
)γxID∗

.(11.9)

It then computesC∗
2 = (gc)Ku(ID∗), w∗ = H(C∗

0 , C
∗
1 , C

∗
2 , ID

∗, pkID∗) andC∗
3 =

(gc)Kv(w∗). If Jv(w
∗) 6= 0 mod p thenB aborts like inGame 5otherwise it

returns(C∗
0 , C

∗
1 , C

∗
2 , C

∗
3).

Since we haveJv(w∗) = 0 mod p, these changes do not affect the distribution
of the challenge ciphertext and we haveAdv9 = Adv8.

79

Game 10 In this game we change the challenge phase again.B only retainsg2 =
gb andC∗1/(Kh(BID∗)+1)

1 = gc and forgets the valuesb, c. Challenge is constructed
as shown in(11.9) in Game 9but T is chosen randomly,T ∈R G. The simulator
uses the valuesga, gb, gc and never touchesa, b, c. The transition betweenGame
9 and Game 10is based upon the indistinguishability ofT = gabc from T ∈R
G and both games are equal unless there exists a probabilisticpolynomial-time
algorithmA′ which can tell the difference between the two values. This isclearly
an instance of the3-DDH which we wanted to achieve from the very beginning.
Since the only difference betweenGame 9andGame 10is the condition enforced
by the indistinguishability ofT = gabc from T ∈R G hence the difference of the
success probabilities ofGame 9andGame 10is the lower bound onAdv3-DDH

A′ (k).
Therefore we have

|Pr (S9)− Pr (S10)| ≤ Adv3-DDH
A′ (k).

AdditionallyC∗
0 now reveals no information aboutmd∗ and is completely indepen-

dent ofd∗, hencePr (S10) = 1/2. This brings game hopping to an end, we now
combine the results from the games. We have

Adv7 = Adv8 = Adv9 ≤ Adv3-DDH
A′ (k)

and

Adv5 = Adv6 ≤ 16 · Adv7 + δ

also

Adv5 =
Adv4

τuτvτh(n+ 1)3

whereτu = 2qpk, τv = 2qd andτh = 2qbid. And thus

Adv4 = 2qpk · 2qd · 2qbid(n+ 1)3 ·Adv5

≤ 8qpkqdqbid(n+ 1)3 · (16 · Adv7 + δ).

We also have

Adv3 = Adv4

and

Adv1 = Adv2 = |Pr (S2)− 1/2|

≤ |Pr (S2)− Pr (S3)|+ |Pr (S3)− 1/2|

≤ AdvCR
A′′ (k) +Adv3.

80

Combining the above equations we finally have

Adv1 < 8qpkqdqbid(n+ 1)3 ·
(

16 · Adv3-DDH
A′ (k) + δ

)

+AdvCR
A′′ (k).

To prove the same result forAnew
II we follow the exact same procedure except

Anew
II cannot replace the public key of the target identityID∗ and never makes

partial private key queries since it has the access to the master private keymsk =
γ which he uses to compute it. Finally, inGame 10we combine all the results
according to the changes described to obtain the final equation.

�

Discussion The proof ofTheorem 11.7shows that the derived scheme is secure
against the adversaries described inSection 9.3. Just like in case of previous re-
duction breaking the scheme under the imposed constraints would be equivalent
to solving the3-DDH problem and breaking the collision resistant hash function
H. These are hard problems and basing our security on them gives an idea of the
hardness of breaking the indistinguishability of the scheme.

At this point we should note that at the onset of the games we assume the
knowledge of the number of oracle queries the attacker makes, we denote this by
qd, qpk andqbid. This might not be possible in general hence to achieve this we
make an assumption about the number of queries made. If our assumption seems
too small or too large then we adjust the values accordingly and try again. For
the purpose of our proofs we start with the correct assumed values. The proof
shows that the original scheme presented byDent, Libert & Paterson(2008) can be
modified to provide privacy even in the event of device compromise. Additionally,
the derived scheme is secure in the standard model. To fortify our claims further
we also demonstrate a fully functional implementation of the derived scheme in
Section 12.5.

81

82

12. Implementation

To prove that the ideas developed in this thesis work in practice we have devel-
oped a prototype for both the schemes discussed. The prototypes have been devel-
oped onAndroid platform and implement the concrete constructions presented in
Section 10andSection 11. In this section we describe the implementation details,
motivations for the chosen design, internal workings of theschemes discussed and
look at the various aspects of the developed applications.

12.1. Platform. As mentioned earlier the target of the modified scheme is to
provide two-factor security for mobile devices hence our applications have been
developed for the mobile platform. For implementation purposes we have chosen
Android as the mobile operating system. There are several reasons for this choice
and we highlight them below.

◦ AndroidandiOSare the two most common mobile operating systems, while
iOS is not open source,Android is, to a large extent. Being open source is
one of the key aspects which helps in designing secure systems, therefore
Android seems to be the natural choice.

◦ Android is a Linux-based operating system and has been proven to support a
diverse array of applications.

◦ Our applications have been developed using Java as the programming lan-
guage since it is very well supported and has open source libraries for almost
every task.Android has native support for Java and our applications do not
need to be ported to suit the development platform.

◦ Android is the most popular mobile operating system at the moment with a
smart phone market share close to 50%. Due to being open source and thus
free, vendors can modify it to suit their phones. This allowseasy adoption
and hence it supports devices in a wide spectrum of prices. These features
will encourage usage of the developed application due to being readily avail-
able.

12.2. Programming Language and Libraries. We have chosen Java as the lan-
guage to develop our applications as it provides numerous features which are very
beneficial for our development. We enlist these features below.

◦ Open Source- Java is an open source language, this provides the developer a
deeper insight into its workings. It is of prime importance for security critical
applications to use open source platforms. As stated very articulately by
Kerckhoffs(1883) that one must not attempt to achieve security by obscurity,
the security of a system must only depend upon the keys and noton the
secrecy of the system itself.

83

◦ Platform Independent- Java is completely platform independent and the de-
veloped applications can be easily ported to mobile devicesand desktops
either of which could be running on various operating systems. This saves
additional development effort and facilitates the acceptance of applications.

◦ Object Oriented- Java provides object oriented application development en-
vironment which is easy to maintain and scale. Due to being modular the
applications can be conveniently integrated with other applications and this
increases its value.

◦ Application Programming Interface (API)’s - Java has variousAPI’s which
can be used for a number of purposes, this saves development effort and
improves efficiency.

◦ Well Supported- Since Java is a widely used language it is well supported
and new versions are rolled out with improvements regularly.

These reasons make a very compelling case for using Java and consequently it is
our programming language of choice. As a result our applications can be run on
mobile devices running Android as well as desktops.

Almost all the libraries used by our applications are standard Java and Android
libraries. However we do require some special libraries to implement pairing-based
cryptosystems and read QR codes. We discuss the details of these libraries below.

12.2.1. Bilinear Maps. Apart from the standard Java libraries the application
uses theJava Pairing Based Cryptography (jPBC)library developed byCaro(2010).
jPBC is an open source Java porting of thePairing-Based Cryptography (PBC)li-
brary written in C and developed byLynn (2007). The PBC library is an open
source C library built on theGNU Multiple Precision Arithmetic Library (GMP).
The GMP is responsible for performing the mathematical operationsunderlying
pairing-based cryptosystems. ThePBClibrary is designed to support implementa-
tion of pairing-based cryptosystems, it provides good speed along with portability.
Some of the routines it provides are elliptic curve generation, elliptic curve arith-
metic and pairing computation. TheAPI is abstract and allows the programmer to
use thePBClibrary with basic knowledge of pairings and group theory.

The jPBC library was written byCaro(2010) to port the functionalities pro-
vided by thePBClibrary to Java platform and it consists of two parts.

◦ A Java portingof thePBClibrary which supports computations of symmet-
ric and asymmetric pairings.

◦ A Java wrapperof thePBClibrary to delegate all the computation to the C
library.

Since our application isAndroid based therefore we only use the Java porting
for development. The Java porting is further divided into several modules which
are

84

◦ jpbc-api: This module contains theAPI exposed by thejPBC.

◦ jpbc-plaf: This module includes the defaultAPI’s implementation and
PBC’s Java porting.

◦ jpbc-pbc: This module contains theAPI’s implementation to be used
whenPBCis chosen as the computation engine, it also includes thePBC’s
Java wrapper.

◦ jpbc-crypto: This module provides the implementation of some sample
cryptosystems.

Our application uses onlyjpbc-plaf andjpbc-plaf modules for devel-
opment.

jPBC Internals The jPBC library allows usage of several types of pairings by
defining curve type and other values in a parameter file. Thesepairing types are
defined by default and are a part of the library. We use pairingType Afor our
applications.

TheType Apairings are constructed on the curvey2 = x3+x over the fieldFq

for some primeq = 3 mod 4. The pairing is symmetric and constructed using G1
as the base group which is the group of pointsE(Fq). Hence we have#E(Fq) =
q + 1 and#E(Fq2) = (q + 1)2. Thus the embedding degree is2, and hence the
target groupGT is a subgroup ofFq2. The orderr of GT is some prime factor of
q + 1.

We can writeq + 1 = r · h. For efficiency,r is picked to be a Solinas prime,
that is,r has the form2a ± 2b ± 1 for some integers0 < b < a. Below is a sam-
ple parameter file where the bit lengths are,r = 181 bits, q = 1027 bits
andh = 845 bits. This provides good security for most applications.

param_type_a.txt

type a

q 4658099876865284564338205090976805738342736417617866254
2484004353807687623420656289364751121298709295797714806
4442773937804178448677347985356293095456645127477393452
7992685401786815085428211467783641470348441066697220226
4657659699246414298853054598111748055398024993402692990
5052860956552125783505432963737819

r 3064991081731777716716683913095816541402266270741561343

85

h 1519775996944620914990926334378964172671239667073301220
6423651330324808247605766731643170628533886446313147949
6744469238202934278366549234322011829000890272345051427
1296836981494105129119971147234831463774054426514160647
41977609291895013018610051943208740

exp1 103

exp2 181

sign0 -1

sign1 -1

12.2.2. QR Codes. We discuss the simulation of biometric identities using QR
codes in sectionSection 12.5.1. The application developed for the derived con-
struction uses QR Droid services to read the QR codes. These services are part
of a third party application called QR Droid developed byDroidLa (2012). The
services provide functionality to scan and decode a QR code as well as encode text
into a QR code.

For the derived version of the application we need to decode aQR code after
scanning it. The decoded text string is then passed on to the application for further
processing. The library has been conveniently integrated with our application and
works seamlessly. On calling a method of the library the control is passed to the QR
Droid application and the result is returned to the parent application on conclusion
of the method. Details of each class file contained in this library is provided in
Section 12.5.3.

12.3. Device Specifications. The development of both the original scheme and
the modified scheme has been done onHTC Incredible Swhich has Android 2.3.5
running on it. However our application is independent of thedevice and would
work on any device which has an Android 1.6 or higher installed on it. Our appli-
cation requires a camera to read the QR codes and the QR Droid 4.1.2 application
developed byDroidLa(2012) installed on the mobile device to decode the read QR
code. The application can be installed free of charge from the Android market, it
occupies 3.3 Mbs of space and is extremely light weight. The device should have
a working internet connection to use email services, apart from this there are no
special requirements.

86

Figure 12.1: The HTC Incredible S.

Figure 12.2: The software specification of the device.

87

Figure 12.3: The hardware specification of the device.

12.4. Original Construction. In this section we discuss the various aspects of
the implementation of the construction originally presented byDent, Libert & Pa-
terson(2008). First we take a look at the interface of the application andthen we
discuss the class structure where we provide the details of the role played by each
class as well as the methods implemented by them.

12.4.1. Application Interface. Our application is a prototype of a mail client
which implements the original scheme. For simulation purposes all three parties
involved in the scheme namely the sender, receiver andKGC have been imple-
mented in the same device. It allows a user to send encrypted mails using the
receiver’s email address. The email address is treated as anunique identifier which
is used to encrypt the messages send to the owner of that address. The receiver can
decrypt the encrypted messages by following the scheme and obtaining necessary
values from theKGC after he has authenticated himself as the owner of the email
address. We now present the application interface to explain the functioning of the
scheme.

88

Figure 12.4: The main screen of the application provides theuser with the option
to read mail, compose mail, generate key and read about the application.

Figure 12.5: The first step in the scheme is to generate the system parameters. This
is done by the KGC on tapping theGenerate Keybutton.

89

Figure 12.6: After the system parameters have been generated, the sender can
compose messages by tapping theCompose Mailbutton from the main screen.

Figure 12.7: A sample message.

90

Figure 12.8: After obtaining the receiver’s private key thesender encrypts the mes-
sage by tapping theEncryptbutton.

Figure 12.9: The sender can now send the encrypted message bytapping theSend
button.

91

Figure 12.10: On tapping theRead Mailbutton from the main screen the receiver
is directed to the interface to read messages.

Figure 12.11: The receiver loads the encrypted message by tapping theLoad but-
ton.

92

Figure 12.12: Finally, receiver decrypts the encrypted message by tapping theDe-
crypt button and is presented with readable text as send by the sender.

Figure 12.13: The user can read more about the application bytapping theAbout
Appbutton from the main screen.

93

12.4.2. Class Structure. The Android application of the original construction
consists of 9 modules. These modules implement the various algorithms executed
by the sender, receiver andKGC in form of classes. In this section we describe
these classes and then present the class diagram to give a picture of the class struc-
ture.

1. CertificatelessEncAppActivity.java: This is the main class
file of the application as described inAppendix A.1. It provides an interface
to access other modules of the application.

2. ComposeMessage.java: This class as described inAppendix A.2im-
plements the interface for composing, encrypting and sending mails.

3. Help.java: This class as described inAppendix A.3, provides an interface
with information about the application.

4. KeyGenerationCenter.java: In this class as described in
Appendix A.4, we implement the algorithms executed by theKGC. It con-
tains the logic forSetup andExtract algorithms.

5. Mail.java: This class as described inAppendix A.5, implements the
logic to send out mails. It is accessible to theComposeMessage.java
class which uses it to send messages when called by the user.

6. Methods.java: This class as described inAppendix A.6, provides imple-
mentation of several methods that are used by other classes such as convert-
ing a string to binary, SHA-1 hash function, converting bytes to binary string
and hash function used by the encryption scheme.

7. ReadMessage.java: This class as described inAppendix A.7, provides
an interface to read encrypted messages after decrypting them.

8. Receiver.java: This class as described inAppendix A.8, implements
the algorithms executed by the receiver. The logic forSetSec, SetPub,
SetPriv andDecrypt algorithms is contained in this class.

9. Sender.java: This class as described inAppendix A.9, implements the
Encrypt algorithm executed by the sender.

94

Figure 12.14: The class diagram showing the relationship among different classes

95

12.5. Derived Construction. After discussing the implementation of the origi-
nal scheme in detail we are now ready to look at the changes brought on by the
derived scheme and the impact of those changes. First, we describe the imple-
mentation details of extracting biometric identity of the user, then we present the
application interface to understand the flow of the algorithm. Lastly, we discuss
the class structure which explains the modular design of theapplication and the
function of each module.

12.5.1. Biometric Identity. As discussed earlier the derived construction uses
biometric identities to provide two-factor authentication. There are several possi-
ble ways to extract biometric identity of the user, most of them use physiological
characteristics like fingerprint, DNA, face recognition, palm print, hand geometry,
iris recognition, etc. We aimed to design the encryption scheme for standard smart
phones and this leaves us only with the option of using face recognition or hand
geometry, since measuring all the other characteristics requires special equipment
and therefore is beyond the capabilities of a mobile device.

We decided to go with face recognition for our scheme since itis relatively well
researched field as compared to hand geometry. Also softwarepackages exist that
provide basic face recognition whereas there are hardly anyfreely available soft-
ware packages which implement biometric identity derivation using hand geome-
try. To use face recognition for deriving the biometric identity from facial pictures
we thought of using the existing open source libraries. We specifically needed a
library that provides feature extraction of facial images for reasons we elaborate
later. We came across many hurdles in achieving this and we now describe them in
detail.

Face recognition is an evolving field and not yet mature enough to provide fool
prove solutions. Recognising a face is a challenging task and requires considerable
effort. For our scheme we needed to extract an identity from aface picture, however
we had certain requirements that needed to be fulfilled for the method to be of
practical use to the scheme. We list the requirements of our scheme and challenges
faced below.

◦ Feature Extraction- For our application the only method to obtain a biomet-
ric identity from a face picture is by using feature extraction as the device
should store no information about the biometrics. Hence, the derived scheme
needed a library to extract features from a face picture and use those features
to generate a unique identity. None of the existing open source Java libraries
support this feature and this is a serious impediment.

◦ Existing Libraries- The libraries that implement face recognition do so by
comparing the input image of the face to a database of images already stored
in the device. This mechanism cannot be employed for our purposes since
this will not protect against device compromise. If the attacker gains control
of the device then he would have access to the stored secrets of the device
as well as the raw data from which biometrics is extracted. Hence he would

96

possess all the information that is needed to decrypt a message and such an
attacker could not be stopped.

◦ Performance- We need to ensure a certain level of performance for our
schemes to be functional. Face recognition is reasonably fast in desktop en-
vironments however the performance drops appreciably on mobile devices.
This is mainly due to the use of Java and limited resources of the mobile
devices. The libraries that provide fast face recognition are generally de-
veloped in C/C++ and Java porting although convenient cannot match the
performance of the libraries written in C/C++. This makes the application
sluggish and depreciates user experience.

◦ Picture Quality- Ideally face recognition is employed on biometric images
to ensure best results. This is not possible in our case sincethe cameras
installed on mobile devices are not advanced enough. Also wecannot ex-
pect an user to take perfect images every time, such a requirement would
be unreasonable and make the scheme unusable. The application needs to
work with relatively crude images of the user and still successfully extract
the same unique identity every time. This is a very stiff requirement and not
possible to achieve with the currently existing libraries.Also using multiple
crude versions of a face picture to derive the same identity repeatedly im-
pacts the entropy of the data extracted and thus leaves the possibility of the
attacker exploiting this drawback open.

Due to these challenges we were unable to achieve the goal of implementing
feature extraction using facial images. Face recognition is a involved process and
developing a solution from scratch is a huge task. The prime objective of this the-
sis was to design and implement an encryption scheme which provides security in
the event of device compromise. Developing a complete solution for face recogni-
tion is a very challenging research problem which is out of the scope of the work
presented.

However, to prove that the ideas developed in the modified scheme do work in
principle we have simulated the facial images using QR codes. Thus the applica-
tion developed provides a proof of concept for our derived scheme. For demon-
stration purposes QR codes are quite similar to face pictures as far as our scheme
is concerned. Some of the key features which make them usefulfor prototyping
our construction are

◦ QR codes can be considered as a face picture and they help in explaining the
idea of our scheme.

◦ Unique QR codes can be generated to model unique facial characteristic of
each person.

◦ QR codes can be easily read and used for extracting the same unique identity
every time.

97

◦ The time taken to read and decode a QR code is very low and has virtually
no effect on the user experience.

Hence these features help us in demonstrating the exact functionality of our scheme.
It shows how the actual scheme would function if there was a way to extract bio-
metric identities using faces in an efficient way on mobile devices. Apart from this
change the scheme is complete and implements the derived construction efficiently.

Figure 12.15: A sample QR code.

12.5.2. Application Interface. The application we have developed implements
a proof of concept of the derived scheme. The application simulates the derived
construction. For demonstration all three parties involved in the scheme namely
the sender, receiver andKGC have been implemented in the same device. The ap-
plication allows the sender to send messages encrypted using the receiver’s public
key, facial picture and unique public identity, we use emailaddress of the receiver
as his unique public identity. The receiver can decrypt the messages after gener-
ating his private key using his face picture and values obtained from theKGC as
specified in the scheme.

The interface of the derived construction is very similar tothat of the applica-
tion presented earlier, however there are some key differences which we elaborate
in the following pages. We now present the application interface to explain the
functioning of the scheme.

98

Figure 12.16: The main screen of the application provides the user with the option
to read mail, compose mail, generate key and read about the application.

Figure 12.17: The generate key screen is started on tapping theGenerate Keybut-
ton and requires the receiver to enter his email id to generate keys.

99

Figure 12.18: After the email id is entered, tapping theGeneratebutton generates
the system parameters and the receiver’s public key.

Figure 12.19: Before the keys can be generated the receiver must also provide his
face picture which has been simulated using a QR code in our case.

100

Figure 12.20: The public key is generated once the QR code is read.

Figure 12.21: The sender can now compose messages by tappingthe Compose
Mail button from the main screen.

101

Figure 12.22: A sample message.

Figure 12.23: After obtaining the receiver’s public key thesender encrypts the mes-
sage by tapping theEncryptbutton. Then he is prompted to provide the receiver’s
face picture.

102

Figure 12.24: On reading the QR code the message is encryptedusing the receiver’s
public key, email id and face picture.

Figure 12.25: The encrypted message is sent by tapping theSendbutton.

103

Figure 12.26: On tapping theRead Mailbutton from the main screen the receiver
is directed to the interface to read messages.

Figure 12.27: The receiver loads the encrypted message by tapping theLoad but-
ton.

104

Figure 12.28: On tapping theDecryptbutton the receiver is prompted to provide
his face picture to decrypt the encrypted message.

Figure 12.29: Finally, the receiver decrypts the message onproviding the correct
QR code and is presented with readable text as send by the sender.

105

Figure 12.30: An error message is received if someone tries to decrypt by providing
an incorrect face picture.

Figure 12.31: The user can read more about the application bytapping theAbout
Appbutton from the main screen.

106

12.5.3. Class Structure. The class structure of the derived scheme is very sim-
ilar to that of original scheme as discussed previously. However, the methods that
are defined in the classes are as per the specifications of the derived scheme. We
also use some additional classes to simulate face recognition using QR Codes.
These classes are part of the library which implements reading the QR codes using
the third party application calledQR Droiddeveloped byDroidLa (2012).

Below we list all the classes that are used and define the ones that are new to
this scheme.

1. CertificatelessEncModAppActivity.java: This is the main
class file of the application as described inAppendix B.1. It provides an
interface to access other modules of the application.

2. ComposeMessage.java: This class has same functionality as presented
earlier inSection 12.4.2and is described inAppendix B.2.

3. Decode.java: This class as shown inAppendix B.3, implements the
methods to decode the QR code entered from the camera.

4. Encode.java: This class as shown inAppendix B.4, implements the
methods to encode a text into a QR code entered from the camera. We never
use this class but it is part of the libraryQR Droid and hence included for
completeness.

5. Help.java: This class has same functionality as presented earlier in
Section 12.4.2and is described inAppendix B.5.

6. KeyGenerationCenter.java: This class has same functionality as
presented earlier inSection 12.4.2and is described inAppendix B.6.

7. Mail.java: This class has same functionality as presented earlier in
Section 12.4.2and is described inAppendix B.7.

8. Methods.java: This class has same functionality as presented earlier in
Section 12.4.2and is described inAppendix B.8.

9. ReadMessage.java: This class has same functionality as presented ear-
lier in Section 12.4.2and is described inAppendix B.9.

10. Receiver.java: This class has same functionality as presented earlier in
Section 12.4.2and is described inAppendix B.10.

11. Scan.java: This class as shown inAppendix B.11, provides the function-
ality to scan the QR code entered from the camera.

12. Sender.java: This class has same functionality as presented earlier in
Section 12.4.2and is described inAppendix B.12.

107

13. Services.java: This class as shown inAppendix B.13, implements
the interface to access the classesDecode.java, Encode.java and
Scan.java.

14. Setup.java: This class as shown inAppendix B.14, generates the var-
ious system parameters as well as the public and the private keys for the
encryption scheme.

108

Figure 12.32: The class diagram showing the relationship among different classes

109

110

13. Conclusion

In this thesis we presented a new approach to identity based encryption based on a
certificateless scheme. As we saw the scheme has been designed for mobile devices
and protects the privacy of users in the event of device compromise. We saw the
motivations and reasons behind developing such a scheme. Then we looked at the
advantages and applications that our schemes have and explored their constructions
in detail. We presented the security proofs for the originaland the derived scheme
followed by the implementation details. The Android applications developed for
the original and the derived schemes proves the practical importance of these con-
structions. It also provides the proof that the ideas are notjust theoretical but also
work in practice. In this section we try to give an overview ofthe work presented
and explore the areas for future work.

13.1. Contributions. Our work demonstrates the implementation of the scheme
presented byDent, Libert & Paterson(2008). We developed an Android applica-
tion which is fully functional and can be used as a practical solution to communi-
cate privately. Subsequently, we saw how this constructioncan be modified to meet
a different security goal. We presented a construction which used biometric identi-
ties to encrypt and decrypt messages and provided a two-factor authentication. We
derived this construction from the work done byDent, Libert & Patersonto pro-
tect the privacy of users even if an adversary gains control of the device with the
stored secrets. This scheme safeguards the privacy of the user in the event of device
compromise. Additionally, we also proved that the derived construction is secure
in the standard model. An Android prototype demonstrating the derived scheme
was also developed. This proves that our new scheme is practical and efficiently
implementable on mobile devices which have limited resources as compared to a
desktop.

We showed both the schemes can be implemented efficiently using open source
libraries developed byLynn (2007) andCaro(2010). Before our work no previous
Android application implementingCertificateless Encryption Schemes Strongly
Secure in the Standard Modelexisted. The developed application can be used
to learn more about the scheme and improve it further. Our work can be seen
as a guideline which provides future developers with betterunderstanding of the
challenges faced when implementing pairing-based cryptographic applications on
mobile devices. Android is still a relatively new platform and it gets updated rather
frequently. The developed applications can give an insightto the open source com-
munity in developing features for Android which readily support cryptographic
work. At the moment not all Java libraries are well supportedby the Android
platform. We live in a world where surveillance has never been easier and this
has spurred the growth of applications which provide privacy and secrecy. These
factors are going to be instrumental in shaping the development of Android as a
complete operating system for mobile devices. Our applications help in highlight-
ing the scope for further development to support cryptography natively in Android.

111

13.2. Challenges and Future Work. Although we have made considerable strides
in providing privacy even in the event of device compromise,still there are certain
facets of the scheme that can be improved. As we saw the lack ofopen source
face recognition libraries in Android platform made implementation of biomet-
rics difficult. Feature extraction is a extremely hard problem and clever solutions
are needed for it to work successfully even with basic cameras that normal smart
phones have. Ideally, a biometric picture is required to do this but for the scheme to
be acceptable on a large scale other solutions need to be found. Perhaps we could
also look at the possibility of extracting biometric identity from other data sources,
the voice of the user could be an option. Android is a relatively new platform and
functionalities like voice identification are not well supported. Voice identification
is also a tricky problem which has not been fully solved irrespective of the platform
we consider. Hopefully as the mobile phone technology matures we will see more
solutions, future work can try to solve these issues.

Further improvements could also be done by making the encryption scheme
faster. The applications developed by us use the Java library developed byCaro
(2010) for all the pairing-based cryptography related operations. This library is
a Java porting of the C library library originally written byLynn (2007). Since
Java has native Android support it is very convenient to use thejPBClibrary and it
works out of the box however we do lose out on speed. Android has recently started
providing native C/C++ support throughNative Development Kitbut this increases
the application complexity and there are issues which need to be circumvented
before one can switch completely to C/C++. Also, a performance improvement
is not guaranteed by merely switching to a C/C++ library and careful design is
required to derive any gains. This can be looked as an area of further investigation
that would improve the performance of the scheme.

A new problem calledDenial-of-Decryption (DoD)Attack inCL-PKCschemes
was presented byLiu, Au & Susilo (2006). In this attack the adversary replaces
the receiver’s public key by someone else’s public key. So when the sender tries
to send an encrypted message to the receiver he uses the replaced public key and
the receiver’s identity to encrypt the message. Consequently, the receiver cannot
decrypt the message and the sender remains unaware of this. The authors have
coined the termDenial-of-Decryption Attackfor this kind of threat and the name
has been inspired from commonly knownDenial-of-Service Attack. Both the orig-
inal scheme and the derived scheme are vulnerable against such an attack. To
circumvent this problemLiu, Au & Susilo propose a new paradigm calledSelf-
Generated-Certificate Public Key Cryptographyand provide a generic construc-
tion of a self-generated-certificate public key encryptionscheme which is secure in
the standard model. Their scheme uses certificateless signature and certificateless
encryption as the building blocks. Also, the authors have described a certificate-
less encryption scheme with concrete implementation that is provably secure in the
standard model. The work done byLiu, Au & Susilo is worth exploring and can
improve the discussed constructions further. However, onemust carefully consider
the impact of such ideas on the discussed constructions and make sure that we do

112

not lose the benefits for which the schemes were originally designed.
In both the constructions discussed in this thesis we assumethat theKGC does

not actively launch attacks. A new kind of threat model was considered byAu,
Mu, Chen, Wong, Liu & Yang(2007), this model did not impose such constraints
on theKGC. The authors proceed on to show that the existingCL-PKE schemes
are insure in such a security model where the adversaries maliciously generate
system-wide parameters. Both the original as well as the derived construction are
vulnerable against such aKGC. Au, Mu, Chen, Wong, Liu & Yanghave claimed
that the existing schemes still suffer from the key escrow problem. They also give
new proofs to show that there are generic constructions which have been recently
proposed for certificateless signature and certificatelessencryption that are secure
under the new threat models. The work done byAu, Mu, Chen, Wong, Liu &
Yangmerits careful study and evaluation in the light of the constructions presented
in this thesis. If we can find concrete constructions which are secure in the new
model then this will further strengthen the security. Again, the modifications must
be done with care and attention to detail so that we can conserve the beneficial
properties of the work discussed in this thesis.

Thus we see that the area ofCL-PKEis relatively young and it is still evolving.
This presents us with the scope for further improvements. Asdiscussed the im-
provements can be structural as well as implementation based. With our work we
solved some important problems but there is always scope forimprovement and
we need to do more to achieve perfection. We hope that our workinspires growth
in the area ofCL-PKCand people come up with ingenious solutions which further
paves the path for knowledge and learning in the area of certificateless schemes.

113

114

Acronyms

3-DDH The Decisional 3-Party Diffie-Hellman Problem.20, 48, 51, 52, 64, 66,
68, 71, 72, 79, 80

API Application Programming Interface.83, 84

CA Certification Authority.10, 14, 16, 26, 30, 37, 40

CBE Certificate-Based Encryption.19

CL-PKC Certificateless Public Key Cryptography.11, 16, 17, 19, 37, 111, 112

CL-PKE Certificateless Public Key Encryption.11, 22, 25, 34, 35, 37, 38, 40, 41,
43, 112

CLE Certificateless Encryption.19

DBDH The Decisional Bilinear Diffie-Hellman Problem.20

DoD Denial-of-Decryption.111

GMP GNU Multiple Precision Arithmetic Library.83

IBC Identity Based Cryptography.17, 37

IBE Identity-Based Encryption.10, 11, 15–17, 19, 20, 34, 37

IND-CCA Indistinguishability Under Chosen Ciphertext Attack.27, 31, 40–42,
50, 52, 54, 72

jPBC Java Pairing Based Cryptography.83, 84, 111

KGC Key Generation Center.17, 20, 22, 25, 26, 29–31, 34, 35, 37, 40, 41, 44,
46, 48, 68, 69, 87, 93, 97, 112

PBC Pairing-Based Cryptography.83, 84

PKG Private Key Generator.15–17, 19, 37

PKI Public Key Infrastructure.10, 14–16, 34, 37, 40

TTP Trusted Third Party.16, 17

115

116

References

C. ADAMS & S. LLOYD (2002). Understanding PKI: concepts, standards, and deploy-
ment considerations. Addison-Wesley Longman Publishing Co., Inc.

SATTAM S. AL-RIYAMI & K ENNETH G. PATERSON (2003). Certificateless Public Key
Cryptography. InASIACRYPT, CHI-SUNG LAIH , editor, volume 2894 ofLecture Notes in
Computer Science, 452–473. Springer. ISBN 3-540-20592-6.

M.H. AU, Y. MU, J. CHEN, D.S. WONG, J.K. LIU & G. YANG (2007). Malicious KGC
attacks in certificateless cryptography. InProceedings of the 2nd ACM symposium on
Information, computer and communications security, 302–311. ACM.

JOONSANG BAEK, WILLY SUSILO & JIANYING ZHOU (2007). New constructions of
fuzzy identity-based encryption. InASIACCS, FENG BAO & STEVEN M ILLER, editors,
368–370. ACM. ISBN 1-59593-574-6.

DAN BONEH & M ATTHEW K. FRANKLIN (2001). Identity-Based Encryption from the
Weil Pairing. InCRYPTO, JOE K ILIAN , editor, volume 2139 ofLecture Notes in Computer
Science, 213–229. Springer. ISBN 3-540-42456-3.

ANGELO DE CARO (2010). Java Pairing-Based Cryptography Library. URLhttp://
gas.dia.unisa.it/projects/jpbc/.

JAE CHOON CHA & JUNG HEE CHEON (2003). An Identity-Based Signature from Gap
Diffie-Hellman Groups. InPublic Key Cryptography, YVO DESMEDT, editor, volume
2567 ofLecture Notes in Computer Science, 18–30. Springer. ISBN 3-540-00324-X.

L. CHEN, KEITH HARRISON, A. MOSS, DAVID SOLDERA & N IGEL P. SMART (2002).
Certification of Public Keys within an Identity Based System. In Proceedings of the 5th In-
ternational Conference on Information Security, ISC ’02, 322–333. Springer-Verlag, Lon-
don, UK, UK. ISBN 3-540-44270-7. URLhttp://dl.acm.org/citation.cfm?
id=648026.744529.

J. DANKERS, T. GAREFALAKIS, R. SCHAFFELHOFER& T. W RIGHT (2002). Public key
infrastructure in mobile systems.Electronics & Communication engineering journal14(5),
180–190.

ALEXANDER W. DENT (2006a). A Note On Game-Hopping Proofs.IACR Cryptology
ePrint Archive2006, 260.

ALEXANDER W. DENT (2006b). A Survey of Certificateless Encryption Schemes and
Security Models.IACR Cryptology ePrint Archive2006, 211.

ALEXANDER W. DENT, BENOÎT L IBERT & K ENNETH G. PATERSON (2008). Certifi-
cateless Encryption Schemes Strongly Secure in the Standard Model. InPublic Key Cryp-
tography, RONALD CRAMER, editor, volume 4939 ofLecture Notes in Computer Science,
344–359. Springer. ISBN 978-3-540-78439-5.

YVO DESMEDT & JEAN-JACQUES QUISQUATER (1986). Public-Key Systems Based on
the Difficulty of Tampering (Is There a Difference Between DES and RSA?). InCRYPTO,
ANDREW M. ODLYZKO , editor, volume 263 ofLecture Notes in Computer Science, 111–
117. Springer.

http://gas.dia.unisa.it/projects/jpbc/
http://gas.dia.unisa.it/projects/jpbc/
http://dl.acm.org/citation.cfm?id=648026.744529
http://dl.acm.org/citation.cfm?id=648026.744529

117

YEVGENIY DODIS & JONATHAN KATZ (2005). Chosen-Ciphertext Security of Multiple
Encryption. InTCC, JOE K ILIAN , editor, volume 3378 ofLecture Notes in Computer
Science, 188–209. Springer. ISBN 3-540-24573-1.

DROIDLA (2012). QR Droid. URLhttps://market.android.com/details?
id=la.droid.qr&hl=en.

JUN FURUKAWA , NUTTAPONG ATTRAPADUNG, RYUICHI SAKAI & GOICHIRO

HANAOKA (2008). A Fuzzy ID-Based Encryption Efficient When Error Rate Is Low.
In INDOCRYPT, DIPANWITA ROY CHOWDHURY, V INCENT RIJMEN & A BHIJIT DAS,
editors, volume 5365 ofLecture Notes in Computer Science, 116–129. Springer. ISBN
978-3-540-89753-8.

DAVID GALINDO , PAZ MORILLO & CARLA RÀFOLS (2006). Breaking Yum and Lee
Generic Constructions of Certificate-Less and Certificate-Based Encryption Schemes. In
EuroPKI, ANDREA S. ATZENI & A NTONIO L IOY, editors, volume 4043 ofLecture Notes
in Computer Science, 81–91. Springer. ISBN 3-540-35151-5.

C. GENTRY & A. S ILVERBERG (2002). Hierarchical ID-based cryptography.Advances
in Cryptology – ASIACRYPT 2002149–155.

CRAIG GENTRY (2003). Certificate-Based Encryption and the Certificate Revocation
Problem. InEUROCRYPT, ELI BIHAM , editor, volume 2656 ofLecture Notes in Computer
Science, 272–293. Springer. ISBN 3-540-14039-5.

MARC GIRAULT (1991). Self-Certified Public Keys. InEUROCRYPT, DONALD W.
DAVIES, editor, volume 547 ofLecture Notes in Computer Science, 490–497. Springer.
ISBN 3-540-54620-0.

P. GUTMANN (2002). PKI: it’s not dead, just resting.Computer35(8), 41–49.

F. HESS(2003). Efficient identity based signature schemes based onpairings. InSelected
Areas in Cryptography, 310–324. Springer.

QIONG HUANG & D UNCAN S. WONG (2007). Generic Certificateless Encryption in the
Standard Model. InIWSEC, ATSUKO M IYAJI , HIROAKI K IKUCHI & K AI RANNENBERG,
editors, volume 4752 ofLecture Notes in Computer Science, 278–291. Springer. ISBN
978-3-540-75650-7.

DETLEF HÜHNLEIN, M ICHAEL J. JACOBSON JR. & DAMIAN WEBER (2000). To-
wards Practical Non-interactive Public Key CryptosystemsUsing Non-maximal Imagi-
nary Quadratic Orders. InSelected Areas in Cryptography, DOUGLAS R. STINSON &
STAFFORD E. TAVARES, editors, volume 2012 ofLecture Notes in Computer Science,
275–287. Springer. ISBN 3-540-42069-X.

A. K ERCKHOFFS(1883). La cryptographie militaire.Journal des sciences militaires9(1),
5–38.

JOSEPHK. L IU, MAN HO AU & W ILLY SUSILO (2006). Self-Generated-Certificate Pub-
lic Key Cryptography and Certificateless Signature / Encryption Scheme in the Standard
Model. IACR Cryptology ePrint Archive2006, 373.

https://market.android.com/details?id=la.droid.qr&hl=en
https://market.android.com/details?id=la.droid.qr&hl=en

118

BENJAMIN LYNN (2007). Pairing-Based Cryptography Library. URLhttp://
crypto.stanford.edu/pbc/.

UELI M. M AURER & YACOV YACOBI (1991). Non-interactive Public-Key Cryptography.
In EUROCRYPT, DONALD W. DAVIES, editor, volume 547 ofLecture Notes in Computer
Science, 498–507. Springer. ISBN 3-540-54620-0.

K.G. PATERSON (2002a). Cryptography from pairings: a snapshot of currentresearch.
Information Security Technical Report7(3), 41–54.

K.G. PATERSON(2002b). ID-based signatures from pairings on elliptic curves.Electron-
ics Letters38(18), 1025–1026.

HOLGER PETERSEN, PATRICK HORSTER& D ELTA PATRICK HORSTER (1997). Self-
certified keys - Concepts and Applications. InIn Proc. Communications and Multimedia
Security’97, 102–116. Chapman & Hall.

S. SAEEDNIA (2003). A note on Girault’s self-certified model.Information Processing
Letters86(6), 323–327.

SHAHROKH SAEEDNIA (1997). Identity-Based and Self-Certified Key-Exchange Proto-
cols. InACISP, V IJAY VARADHARAJAN, JOSEF PIEPRZYK & Y I MU, editors, volume
1270 ofLecture Notes in Computer Science, 303–313. Springer. ISBN 3-540-63232-8.

AMIT SAHAI & B RENT WATERS (2005). Fuzzy Identity-Based Encryption. InEURO-
CRYPT, RONALD CRAMER, editor, volume 3494 ofLecture Notes in Computer Science,
457–473. Springer. ISBN 3-540-25910-4.

R. SAKAI , K. OHGISHI & M. K ASAHARA (2000). Cryptosystems based on pairing. In
The 2000 Symposium on Cryptography and Information Security, Okinawa, Japan, 135–
148.

ADI SHAMIR (1984). Identity-Based Cryptosystems and Signature Schemes. InCRYPTO,
G. R. BLAKLEY & DAVID CHAUM , editors, volume 196 ofLecture Notes in Computer
Science, 47–53. Springer. ISBN 3-540-15658-5.

NIGEL P. SMART (2003). Access control using pairing based cryptography. In Proceed-
ings of the 2003 RSA conference on The cryptographers’ track, CT-RSA’03, 111–121.
Springer-Verlag, Berlin, Heidelberg. ISBN 3-540-00847-0. URL http://dl.acm.
org/citation.cfm?id=1767011.1767023.

NP SMART (2002). Identity-based authenticated key agreement protocol based on Weil
pairing. Electronics Letters38(13), 630–632.

HATSUKAZU TANAKA (1987). A Realization Scheme for the Identity-Based Cryptosys-
tem. InCRYPTO, CARL POMERANCE, editor, volume 293 ofLecture Notes in Computer
Science, 340–349. Springer. ISBN 3-540-18796-0.

S. TSUJII & T. I TOH (1989). An ID-based cryptosystem based on the discrete logarithm
problem.Selected Areas in Communications, IEEE Journal on7(4), 467–473.

B. WATERS (2005). Efficient identity-based encryption without random oracles.Advances
in Cryptology–EUROCRYPT 2005557–557.

http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://dl.acm.org/citation.cfm?id=1767011.1767023
http://dl.acm.org/citation.cfm?id=1767011.1767023

119

DAE HYUN YUM & PIL JOONG LEE (2004a). Generic Construction of Certificateless
Encryption. InICCSA (1), ANTONIO LAGANÀ , MARINA L. GAVRILOVA , V IPIN KUMAR,
YOUNGSONGMUN, CHIH JENG KENNETH TAN & OSVALDO GERVASI, editors, volume
3043 ofLecture Notes in Computer Science, 802–811. Springer. ISBN 3-540-22054-2.

DAE HYUN YUM & PIL JOONG LEE (2004b). Identity-Based Cryptography in Public Key
Management. InEuroPKI, SOKRATIS K. K ATSIKAS, STEFANOS GRITZALIS & JAVIER

LOPEZ, editors, volume 3093 ofLecture Notes in Computer Science, 71–84. Springer.
ISBN 3-540-22216-2.

120

121

A. Source Code for the Original Construction

A.1. CertificatelessEncAppActivity.java

// This is the main class of the application and implements
the main screen

package certificateless.encryption.app;

import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Toast;

public class CertificatelessEncAppActivity extends Activity
implements
OnClickListener {

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main_layout);

View composeButton =
findViewById(R.id.compose_message_button);

composeButton.setOnClickListener(this);

View readButton = findViewById(R.id.read_message_button);
readButton.setOnClickListener(this);

View setupButton = findViewById(R.id.setup_button);
setupButton.setOnClickListener(this);

View helpButton = findViewById(R.id.help_button);
helpButton.setOnClickListener(this);

}

// Declaring the buttons
public void onClick(View v) {

switch (v.getId()) {
case R.id.help_button:
Intent i1 = new Intent(this, Help.class);
startActivity(i1);
break;

122

case R.id.compose_message_button:
Intent i2 = new Intent(this, ComposeMessage.class);
startActivity(i2);
break;

case R.id.read_message_button:
Intent i3 = new Intent(this, ReadMessage.class);
startActivity(i3);
break;

case R.id.setup_button:
CurveParams curveParams = new

CurveParams().load(getResources()
.openRawResource(R.raw.a_181_603));

KeyGenerationCenter.setup(v.getContext(), curveParams);
Receiver.setSecPub(curveParams);

Toast.makeText(CertificatelessEncAppActivity.this,
"Setup Complete", Toast.LENGTH_LONG).show();

break;
}

}
}

A.2. ComposeMessage.java

// This class implements the compose mail interface and
provides the functionality to compose, encrypt and send
messages

package certificateless.encryption.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.jpbc.Pairing;
import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

import java.io.UnsupportedEncodingException;
import java.util.ArrayList;
import java.util.List;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;
import android.view.View;

123

import android.view.View.OnClickListener;
import android.widget.EditText;
import android.widget.Toast;

public class ComposeMessage extends Activity implements
OnClickListener {

public static List<Element[]> enc_message_list = new
ArrayList<Element[]>();

public static String enc_text = "";
public static String email = "";

public static final int BIT_LENGTH = 100;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.compose_message);

View encButton = findViewById(R.id.compose_message_enc);
encButton.setOnClickListener(this);

View sendButton =
findViewById(R.id.compose_message_send);

sendButton.setOnClickListener(this);
}

public void onClick(View v) {

CurveParams curveParams = new
CurveParams().load(getResources()
.openRawResource(R.raw.a_181_603));

Pairing pairing = PairingFactory.getPairing(curveParams);

final EditText compose_message_to = (EditText)
findViewById(R.id.compose_message_to);

final EditText compose_message_subject = (EditText)
findViewById(R.id.compose_message_subject);

final EditText compose_message_text = (EditText)
findViewById(R.id.compose_message_text);

switch (v.getId()) {
// Encrypting the message
case R.id.compose_message_enc:
int message_len = 76;
int pad_len = 0;

email = compose_message_to.getText().toString();
String encoding = "UTF-16BE";

124

String message =
compose_message_text.getText().toString();

String message_final = message;
String value = "00";
String str_add = String.format(

String.format("%%0%dd", message_len - 2),
0).replace("0",

"*");

if (message.length() % message_len != 0) {
int message_len_quo = message.length() / message_len;
pad_len = (message_len_quo + 1) * message_len;

int pad_count = pad_len - message.length();
String pad = String.format(String.format("%%0%dd",

pad_count),
0).replace("0", "~");

message_final = message + pad;

if (pad_count < 10)
value = "0" + pad_count;

else
value = new Integer(pad_count).toString();

}

message_final = message_final + str_add + value;

try {
byte[] message_final_bytes =

message_final.getBytes(encoding);

enc_message_list.clear();

for (int i = 0; i < message_final.length() /
message_len; i++) {

byte[] newarr = new byte[2 * message_len];

System.arraycopy(message_final_bytes, i * 2 *
message_len,
newarr, 0, 2 * message_len);

Element element_temp = pairing.getGT().newElement();
element_temp.setFromBytes(newarr);

Element enc_message[] = new Element[4];
Sender sender = new Sender();

Methods method = new Methods();

125

String ID =
method.stringtoBinary(email).substring(0,
BIT_LENGTH);

enc_message = sender.enCrypt(ID, curveParams,
element_temp.duplicate());

enc_message_list.add(enc_message.clone());
}

} catch (UnsupportedEncodingException e) {
System.out.println("Encoding Error");

}

for (int i = 0; i < enc_message_list.size(); i++) {

try {
String enc_text_inter = "";
enc_text_inter = new String(

enc_message_list.get(i)[0].toBytes(), "UTF-8")
+ new

String(enc_message_list.get(i)[1].toBytes(),
"UTF-8")

+ new
String(enc_message_list.get(i)[2].toBytes(),
"UTF-8")

+ new
String(enc_message_list.get(i)[3].toBytes(),
"UTF-8");

enc_text = enc_text + enc_text_inter;
} catch (UnsupportedEncodingException e) {
System.out.println("Encoding Error");

}
}
compose_message_text.setText(enc_text);
Toast.makeText(ComposeMessage.this, "Message

Encrypted",
Toast.LENGTH_LONG).show();

break;

// Sending the mail on tapping send button
case R.id.compose_message_send:
Mail m = new Mail("certificateless.enc@googlemail.com",

"thesis1234");

String[] toArr = {
compose_message_to.getText().toString() };

m.setTo(toArr);

126

m.setFrom("certificateless.enc@googlemail.com");
m.setSubject(compose_message_subject.getText().toString());
m.setBody("***BEGIN ENCRYPTED MESSAGE***\n\n\n" +

enc_text
+ "\n\n\n***END OF ENCRYPTED MESSAGE***");

try {
if (m.send()) {
Toast.makeText(ComposeMessage.this,

"Email was sent successfully.",
Toast.LENGTH_LONG)

.show();

Intent i5 = new Intent(this,
CertificatelessEncAppActivity.class);

startActivity(i5);
} else {
Toast.makeText(ComposeMessage.this, "Email was not

sent.",
Toast.LENGTH_LONG).show();

}
} catch (Exception e) {
Log.e("Email", "Could not send email", e);

}
break;

}
}

}

A.3. Help.java

// This class implements the Help interface

package certificateless.encryption.app;

import android.app.Activity;
import android.os.Bundle;

public class Help extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.help);

}
}

127

A.4. KeyGenerationCenter.java

// This class implements the algorithms run by the KGC

package certificateless.encryption.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.jpbc.Pairing;
import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

import java.util.ArrayList;
import java.util.List;

import android.app.Activity;
import android.content.Context;

public class KeyGenerationCenter extends Activity {

public static Element g, g1, g2, Fu_ID;
private static Element msk, gamma;
public static List<Element> u = new ArrayList<Element>();
public static List<Element> v = new ArrayList<Element>();
public static String ID;

public static final int BIT_LENGTH = 100;

// ~~~~~~~~ Step 1 - Setup: Performed by KGC called at
startup ~~~~~~~~

public static void setup(Context context, CurveParams
curveParams) {

Pairing pairing = PairingFactory.getPairing(curveParams);

g = pairing.getG1().newRandomElement();
g2 = pairing.getG1().newRandomElement();
gamma = pairing.getZr().newRandomElement();
g1 = g.duplicate().powZn(gamma.duplicate());
msk = g2.duplicate().powZn(gamma.duplicate());

for (int i = 0; i <= BIT_LENGTH; i++) {
Element u_temp = pairing.getG1().newRandomElement();
u.add(u_temp.duplicate());

}

for (int i = 0; i <= BIT_LENGTH; i++) {
Element v_temp = pairing.getG1().newRandomElement();
v.add(v_temp.duplicate());

128

}
}

// ~~~~~~~~ Step 2 - Extract: Performed by KGC called by
Receiver ~~~~~~~~

public static Element[] extract(String email, CurveParams
curveParams) {

Pairing pairing = PairingFactory.getPairing(curveParams);

Methods method = new Methods();
ID = method.stringtoBinary(email).substring(0,

BIT_LENGTH);
Fu_ID = method.newHash(u, ID, curveParams);

Element r = pairing.getZr().newRandomElement();

Element d_ID[] = new Element[2];
d_ID[0] =

msk.duplicate().mul(Fu_ID.duplicate().powZn(r.duplicate()));
d_ID[1] = g.duplicate().powZn(r.duplicate());

return d_ID.clone();
}

}

A.5. Mail.java

/* This class provides the functionality for sending mails.

* The author of this class is John Simon and the code is
available

* at http://www.jondev.net/

* */

package certificateless.encryption.app;

import java.util.Date;
import java.util.Properties;
import javax.activation.CommandMap;
import javax.activation.DataHandler;
import javax.activation.DataSource;
import javax.activation.FileDataSource;
import javax.activation.MailcapCommandMap;
import javax.mail.BodyPart;
import javax.mail.Multipart;
import javax.mail.PasswordAuthentication;
import javax.mail.Session;

129

import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeBodyPart;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.MimeMultipart;

public class Mail extends javax.mail.Authenticator {
private String _user;
private String _pass;

private String[] _to;
private String _from;

private String _port;
private String _sport;

private String _host;

private String _subject;
private String _body;

private boolean _auth;

private boolean _debuggable;

private Multipart _multipart;

public Mail() {
_host = "smtp.gmail.com"; // default smtp server
_port = "465"; // default smtp port
_sport = "465"; // default socketfactory port

_user = ""; // username
_pass = ""; // password
_from = ""; // email sent from
_subject = ""; // email subject
_body = ""; // email body

_debuggable = false; // debug mode on or off - default
off

_auth = true; // smtp authentication - default on

_multipart = new MimeMultipart();

MailcapCommandMap mc = (MailcapCommandMap) CommandMap
.getDefaultCommandMap();

mc.addMailcap("text/html;;
x-java-content-handler=com.sun.mail.handlers.text_html");

mc.addMailcap("text/xml;;

130

x-java-content-handler=com.sun.mail.handlers.text_xml");
mc.addMailcap("text/plain;;

x-java-content-handler=com.sun.mail.handlers.text_plain");
mc.addMailcap("multipart/*;;

x-java-content-handler=com.sun.mail.handlers.multipart_mixed");
mc.addMailcap("message/rfc822;;

x-java-content-handler=com.sun.mail.handlers.message_rfc822");
CommandMap.setDefaultCommandMap(mc);

}

public Mail(String user, String pass) {
this();

_user = user;
_pass = pass;

}

public boolean send() throws Exception {
Properties props = _setProperties();

if (!_user.equals("") && !_pass.equals("") && _to.length
> 0
&& !_from.equals("") && !_subject.equals("")
&& !_body.equals("")) {

Session session = Session.getInstance(props, this);

MimeMessage msg = new MimeMessage(session);

msg.setFrom(new InternetAddress(_from));

InternetAddress[] addressTo = new
InternetAddress[_to.length];

for (int i = 0; i < _to.length; i++) {
addressTo[i] = new InternetAddress(_to[i]);

}
msg.setRecipients(MimeMessage.RecipientType.TO,

addressTo);

msg.setSubject(_subject);
msg.setSentDate(new Date());

// setup message body
BodyPart messageBodyPart = new MimeBodyPart();
messageBodyPart.setText(_body);
_multipart.addBodyPart(messageBodyPart);

// Put parts in message
msg.setContent(_multipart);

131

// send email
Transport.send(msg);

return true;
} else {
return false;

}
}

public void addAttachment(String filename) throws
Exception {

BodyPart messageBodyPart = new MimeBodyPart();
DataSource source = new FileDataSource(filename);
messageBodyPart.setDataHandler(new DataHandler(source));
messageBodyPart.setFileName(filename);

_multipart.addBodyPart(messageBodyPart);
}

@Override
public PasswordAuthentication getPasswordAuthentication()

{
return new PasswordAuthentication(_user, _pass);

}

private Properties _setProperties() {
Properties props = new Properties();

props.put("mail.smtp.host", _host);

if (_debuggable) {
props.put("mail.debug", "true");

}

if (_auth) {
props.put("mail.smtp.auth", "true");

}

props.put("mail.smtp.port", _port);
props.put("mail.smtp.socketFactory.port", _sport);
props.put("mail.smtp.socketFactory.class",

"javax.net.ssl.SSLSocketFactory");
props.put("mail.smtp.socketFactory.fallback", "false");

return props;
}

// the getters and setters
public String getBody() {

132

return _body;
}

public void setBody(String _body) {
this._body = _body;

}

public void setTo(String[] toArr) {
this._to = toArr;

}

public void setFrom(String string) {
this._from = string;

}

public void setSubject(String string) {
this._subject = string;

}
}

A.6. Methods.java

// This class implements various methods used by the
different classes

package certificateless.encryption.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.jpbc.Pairing;
import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

import java.security.MessageDigest;
import java.util.List;

public class Methods {

public static final int BIT_LENGTH = 100;

public String stringtoBinary(String text) {

byte[] bytes = text.getBytes();
String binarystr = "";
for (int i = 0; i < bytes.length; i++) {
binarystr = binarystr + bytetoBinaryString(bytes[i]);

}
return binarystr;

133

}

// Computing the SHA-1 hash
public String sha1Hash(String input) {

byte[] output;
String binarystr = "";

try {
MessageDigest md = MessageDigest.getInstance("SHA1");
md.update(input.getBytes());
output = md.digest();

for (int i = 0; i < output.length; i++) {
binarystr = binarystr + bytetoBinaryString(output[i]);

}

} catch (Exception e) {
System.out.println("Exception: " + e);

}
return binarystr;

}

/*
* Converting bytes to hexadecimal. The code for this

method has been taken

* from http://www.herongyang.com

*/
public String bytesToHex(byte[] b) {
char hexDigit[] = { ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’,

’7’, ’8’, ’9’,
’A’, ’B’, ’C’, ’D’, ’E’, ’F’ };

StringBuffer buf = new StringBuffer();
for (int j = 0; j < b.length; j++) {
buf.append(hexDigit[(b[j] >> 4) & 0x0f]);
buf.append(hexDigit[b[j] & 0x0f]);

}
return buf.toString();

}

/*
* Converting a byte to binary string. The code for this

method has been

* taken from http://helpdesk.objects.com.au

*/
public String bytetoBinaryString(byte n) {
StringBuilder sb = new StringBuilder("00000000");
for (int bit = 0; bit < 8; bit++) {
if (((n >> bit) & 1) > 0) {

134

sb.setCharAt(7 - bit, ’1’);
}

}
return sb.toString();

}

// Calculating the hash used by the scheme
public Element newHash(List<Element> vector, String

bitstr,
CurveParams curveParams) {

Pairing pairing = PairingFactory.getPairing(curveParams);
Element hash_val = pairing.getG1().newOneElement();
hash_val.mul(vector.get(0).duplicate());

for (int i = 0; i < BIT_LENGTH; i++) {
if (bitstr.charAt(i) == ’1’) {
hash_val.mul(vector.get(i + 1).duplicate());

}
}
return hash_val;

}
}

A.7. ReadMessage.java

//This class implements the interface to read messages

package certificateless.encryption.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;

import java.io.UnsupportedEncodingException;
import java.util.ArrayList;
import java.util.List;

import android.app.Activity;
import android.os.Bundle;
import android.text.method.ScrollingMovementMethod;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.TextView;
import android.widget.Toast;

public class ReadMessage extends Activity implements
OnClickListener {

135

TextView read_msg_txt;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.read_message);

read_msg_txt = (TextView)
findViewById(R.id.read_message_text);

View decButton = findViewById(R.id.read_message_dec);
decButton.setOnClickListener(this);

View loadButton = findViewById(R.id.read_message_load);
loadButton.setOnClickListener(this);

}

public void onClick(View v) {

final TextView read_message_text = (TextView)
findViewById(R.id.read_message_text);

String encoding = "UTF-16BE";
CurveParams curveParams = new

CurveParams().load(getResources()
.openRawResource(R.raw.a_181_603));

int message_len = 76;

switch (v.getId()) {

case R.id.read_message_dec:
List<Element[]> enc_message_list = new

ArrayList<Element[]>();
enc_message_list = ComposeMessage.enc_message_list;

String dec_msg_padded = "";
for (int i = 0; i < enc_message_list.size(); i++) {
Element dec_message =

Receiver.deCrypt(enc_message_list.get(i),
curveParams);

try {
String msg_inter = new

String(dec_message.duplicate()
.toBytes(), encoding);

dec_msg_padded = dec_msg_padded + msg_inter;

} catch (UnsupportedEncodingException e) {

136

System.out.println("Encoding Error");
}

}

String msg_end_num = dec_msg_padded.substring(
dec_msg_padded.length() - 2,

dec_msg_padded.length());
int dec_msg_pad_len = Integer.parseInt(msg_end_num);

String dec_msg = dec_msg_padded.substring(0,
dec_msg_padded.length() - dec_msg_pad_len -

message_len);

read_message_text.setText(dec_msg);

Toast.makeText(ReadMessage.this, "Message Decrypted",
Toast.LENGTH_LONG).show();

break;

case R.id.read_message_load:
read_msg_txt.setMovementMethod(new

ScrollingMovementMethod());
read_message_text.setText(ComposeMessage.enc_text);

break;
}

}
}

A.8. Receiver.java

// This class implements the algorithms executed by the
Receiver

package certificateless.encryption.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.jpbc.Pairing;
import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

public class Receiver {

private static Element x_ID;
public static Element pk_ID[] = new Element[2];
private static Element sk_ID[] = new Element[2];

137

public static final int BIT_LENGTH = 100;

// Step 3 & 4 - SetSec & SetPub: Performed and called by
Receiver

public static void setSecPub(CurveParams curveParams) {

Pairing pairing = PairingFactory.getPairing(curveParams);

x_ID = pairing.getZr().newRandomElement();

pk_ID[0] =
KeyGenerationCenter.g.duplicate().powZn(x_ID.duplicate());

pk_ID[1] =
KeyGenerationCenter.g1.duplicate().powZn(x_ID.duplicate());

}

// ~~~~~~~~ Step 5 - SetPriv: Performed and called by
Receiver ~~~~~~~~

private static void setPriv(CurveParams curveParams) {

Pairing pairing = PairingFactory.getPairing(curveParams);

Element r_prime = pairing.getZr().newRandomElement();

Element d_ID[] =
KeyGenerationCenter.extract(ComposeMessage.email,
curveParams);

sk_ID[0] = (d_ID[0].duplicate().powZn(x_ID.duplicate()))
.mul(KeyGenerationCenter.Fu_ID.duplicate().powZn(

r_prime.duplicate()));
sk_ID[1] = (d_ID[1].duplicate().powZn(x_ID.duplicate()))

.mul(KeyGenerationCenter.g.duplicate().powZn(
r_prime.duplicate()));

}

// ~~~~~~~ Step 7 - Decrypt: Performed by Receiver ~~~~~
public static Element deCrypt(Element cipherText[],

CurveParams curveParams) {

Pairing pairing = PairingFactory.getPairing(curveParams);

setPriv(curveParams);

String str_to_hash = cipherText[0].duplicate().toString()
+ cipherText[1].duplicate().toString()
+ cipherText[2].duplicate().toString()
+ Receiver.pk_ID[0].duplicate().toString()

138

+ Receiver.pk_ID[1].duplicate().toString()
+ KeyGenerationCenter.ID;

Methods method = new Methods();
String w = method.sha1Hash(str_to_hash);

Element Fv_W = method.newHash(KeyGenerationCenter.v,
w.substring(0, BIT_LENGTH), curveParams);

Element temp1 =
KeyGenerationCenter.Fu_ID.duplicate().mul(
Fv_W.duplicate());

Element temp2 = cipherText[2].duplicate()
.mul(cipherText[3].duplicate());

if (pairing.pairing(cipherText[1].duplicate(),
temp1.duplicate())
.isEqual(

pairing.pairing(KeyGenerationCenter.g.duplicate(),
temp2.duplicate())) == false) {

System.out.println("ABORT: problem matching ...");

return pairing.getGT().newZeroElement();
} else {

Element dec_msg = cipherText[0].duplicate().mul(
pairing.pairing(cipherText[2].duplicate(),

sk_ID[1].duplicate()).div(
pairing.pairing(cipherText[1].duplicate(),

sk_ID[0].duplicate())));

return dec_msg.duplicate();
}

}
}

A.9. Sender.java

// This class implements the algorithms executed by the
Sender

package certificateless.encryption.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.jpbc.Pairing;

139

import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

public class Sender {

public static Element C[] = new Element[4];
public static Element Fu_ID;

public static final int BIT_LENGTH = 100;

// ~~~~~~~~~~ Step 6 - Encrypt: Performed and called by
Sender ~~~~~~~~~

public Element[] enCrypt(String ID, CurveParams
curveParams, Element m) {

Pairing pairing = PairingFactory.getPairing(curveParams);

if (pairing.pairing(Receiver.pk_ID[0].duplicate(),
KeyGenerationCenter.g1.duplicate()).isEqual(
pairing.pairing(Receiver.pk_ID[1].duplicate(),

KeyGenerationCenter.g.duplicate())) == false) {

System.out.println("ABORT: Incorrect Shape");

return null;
} else {

Element s = pairing.getZr().newRandomElement();

C[0] = m.duplicate().mul(
(pairing.pairing(Receiver.pk_ID[1].duplicate(),

KeyGenerationCenter.g2.duplicate())).powZn(s
.duplicate()));

C[1] =
KeyGenerationCenter.g.duplicate().powZn(s.duplicate());

Methods method = new Methods();

Element Fu_ID = method.newHash(KeyGenerationCenter.u,
ID,
curveParams);

C[2] = Fu_ID.duplicate().powZn(s.duplicate());

String str_to_hash = C[0].duplicate().toString()
+ C[1].duplicate().toString() +

C[2].duplicate().toString()
+ Receiver.pk_ID[0].duplicate().toString()

140

+ Receiver.pk_ID[1].duplicate().toString() + ID;

String w = method.sha1Hash(str_to_hash);

Element Fv_W = method.newHash(KeyGenerationCenter.v,
w.substring(0, BIT_LENGTH), curveParams);

C[3] = Fv_W.duplicate().powZn(s.duplicate());

return C.clone();
}

}
}

141

142

B. Source Code for the Derived Construction

B.1. CertificatelessEncModAppActivity.java

// This is the main class of the application and implements
the main screen

package certificateless.encryption.mod.app;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;

public class CertificatelessEncModAppActivity extends
Activity implements
OnClickListener {

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main_layout);

View composeButton =
findViewById(R.id.compose_message_button);

composeButton.setOnClickListener(this);

View readButton = findViewById(R.id.read_message_button);
readButton.setOnClickListener(this);

View setupButton = findViewById(R.id.setup_button);
setupButton.setOnClickListener(this);

View helpButton = findViewById(R.id.help_button);
helpButton.setOnClickListener(this);

}

// Declaring the buttons
public void onClick(View v) {

switch (v.getId()) {
case R.id.help_button:
Intent i1 = new Intent(this, Help.class);
startActivity(i1);
break;

case R.id.compose_message_button:
Intent i2 = new Intent(this, ComposeMessage.class);

143

startActivity(i2);
break;

case R.id.read_message_button:
Intent i3 = new Intent(this, ReadMessage.class);
startActivity(i3);
break;

case R.id.setup_button:
Intent i4 = new Intent(this, Setup.class);
startActivity(i4);

break;
}

}
}

B.2. ComposeMessage.java

// This class implements the compose mail interface and
provides the functionality to compose, encrypt and send
messages

package certificateless.encryption.mod.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.jpbc.Pairing;
import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

import java.io.UnsupportedEncodingException;
import java.util.ArrayList;
import java.util.List;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.EditText;
import android.widget.Toast;

public class ComposeMessage extends Activity implements
OnClickListener {

144

public static List<Element[]> enc_message_list = new
ArrayList<Element[]>();

public static String enc_text = "";
public static String email = "";

public static final int BIT_LENGTH = 100;
private static final int ACTIVITY_RESULT_QR_DRDROID = 0;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.compose_message);

View encButton = findViewById(R.id.compose_message_enc);
encButton.setOnClickListener(this);

View sendButton =
findViewById(R.id.compose_message_send);

sendButton.setOnClickListener(this);
}

public void onClick(View v) {

final EditText compose_message_to = (EditText)
findViewById(R.id.compose_message_to);

final EditText compose_message_subject = (EditText)
findViewById(R.id.compose_message_subject);

switch (v.getId()) {
// Encrypting the message
case R.id.compose_message_enc:

Intent qrDroid = new Intent(Services.SCAN);

try {
startActivityForResult(qrDroid,

ACTIVITY_RESULT_QR_DRDROID);
} catch (ActivityNotFoundException activity) {
Services.qrDroidRequired(ComposeMessage.this);

}

break;

// Sending the mail on tapping send button
case R.id.compose_message_send:
Mail m = new Mail("certificateless.enc@googlemail.com",

"thesis1234");

145

String[] toArr = {
compose_message_to.getText().toString() };

m.setTo(toArr);
m.setFrom("certificateless.enc@googlemail.com");
m.setSubject(compose_message_subject.getText().toString());
m.setBody("***BEGIN ENCRYPTED MESSAGE***\n\n\n" +

enc_text
+ "\n\n\n***END OF ENCRYPTED MESSAGE***");

try {
if (m.send()) {
Toast.makeText(ComposeMessage.this,

"Email was sent successfully.",
Toast.LENGTH_LONG)

.show();

Intent i5 = new Intent(this,
CertificatelessEncModAppActivity.class);

startActivity(i5);
} else {
Toast.makeText(ComposeMessage.this, "Email was not

sent.",
Toast.LENGTH_LONG).show();

}
} catch (Exception e) {
Log.e("Email", "Could not send email", e);

}
break;

}
}

// Reading the QR code
protected void onActivityResult(int requestCode, int

resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if (ACTIVITY_RESULT_QR_DRDROID == requestCode && null !=
data
&& data.getExtras() != null) {

CurveParams curveParams = new
CurveParams().load(getResources()
.openRawResource(R.raw.a_181_603));

Pairing pairing =
PairingFactory.getPairing(curveParams);

final EditText compose_message_text = (EditText)
findViewById(R.id.compose_message_text);

final EditText compose_message_to = (EditText)

146

findViewById(R.id.compose_message_to);

// Read result from QR Droid (it’s stored in
la.droid.qr.result)

String biometrics =
data.getExtras().getString(Services.RESULT);

Methods method = new Methods();

String BID =
method.stringtoBinary(biometrics).substring(0,
BIT_LENGTH);

Element Fh_BID = method.newHash(KeyGenerationCenter.h,
BID,
curveParams);

int message_len = 76;
int pad_len = 0;

email = compose_message_to.getText().toString();
String encoding = "UTF-16BE";
String message =

compose_message_text.getText().toString();
String message_final = message;
String value = "00";
String str_add = String.format(

String.format("%%0%dd", message_len - 2),
0).replace("0",

"*");

if (message.length() % message_len != 0) {
int message_len_quo = message.length() / message_len;
pad_len = (message_len_quo + 1) * message_len;

int pad_count = pad_len - message.length();
String pad = String.format(String.format("%%0%dd",

pad_count),
0).replace("0", "~");

message_final = message + pad;

if (pad_count < 10)
value = "0" + pad_count;

else
value = new Integer(pad_count).toString();

}

message_final = message_final + str_add + value;

try {

147

byte[] message_final_bytes =
message_final.getBytes(encoding);

enc_message_list.clear();

for (int i = 0; i < message_final.length() /
message_len; i++) {

byte[] newarr = new byte[2 * message_len];

System.arraycopy(message_final_bytes, i * 2 *
message_len,
newarr, 0, 2 * message_len);

Element element_temp = pairing.getGT().newElement();
element_temp.setFromBytes(newarr);

Element enc_message[] = new Element[4];
Sender sender = new Sender();

String ID =
method.stringtoBinary(email).substring(0,
BIT_LENGTH);

enc_message = sender.enCrypt(ID, curveParams,
Fh_BID,
element_temp.duplicate());

enc_message_list.add(enc_message.clone());
}

} catch (UnsupportedEncodingException e) {
System.out.println("Encoding Error");

}

for (int i = 0; i < enc_message_list.size(); i++) {

try {
String enc_text_inter = "";
enc_text_inter = new String(

enc_message_list.get(i)[0].toBytes(), "UTF-8")
+ new

String(enc_message_list.get(i)[1].toBytes(),
"UTF-8")

+ new
String(enc_message_list.get(i)[2].toBytes(),
"UTF-8")

+ new
String(enc_message_list.get(i)[3].toBytes(),
"UTF-8");

148

enc_text = enc_text + enc_text_inter;
} catch (UnsupportedEncodingException e) {
System.out.println("Encoding Error");

}
}
compose_message_text.setText(enc_text);
Toast.makeText(ComposeMessage.this, "Message

Encrypted",
Toast.LENGTH_LONG).show();

}
}

}

B.3. Decode.java

// This is part of "QRDroidServices", by DroidLa.

package certificateless.encryption.mod.app;

import android.app.Activity;
import android.app.ProgressDialog;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.content.res.Configuration;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Spinner;
import android.widget.Toast;

public class Decode extends Activity {

private static final int ACTIVITY_RESULT_QR_DRDROID = 0;
private ProgressDialog dialog;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.decode);

// Get Spinner instance
final Spinner spinner = (Spinner)

findViewById(R.id.spin_complete);

149

// "Decode" button
final Button button = (Button)

findViewById(R.id.button_decode);
// Set action to button
button.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {
// Has the user entered image path?
String path = ((EditText) findViewById(R.id.txt_path))

.getText().toString();
// TODO: This path should not be entered manually by

the user!

if (0 == path.trim().length()) {
Toast.makeText(Decode.this,

getString(R.string.enter_url),
Toast.LENGTH_LONG).show();

return;
}

// Create a new Intent to send to QR Droid
Intent qrDroid = new Intent(Services.DECODE); // Set

action
// "la.droid.qr.decode"

qrDroid.putExtra(Services.IMAGE, path);

// Check whether a complete or displayable result is
needed

if (spinner.getSelectedItemId() == 0) { // First item
selected

// ("Complete content")
// Notify we want complete results (default is

FALSE)
qrDroid.putExtra(Services.COMPLETE, true);

}

// Send intent and wait result
try {
startActivityForResult(qrDroid,

ACTIVITY_RESULT_QR_DRDROID);

// Wait for result
if (null == dialog || !dialog.isShowing()) {
dialog = ProgressDialog.show(Decode.this, "",

getString(R.string.procesing), true);
dialog.setCancelable(true);
dialog.show();

}

150

} catch (ActivityNotFoundException activity) {
Services.qrDroidRequired(Decode.this);

}
}

});
}

@Override
/**
* Reads data decoded from image and returned by QR Droid

*/
protected void onActivityResult(int requestCode, int

resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

// Close dialog
if (null != dialog && dialog.isShowing()) {
dialog.cancel();

}

if (ACTIVITY_RESULT_QR_DRDROID == requestCode && null !=
data
&& data.getExtras() != null) {

// Read result from QR Droid (it’s stored in
la.droid.qr.result)

String result =
data.getExtras().getString(Services.RESULT);

if (resultCode != RESULT_OK || null == result
|| 0 == result.length()) {

// Image could not been loaded or decoded
Toast.makeText(Decode.this, R.string.not_decoded,

Toast.LENGTH_LONG).show();
return;

}

// Just set result to EditText to be able to view it
((EditText) findViewById(R.id.result)).setText(result);

}
}

@Override
public void onConfigurationChanged(Configuration

newConfig) {
super.onConfigurationChanged(newConfig);
// Nothing

}
}

151

B.4. Encode.java

// This is part of "QRDroidServices", by DroidLa.

package certificateless.encryption.mod.app;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.content.res.Configuration;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.Spinner;
import android.widget.Toast;

public class Encode extends Activity {

private static final int ACTIVITY_RESULT_QR_DRDROID = 0;
private boolean image = false;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.encode);

// Get Spinner instance
final Spinner spinner = (Spinner)

findViewById(R.id.spin_url);

// "Encode" button
final Button button = (Button)

findViewById(R.id.button_encode);
// Set action to button
button.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {
// Is there something to encode?
String code = ((EditText) findViewById(R.id.txt_code))

.getText().toString();
if (0 == code.trim().length()) {
Toast.makeText(Encode.this, R.string.enter_code,

Toast.LENGTH_SHORT).show();

152

return;
}

// Create a new Intent to send to QR Droid
Intent qrDroid = new Intent(Services.ENCODE); // Set

action
// "la.droid.qr.encode"

// Set text to encode
qrDroid.putExtra(Services.CODE, code);

// Check whether an URL or an imge is required
if (spinner.getSelectedItemId() == 0) { // First item

selected
// ("Get Bitmap")

// Notify we want complete results (default is
FALSE)

image = true;
qrDroid.putExtra(Services.IMAGE, true);
// Optionally, set requested image size. 0 means
// "Fit Screen"
qrDroid.putExtra(Services.SIZE, 0);

} else {
image = false;

}

// Send intent and wait result
try {
startActivityForResult(qrDroid,

ACTIVITY_RESULT_QR_DRDROID);
} catch (ActivityNotFoundException activity) {
Services.qrDroidRequired(Encode.this);

}
}

});
}

@Override
/**
* Reads generated QR code

*/
protected void onActivityResult(int requestCode, int

resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if (ACTIVITY_RESULT_QR_DRDROID == requestCode && null !=
data
&& data.getExtras() != null) {

// Read result from QR Droid (it’s stored in

153

la.droid.qr.result)
// Result is a string or a bitmap, according what was

requested
ImageView imgResult = (ImageView)

findViewById(R.id.img_result);
EditText txtResult = (EditText)

findViewById(R.id.txt_result);

if (image) {
String qrCode =

data.getExtras().getString(Services.RESULT);

// If image path was not returned, it could not be
saved. Check

// SD card is mounted and is writable
if (null == qrCode || 0 == qrCode.trim().length()) {
Toast.makeText(Encode.this, R.string.not_saved,

Toast.LENGTH_LONG).show();
return;

}

// Show success message
Toast.makeText(Encode.this,

getString(R.string.saved) + " " + qrCode,
Toast.LENGTH_LONG).show();

// Load QR code image from given path
imgResult.setImageURI(Uri.parse(qrCode));

imgResult.setVisibility(View.VISIBLE);
txtResult.setVisibility(View.GONE);

} else {
String result =

data.getExtras().getString(Services.RESULT);
// Just set result to EditText to be able to view it
txtResult.setText(result);
txtResult.setVisibility(View.VISIBLE);
imgResult.setVisibility(View.GONE);

}
}

}

@Override
public void onConfigurationChanged(Configuration

newConfig) {
super.onConfigurationChanged(newConfig);
// Nothing

}

154

}

B.5. Help.java

// This class implements the Help interface

package certificateless.encryption.mod.app;

import android.app.Activity;
import android.os.Bundle;

public class Help extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.help);

}
}

B.6. KeyGenerationCenter.java

// This class implements the algorithms run by the KGC

package certificateless.encryption.mod.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.jpbc.Pairing;
import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

import java.util.ArrayList;
import java.util.List;

import android.app.Activity;
import android.content.Context;

public class KeyGenerationCenter extends Activity {

public static Element g, g1, g2, Fu_ID, Fh_BID;
public static Element d_ID[] = new Element[3];
private static Element msk, gamma;
public static List<Element> u = new ArrayList<Element>();
public static List<Element> v = new ArrayList<Element>();
public static List<Element> h = new ArrayList<Element>();
public static String ID, BID;

155

public static final int BIT_LENGTH = 100;

// ~~~~~~~~ Step 1 - Setup: Performed by KGC called at
startup ~~~~~~~~

public static void setup(Context context, CurveParams
curveParams) {

Pairing pairing = PairingFactory.getPairing(curveParams);

g = pairing.getG1().newRandomElement();
g2 = pairing.getG1().newRandomElement();
gamma = pairing.getZr().newRandomElement();
g1 = g.duplicate().powZn(gamma.duplicate());
msk = g2.duplicate().powZn(gamma.duplicate());

for (int i = 0; i <= BIT_LENGTH; i++) {
Element u_temp = pairing.getG1().newRandomElement();
u.add(u_temp.duplicate());

}

for (int i = 0; i <= BIT_LENGTH; i++) {
Element v_temp = pairing.getG1().newRandomElement();
v.add(v_temp.duplicate());

}

for (int i = 0; i <= BIT_LENGTH; i++) {
Element h_temp = pairing.getG1().newRandomElement();
h.add(h_temp.duplicate());

}
}

// ~~~~~~~~ Step 2 - Extract: Performed by KGC called by
Receiver ~~~~~~~~

public static Element[] extract(String email, String
biometrics,
CurveParams curveParams) {

Pairing pairing = PairingFactory.getPairing(curveParams);

Methods method = new Methods();
ID = method.stringtoBinary(email).substring(0,

BIT_LENGTH);
BID = method.stringtoBinary(biometrics).substring(0,

BIT_LENGTH);

Fu_ID = method.newHash(u, ID, curveParams);
Fh_BID = method.newHash(h, BID, curveParams);

156

Element r = pairing.getZr().newRandomElement();

d_ID[0] =
msk.duplicate().mul(Fu_ID.duplicate().powZn(r.duplicate()));

d_ID[1] =
g.duplicate().mul(Fh_BID).duplicate().powZn(r.duplicate());

d_ID[2] = Fh_BID.duplicate().powZn(gamma.duplicate());

return d_ID.clone();
}

}

B.7. Mail.java

/* This class provides the functionality for sending mails.

* The author of this class is John Simon and the code is
available

* at http://www.jondev.net/

* */

package certificateless.encryption.mod.app;

import java.util.Date;
import java.util.Properties;
import javax.activation.CommandMap;
import javax.activation.DataHandler;
import javax.activation.DataSource;
import javax.activation.FileDataSource;
import javax.activation.MailcapCommandMap;
import javax.mail.BodyPart;
import javax.mail.Multipart;
import javax.mail.PasswordAuthentication;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeBodyPart;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.MimeMultipart;

public class Mail extends javax.mail.Authenticator {
private String _user;
private String _pass;

private String[] _to;
private String _from;

private String _port;

157

private String _sport;

private String _host;

private String _subject;
private String _body;

private boolean _auth;

private boolean _debuggable;

private Multipart _multipart;

public Mail() {
_host = "smtp.gmail.com"; // default smtp server
_port = "465"; // default smtp port
_sport = "465"; // default socketfactory port

_user = ""; // username
_pass = ""; // password
_from = ""; // email sent from
_subject = ""; // email subject
_body = ""; // email body

_debuggable = false; // debug mode on or off - default
off

_auth = true; // smtp authentication - default on

_multipart = new MimeMultipart();

// There is something wrong with MailCap, javamail can
not find a

// handler for the multipart/mixed part, so this bit
needs to be added.

MailcapCommandMap mc = (MailcapCommandMap) CommandMap
.getDefaultCommandMap();

mc.addMailcap("text/html;;
x-java-content-handler=com.sun.mail.handlers.text_html");

mc.addMailcap("text/xml;;
x-java-content-handler=com.sun.mail.handlers.text_xml");

mc.addMailcap("text/plain;;
x-java-content-handler=com.sun.mail.handlers.text_plain");

mc.addMailcap("multipart/*;;
x-java-content-handler=com.sun.mail.handlers.multipart_mixed");

mc.addMailcap("message/rfc822;;
x-java-content-handler=com.sun.mail.handlers.message_rfc822");

CommandMap.setDefaultCommandMap(mc);
}

158

public Mail(String user, String pass) {
this();

_user = user;
_pass = pass;

}

public boolean send() throws Exception {
Properties props = _setProperties();

if (!_user.equals("") && !_pass.equals("") && _to.length
> 0
&& !_from.equals("") && !_subject.equals("")
&& !_body.equals("")) {

Session session = Session.getInstance(props, this);

MimeMessage msg = new MimeMessage(session);

msg.setFrom(new InternetAddress(_from));

InternetAddress[] addressTo = new
InternetAddress[_to.length];

for (int i = 0; i < _to.length; i++) {
addressTo[i] = new InternetAddress(_to[i]);

}
msg.setRecipients(MimeMessage.RecipientType.TO,

addressTo);

msg.setSubject(_subject);
msg.setSentDate(new Date());

// setup message body
BodyPart messageBodyPart = new MimeBodyPart();
messageBodyPart.setText(_body);
_multipart.addBodyPart(messageBodyPart);

// Put parts in message
msg.setContent(_multipart);

// send email
Transport.send(msg);

return true;
} else {
return false;

}
}

public void addAttachment(String filename) throws

159

Exception {
BodyPart messageBodyPart = new MimeBodyPart();
DataSource source = new FileDataSource(filename);
messageBodyPart.setDataHandler(new DataHandler(source));
messageBodyPart.setFileName(filename);

_multipart.addBodyPart(messageBodyPart);
}

@Override
public PasswordAuthentication getPasswordAuthentication()

{
return new PasswordAuthentication(_user, _pass);

}

private Properties _setProperties() {
Properties props = new Properties();

props.put("mail.smtp.host", _host);

if (_debuggable) {
props.put("mail.debug", "true");

}

if (_auth) {
props.put("mail.smtp.auth", "true");

}

props.put("mail.smtp.port", _port);
props.put("mail.smtp.socketFactory.port", _sport);
props.put("mail.smtp.socketFactory.class",

"javax.net.ssl.SSLSocketFactory");
props.put("mail.smtp.socketFactory.fallback", "false");

return props;
}

// the getters and setters
public String getBody() {
return _body;

}

public void setBody(String _body) {
this._body = _body;

}

public void setTo(String[] toArr) {
this._to = toArr;

}

160

public void setFrom(String string) {
this._from = string;

}

public void setSubject(String string) {
this._subject = string;

}
}

B.8. Methods.java

// This class implements various methods used by the
different classes

package certificateless.encryption.mod.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.jpbc.Pairing;
import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

import java.security.MessageDigest;
import java.util.List;

public class Methods {

public static final int BIT_LENGTH = 100;

public String stringtoBinary(String text) {

byte[] bytes = text.getBytes();
String binarystr = "";
for (int i = 0; i < bytes.length; i++) {
binarystr = binarystr + bytetoBinaryString(bytes[i]);

}
return binarystr;

}

// Computing the SHA-1 hash
public String sha1Hash(String input) {

byte[] output;
String binarystr = "";

try {
MessageDigest md = MessageDigest.getInstance("SHA1");

161

md.update(input.getBytes());
output = md.digest();

for (int i = 0; i < output.length; i++) {
binarystr = binarystr + bytetoBinaryString(output[i]);

}

} catch (Exception e) {
System.out.println("Exception: " + e);

}
return binarystr;

}

/*
* Converting bytes to hexadecimal. The code for this

method has been taken

* from http://www.herongyang.com

*/
public String bytesToHex(byte[] b) {
char hexDigit[] = { ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’,

’7’, ’8’, ’9’,
’A’, ’B’, ’C’, ’D’, ’E’, ’F’ };

StringBuffer buf = new StringBuffer();
for (int j = 0; j < b.length; j++) {
buf.append(hexDigit[(b[j] >> 4) & 0x0f]);
buf.append(hexDigit[b[j] & 0x0f]);

}
return buf.toString();

}

/*
* Converting a byte to binary string. The code for this

method has been

* taken from http://helpdesk.objects.com.au

*/
public String bytetoBinaryString(byte n) {
StringBuilder sb = new StringBuilder("00000000");
for (int bit = 0; bit < 8; bit++) {
if (((n >> bit) & 1) > 0) {
sb.setCharAt(7 - bit, ’1’);

}
}
return sb.toString();

}

// Calculating the hash used by the scheme
public Element newHash(List<Element> vector, String

bitstr,
CurveParams curveParams) {

162

Pairing pairing = PairingFactory.getPairing(curveParams);
Element hash_val = pairing.getG1().newOneElement();
hash_val.mul(vector.get(0).duplicate());

for (int i = 0; i < BIT_LENGTH; i++) {
if (bitstr.charAt(i) == ’1’) {
hash_val.mul(vector.get(i + 1).duplicate());

}
}
return hash_val;

}
}

B.9. ReadMessage.java

//This class implements the interface to read messages

package certificateless.encryption.mod.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;

import java.io.UnsupportedEncodingException;
import java.util.ArrayList;
import java.util.List;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.os.Bundle;
import android.text.method.ScrollingMovementMethod;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.TextView;
import android.widget.Toast;

public class ReadMessage extends Activity implements
OnClickListener {

TextView read_msg_txt;
private static final int ACTIVITY_RESULT_QR_DRDROID = 0;
public static final int BIT_LENGTH = 100;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

163

setContentView(R.layout.read_message);

read_msg_txt = (TextView)
findViewById(R.id.read_message_text);

View decButton = findViewById(R.id.read_message_dec);
decButton.setOnClickListener(this);

View loadButton = findViewById(R.id.read_message_load);
loadButton.setOnClickListener(this);

}

public void onClick(View v) {

final TextView read_message_text = (TextView)
findViewById(R.id.read_message_text);

switch (v.getId()) {

case R.id.read_message_dec:

Intent qrDroid = new Intent(Services.SCAN);

try {
startActivityForResult(qrDroid,

ACTIVITY_RESULT_QR_DRDROID);
} catch (ActivityNotFoundException activity) {
Services.qrDroidRequired(ReadMessage.this);

}
break;

case R.id.read_message_load:
read_msg_txt.setMovementMethod(new

ScrollingMovementMethod());
read_message_text.setText(ComposeMessage.enc_text);
break;

}
}

protected void onActivityResult(int requestCode, int
resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

if (ACTIVITY_RESULT_QR_DRDROID == requestCode && null !=
data
&& data.getExtras() != null) {

String encoding = "UTF-16BE";
int message_len = 76;

164

CurveParams curveParams = new
CurveParams().load(getResources()
.openRawResource(R.raw.a_181_603));

List<Element[]> enc_message_list = new
ArrayList<Element[]>();

enc_message_list = ComposeMessage.enc_message_list;

final TextView read_message_text = (TextView)
findViewById(R.id.read_message_text);

// Read result from QR Droid (it’s stored in
la.droid.qr.result)

String biometrics =
data.getExtras().getString(Services.RESULT);

Methods method = new Methods();

String BID =
method.stringtoBinary(biometrics).substring(0,
BIT_LENGTH);

Element Fh_BID = method.newHash(KeyGenerationCenter.h,
BID,
curveParams);

String dec_msg_padded = "";
for (int i = 0; i < enc_message_list.size(); i++) {
Element dec_message = Receiver.deCrypt(Fh_BID,

enc_message_list.get(i), curveParams);

try {
String msg_inter = new

String(dec_message.duplicate()
.toBytes(), encoding);

dec_msg_padded = dec_msg_padded + msg_inter;

} catch (UnsupportedEncodingException e) {
System.out.println("Encoding Error");

}
}

String msg_end_num = dec_msg_padded.substring(
dec_msg_padded.length() - 2,

dec_msg_padded.length());

String dec_msg = dec_msg_padded;

try {
int dec_msg_pad_len = Integer.parseInt(msg_end_num);
dec_msg = dec_msg_padded.substring(0,

165

dec_msg_padded.length()
- dec_msg_pad_len - message_len);

}

catch (NumberFormatException nFE) {
System.out.println("Not an Integer");
dec_msg = "***PROBLEM DECRYPTING***\n\n\n" + dec_msg;

}

read_message_text.setText(dec_msg);

Toast.makeText(ReadMessage.this, "Message Decrypted",
Toast.LENGTH_LONG).show();

}
}

}

B.10. Receiver.java

// This class implements the algorithms executed by the
Receiver

package certificateless.encryption.mod.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.jpbc.Pairing;
import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

public class Receiver {

private static Element x_ID;
public static Element pk_ID[] = new Element[3];
private static Element sk_ID[] = new Element[2];

public static final int BIT_LENGTH = 100;

// Step 3 & 4 - SetSec & SetPub: Performed and called by
Receiver

public static void setSecPub(CurveParams curveParams) {

Pairing pairing = PairingFactory.getPairing(curveParams);

x_ID = pairing.getZr().newRandomElement();

pk_ID[0] =
KeyGenerationCenter.g.duplicate().powZn(x_ID.duplicate());

166

pk_ID[1] =
KeyGenerationCenter.g1.duplicate().powZn(x_ID.duplicate());

pk_ID[2] = KeyGenerationCenter.d_ID[2].duplicate().powZn(
x_ID.duplicate());

}

// ~~~~~~~~ SetPriv: Performed and called by Receiver
~~~~~~~~

private static void setPriv(Element Fh_BID, CurveParams
curveParams) {

Pairing pairing = PairingFactory.getPairing(curveParams);

Element r_prime = pairing.getZr().newRandomElement();

sk_ID[0] =
(KeyGenerationCenter.d_ID[0].duplicate().powZn(x_ID
.duplicate())).mul(KeyGenerationCenter.Fu_ID.duplicate().powZn(
r_prime.duplicate()));

sk_ID[1] =
(KeyGenerationCenter.d_ID[1].duplicate().powZn(x_ID
.duplicate())).mul(KeyGenerationCenter.g.duplicate()
.mul(Fh_BID.duplicate()).powZn(r_prime.duplicate()));

}

// ~~~~~~~ Step 6 - Decrypt: Performed by Receiver ~~~~~
public static Element deCrypt(Element Fh_BID, Element

cipherText[],
CurveParams curveParams) {

Pairing pairing = PairingFactory.getPairing(curveParams);

setPriv(Fh_BID, curveParams);

String str_to_hash = cipherText[0].duplicate().toString()
+ cipherText[1].duplicate().toString()
+ cipherText[2].duplicate().toString()
+ Receiver.pk_ID[0].duplicate().toString()
+ Receiver.pk_ID[1].duplicate().toString()
+ Receiver.pk_ID[2].duplicate().toString()
+ KeyGenerationCenter.ID;

Methods method = new Methods();
String w = method.sha1Hash(str_to_hash);

Element Fv_W = method.newHash(KeyGenerationCenter.v,
w.substring(0, BIT_LENGTH), curveParams);

Element temp1 =



167

KeyGenerationCenter.Fu_ID.duplicate().mul(
Fv_W.duplicate());

Element temp2 = cipherText[2].duplicate()
.mul(cipherText[3].duplicate());

if (pairing
.pairing(cipherText[1].duplicate(), temp1.duplicate())
.isEqual(

pairing.pairing(
KeyGenerationCenter.g.duplicate().mul(

KeyGenerationCenter.Fh_BID.duplicate()),
temp2.duplicate())) == false) {

System.out.println("ABORT: problem matching ...");

return pairing.getGT().newZeroElement();
} else {

Element dec_msg = cipherText[0].duplicate().mul(
pairing.pairing(cipherText[2].duplicate(),

sk_ID[1].duplicate()).div(
pairing.pairing(cipherText[1].duplicate(),

sk_ID[0].duplicate())));

return dec_msg.duplicate();
}

}
}

B.11. Scan.java

// This is part of "QRDroidServices", by DroidLa.

package certificateless.encryption.mod.app;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.content.res.Configuration;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Spinner;



168

public class Scan extends Activity {

private static final int ACTIVITY_RESULT_QR_DRDROID = 0;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.scan);

// Get Spinner instance
final Spinner spinner = (Spinner)

findViewById(R.id.spin_complete);

// "Scan" button
final Button button = (Button)

findViewById(R.id.button_scan);
// Set action to button
button.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {
// Create a new Intent to send to QR Droid
Intent qrDroid = new Intent(Services.SCAN); // Set

action
// "la.droid.qr.scan"

// Check whether a complete or displayable result is
needed

if (spinner.getSelectedItemId() == 0) { // First item
selected

// ("Complete content")
// Notify we want complete results (default is

FALSE)
qrDroid.putExtra(Services.COMPLETE, true);

}

// Send intent and wait result
try {
startActivityForResult(qrDroid,

ACTIVITY_RESULT_QR_DRDROID);
} catch (ActivityNotFoundException activity) {
Services.qrDroidRequired(Scan.this);

}
}

});
}

@Override
/**



169

* Reads data scanned by user and returned by QR Droid

*/
protected void onActivityResult(int requestCode, int

resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if (ACTIVITY_RESULT_QR_DRDROID == requestCode && null !=
data
&& data.getExtras() != null) {

// Read result from QR Droid (it’s stored in
la.droid.qr.result)

String result =
data.getExtras().getString(Services.RESULT);

// Just set result to EditText to be able to view it
EditText resultTxt = (EditText)

findViewById(R.id.result);
resultTxt.setText(result);
resultTxt.setVisibility(View.VISIBLE);

}
}

@Override
public void onConfigurationChanged(Configuration

newConfig) {
super.onConfigurationChanged(newConfig);

}
}

B.12. Sender.java

// This class implements the algorithms executed by the
Sender

package certificateless.encryption.mod.app;

import it.unisa.dia.gas.jpbc.Element;
import it.unisa.dia.gas.jpbc.Pairing;
import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import it.unisa.dia.gas.plaf.jpbc.pairing.PairingFactory;

public class Sender {

public static Element C[] = new Element[4];
public static Element Fu_ID;
public static final int BIT_LENGTH = 100;

// ~~~~~~~~~~ Step 5 - Encrypt: Performed and called by



170

Sender ~~~~~~~~~
public Element[] enCrypt(String ID, CurveParams

curveParams,
Element Fh_BID, Element m) {

Pairing pairing = PairingFactory.getPairing(curveParams);

if (pairing.pairing(Receiver.pk_ID[0].duplicate(),
KeyGenerationCenter.g1.duplicate()).isEqual(
pairing.pairing(Receiver.pk_ID[1].duplicate(),

KeyGenerationCenter.g.duplicate())) == false) {

System.out.println("ABORT: Incorrect Shape");

return null;
} else {

Element s = pairing.getZr().newRandomElement();

C[0] = m.duplicate().mul(
(pairing.pairing(

Receiver.pk_ID[1].duplicate().mul(
Receiver.pk_ID[2].duplicate()),

KeyGenerationCenter.g2.duplicate())).powZn(s
.duplicate()));

C[1] =
KeyGenerationCenter.g.duplicate().mul(Fh_BID.duplicate())
.powZn(s.duplicate());

Methods method = new Methods();

Element Fu_ID = method.newHash(KeyGenerationCenter.u,
ID,
curveParams);

C[2] = Fu_ID.duplicate().powZn(s.duplicate());

String str_to_hash = C[0].duplicate().toString()
+ C[1].duplicate().toString() +

C[2].duplicate().toString()
+ Receiver.pk_ID[0].duplicate().toString()
+ Receiver.pk_ID[1].duplicate().toString()
+ Receiver.pk_ID[2].duplicate().toString() + ID;

String w = method.sha1Hash(str_to_hash);

Element Fv_W = method.newHash(KeyGenerationCenter.v,
w.substring(0, BIT_LENGTH), curveParams);



171

C[3] = Fv_W.duplicate().powZn(s.duplicate());

return C.clone();
}

}
}

B.13. Services.java

package certificateless.encryption.mod.app;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.TabActivity;
import android.content.ActivityNotFoundException;
import android.content.DialogInterface;
import android.content.Intent;
import android.content.res.Configuration;
import android.content.res.Resources;
import android.net.Uri;
import android.os.Bundle;
import android.widget.TabHost;

/**
* Shows three Tabs with options to Scan, Decode and Encode

QR codes using

* services provided by "QR Droid"

*
*
* This is part of "QRDroidServices", by DroidLa. If you’re

creating an Android app

* which uses one or more services provided by "QR Droid",
you can use this code for

* free, and modify it as you need, for personal and
commercial use.

*
* Any other use of this code is forbidden.

*
* @author DroidLa

* @version 1.0

*/
public class Services extends TabActivity {

//Actions
public static final String SCAN = "la.droid.qr.scan";
public static final String ENCODE = "la.droid.qr.encode";



172

public static final String DECODE = "la.droid.qr.decode";

//Parameters
//SCAN / DECODE
public static final String COMPLETE =

"la.droid.qr.complete"; //Default: false
//ENCODE
public static final String CODE = "la.droid.qr.code";

//Required
public static final String SIZE = "la.droid.qr.size";

//Default: Fit screen
//ENCODE / DECODE
public static final String IMAGE = "la.droid.qr.image";

//Default for encode: false / Required for decode

//Result
public static final String RESULT = "la.droid.qr.result";

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.tabs);

//Recycled objects
Resources res = getResources();
TabHost tabHost = getTabHost();
TabHost.TabSpec spec;
Intent intent;

//Scan Activity
intent = new Intent().setClass(this, Scan.class);
spec = tabHost.newTabSpec("Scan").setIndicator("",

res.getDrawable(R.drawable.camera)).setContent(intent);
tabHost.addTab(spec);

//Encode Activity
intent = new Intent().setClass(this, Encode.class);
spec = tabHost.newTabSpec("Encode").setIndicator("",

res.getDrawable(R.drawable.text)).setContent(intent);
tabHost.addTab(spec);

//Decode Activity
intent = new Intent().setClass(this, Decode.class);
spec = tabHost.newTabSpec("Decode").setIndicator("",

res.getDrawable(R.drawable.image)).setContent(intent);
tabHost.addTab(spec);

//Show DEMO alert dialog
AlertDialog.Builder builder = new



173

AlertDialog.Builder(this);
builder.setMessage( getString(R.string.demo) )

.setCancelable(true)

.setNegativeButton( R.string.close, new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int

id) {
dialog.cancel();

}
})
.setNeutralButton( R.string.source, new

DialogInterface.OnClickListener() {
@Override
public void onClick(DialogInterface dialog, int

which) {
startActivity( new Intent( Intent.ACTION_VIEW,

Uri.parse( getString(R.string.url_source) ) )
);

}
})

.setPositiveButton( R.string.qrDroid, new
DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int
id) {

try {
startActivity( new Intent( Intent.ACTION_VIEW,

Uri.parse( getString(R.string.url_market)
) ) );

finish();
} catch (ActivityNotFoundException e) {
startActivity( new Intent( Intent.ACTION_VIEW,

Uri.parse( getString(R.string.url_direct)
) ) );

finish();
}
}

});
builder.create().show();
}

/**
* Display a message stating that QR Droid is requiered,

and lets the user download it for free

* @param activity

*/
public static void qrDroidRequired( final Activity

activity ) {
//Apparently, QR Droid is not installed, or it’s

previous to version 3.5



174

AlertDialog.Builder builder = new
AlertDialog.Builder(activity);

builder.setMessage(
activity.getString(R.string.qrdroid_missing) )
.setCancelable(true)
.setNegativeButton(

activity.getString(R.string.cancel), new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int

id) {
dialog.cancel();

}
})
.setPositiveButton(

activity.getString(R.string.from_market), new
DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int
id) {

activity.startActivity( new Intent(
Intent.ACTION_VIEW, Uri.parse(
activity.getString(R.string.url_market) ) )
);

}
})
.setNeutralButton(activity.getString(R.string.direct),

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int

id) {
activity.startActivity( new Intent(

Intent.ACTION_VIEW, Uri.parse(
activity.getString(R.string.url_direct) )
) );

}
});

builder.create().show();
}

@Override
public void onConfigurationChanged(Configuration

newConfig) {
super.onConfigurationChanged(newConfig);

}
}

B.14. Setup.java

// This class implements the interface to generate keys



175

after entering email id

package certificateless.encryption.mod.app;

import it.unisa.dia.gas.plaf.jpbc.pairing.CurveParams;
import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.EditText;
import android.widget.Toast;

public class Setup extends Activity implements
OnClickListener {

private static final int ACTIVITY_RESULT_QR_DRDROID = 0;
CurveParams curveParams;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.setup);

View generateButton = findViewById(R.id.setup_generate);
generateButton.setOnClickListener(this);

}

public void onClick(View v) {

// Generating Keys
switch (v.getId()) {
case R.id.setup_generate:

curveParams = new CurveParams().load(getResources()
.openRawResource(R.raw.a_181_603));

KeyGenerationCenter.setup(v.getContext(), curveParams);

Intent qrDroid = new Intent(Services.SCAN);

try {
startActivityForResult(qrDroid,

ACTIVITY_RESULT_QR_DRDROID);
} catch (ActivityNotFoundException activity) {
Services.qrDroidRequired(Setup.this);

}
break;



176

}
}

@Override
/**
* Reads data scanned by user and returned by QR Droid

*/
protected void onActivityResult(int requestCode, int

resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if (ACTIVITY_RESULT_QR_DRDROID == requestCode && null !=
data
&& data.getExtras() != null) {

// Read result from QR Droid (it’s stored in
la.droid.qr.result)

String biometrics =
data.getExtras().getString(Services.RESULT);

final EditText setup_message_to = (EditText)
findViewById(R.id.setup_message_to);

KeyGenerationCenter.d_ID = KeyGenerationCenter.extract(
setup_message_to.getText().toString(), biometrics,
curveParams);

Receiver.setSecPub(curveParams);

Toast.makeText(Setup.this, "Setup Complete",
Toast.LENGTH_LONG)
.show();

Intent i = new Intent(this,
CertificatelessEncModAppActivity.class);

startActivity(i);
}

}
}



177


