Fast multiplication

<table>
<thead>
<tr>
<th>multiplication algorithm</th>
<th>time $M(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>classical</td>
<td>$2n^2$</td>
</tr>
<tr>
<td>Karatsuba</td>
<td>$O(n^{1.59})$</td>
</tr>
<tr>
<td>Schönhage & Strassen</td>
<td>$O(n \log n \log\log n)$</td>
</tr>
</tbody>
</table>

Fast integer and polynomial arithmetic

<table>
<thead>
<tr>
<th>task</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiplication (§8.1)</td>
<td>$O(M(n))$</td>
</tr>
<tr>
<td>division with remainder (§9.1)</td>
<td></td>
</tr>
<tr>
<td>modular multiplication (§9.1)</td>
<td></td>
</tr>
<tr>
<td>radix conversion (§9.2)</td>
<td>$O(M(n) \log n)$</td>
</tr>
<tr>
<td>multipoint evaluation (§10.1)</td>
<td></td>
</tr>
<tr>
<td>interpolation (§10.2)</td>
<td></td>
</tr>
<tr>
<td>reduction modulo several moduli (§10.3)</td>
<td></td>
</tr>
<tr>
<td>Chinese Remainder Algorithm (§10.3)</td>
<td></td>
</tr>
<tr>
<td>Extended Euclidean Algorithm (§11.1)</td>
<td></td>
</tr>
<tr>
<td>modular inversion (§11.1)</td>
<td></td>
</tr>
</tbody>
</table>

Classical arithmetic: time $O(n^2)$ for all tasks (Chapters 2–5)
Chapter 2
Page 38
line 17: 260, not 26 (OLAV GEIL, 12. 10. 2003)

Chapter 3
Page 51
line –8: \(\ell > 2 \) instead of \(\ell \geq 2 \) (HEIKO KÖRNER, 17. 12. 2002)
Page 52
line 9: add \(if \) \(n \geq 1 \)
line 10, equation (8): \(\ell = n - 1 \), not \(\ell = n \)
(HEIKO KÖRNER, 17. 12. 2002)

Chapter 4
Page 72
line 14, Lemma 4.5: \(K \) is an extension field of \(F \) (HEIKO KÖRNER, 19. 2. 2003)
Page 92
line –16, Exercise 4.30 (i): replace \(\max \{ \nu(f), \nu(g) \} \) by \(\min \{ \nu(f), \nu(g) \} \)
(KATHY SHARROW, 21. 2. 2002)
Page 93

Chapter 5
Page 100
line –5, Theorem 5.1: \(7n^2 - 7n \) instead of \(7n^2 - 8n + 1 \) (HEIKO KÖRNER, 19. 2. 2003)
line –1, proof of Theorem 5.1: this formula should read
\[
\sum_{1 \leq i \leq n} 2i = n^2 - n
\]
(HEIKO KÖRNER, 19. 2. 2003)
Page 101
lines 1–5, proof of Theorem 5.1: replace this paragraph by:
\textit{arithmetic operations. Then for each \(i \), we divide \(m \) by \(m_i \), taking \(2n - 2 \) operations (Exercise 5.3), evaluate \(m/m_i \) at \(u_i \), taking at most \(2n - 3 \) operations since \(m/m_i \) is monic, and divide \(v_i \) by that value. This amounts to \(4n^2 - 4n \) operations for all \(i \). Finally, computing the linear combination (3) takes another \(2n^2 - 2n \) operations, and the estimate follows by adding up.}
(HEIKO KÖRNER, 19. 2. 2003)
Page 104
line 13: the reference should be to Section 3.1 instead of 2.4 (OLAV GEIL, 12. 10. 2003)
Page 108
line 10: see page 140 for a justification of this formula (HUANG YONG, 9. 4. 2002)
Page 119
line 1: \(t = x/2 \), not \(t = -x/2 \) (HEIKO KÖRNER, 19. 2. 2003)
Page 124
line 6: \(t = \alpha t_j \) instead of \(t = \alpha t_j \) (HEIKO KÖRNER, 19. 2. 2003)
Page 125
line –9: \(q = 2 \) instead of \(q = 1 \) (HEIKO KÖRNER, 19. 2. 2003)
Page 127
line 4, proof of Lemma 5.29: replace (33) by (34) (HEIKO KÖRNER, 19. 2. 2003)

Modern Computer Algebra, JOACHIM VON ZUR GATHEN and JÜRGEN GERHARD, version 30 November 2003
Chapter 6

Page 155
line 1: replace Gauß’ lemma 6.6 by Corollary 6.10 (Heiko Körner, 25. 4. 2003)

Page 156
line –5, Lemma 6.25: replace \(\overline{\text{lc}}(f) \neq 0 \) by \(\overline{\text{lc}}(f) \) is not a zero divisor (Winfried Bruns, 10. 6. 2003)

Chapter 7

Page 212
line –5, Example 7.4 (continued): the Padé approximant is \(v/u \) and not \(u/v \) (Olga Mendoza, 18. 4. 2003)

Chapter 8

Page 222
Lemma 8.2 is correct but not general enough to cover its application in Theorem 12.2. If you are interested in that Theorem, you may replace Lemma 8.2 and its proof by:

Lemma 8.2. Let \(b, c \in \mathbb{R}_{>0}, d \in \mathbb{R}_{\geq 0}, S, T : \mathbb{N} \rightarrow \mathbb{N} \) be functions with \(S(2n) \geq cS(n) \) for all \(n \in \mathbb{N} \), and

\[
T(1) = d, \quad T(n) \leq bT(n/2) + S(n) \text{ for } n = 2^i \text{ and } i \in \mathbb{N}_{\geq 1}.
\]

Then for \(i \in \mathbb{N} \) and \(n = 2^i \) we have

\[
T(n) \leq \begin{cases}
 d n^{\log b} + S(n) \log n & \text{if } b = c, \\
 d n^{\log b} + \frac{c}{b-c} S(n) (n^{\log (b/c)} - 1) & \text{if } b \neq c.
\end{cases}
\]

In particular, if \(n^{\log c} \in O(S(n)) \), then \(T(n) \in O(S(n) \log n) \) if \(b = c \), and \(T(n) \in O(S(n)n^{\log (b/c)}) \) if \(b > c \).

Proof. Unraveling the recursion, we obtain inductively

\[
T(2^i) \leq b T(2^{i-1}) + S(2^i) \leq b(b T(2^{i-2}) + S(2^{i-1})) + S(2^i) = b^2 T(2^{i-2}) + b S(2^{i-1}) + S(2^i) \leq \cdots
\]

\[
\leq b^i T(1) + \sum_{0 \leq j < i} b^j S(2^{i-j}) \leq d 2^{i \log b} + S(2^i) \sum_{0 \leq j < i} \left(\frac{b}{c} \right)^j,
\]

where we have used that \(S(2^{i-j}) \leq c^{-j} S(2^i) \) in the last inequality. If \(b = c \), then the last sum simplifies to \(S(2^i) \cdot i \). If \(b \neq c \), then we have a geometric sum

\[
\sum_{0 \leq j < i} \left(\frac{b}{c} \right)^j = \frac{\left(\frac{b}{c} \right)^i - 1}{\frac{b}{c} - 1} = \frac{c}{b-c} \left(2^{i \log b/c} \right) - 1)
\]
and the first claim follows. □

(29. 11. 2003)

Page 226 line 6, Lemma 8.7: replace $1 < \ell < n$ by $1 \leq \ell < n$ (OLAV GEIL, 27. 10. 2003)

Page 228 line –7: $R[x]$, not $F[x]$ (OLAV GEIL, 27. 10. 2003)

Page 247 line –22, Exercise 8.10 (iv): replace $V_i\alpha, V_i\beta$ by $V_i f, V_i g$ (identifying the polynomials f, g with their coefficient vectors) (OLAV GEIL, 12. 10. 2003)

Chapter 9

Page 256 line –8, proof of Theorem 9.4: replace $f g_i$ by $f g_{i-1}$ (TOM KOORNWINDER, 6. 3. 2003)

Chapter 12

Page 328 line -2, proof of Theorem 12.2: Lemma 8.2 is not general enough to imply the first claim; see the correction for page 222. (MURRAY BREMNER, 29. 10. 2003)

Chapter 14

Page 376 Figure 14.5: The labels in this figure are left-shifted too far. The figure with correct labels is:

\[\begin{array}{c|cccc|c|cccc|c|cccc|c|cccc|c|cccc|c} & 0 & 1 & 2 & 3 & 2x & 2x^2 & 2x^3 & 2x^4 & 2x^5 & 2x^6 & 2x^7 & 2x^8 & 2x^9 & 2x^{10} & 2x^{11} & 2x^{12} & 2x^{13} & 2x^{14} & 2x^{15} \\ \hline 0 & x & x^2 & x^3 & x^4 & x^5 & x^6 & x^7 & x^8 & x^9 & x^{10} & x^{11} & x^{12} & x^{13} & x^{14} & x^{15} & x^{16} & x^{17} & x^{18} \\ \end{array} \]

Figure 14.5: The lucky and unlucky choices for factoring $x^4 + x^3 + x - 1 \in \mathbb{F}_3[x]$. (8. 8. 2003)

Page 404 line 4, proof of Theorem 14.49: replace the formula by

\[f_r(x^{n/m}) = \Phi_m(x^{n/m}) = \Phi_n, \]

(TOM KOORNWINDER, 6. 3. 2003)
Chapter 15

Page 456
line –20, Exercise 15.10 (v): $a_{n,r} = 0$ instead of $a_{nt} = 0$ (HELMUT MEYN, 9. 9. 2003)
line –18, Exercise 15.10 (v): replace $1 \leq k \leq n \leq 8$ by $1 \leq r \leq n \leq 8$ (HELMUT MEYN, 9. 9. 2003)

Chapter 16

Page 476
line 12: replace $q^{\ast} = q^{\ast}u + r^{\ast}$ by $r^{\ast} = q^{\ast} u + r^{\ast}$ (EUGENE LUKS, 1. 12. 2002)
Page 485
line 2, Notes 16.2 and 16.3: insert is after “it” (STEFAN GERHOLD, 16. 7. 2003)

Chapter 21

Page 590
line 13, Example 21.10 (continued): this should read $-(x^2y - x)$, not $-(xy^2 - x)$ (VOLKER KRAMMEL, 19. 2. 2003)
Page 592
line –11, proof of Theorem 21.18: $(\alpha_1, \ldots, \alpha_n) \in B$, not $\in A$ (TOM KOOR-WINDER, 24. 4. 2003)

Chapter 22

Page 619
line –8, Example 22.6 (continued): The blank entry in row 5, column 4 of the matrix is zero. (29. 6. 2003)
Page 623
line 8, Example 22.13 (ii): replace $2x \cdot \exp(x)$ by $2x \cdot \exp(x^2)$ (20. 6. 2003)
Page 624
line 13: replace the right-hand side bv' by bv (19. 6. 2003)
Page 625
line –11, Example 22.16: replace the equation by
$$
\frac{g'}{g} = \frac{(3x^2 + 2x)\exp(x) + (x^3 + x^2)\exp(x)}{(x^3 + x^2)\exp(x)} = \frac{x^2 + 4x + 2}{x^2 + x},
$$
(29. 6. 2003)

Chapter 23

Page 636
line 12: replace the minus by a plus in the product rule (21. 7. 2003)
Page 661
line –4, Exercise 23.4 (iii): This line should read
$$
f = \sum_{0 \leq i < n} \frac{(\Delta^i f)(0)}{h^i i!} (x-h) \cdots (x-ih+h),
$$
(OLAF MÜLLER, 12. 8. 2003)

References

Page 753