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A Beggar’s Book Out-worths a Noble’s Blodd.
William Shakespeare (1613)

Some books are to be tasted, others to be swallowed,
and some few to be chewed and digested.
Francis Bacon (1597)

Les plus grands analystes eux-mémes ont bien raremengdédie se
tenir a la portée de la classeoyennedes lecteurs; elle est en effet la
plus nombreuse, et celle qui a le plus & profiter dans leuits &cr
Anonymous referee (1825)

It is true, we have already a great many Book#&\fffebrg
and one might even furnish a moderate Library
purely with Authors on that Subject.
Isaac Newton (1728)

Jo Lty e gl oo bed

Ghiyath al-Din Jamsind bin Masud bin Mahmud al-Kash (1427)

1 The sources for the quotations are given on pages 715-719.

2 The greatest analysts [mathematicians] themselves heelg shied away from keeping within the reach of the
averageclass of readers; this is in fact the most numerous one, andrta that stands to profit most from their
writing.

3 | wrote this book and compiled in it everything that is neegggor the computer, avoiding both boring ver-
bosity and misleading brevity.



Introduction

In science and engineering, a successful attack on a problémsually lead to
some equations that have to be solved. There are many typeglofequations:
differential equations, linear or polynomial equationsraqualities, recurrences,
equations in groups, tensor equations, etc. In principieret are two ways of
solving such equations: approximately or exactNumerical analysiss a well-
developed field that provides highly successful mathemltiethods and com-
puter software to comput@oproximatesolutions.

Computer algebres a more recent area of computer science, where mathemat-
ical tools and computer software are developed forebkectsolution of equations.

Why use approximate solutions at all if we can have exactisols? The an-
swer is that in many cases an exact solution is not possibis.ritay have various
reasons: for certain (simple) ordinary differential equas, one can prove that no
closed form solution (of a specified type) is possible. Mang@aortant are ques-
tions of efficiency: any system of linear equations, say wattional coefficients,
can be solved exactly, but for the huge linear systems tisd srmeteorology, nu-
clear physics, geology or other areas of science, only appede solutions can be
computed efficiently. The exact methods, run on a superctenpaould not yield
answers within a few days or weeks (which is not really aadaptfor weather
prediction).

However, within its range of exact solvability, computegetra usually pro-
vides more interesting answers than traditional numenwthods. Given a dif-
ferential equation or a system of linear equations with apatert, the scientist
gets much more information out of a closed form solution mteoft than from
several solutions for specific valuestof

Many of today’s students may not know that gigle rulewas an indispensable
tool of engineers and scientists until the 196B&ctronic pocket calculatoraade
them obsolete within a short time. In the coming yeamnputer algebra systems
will similarly replace calculators for many purposes. Altigh still bulky and ex-
pensive (hand-held computer algebra calculators are yetelty), these systems
can easily perform exact (or arbitrary precision) arithimetith numbers, matri-
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2 Introduction

ces, polynomials, etc. They will become an indispensalié ftr the scientist
and engineer, from students to the work place. These systemsow becoming
integrated with other software, like numerical packages)CAM, and graphics.

The goal of this text is to give an introduction to the basidhods and tech-
niques of computer algebra. Our focus is threefold:

o complete presentation of the mathematical underpinnings,
o asymptotic analysis of our algorithms, sometimes “Oh-free
o development of asymptotically fast methods.

It is customary to give bounds on running times of algoriti{ihany are given
at all) in a “big-Oh” form (explained in Section 25.7), say @&logn) for the
FFT. We often prove “Oh-free” bounds in the sense that wetifjethe numeri-
cal coefficient of the leading term, éﬂlogzn in the example; we may then add
O(smaller termg But we have not played out the game of minimizing these coef-
ficients; the reader is encouraged to find smaller constamnseH.

Many of these fast methods have been known for a quarter ohtrge but
their impact on computer algebra systems has been sligtiiy dae to an “unfor-
tunate myth” (Bailey, Lee & Simon 1990) about their pradti@ggrelevance. But
their usefulness has been forcefully demonstrated in 8iédev years; we can now
solve problems—for example, the factorization of polynaisi—of a size that was
unassailable a few years ago. We expect this success tocekgarother areas of
computer algebra, and indeed hope that this text may coterifo this develop-
ment. The full treatment of these fast methods motivateSrizelern” in its title.
(Our title is a bit risqué, since even a “modern” text in a diyevolving discipline
such as ours will obsolesce quickly.)

The basic objects of computer algebra are numbers and puolgt® Through-
out the text, we stress the structural and algorithmic sirities between these two
domains, and also where the similarities break down. Weeunate on polyno-
mials, in particular univariate polynomials over a fielddgray special attention
to finite fields.

We will consider arithmetic algorithms in some basic dorsaifhe tasks that
we will analyze include conversion between representafiaddition, subtraction,
multiplication, division, division with remainder, grest common divisors, and
factorization. The domains of fundamental importance fanputer algebra are
the natural numbers, the rational numbers, finite fields payghomial rings.

Our three goals, as stated above, are too ambitious to ked#prayghout. In
some chapters, we have to content ourselves with sketcheetbiods and out-
looks on further results. Due to space limitations, we sames have recourse to
the lamentable device of “leaving the proof to the readednDworry, be happy:
solutions to the corresponding exercises are available@bdok’s web site.
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After writing most of the material, we found that we couldustiure the book
into five parts, each named after a mathematician that madenagying con-
tribution on which some (but, of course, not all) of the maedarethods in the
respective part rely. In each part, we also present selegglications of some of
the algorithmic methods.

The first part BEcLID examines Euclid’s algorithm for calculating the gcd,
and presents the subresultant theory for polynomials. iéaiibns are numerous:
modular algorithms, continued fractions, Diophantineragpnation, the Chinese
Remainder Algorithm, secret sharing, and the decoding dfiBGdes.

The second part BWTON presents the basics of fast arithmetic: FFT-based mul-
tiplication, division with remainder and polynomial egjaat solving via Newton
iteration, and fast methods for the Euclidean Algorithm #mel solution of sys-
tems of linear equations. The FFT originated in signal pssicey, and we discuss
one of its applications, image compression.

The third part Quss deals exclusively with polynomial problems. We start
with univariate factorization over finite fields, and inckuthe modern methods
that make attacks on enormously large problems feasiblen We discuss polyno-
mials with rational coefficients. The two basic algorithritigredients are Hensel
lifting and short vectors in lattices. The latter has founaingnapplications, from
breaking certain cryptosystems to Diophantine approxonat

The fourth part ERMAT is devoted to two integer problems that lie at the foun-
dation of algorithmic number theory: primality testing dadtorization. The most
famous modern application of these classical topics is bliplkey cryptography.

The fifth part HLBERT treats three different topics which are somewhat more
advanced than the rest of the text, and where we can onlyiegm#foundations
of arich theory. The first area is Grobner bases, a succeggbubach to deal with
multivariate polynomials, in particular questions abooinenon roots of several
polynomials. The next topic is symbolic integration of oai@l and hyperexponen-
tial functions. The final subject is symbolic summation; wecdss polynomial
and hypergeometric summation.

The text concludes with an appendix that presents some &biamel material in
the language we use throughout the book: The basics of grdags, and fields,
linear algebra, probability theory, asymptofenotation, and complexity theory.

Each of the first three parts contains an implementationrteposome of the
algorithms presented in the text. As case studies, we ussgeaal purpose pack-
ages for integer and polynomial arithmeticTINby Victor Shoup and BPOLAR
by the authors.

Most chapters end with some bibliographical and historia@kes or supple-
mentary remarks, and a variety of exercises. The latter anked according
to their difficulty: exercises with & are somewhat more advanced, and the few
marked with** are more difficult or may require material not covered in #nd.t
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Laborious (but not necessarily difficult) exercises arekadiby a long arrow .
The book’s web pagettp: //www-math.upb.de/mca/ provides some solutions.

This book presents foundations for the mathematical engimderlying any
computer algebra system, and we give substantial coverafjen; but not al-
ways, up to the state of the art—for the material of the first@hparts, dealing
with Euclid’s algorithm, fast arithmetic, and the fact@ion of polynomials. But
we hasten to point out some unavoidable shortcomings. Fgnea cannot cover
completely even those areas that we discuss, and our tnelateaves out ma-
jor interesting developments in the areas of computatibnear algebra, sparse
multivariate polynomials, combinatorics and computagiatumber theory, quan-
tifier elimination and solving polynomial equations, anfiatiential and difference
equations. Secondly, some important questions are lefiuched at all; we only
mention computational group theory, parallel computat@mmputing with tran-
scendental functions, isolating real and complex rootsayrmmomials, and the
combination of symbolic and numeric methods. Finally, acessful computer
algebra system involves much more than just the matheraiticgne: efficient
data structures, a fast kernel and a large compiled or irgtg library, user inter-
face, graphics capability, interoperability of softwackages, clever marketing,
etc. These issues are highly technology-dependent, anel ii@o single good
solution for them.

The present book can be used as the textbook for a one-semesietwo-
semester course in computer algebra. The basic arithmgocitams are dis-
cussed in Chapters 2 and 3, and Sections 4.1-4.4, 5.1-5:8.8, 9.1-9.4, 14.1—
14.6, and 15.1-15.2. In addition, a one-semester undergtadourse might be
slanted towards computational number theory (9.5, 18.4;-H3d parts of Chap-
ter 20), geometry (21.1-21.6), or integration (4.5, 5.12-6.4, and Chapter 22),
supplemented by fun applications from 4.6-4.8, 5.6-58,%6, Chapter 13, and
Chapters 1 and 24. A two-semester course could teach thizSbasnd 6.1-6.7,
10.1-10.2, 15.4-15.6, 16.1-16.5, 18.1-18.3, 19.1-19.2, 19.5 or 19.6-19.7,
and one or two of Chapters 21-23, maybe with some applicafrom Chapters
17, 20, and 24. A graduate course can be more eclectic. Wetanght a course
on “factorization”, using parts of Chapters 14-16 and 19other possibility is
a graduate course on “fast algorithms” based on Part Il. Rpioathese sugges-
tions, there is enough material so that an instructor willllshve plenty of choice
of which areas to skip. The logical dependencies betweenthpters are given
in Figure 1.

The prerequisite for such a course is linear algebra andtaicéevel of mathe-
matical maturity; particularly useful is a basic familismwith algebra and analysis
of algorithms. However, to allow for the large variationsstndents’ background,
we have included an appendix that presents the necessadsy fear that mate-
rial, the borderline between the boring and the overly datimgnvaries too much
to get it right for everyone. If those notions and tools aré@adriliar, an instructor



2. Fundamental
algorithms

i

3. The Euclideal
Algorithm

4. Applications o

Euclid’s Algorith

i

Introduction 5

oo

COMPUTER,
ALGEBRA

8. Fast

NEWTON | | ipiication

'

7. Decoding
BCH-Codes

-

5. Modular 9. Newton 13. Fourier Trans
algorithms iteration and image comp

EUCLID

19. Factoring
integers

20. Public key
cryptography

18. Primality
testing

10. Fast evaluatign 12. Fast linear
and interpolation algebra

11. Fast Euclidean
Algorithm

14. Factoring
over finite fields
N

GAUSS

T
15. Hensel 21. Grébner
lifting bases

17. Applications
of basis reductio

FIGURE 1: Leitfaden.

T —
16. Short vectors 23. Symbolic 22. Symbolic
in lattices summation integration

HILBERT

24. Applications



6 Introduction

may have to expand beyond the condensed description in flemdjx. Otherwise,
most of the presentation is self-contained, and the exaeptre clearly indicated.
By their nature, some of the applications assume a backdrioithe relevant area.

The beginning of each part presents a biographical skettieascientist after
which it is named, and throughout the text we indicate somb@brigins of our
material. For lack of space and competence, this is not doaesystematic way,
let alone with the goal of completeness, but we do point toesearly sources,
often centuries old, and quote some of the original worlerigt in such historical
issues is, of course, a matter of taste. It is satisfying éohgev many algorithms
are based on venerable methods; our essentially “modep@ctass the concern
with asymptotic complexity and running times, faster anstda algorithms, and
their computer implementation.

Acknowledgements. This material has grown from undergraduate and graduate
courses that the first author has taught over more than ael@cadronto, Zrich,
Santiago de Chile, Canberra, and Paderborn. He wants tk &ieove all his two
teachers: Volker Strassen, who taught him mathematicsAiad Borodin, who
taught him computer science. To his friend Erich Kaltofenshgrateful for many
enlightening discussions about computer algebra.

The second author wants to thank his two supervisors, Hélfeyh and Volker
Strehl, for many stimulating lectures in computer algebra.

The support and enthusiasm of two groups of people have niededurses
a pleasure to teach. On the one hand, the colleagues, sef@avabm actually
shared in the teaching: Leopoldo Bertossi, Allan Borodiey8 Cook, Faith Fich,
Shuhong Gao, John Lipson, Mike Luby, Charlie Rackoff, anctdfi Shoup. On
the other hand, lively groups of students took the coursalsed the exercises
and tutored others about them, and some of them were theesddbthe course
notes that formed the nucleus of this text. We thank pasrtylPaul Beame,
Isabel de Correa, Wayne Eberly, Mark Giesbrecht, Rod G]o8éke Hartlieb,
Jim Hoover, Keju Ma, Jim Mclnnes, Pierre McKenzie, Sun MeRgb Morenz,
Michael Nocker, Daniel Panario, Michel Pilote, and Frasg®itt.

Thanks for help on various matters go to Eric Bach, Peter,Bidieb Bosma,
Louis Bucciarelli, Désirée von zur Gathen, Keith Geddesn®iGrigoryev, Jo-
han Hastad, Dieter Herzog, Marek Karpinski, Wilfrid Ke|lees Klinger, Werner
Krandick, Ton Levelt, Janos Makowsky, Ernst Mayr, Frangd@ain, Gerry My-
erson, Michael Niisken, David Pengelley, Bill PickeringmEs Recio, Jeff Shallit,
Igor Shparlinski, Irina Shparlinski, and Paul Zimmermann.

We thank Sandra Feisel, Carsten Keller, Thomas Lickingk Bitller, and
Olaf Miiller for programming and the substantial task of praidg the index, and
Marianne Wehry for tireless help with the typing.

We are indebted to Sandra Feisel, Adalbert Kerber, PredaiMsgctu, Michael
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Nocker, Daniel Panario, Peter Paule, Daniel ReischertpWighoup, and Volker
Strehl for carefully proofreading parts of the draft.

Paderborn, January 1999

The 2002 edition. The great French mathematician Pierre Fermat never pub-
lished a thing in his lifetime. One of the reasons was thatsndays, books and
other publications often suffered vitriolic attacks forrgeived errors, major or
minor, frequently combined with personal slander.

Our readers are friendlier. They pointed out about 160 sraod possible im-
provements in the 1999 edition to us, but usually sugarenl thessages with
sweet compliments. Thanks, friends, for helping us feebigarmd produce a better
book now! We gratefully acknowledge the assistance of $éigeamov, Michael
Barnett, Andreas Beschorner, Peter Blrgisser, Michaelsela Rob Corless,
Abhijit Das, Ruchira Datta, Wolfram Decker, Emrullah Duang Friedrich Eisen-
brand, loannis Emiris, Torsten Fahle, Benno FuchssteiRed Glover, David
Goldberg, Mitch Harris, Dieter Herzog, Andreas Hirn, MadavHoeij, Dirk Jung,
Kyriakos Kalorkoti, Erich Kaltofen, Karl-Heinz Kiyek, Amdw Klapper, Don
Knuth, llias Kotsireas, Werner Krandick, Daniel Lauer, dBruce Lloyd, Mar-
tin Lotz, Thomas Lucking, Heinz Luneburg, Mantsika MatoeaHelmut Meyn,
Eva Mierendorff, Daniel Muller, Olaf Miller, Seyed Hesamda@dNajafi, Michael
Nocker, Michael Nisken, Andreas Oesterhelt, Daniel Pandrhilo Pruschke,
Arnold Schdnhage, Jeff Shallit, Hans Stetter, David Thejidiomas Viehmann,
Volker Weispfenning, Eugene Zima, and Paul Zimmermann.

Our thanks also go to Christopher Creutzig, Katja Daubestst€n Metzner,
Eva Miiller, Peter Serocka, and Marianne Wehry.

Besides correcting the known errors and (unintentionaitlypducing new ones,
we smoothed and updated various items, and made major chanGhapters 3,
15, and 22. Separate errata pages for both editions will pe de the book’s
websitehttp: //www-math.upb.de/mca/.

Dear readers, the hunt for errors is not over. Please keeprwting them to us
at{gathen, jngerhar}@upb.de. And while hunting, enjoy the reading!

Paderborn, February 2002

Note.  We produced the postscript files for this book with the inedle help of the
following software packages: Leslie Lamport8gX, based on Don Knuth'sgX, Klaus

Lagally’s ArabEX, Oren Patashnik’'s BTeX, Pehong Chen’s Makelndex, APLE, MU-

PAD, Victor Shoup’s N'L, Thomas Williams’ and Colin Kelley’s gnuplot, the Persiste
of Vision Ray Tracer POV-Ray, and xfig.



