
Modern Computer Algebra
Exercises to Chapter 25: Fundamental concepts

11 May 1999

JOACHIM VON ZUR GATHEN

and
JÜRGEN GERHARD

Universität Paderborn



25.1 Show that any subgroup of a groupG contains the neutral element 1 ofG.

25.2 Show that cyclic groups are commutative.

25.3 LetG = GL2(R ) be the group of invertible 2�2 matrices overR . Show that

U =�
A 2 G:A �� 1

0

�= �
1
0

��
is a subgroup ofG.

25.4 LetE12 = fe�i j=6:0� j < 12g � C , wherei =p�1 is the imaginary unit.

(i) Show thata12 = 1 holds for alla 2 E12. (That is why the elements ofE12 are
called the 12th roots of unity.)

(ii) Mark the elements ofE12 on the unit circle in the complex plane.

(iii) Show thatE12 is a commutative group with respect to the multiplication of
complex numbers.

(iv) Show that the setE4 = fe�ik=2:0� k < 4g of 4th roots of unity is a subgroup
of E12. Highlight the elements ofE4 in your drawing.

(v) Determine all (left) cosets with respect toE4.

(vi) Set up the multiplication table of the factor groupE12=E4.

25.5 Show that the setE = fz 2 C � :9n 2 N �1 zn = 1g � C � of all complex roots
of unity is a subgroup of(C � ; �).
25.6 S4 is the set of all bijective maps (permutations) fromf1; : : : ;4g to itself. We
represent an element� 2 S4 as(�(1)�(2)�(3)�(4)), and examine the following
subset:

V = f(1234); (4321); (2143); (3412)g:
(i) Draw cycle diagrams for the elements ofV .

(ii) Show thatV together with the composition� of maps is a subgroup ofS4,
and compute the multiplication table ofV .

25.7 LetG = fx 2 Q :0� x < 1g.
(i) Show thatG together with the operation

x� y =�
x+ y falls 0� x+ y < 1
x+ y�1 falls x+ y > 1

is a commutative group with infinitely many elements.

(ii) Show that all elements ofG have finite order. (Hint: expressx 2 G as a
fraction.)

(iii) Prove thatG is isomorphic to the factor groupQ =Z with respect to addition.
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25.8 (i) Show that the setSR = f f :R �! R ; f bijectiveg is a group with respect
to the composition� of maps. Is this group commutative?
(ii) For a;b 2 R let fa;b:R �! R be the function given byfa;b(x) = ax+b. Show

that the setG = f fa;b:a;b 2 R ; a 6= 0g is a subgroup ofSR . Is G commutative?
(iii) Show thatH = f f1;b:b 2 Rg is a commutative subgroup ofG.

25.9 (i) AreS3 and(Z6;+) isomorphic? Explain your answer.
(ii) Show that':Z �! Z with '(x) = 3x is a homomorphism with respect to

addition inZ.
(iii) Let R>0 = fx 2 R :x > 0g. Show that':R>0 �! R>0 with '(x) = 3x is not

a homomorphism with respect to multiplication inR .

25.10 Which of the following maps are group homomorphisms? Determine the
kernel and the image of all homomorphisms.
(i) ':(R ;+) �! (C � ; �), '(x) = eix.
(ii) ':(C � ; �)�! (R� ; �), '(x) = jxj.
(iii) ':(Z�17; �)�! (Z�17; �), '(x) = x2.
(iv) ':(Z;+) �! (Z;+), '(x) = x+17.
(v) h:(Z3;+)�! (Z4;+), h(0) = 0, h(1) = 1, h(2) = 2.

25.11 LetU be a subgroup of the groupG. Show thatU �U =U , whereU �U =fu1u2:u1;u2 2Ug.
25.12 Letp 2 N be prime andU < Zp a subgroup of the additive group(Zp ;+)
with U 6= f0g. Show thatU = Zp .

25.13 Prove:
(i) If the order of a groupG is prime, then there exists a primitive elementg in G,

such thathgi= G.
(ii) If H andK are subgroups of the finite groupG and gcd(#H;#K) = 1, then

H \K = feg. (Hint: Show first thatH \K is a subgroup ofG.)

25.14 Show that any cyclic groupG of ordern is isomorphic toZn (with addition
modulon). Thus there is essentially only one cyclic group of ordern.

25.15 Let':G �! H be a homomorphism of multiplicative groups. Show that
ker' is a normal subgroup ofG (this means that it is a subgroup andg�1ag2 ker'
for all g 2 G anda 2 ker') and'(G) is a subgroup ofH. What is the analogous
statement for rings?

25.16 LetG be a group. Prove:
(i) G is commutative if and only if the inversion mappingx 7�! x�1 is a group

homomorphism.
(ii) G is commutative if and only if the squaring mappingx 7�! x2 is a group

homomorphism.
(iii) If x2 = 1 for all x 2 G, thenG is commutative.
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25.17 LetG andH be two groups and':G�!H a group homomorphism. Show:

(i) If g 2 G andn 2 N , then'(gn) = '(g)n.

(ii) If g 2 G, then ord('(g)) j ord(g). Does equality hold in general?

(iii) If ' is surjective andG is commutative, thenH is commutative.

25.18 LetG andH be two groups.

(i) Let ':G�!H be a map with'(g1g2) = '(g1)'(g2) for all g1;g2 2G. Show
that'(eG) = eH and'(g�1) = '(g)�1 holds for allg 2 G.

(ii) Show that a homomorphism':G �! H is injective if and only if its kernel
is ker'= feGg.
25.19 (i) Determine all homomorphismsS3 �! Z5.

(ii) Show: Forn;m 2 N >0, (Zn ;+) has a subgroup isomorphic to(Zm ;+) if and
only if m dividesn.

(iii) Let p 2 N be prime andG;H finite groups with #G = p. If ':G �! H is a
homomorphism, then either'(g) = eH for all g 2 G or' is injective.

25.20� Show that fork;n 2 N , the map':Zn 7�! Zn with '(a) = ka is a group
automorphism of(Zn ;+) if and only if gcd(k;n) = 1.

25.21� We examine the setG of the following eight 2�2 matrices:

D0 =�
1 0
0 1

� ; D1 = �
0 1�1 0

� ; D2 =� �1 0
0 �1

� ; D3 = �
0 �1
1 0

� ;
S0 = �

1 0
0 �1

� ; S1 = �
0 1
1 0

� ; S2 = � �1 0
0 1

� ; S3 = �
0 �1�1 0

� :
(i) The matricesD0; : : : ;D3 induce rotations of the real planeR 2 around the ori-

gin, andS0; : : : ;S3 induce reflections whose axes contain the origin. Determinethe
rotation angles and the reflection axes.

(ii) G is a group with respect to matrix multiplication. LetU be the subset of all
matrices inG that map thex-axis to itself (not necessarily pointwise). Show that
U is a subgroup ofG and determine the multiplication table ofU .

(iii) Determine all left cosets with respect toU .

(iv) We consider the square with endpointsp1 = �1
1

�
, p2 = ��1

1

�
, p3 = ��1�1

�
, and

p4 = � 1�1

�
. Each matrixA 2G induces a permutation� 2 S4 of the four points via

p�(i) = A � pi. For eachA 2 G, find the corresponding permutation. Which subset
of S4 corresponds toU?

(v) Compute the order of every element ofG. DoesG have a primitive element?

(vi) Show thatG is generated by the setfD1;S0g, so that every element ofG can
be represented as a sequence of rotations by 90� and reflections about thex-axis.

25.22 Determine all ideals of the ringQ .
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25.23 Show thatI = f4x+6y:x;y 2 Zg in an ideal in the ringZ.

25.24 LetI = f f 2 R [x]: f (5) = 0g be the set of real polynomials having 5 as a
root.
(i) Show thatI is an ideal inR [x].
(ii) Find an isomorphismR [x]=I �! R .

25.25 The setR = R �R together with componentwise addition and multiplica-
tion is a ring.
(i) Find an isomorphism of the additive groups ofR andC , including a proof.
(ii) Show that there is no ring isomorphism fromR onto C . (Hint: R is not an

integral domain.)

25.26 TakeR = f2k:k 2 Zg together with the usual addition and multiplication.
Show:
(i) (R;+) is a group, and “�” is associative, commutative, and distributive.
(ii) There is no neutral element with respect to multiplication in R.

25.27 Which of the following setsI are ideals in the ringR?
(i) I = Z andR = Q .

(ii) I =��
a b
0 0

�
:a;b 2 R� andR = R 2�2.

(iii) I = f0;3g andR = Z6.
(iv) I = f(a;0):a 2 Rg andR = R � R together with componentwise addition

and multiplication.

25.28 Which of the following claims are true, which are false(give a short ex-
planation)?
(i) Z�13 has a subgroup with 5 elements.
(ii) If p is prime, then the ringZp has exactly two ideals.
(iii) There is exactly one group homomorphism':(Z3;+)�! (Z5;+).

25.29 LetR be a ring. Show that the setR� = fr 2 R:9s 2 R rs = 1g of all
invertible ring elements is a multiplicative group.

25.30 LetR be a ring (commutative, with 1) anda;b 2 R. Show thata j b if and
only if b 2 hai.
25.31 LetR be a ring and considerRR, the set of all functionsR�! R. We endow
RR with a ring structure in a natural way: iff ;g 2 RR, then( f +g)(x) = f (x)+g(x);( f g)(x) = f (x)g(x);(� f )(x) = � f (x);

1(x) = 1;
0(x) = 0;
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where the right-hand side operations are those ofR. (The verification thatRR under
the above operations is a ring is trivial.) Which of the following properties ofR
are carried over toRR?
(i) R has characteristicm 2 N ,
(ii) R is commutative,
(iii) R is an integral domain.

25.32 Prove that ifz2 Z[i] is a Gaussian integer and its normN(z) is a prime inZ,
thenz is irreducible inZ[i]. Verify that 1+ i;1+2i, and 2�3i are all irreducible
in Z[i].
25.33 Show that 6 and 2+2

p�5 have no gcd inO�5.

25.34� Let R be an integral domain andp 2 R. Prove:
(i) If p is prime, thenp is irreducible.
(ii) If any two nonzero elements ofR have a gcd andp is irreducible, thenp is

prime.

25.35� Show that ifI is an ideal inR = R 2�2 andI 6= f0g, thenI = R. To prove

this, show that

�
1 0
0 0

� ;� 0 1
0 0

� ;� 0 0
1 0

� ;� 0 0
0 1

� 2 I.

25.36 Prove or disprove:
(i) If U andV are subgroups of a groupG, then so isU [V .
(ii) If U andV are subgroups of a groupG, then so isU \V .
(iii) If F is a field, then so isF [x].
(iv) If R is a ring, then so isR[x].
(v) If R is an integral domain, then so isR[x].
(vi) Z3[x]=hx2+1i is a field.

25.37� Let R be a commutative ring. Show that the following claims are true if R
is an integral domain, and give counterexamples whereR has zero divisors.
(i) The degree formula deg( f g) = degf +degg holds for nonzero polynomials

f ;g 2 R[x].
(ii) The units ofR[x] are exactly the units ofR.
(iii) A polynomial f 2 R[x] n f0g has at most degf roots. Hint: Show first that

x�a divides f if a 2 R is a root of f (this is true in arbitrary commutative rings).

25.38� Show that any finite extension fieldE of a fieldF is algebraic.

25.39�� Let (G; �) < (H; �) be commutative groups. An elementx 2 H is alge-
braic over G if it satisfies an equation of the formxn = g for somen 2 N and
g 2 G, otherwise it istranscendental. H is algebraic overG if every element of
H is. H is algebraically closed if every equation is solvable inH, so that for all
h 2 H andn 2 N there exists anx 2 H such thatxn = h. H is analgebraic clos-
ure of G if H is algebraic overG and algebraically closed. (Do not confuse these
notions with the corresponding ones for field extensions.)
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(i) Show that(Q ;+) is an algebraic closure of(Z;+).
(ii) Let E = fz 2 C :9n 2 N zn = 1g � C � be the group of all complexroots

of unity as in Exercise 25.5. Show that(E; �) is algebraically closed and that
E �= Q =Z .
(iii) Describe the subgroup ofQ =Z that is isomorphic to the subgroupT =fz 2 E:9k 2 N z2k = 1g of E. Is T algebraically closed?
(iv) Show that(Q >0; �) is not algebraically closed. Describe an algebraic closure

G of (Q >0; �) in (R>0; �). Are (Q ;+) and(G; �) isomorphic? (Hint: for alla;b 2 Q
there existm;n 2 Z such thatma+nb = 0.)
(v) Let H2 = h2i be the subgroup generated by 2 inQ >0 and K2 its algebraic

closure inG. Show that(K2; �) and(Q ;+) are isomorphic. Show that 3 is tran-
scendental overK2.
(vi) Show thatG is thedirect sum of the corresponding subgroupsKp for all

primesp 2 N , so that everyg 2 G can be uniquely written as a finite product of
elements of theKp.

25.40 Consider the fieldK = Z2[x]=hx3+ x+1i.
(i) What is its characteristic?
(ii) What is its order?
(iii) Explicitly list the elements of the field and, for two ofthem, give their mul-

tiplicative inverses.
(iv) Give an example of an irreducible polynomial over this field of degree 2.

Explain why your polynomial is irreducible.

25.41 Forp = 7;11, and 13, find the smallest positive integer generating themul-
tiplicative groupF�p , and determine how many of the integers 1;2;3; : : : ; p�1 are
generators.

25.42 Letp 2 N be prime,q = pk for somek 2 N >0, andFq a finite field withq
elements. Show:
(i) If x;y are indeterminates overFq andl 2 N , then(x+ y)pl = xpl + ypl

.
(ii) If f 2 Fq [x], then f q = f (xq).
(iii) If f 2 Fq [x], then f q� f = ∏u2Fq

( f �u).
25.43� Let p 2 N be prime,r 2 N >0, andq = pr. Under what conditions onp and
r is everyelement ofFq except 0 and 1 a generator of the multiplicative groupF�q ?
Under what conditions is every element6= 0;1 either a generator or the square of a
generator?

25.44 Prove that there is no inner product?:F 2
2 �F 2

2 �! F2.

25.45 Prove (5).

25.46 Letq 2 R>0 or q = ∞, andSq = fv 2 R 2: jjvjjq = 1g. ThenS2 is the unit
circle. What isS1 andS∞? Describe howSq changes whenq varies in the interval(0;∞].
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25.47� Prove thatjjajj∞ = limq�!∞ jjajjq for all a 2 C n .

25.48 LetX andY be two discrete random variables. Prove that var(X +Y ) =
var(X)+var(Y ) if and only if X andY are independent.

25.49 Letk 2 N andc(n) = n(logn)k for n 2 N . Prove

∑
0�i�dlognec(2i) 2 O(c(n)):

25.50 Letf ;g:N �! R be eventually positive. Prove the equalityO(( f +g)2) =
O( f 2+g2).
25.51 Let f :N �! R be eventually positive with limn�!∞ f (n) = 0. Prove that
1=(1+O( f )) = 1+O( f ).
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