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Solutions to Chapter 2 3
Chapter 2

2.1 Sincea_1 # 0, we haver' ! <a= S qar < Joqq(r—1r'=r" -1,
and taking logarithms, we obtain-1 <log,a < |. Sincel is an integer, this is
equivalenttd —1= |log, a|.

2.3 (i) The single precision subtraction instruction takee single precision
integersa andb and the contents of the carry flagas input, and outputsand sets
the carry flagy* such tha—b—~ = —y*- 24 4 c.
(i) ALGORITHM 2.6 Subtraction of multiprecision intege:c. .
Input: Two multiprecision intege@= (—1)°5 o<j<n @24, b= (—1)%y o<, bi2%%,
not necessarily in standard representation, yéth- |b| ands € {0,1}.
Output:c = (—1)%3 0<j<n €i2%% such that = a—b.
1. Yo <— 0
2. fori=0,...,ndo
G—a—bi—v 710
if i <Othenc «—c¢+2%, 411
3. return (-1° Y G254
0<i<n
(iii)y With a= (—1)5yo<i<n@2%% andb = (—1)5y o<, 012%%, we havelal > |b|
if and only if 8y = by, 8,1 = bn_1,...,8n-i41 = bn_i41, @i > bn_; for somei €
{0,...,n}. Each comparison is essentially a single precision sutirac

2.5 ALGORITHM 2.7 Multiplication by a single precision intege:.

Input:a,b € Z such thab = (—1)%y o< bi 2%, with s€ {0,1} anda, by, ..., bm €
{0,...,254—1}.

Output: The multiprecision integeab € Z.

1. computecy,w; € {0,...,2%— 1} such that by = w; 2% + ¢
11¢—0

2. fori=1,...,mdo

3. computes, Wi, 1 € {0,...,2%— 1} such that- by = wi, 1254+ u

4, computeg; € {0,...,254—1} and~i,1 € {0,1} with 7,125+ ¢ =
Ui + Wi +7i

5. Cmi1 ¢ Wmpl +Tmet

return (—1)%Y oci<my1 G284

2.7 We have\(a) — A\(b) < A\(q) < A(a) — A\(b)+1. The bounds are achieved
whena = 264m-1 b =264 _1 anda = 26" — 1, b = 264" respectively.
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4 Solutions to Chapter 3

2.8 Suppose to the contrary thdt=g- (2x+1)+r, with q,r € Z[x] and deg < 1.
Comparing leading coefficients, we find that1c(q) - 2, which is impossible since
Ic(q) € Z.

2.9 We replace step 3 of Algorithm 2.5 by

3. if degr = m+i then
if by | Ic(r) then g «+— Ic(r)/bm, 1 +—r—qxb
elsereturn “FAIL”
eseq +—0

This proves existence af andr in case that the inner condition is always true.
Uniqueness follows from the uniquenessgondr over K. Conversely, let <
n—mbe the largest index such that deg m+i andbp, 1 Ic(r), and suppose that
there existy®,r* € R[x] such that= g*b+r* and deg* < degb. By the invariant
a= (zi<j§n,mqjxj)b+ r, which holds at the beginning of step 3, we find that
r=qg“b+r*, whereq” = (q° — Yi<j<n-md;x'). Comparing leading coefficients
leads to the contradiction(ic) = Ic(q**)b,.

Chapter 3

3.3 We prove all statements for an integral donfiim which any two elements
have a gcd and a Ilcm, with | replaced by norm&l).

(i) By definition of the gcd, we have that g@lb) | a. If a| b, thenais a common
divisor of a and b, and hencea | gcd(a,b). Thus gcda,b) = normala) since
both elements are normalized. Conversely, if nofma: gcd(a,b), thena =
lu(a)gcd(a, b), anda dividesb.

(i) follows from (i) with b=a, b= 0, anda = 1, respectively. (This part of the
exercise is only present in the 2003 edition.)

(i) is immediate from the definition.

(iv) Every common divisor o, b,c divides both sides of (iii), and both sides
of (iii) are common divisors of,b,c. The claim follows from both sides being
normalized.

(v) The claim is clear it = 0, and we may assume thag 0. If d € Rdividesa
andb, then normac)d dividesca andcb, and gcdca, cb). In particular, this holds
for d = gcd(a,b). Converselyc is a common divisor ota andcb, and hence
dividesd = gcd(ca,cb). Letca= da*, cb = db*, andd = cd* with a*,b*,d* € R.
Thenca = cd*a* andcb = cd*b*, and sinceR is an integral domain, this implies
thata = d*a* andb = d*b*, so thatd* is a common divisor o andb. Thus
d* | gcda,b) andd = cd* | normalc)gcd(a,b). The claim follows since both
sides are normalized.

(vi) If normal(a) = normalb), thena andb have the same divisors. Thus for
d € R, we have

d|gcda,c) <= d|aandd|c < d|bandd|c < d|gcdb,c).
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Solutions to Chapter 3 5

All claims (and their proofs) remain valid when the gcd isleged by the lcm and
all divisibility statements are “reversed”.

3.4 gcda,bc) =ged(ged(a, ab), bc) = ged(a, ged(ab, be)) = ged(a, ged(a, ¢)b) =
gcda,b) = 1.

3.5 (ii) Leta,b e Rwith b+ 0 andé € D be such thatl(b) = d(b). Sinced is
a Euclidean function, there exigr € Rsuch that=gb-+r andd(r) < d(b). By
the definition ofd, we haved(r) < (r) < é(b) =d(b).

(iiiy We defined* by 6*(b) = §(ab) anddé*(r) = 4o(r) if r #b. Thend*(r) < 4(r)
for all r € R, and we have to show that is a Euclidean function. Let,g € R
such thag # 0. If g # b, then there exisy,r € Rsuch thatf =qg+r andd*(r) <
o(r) < do(g) =4*(g). If g= Db, then there exisy,r € R such thatf = gab+r and
0%(r) <4(r) < §(ab) = §*(b).

(iv) Leta,b e R\ {0}. Dividing a by itself with remainder, we find,r € Rsuch
thata=qga+r andd(r) <d(a). If r #0, theng# 1 andd(r) =d((1—q)a) > d(a),
and this contradiction shows that= 0 andd(0) < d(a).

If ac R*, thend(ab) > d(b) andd(b) = d(a *(ab)) > d(ab), whenced(ab) =
d(b). Conversely, suppose thdtab) = d(b). Then there exist),r € R such that
b= q(ab) +r andd(r) < d(b). Butd(r) =d((1—qga)b) > d(b) if 1 # ga, and
hencer =0 and 1= ga.

(v) Letd be a Euclidean function. Since for alk R,a=q-1+r is satisfied for
g=aandr =0, the functions* defined by*(0) = —c, §*(1) = 0, andé*(b) =
d(b) for b# 0,1 is also a Euclidean function, whendé)) = —c andd(1) = 0.
By (iv), we haved(a) = d(a-1) =d(1) =0if and only ifa € R*.

(vi) By the minimality ofd, we haved(b) < degb for all nonzerab € F[x]. Sup-
pose thatn = d(b) < degb for some nonconstarit € F[x|, and thatn is mini-
mal with this property. Then there exigtr € F[x] such thatx" = gb+r and
degr = d(r) < n < degh. Comparing degrees on both sides, we see dhat0
andr = x". But thend(r) < n= degr, contradicting the minimality of, and we
conclude thatd = deg.

In the integer case, for afl,b € Z such thato # 0 we may findg,r € Z such
thata=gb+r and|a| < |b|/2. This proves thai(b) = [log, |b|| is a Euclidean
function. The proof thad = § is analogous to the polynomial case, witteplaced
by 2.

3.6 (i) Letps,...,pr be the normal forms of all pairwise non-associate prime di-

visors ofab. Then normala) = [1<i<, pf and normalb) = [1<i< pifi for somein-

tegersy, ..., &, f1,..., fr €N, and[]1<i<, pimi”{a’f‘} is the ged angf],<i<; p{"a"{a’f‘}

is the lcm ofa andb.

(i) This follows from (i) and the fact that mag, f;) + min(e, f;) = e + f; for
alli.

(iii) We show gcda; ---an-1,8,) = 1 and the claim simultaneously by induction
onn. The casen= 2 is (ii). Forn> 2, Exercise 3.4 with=a,, b=a;---a,_»,
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6 Solutions to Chapter 3

andc = a,_1, and the induction hypothesis imply that gag- - -a, 2-a,1,an) = 1.
Thus

lcm(ay,...,an—1,a8,) = lem(lcm(ay,...,a8h-1),an)
= lcm(normala; ---an-1),an)
= normala; - --a,—1) normala,) = normala; - - - a,),

by the induction hypothesis and (ii).

(iv) No; a counterexample i = 6,a, = 10,a3=15inR="7.

3.7 (i) follows from the first property and the surjectivity @, using Exercise
3.5 (iv).

(i) The first two properties imply thadt is closed unde# and-. By (i), we have
0€ F, and 1€ F follows fromd(1) =d(1-1) =d(1) +d(1). Finally, Exercise 3.5
(iv) implies thatR* = F \ {0}.

(i) We prove existence by induction am= d(a). This is clear fom = 0. If
n> 0, then we dividea by X" with remainder and obtaia,,r € Rwith a=apx"+r
andd(r) < n. Then clearlya, # 0, and the first two properties imply théa,) = O.
Inductively, we find that = a,_1x""!+ - -- + a;x+ ag and obtain a representation
of a as required. For the uniqueness, it is sufficient to prove daha 0 has no
representation of the required form with> 0. This follows from the first two
properties.

3.10 No.

3.11 (i) 1; (i) 17; (i) 13; (iv) 7.

3.14 (i) 1forp=2,x+2forp=3.
(i) x*+1forp=2,x+1forp=3.

(iii) X+ 4.

(iv) x+1forp=3,x>+3x+2forp=5.

3.15 lItis clear that all quotients are positive. We only gréwe claim about thg,
using induction on. Fori =1, we havesy =S, =S — 1Sy = 1> 0 andsyi g =
S3 =51 — S = —0 < 0. Fori > 1, we use the induction hypothesis to conclude
that sy = S 2 — 11 IS positive andsyi 1 = S 1 — UiSyi IS negative. An
alternative proof is by using Exercise 3.20 (iv).

Similarly, we show that X |s| < |s41| fori > 3. Ifi = 2, then

S8l = |81 — QoSe| = QeS| > [ = 1.
If i >3, then
IS+1] = |s—1—as| = |s-1| +ails| > ails| > |s| > 1,
by what we have shown above and sifge;| > 0, by induction.

Modern Computer Algebra@QhCHIM VON ZUR GATHEN and JJRGEN GERHARD, version 14 September 2003
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3.17 We haves-2+t-x=gcd(2,x) = 1, and substituting O fox yields the con-
tradictions(0) -2 = 1.

3.18 Let(f,g) and (f*,g*) in (R\ {0})? be two pairs with the same Euclid-
ean representatiofpo, ..., p¢,r¢,01,-.,0¢). Then inductivelyr,_; = qry, ro—2 =
Qe_1re_1+pele, .-, r1 =02+ pars, andro = qir1 + por2 are the remainders in the
Euclidean Algorithm for both pairs. Thud,qg) = (poro,p1r1) = (f*,g*), which
proves injectivity. For the surjectivity, léte N.o, po,...,pr € F\ {0}, 1,01 € R
nonzero, andy,, ...,q, € Rnonconstant. If we set,; = 0 and inductively define
re_1,f¢_2,...,r1,fp € Ras above, then deg; < degr; andri_1 = qiri + pir1fis1

is a division with remainder for £ i < ¢. We have I¢ri_1) = lc(qi) Ic(ri) = Ic(r;)
for 1 <i </, and inductively, alt; are monic. Thus$po, ..., ps, e, q1,...,q¢) iS the
Euclidean representation @foro, p1r1). Finally, degooro = degq; + degpir; >
degpiri1, andp;ry is nonzero since; andr, are.

3.19 (ii) The units are-1, +i.

(iv) The four gcds and their representations as linear coatluins are i =
—i-6+(14+2i)(3+i),1—-i=—-1-64+(2—i)(3+1),-1—i=i-64+(—1—2i)(3+i),
—1+i=1-64+(-241)(3+1i).

(v) One gcd is 89-66i.

3.23 From Lemma 3.8 (vi) (Lemma 3.8 in the 1999 edition) aredféict that the
tj alternate in sign (Exercise 3.15), we find that

f=riati—ritia] =riati|+rifti o >riqlti],
g=[ri—1S —ris—1| =ri—a|s |+ ri[s-1] > ri-als|
forl<i</+1.
3.25 (iii) At each recursive call, at least one of Jagand log b is diminished
by at least 1, and hence the recursion depth is at flogja| + [logb| € O(n).
The cost per step ®(n) word operations.
(iv) ALGORITHM 3.18 Binary Extended Euclidean Algorithra:
Input:a,b € N.o.
Output:(s,t) € Z? such thasa+tb = gcd(a, b).
1. ifa=Dbthenreturn (1,0)
2. if bothaandb are everthen return EEA(a/2,b/2)
3. if exactly one of the two numbers, sayis eventhen
(s",t*) +— EEA(a/2,b)
if s is eventhen return (s*/2,t*) elsereturn ((s*+b)/2,t* Fa/2)
4. if botha andb are odd and, sag > b, then
(s',t*) «+— EEA((a—b)/2,b)
if s" is eventhen return (s*/2,t* —s"/2)
elsereturn ((s*+h)/2,t* — (st a)/2)
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8 Solutions to Chapter 3

3.30 (i) Leth=¥,.0Gnx" € Q[[X]]. We have

h= Gy + Gix+ ;(2(3”,1 4 Gn_2)X" = x+ 2xh 4+ x?h,
n>

whenceh = —x/(x? + 2x— 1). The zeroes of the denominator aré + /2, and
the partial fraction expansion is

—2-/2 1 +—2+ﬁ 1
4 x4+1+V2 4 x+1-2
-2 1 V2 1

4 1—(1—\/§)x+71—(1+\/§)x
_ ? ;((1+\/§)”—(1—\/§)”>.

Since|1— /2| < 1, we haveG, = Y2((1+v2)" - (1—v/2)") ~ ¥2(14+/2)" for
largen.

(i) With f = G,1 andg = G, the length of the least absolute remainder Eu-
clidean Algorithm forf,gis

¢=n=log,, ;2v2G, € 0.786log,g-+O(1).

Thus the worst case length of the standard Euclidean Algaris about twice as
long as the worst case length of the least absolute remainddidean Algorithm.
3.31 (i) Induction om.

(ii) Induction onn and (i).

(iii) Induction onn, (i) and (ii).

(iv) Wrong: for exampleFs remF;=5rem3=2#1=F, =Fsema

(v) Write n=gk+r with 0 <r < kand use (i) through (iii).

(vi) Follows from (v) by induction along the Euclidean Algim.

(vii) Letting k=n—1 andk =nin (i), we find that

(Fan, Fant1) = (Fa—aFn+ FaFnya, Fn2 + Fn2+1) = (2RFny1 — Fn27 I:nz + Fnz+1)

if n> 1, and this “doubling formula” allows to comput&,, F,;1) in a repeated
squaring fashion. (Sindg, =~ ¢, by Exercise 3.28, the two multiplications in the
last step each take more thaf64 word operations.)

3.32 (i) The remainders arg_», f_3,..., f1, fo, andp; = 1 for all i. We have
fo=1, f1 =X fay2 =xf1+ frforallne N, and ded, = nif n> 1.

(i) Frpq= fo(1) forallne .
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Solutions to Chapter 4 9

(iii) Let f,ge Q[x] of degreesr = degf > degg > 0. Then the number of divi-
sion steps in the Euclidean Algorithm f6f,g) is at mostn, and this is achieved
for f = fyandg = f, ;.

Chapter 4

4.1 ALGORITHM 4.13 Remainder modulo a single precision integc::

Input: A nonnegative multiprecision integar= o<, a2%4, with 0 < a < 24
for all i, and a single precision integpiwith 253 < p < 264,

Output:aremp.

1. ifa,<pthenr +— a,elser+—a,—p

2. fori=n-1n-2,...,0do
computeq,r* € {0,...,264— 1} withr - 2844 g = qp+r* andr* < p
r«—r*

3. returnr

4.2 (i)(80/63) 2%~ 1.36-10°%; (ii) at most 136-1078.

4.3 (i) We haveb; = 2bj; 1 — 2"y, m+Y; fori <n—m-—1. So we first com-
putearemp, b,_m_1 remp, and 2" remb, at a cost ofO(m) word operations, by
Exercise 4.1. Theh; rem p can be computed frorp.; rem p and compared to
arempin timeO(1) for eachi < n—m—1, orO(n) for all i.

(iii) For a fixedi the error probability is at mogt: 1017, and the probability that

an error happens for soniés at mosink- 1017, This is at most @01 as long as
nk < 10,

4.7 No.
4.8 (i)a=353; (i)a=777.
4.9 t; = —x®—2x2— 1, g, is not invertible, and hena@[x]/(f) is not a field.

4.11 (i)h=x*+x3 is the modular inverse; (iilh = x3 + x% + 1 satisfiesth= 0
modg.

4.13 (i) f =x3+ 42 +4x+5; (ii) x>+ 6x+1.

4.14 (i) The second equivalence is Theorem 4.1.H:etgcd f,m). Thenfg=
0 modm <= m/h dividesg, by Exercise 3.16, and the first equivalence follows.

(i) Inthe ringZ, 2 is neither a unit nor a zero divisor.
4.15 (ii)a=5: unsolvablea=6:x€ {4,9,14}; a=7: x=12.

4.16 There are precise(g— 1)/*1g™ pairs of polynomials with degree sequence
(no, Ng,..., n/) if No > Nq.
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10 Solutions to Chapter 4

4.17 (i) Lets=#Sandt = #T for short. The number of pairk, g of degreen
andm, respectively, with a given degree sequence of ledgeh(q— 1)“+1q", by
Exercise 4.16. The degree sequences are in one-to-onspondence with the
subsets of0,...,m— 1}, and hence the number of degree sequences of a given
length? € {t+1,...,m+1— s} containing no element @and all elements of

is (7>1). The number of all pairs of polynomials of degreandm, respectively,

is (q—1)2g™™. Thus

m—S—t> (+1n
(@-1)""q
t+1§ﬁ;n+1—s<€— 1-t

(q_l)quH-m

My _ 1\t m—s—t 1\

=q"a-1) Ogg%_ﬁ( ’ )(q 1)

=g "(@-D'(1+a-D)"*t=a(1-q "

(i) We have prolpX = 0) = pyiy,g = g tand prol§X; = 1) = 1—prob(X = 0) =
1—q L. The independence follows from

PsT =

prob(X; =0 fori € SandX =1forieT)
= pst =q %(1—q*)' = [ prob(X; = 0) - [ prob(X = 1),
ST ( ) !e_l b )il;[ e )

for all disjoint subset§ T C {0,...,m—1}.

4.21 ALGORITHM 4.14 Brauer’s algorithm:
Input: a € R, whereR s ring with 1,n € N, ¢, and a parametdre N. .
Output:a” € R.

1. q— 2
letn=nq +n_1g 1+ +mg+nowith0<n,...,ny < gandn # 0

2. for j =2,3,...,q— 1 do computeal

3. h—am
4. fori=1-1,...,0dob «— b, -a"
5. return bg

Each execution of the loop body in step 4 takesquarings and one multi-
plication. Thus the algorithm uség (logn)/k| < logn squarings andavy(n) +
2k~ 2 < (logn) /k+ 2% — 1 ordinary multiplications, where log log, andw.(n)
is the number of nonzero digits in th&-ary representation af. Choosingk =
|loglogn — logloglogn| leads to an overall cost ¢i.+ o(1))logn (Brauer 1939).
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4.24 (i) We proceed by induction an The case = 1 is trivial, and we assume
thatn > 1. Leth* =gcd(fy,..., f,_1). By the induction hypothesis, there exist
S,,...»S-1 € Rsuch thas; f;+---+s;_; fi_; = h*. Now the Extended Euclidean
Algorithm computess;t € R such thatsh* +tf, = gcd h*, f,) = h, and the claim
follows by lettings = s’ for 1 <i < nands, =t.

(i) For part (i) of Theorem 4.11, ldt = gcd(fy,.. ., fy). Itis clear that if a so-
lution exists, therh dividesa, sinceh divides any linear combination d, ..., f,.
Conversely, ifh dividesa, then using the first part of this exercise and multiplying
by h/ayields a solution of the linear Diophantine equation.

To prove part (i), we rewrite (6) in the forsf T = a, wheres= (sy,...,s,) and
f = (f,..., fn) are vectors irR". Then for alls* € R", we have
fT

sfl=a=sf’ <= (-9 f' =0 += s'~scU < s es+U.

To show part (iii) of the Theorem, we note that themay be obtained induc-
tively as in the first part of this exercise. The incluskRup + - - - + Ru, C U is clear
since anyy; is in U and hence any linear combination of thieis. Conversely,
lets= (sq,...,%) € U. Thenh,_; = gcd(fy,..., f,_1) dividess,fy, hy-1/hy di-
videss,, and hence+ gnu, € U for g, = s,hn/hy-1. Now the last component of
that vector is zero, and we conclude inductively that th&rgtep, . .., q, € Rsuch
thats' = s+ Y ,.i<n QUi € U and has the second up to thth component zero.
Finally,s*fT = 0 implies thats* = 0, and the claim follows.

(ii) Dividing s byl/f; with remainder if necessary, we may assume thasdeg
degfi < degdl for 2 <i <. Since de@ < I, this implies that also deg + degf; <
degd.

4.26 (i) 143=[4,1,2] and 314=10,4,1,2].

(i) [2,1,4] =14/5and[0,1,1,100 = 101/102.

4.27 V2=1021,v2-1=[1,v2/2=10,1], V5= [2,4,V7=[2,1,1,1,4].
4.29 (iii) Induction oni or Exercises 3.20 (iv) and 4.28.
(iv) The first claim is again proven by induction anThen

g_g= bzt (b Gas-tsa (=t ’
S1—™S S S(s1—ais) s(s1—as)
and dedg —c) = —degs —deds_1 — «js) < —2degs — degy; < —2degs if
i>2.
(v) We have

e R GRS

< 2n+k+max{—n—k,—2n} <k

andr;/s = ro+t/sx"K = ro modx"k,
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12 Solutions to Chapter 5

4.32 Up to sign, thd; andq; coincide with the remainders and the quotients in
the traditional Euclidean Algorithm, and Lemma 3.8 implikat f, = gcd(f, f')
is a constant and and f;.; have no common roots forQi < /.

Obviouslywis constant on all subintervals @, c) containing no roots of anf,
and we only have to investigate what happens immediatelljedeft and to the
right of a zero of somd;. Thus we may assume that there is sange(b, c) such
that the two subintervaléb,t) and (t,c) both contain no root of any;, and that
fj(t) = 0 for somej € {0,...,/—1}. Suppose first thaj > 0. Then, as noted
above,fj_4(t) # 0# fj11(t), and hence the signs 6f 1 and f;,1 are constant on
the whole interval. Now

fi-1() = ai (O F;(t) = Fja(t) = = Fja(t)

implies thatf;_; andf;1 have opposite signs on the whole interval, so that there is
precisely one sign change ip_1(b), f;j(b), f;11(b) and inf;_1(c), fj(c), fj11(c),
regardless of the signs di(b) and fj(c). Thus a zero off; with j > 0 (there
may be several suc}) does not make the value @fchange. On the other hand,

if j =0, thenfy(t) # 0, whence the sign of; is constant or(b,c), but the sign

of fo left fromt is different to its sign right front. If f,(t) = f’(t) > 0, then

f is increasing near, and we have one sign changefig(b), f1(b) and none in
fo(c), f1(c). Similarly, if f1(t) < 0, thenf is decreasing near and again we have
one sign change ify(b), f1(b) and none infy(c), f1(c).

Chapter 5

5.1 (i)ag=0,ay=0,a,=1,a3=3.
5.2 Forne N, letby, = J1.i<,ap"" € Z be p" times the initial segment of the
p-adic expansion of length, with by = 0.

(i) The p-adic expansion terminates if and only pfs/t = b, € N for some
n € N, and since gc@,t) = 1, this is in turn equivalent to| p", and also td* = 1.

(i) If k=0, thens/t =by;5;p ' =b/(p' —1), and sinces/t is a reduced
fraction, we have | p' — 1, or equivalentlyp' = 1 modt. Thus gcdp,t) = 1 and
ord(p) |I. Conversely, if gc@p,t) = 1,1* = ord(p), and we leb=s(p" — 1)/t <
p", thens/t=by ., p!"" yields a purely periodig-adic expansion, so tha& I,
and finallyl =I*.

(iv) kis the least nonnegative integer such tp/t — by has a purely periodic
expansion, or equivalentlp"s/t — bk = s/t for two coprime integers; < tx with
ged(p,tx) = 1, by (iii). Sinceby is an integer and andt are coprime, we havg =
t/ged(pk,t). With u as in (i), we find that god, ty) = ged(p*ti,t)/ged(pk,t) =
ged ptt,u)/ ged(p¥,u), and hence gdab, t) = 1 if and only ifu | pX. This proves
the second claim, and the first one follows friwe-t/ ged(p*,t) =t/ ged(pX,u) =
t* and (iii).
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5.4 (i) f=3x"43x+1.

(i) The set of all solutions isf + (x(x—1)(x—2)), and hence there aré5
solutions of degree at mosif n > 2, namely{ f +r-x(x—1)(x—2):r € F5[x] and
3+degr <n}.

5.5 (i) f = 6x2+5x+1.

5.6 A polynomial f € Fs[x] satisfies (38) if and only iff =r mod (x— a) for

all a € Fs, or equivalently,f =r modx® — x, sincex®? —x = Macrs (x—a), by
Fermat's little theorem. Thus each sutlis of the formf =r +g- (x*> — x) for
someg € Fs[x], and allg € Fs[x] do occur. We have defg= 5+ degg > 5 if

g# 0, and ded = degr < 5 if g= 0. With the degree constraint dég< 5, we

can take precisely the constant polynomial$,@, 3,4 € [F5[x] for g, and all five
solutions are, r + (x°> —x),r +2(x> — x),r +3(x° —x),r +4(x*> —x). For degf < 6,

all polynomialsg € F5[x] of degree at most 1 yield a solution, and there are exactly
25 of them.

5.7 (i) The polynomial = ¥ oi-nli has degree less thanand|(u;) = 1 for
0 <i < n. The polynomial — 1 has degree less thamandn rootsup, ... U, 1,
hence is the zero polynomial.

5.8 The claim is clear it = u; for somei # j, and we may assume that all
u; are distinct. There is nothing to provenf=1. So we letn > 1 andd =
VDM (ug, ... ,Un-2,X) € RX|™". Thend(u;) =0 for 0<i < n-2, so thatd is
divisible byp= (x—up) - - - (X— Un—2). Now pis monic of degree@— 1 and degl <
n—1, and we conclude that = Ic(d)p. Laplace expansion along the last row
shows that 16d) = VDM (uo, . ..,Us—2), and the claim follows from the induction
hypothesis and substituting_; for x.

5.11 The cost for computing(uy),...,9(u,—1) is 3n— 3 arithmetic operations
in F, and the cost for computing— Up)g+ Vo after the recursive call is another
2n— 2 operations. Thus the overall costis.;<,(5n—5) = 2(n?—n).

5.12 (i) The polynomialf (x) — f(—x) has degree less tham 2nd 2 zeroes
+U,...,*Uy_1 and hence is the zero polynomial.

(i) For the existence, we take the Lagrange interpolatiolymomial of degree
less than & such thatf (+u;) = v; for all i. By (i), this is an even polynomial.
If there is another even polynomidl such thatf*(u;) = v; for all i, then also
f.(—u) =, for all i, and the uniqueness follows from the uniqueness of the-inter
polating polynomial at ther2points+uy, ..., +Uny_1.

(ii)) g(x®) = f(x).

(iv) The corresponding statements are:

o If f € F[x] of degree less thamds such thatf (—u;) = —f(u;) for all i, then

f(—=x) = —f(x).
o There is a unique odd interpolating polynomfat F[x] of degree less tham2
such thatf (u;) = v; for all i.
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o If g€ F[x] of degree less thamis such thag(u?) = v;/u; for all i, thenf (x) =
xg(x?).

(v) fo= 9(\/32_ 2)x“— 3<5\§_ 8)x2+ 3(‘/§2_ 1), f, = _18(37T7\/§_5)X5+
9(4v/3-7 9v/3-22
( . )3 2,

5.13 (iii) f = (52 + 7y)x3 + (6y? + 4y + 1)X + (9y? + 4y) X+ 3y? + 7+ 4y.

5.14 Leth € F|x] of degree at most— 2 such thah(u;) = f(u;) for0<i<n-2.
Then the set of all interpolation polynomials of degree s n at then —2
points is{h+d- (Xx—up)--- (X—un_2):d € F} and contains exactlyR#elements

if F is finite. Precisely one of them also satisfig6) = c, since the interpolation
problemg(u;) = f(u;) fori < n—2 andg(0) = c has exactly one solution of degree
less tham. Thus each elemente F is equally “likely” without the secret of player
n—1.

5.15 f =23.

5.16 The set of all solutions is 1234431Z, where 243%= 11-13-17, and there
are precisely (10° — 1— 1234 /2431] = 410 nonnegative solutions less thaf.10

5.17 They agreed to meet again on 24 December 1999.
5.18 Sesamy Street is 555 feet long.

5.19 (i) The polynomiak? — 2 has no roots iff's, so that it is irreducible. Thus
(x2 —2)? is reducible and has no roots.

(i) Since all polynomials have degree at most three, it seffito check that they
have no zeroes. This reveals timat, m; andmg are irreducible, whilam, has the
linear factorx — 2.

(iii) Since my andmy are irreducible, monic, and distinct, they are coprime, and
the Chinese Remainder Theorem guarantees that a solutgis.ddsing the Chi-
nese Remainder Algorithm, we find thiat= 3x3 + 3x? 4+ 4x + 4.

5.20 After multiplying the second congruence with the iseerx of x modulo
x? 4+ 1 and dividing the third congruence (including the modulog)x + 1, we
obtain the equivalent system

f=1mod(x+1), f=-x+1mod(x*+1), f=1mod(x+x+1).

Its unique solution of least degree is= 2x* 4- 3x3 4 2x 4 4, and the set of all
solutions isf + ((x+ 1) (X2 + 1) (x® +x+ 1)).

5.22 (i) By the Chinese Remainder Theorem, an interpolgimignomial sat-
isfying (39) exists if and only if interpolating polynomsamodulopy and modulo
p1 exist. If, for some fixedk € {0,1}, we haveu; = u; mod py butv; # v; mod p,
then clearly no interpolating polynomial modujm exists. On the other hand,
if this is not the case, then we obtain an interpolating potgial modulopy by
simply ignoring each duplicate p&u;,Vv;) modulo py.
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(i) Again by the Chinese Remainder Theorem, the interpaigbolynomial of
degree less thamis unique modulam if and only if it is unique modulo eachy,
and this in turn is equivalent to saying that all poiatare distinct modulo eacghy.

(i) Modulo 3, the first two conditions are equivalent, ame tproblem reduces
to finding ag € F3[x] of degree less than 3 satisfying

g(1)=2mod 3 g¢g(2) mod 2 mod 3

Obviouslygy = 2 is the solution of least degree, and there are two furtHatisos
of degree less than 3, namely

01 =0o+ (X—1)(x—2) =x*+2 andgz = go + 2(x — 1)(x— 2) = 2¢°.
Modulo 5, we are looking for a polynomidl € Fs[x] of degree less than 3
satisfying
h(1) =2 mod 5 h(2) =0 mod 5 h(4) =4 mod 5
There is a unique such polynomial given, for example, by thgrange interpola-

tion formula

(x—2)(x—4) (x—=1)(x—4) (x=1)(x—2)
2 1=2a-a Y eone=s Tt asnE—2

A3 +4x+3) + 4%+ 2x+2) = 3x* +4x mod 5

h

Thus there are precisely three interpolating polynomiaislao 15 given by
f =g mod 3 f =3x*+4xmod 5

fori =0,1,2, and we may compute them by using the Chinese Remainder Al-
gorithm. By inspection, we see that the required modulagrsw®s are given by
2-3+(—1)-5=1. Then

f=0-(-1)-5+(3+4x)-2-3= (2+i(x*+2)) - 10+ (3x*+4x) - 6
= (34 10)x* +9x+ (5+5i) mod 15

fori =0,1,2, and the three solutions ang?3-9x+5, 13 +9x+ 10, and 8 + 9x.

5.23 (i) Letg=gcdmy,m) € R, and suppose thdtc R satisfies both congru-
ences. Thewg + ssmy = ¢ = v; + Sy for somesy, s; € R, and henceg — vy, =
s1m — Simg. The right hand side is divisible ly, and so is/ig — v;.

Conversely, we assume thatlividesvy — v;. By Theorem 4.10, we may com-
putes;t € R such thatsmg +tmy = vp — V4, using the Extended Euclidean Algo-
rithm, and thenf = v — sy = v; +tmy solves the congruences.

(ii) The set of all solutions is-34+ 252Z, since the solution is unique modulo
252=1cm(36,42).
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5.25 Yes, both are isomorphic #.

5.32 (i) The sum formula for the determinant (Section 25i8gy = mn.
(i) ALGORITHM 5.32 Small primes modular determinant o%#gx|.
Input: A = (&j)1<i j<n € F[x]™" with dega;; < mfor all i, j, whereF is a field
with more tharmn elements.
Output: defA € F[x].

1. r+—mn, choose + 1 distinct pointu,...,u- in F

N

fori=0,...,r computeA(u)
fori=0,...,r dod «— detA(u)
computed € F[x] of degree at most such thatd(u;) = d; for 0<i <r by
interpolation
5. returnd
The cost iSO(n?n?) for step 2,0(mn?) for all Gaussian eliminations in step 3,
andO(m?n?) for step 4, in totaD(mn* + m?nd).
(iii) detA=—2x3—2x2—3x; (V) r =mg+---+my; (V) detA = —2x? 4 3x+ 2.
5.34 (|) |Ci| < Zj+k:i |ajbk| < nB2.
(ii) ALGORITHM 5.33 Small primes modular multiplication %[x].

Input: a,b € Z[x] of degree less thamand with max-norm at mo&.
Output:ab € Z[X].

1. C+—nB? 1<+ [l0g,(2C+1)]
choose distinct prime numbersy,...,m_; € N

> w

2. for i =0,...,r —1 computec; € Z[x] of degree at mostr— 2 and with
max-norm at mostn /2 such that; = a;b; mod m, using polynomial multi-
plication inZy, [X]

3. call the Chinese Remainder Algorithm 5.4 to compate Z[x| of degree
at most 2 — 2 and with max-norm at mo€ such thatd = d, modm for
o<i<r

4. returnc
5.37 k=5 x*+2x3+2x+x+1,k= 4: no solutionk = 3,2, 1: 1/(x*> +x+1).

5.38 Suppose thatt € F[x] is a solution. Butr has at least&> k roots and at
leastn— #S > 1 non-roots, whence deg> k, a contradiction.

5.41 (ii) Fork e {n;j+1,...,nj_1}.

16
5.43 (i Ivable; (iip = :
(1) unsolvable; (iip 3C_ T — 913
11 11 3 1 11 .. 1 2 1 2
4 - 5 = -5 A v v '
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Chapter 6

6.4 Letf = (Joi<naiX')/b € K[x andc=c*/d € K, with all & andc* in Rand
b,d € R\ {0}. Then

cont f) =gcday,...,an)/normalb), contc) = normalc*)/normald),

and
“%\ g )
_ 0<i<n _gc c'ap,...,C'ay
coniet) = cont( bd ) ~ normalbd)
_ normalc*)gcday, . ..,a,)
~ normalb)normald) cont(c) con(f).

This proves Lemma 6.5. Now let= (3 o<i<mCiX)/d € K[x], with all ¢ € Rand
d as before. We may assume that = 0. Then Lemma 6.5 and Corollary 6.7
(overR) yield

cont(bd) cont( fg) = contbf -dg) = contbf) cont(dg)
= cont(b) cont(d) cont( f) cont(g).

Now 0 # cont(bd) = normalbd) = normalb) normald) = contb) contd) im-
plies that contfg) = cont f) cont(g), and finally

pp(fg) = fg/cont(fg) = f/cont(f)-g/cont(g) = pp(f) pp(9).

6.5 cont and pp is not a normal form &fx] since there are associate elements
which have different normal forms: for example, we havépp = —1# 1=

pp(1) in Q[x].
6.8 Letqbe a prime divisor of 2+ 1.
6.9 (i) R<={+2"ic7Z}.

(iiiy Every nonzero elemerii € Rcan be uniquely written as= a2' with a,i € Z
anda odd, and norméb) = |a| defines a normal form.

(iv) contz(f) =2, conk(f)=conp(f)=1.
6.10 We may assume that deg-degg > 1. By Corollary 6.21, there exist poly-
nomialss,t € Z[x] such thasf +tg=r. Plugging inx = u, we haves(u)f (u) +
t(u)g(u) =r, and since gcdf (u),g(u)) divides the left hand side of this equation,
it dividesr.

6.11 The entrie§; of the Sylvester matri®= Syl (f,g) are

S = foiyy if 1<j<m,
P g if m<j<m+n
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For a typical summand of the determinant, given by a pernautat on the index
set{1,2,...,n+m}, we have

deg, |_| Sopi = Zmdeg/f”*01+i+ z deg,gj-o,

1<j<n+m 1<7< m< j<m+n
< > o= j+ > (m=j)=nm
1<j<n+m 1I<j<m - m<j<mHn

6.12 (i) The claims are trivial ih =0 or m= 0, and we may assume that
both are positive. Lef, = Ic(f) andgm, = Ic(g). We start with indeterminates
ay,...,an,by,...,bm, and letf* = f[1cj<n(X— &) andg* = gm[N1<j<m(X—bj)

in the UFDRJay,...,an,by,...,bm|[x]. Now we leti <nandj < m, and denote
the homomorphism which substituteg for a; by a bar. Its kernel is the ideal
(& —bj). Thenx— bj divides gcdf*,g%), and sincef, = f, and Gy, = gm are
nonzero, we haveeq f*,g*) = req f*,g*) = 0, by the proof of Lemma 6.25. Thus
g — bj dividesr* =req f*,g*), and alsa = [7; ;(a — bj) does, since all the linear
factors are pairwise coprime. Now the total degree of the a andb;j is nm,
the total degree of* is at mostnm, and hence andr* agree up to some mul-
tiplicative constant fronR. We haver*(0,...,0,1,...,1) = f"- ((—1)™gm)" and
r(o,...,0,1,...,1) = (—1)"™ and hence* = f"gnr. Letting

| = (al—al,...,an—an,bl—ﬁl,...,bm—,@m>,

we find re¢f,g) = req f* modl,g* modl) =r* modl = f"ghr mod|, again by
the proof of Lemma 6.25, and the claims follow.

6.15 (i) Letf* =Yy nax andg’ = YoimbiX be generic polynomials with
coefficients in the UFI3=Z]ay, . . ., an,bo, . .., bm|, where they; andb; are indeter-
minates, and* =req f*,g*) € S Then Corollary 6.21 yields nonzero polynomials
st € §x] with deg,s* < m and degt* < n such thats" f* +t*g* = r*. Apply-
ing the ring homomorphism: S— R which maps the to the coefficients of
and theb; to the coefficients of), we find polynomialss = ¢(s") andt = p(t*)
in R[x] of the required degrees such tisét+tg = ¢(r*). Sincey(a,) andy(bm)
are nonzero, we obtain S¥l,g) from Syl(f*,g*) by applyingy to each entry, and
p(rr) =reg(f.g)=r.

(i) If risaunit, then (i) yields,t € R[x] of the required degrees witf +-tg=r,
and hencer=1s)f + (r-t)g= 1. Conversely, letof +tog = 1 for so,to € RX]
with degsp < m and dedp < n. Sincef is monic, we findg € R andt; € R[X]
such thatxto = gf +t; and ded; < n. So we lets; = x5 — qg, and thens; f +
t;g=x. If n+m> 2, then comparing degrees on both sides yieldStggy—
degt; + m< n+m, sinceg is monic, and hence dég< n. Proceeding inductively,
we find polynomialss,;, s, ..., Swym-1 andty, to, .. ., thym-—1 in R[X] with degs < m,
degt; < n, ands f +tjg =X for 0 <i < n4+m. Summarizing these+ mequations
into one matrix equation, we find that $§1g) - A= for a matrixA € R(Mm)x(m+m)
and the(n+m) x (n+m) identity matrixl. Taking determinants yieldsdetA = 1.
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6.18 (i) re¢f,g) = 184140000= 2°-3%.5%.11.31.

(i) We haveh = 1. From (i) and Lemma 6.25, we conclude that the gcd of
f mod p andg mod p is nonconstant fop = 2,3,5,11,31, and 1 for all other
primes.

6.21 The stated method is not a probabilistic algorithm bsedhere are specific
pairs of inputs (sax andx?) where itneverreturns the correct output.

6.23 Fromf(a) =0, we find that

1< 3 [porle s (B) <5 (8) -5

0<i<n >

i
£

i—n

6.24 (i) Letl =n+m—2kanda= S, ax € RX, with alla € R. Then the
coefficients ofx™™-1 xntm-2 %% in the product polynomiaha are precisely
the coefficients oH - (a_1,...,a1,3)". Since each column &is the coordinate
vector ofx f* or Xg* for somei € N, the corresponding column &fSis a shift of
an initial segment of the coefficient sequencd ef hf* or g = hg*, respectively.
Moreover, deH = hi*™ % and hence dat = degH - detS= hJ+™ %,

(ii) By (i), each column ofT has 2-norm at mogin+ 1)Y/2A, and Hadamard's
inequality 16.6 implies thgt| < |detT| < (n+ 1)" kA2

6.25 We have{bsincep > b. Leta=Ic(h) € Z. Theorem 6.26 shows that] b,
and thatov =h mod pif and only if p{r. In this case, we hawe = bv = (b/a)h
mod p. Now ||wl||,, < p/2, Corollary 6.33 shows thdi{b/a)h|,, <B < p/2, and
hencew = (b/«)h and pgw) = h sinceb anda are normalized. Conversely, if
p|r, then Theorem 6.26 yields deg> degh, and thus pfpw) # h.

6.27 (i) Sinceh is a common divisor irZ[x] of f andg, h(u) is a common
divisor of f(u) andg(u). Every integral root ofi divides the constant coefficient
of f, so that it is absolutely at moat and hencé(u) # 0.

(i) We have cw(u) = v(u)w(u) = contv)h(u), and (i) implies thajw(u)| <
cont(v) < [|v[, <u/2. Letw = Ic(W) []1<i<degn(X — @), Where theo; are the
complex roots ofv, with multiplicities. Sincew | h| f, eachq; is a root off, and
Exercise 6.23 yields; < 2A < u/2 and|w(u)| > |Ic(w)|(u— 2A)9e9v,

6.30 The gcd is+ 2ax — 2a2.

6.31 For 0< k <, let px,;(w,b) denote the probability that at ledstballs are
white, andq (w,b) = pr/21, (W, b) the probability that at least half of the chosen
balls are white. Then % pg;(w,b) > p1;(w,b) > --- > p;;(w,b). Exchanging
the roles of the white and the black balls proves thatb,w) is the probability
that at leask balls are black, and similarly fay (b, w). Thusq (w, b) +q (b,w) >
Pri/21.1 (W, b) + pji /2)4+1, (b,w) = 1, and in particulag (w,w) > 1/2.

For the induction step, leA be the set of all choices containing ball number
w-+1, Bthe complementary set of all choices not containing balliberw+ 1, and
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W the set of all choices containing at leakt2] white balls. We havey; (w,b) =
w/(w+b) > 1/2, and hence we may assume that2. Then by the formula for
the conditional probability, we have

a (W+1,b) = prob(W) = prob,(W) prol(A) + probs (W) prob(B)
= Ppi/21-11-1(W, b) prob(A) + pri /21 (W, b) prob(B)
> Pra-1)/21,1-1(W, b) pro(A) + pri /2,1 (W, b) prol(B)
= q—1(w, b) prob(A) + g (w, b) prob(B)
1
> = (Prob(A) +prob(B)) = ,
by the induction hypothesis, and the claim follows.

6.32 (i) We havet = [log,((4n+2)d)] € O(log(nd)). Example 6.19 shows
that the gcd off andg over Fy is the same as ovéfy. Algorithm 6.36 takes
O(nd(n+d)) operations irfy, by Theorem 6.37, and one arithmetic operation in
Fq: costsO(t?) operations irfy, by Corollary 4.6.

6.33 The six intersection points afe 3,—1), (—2,11), (-1/2,67/8), (1,—-1),
(3/2,-17/8), and(3,11).

6.34 The minimal polynomial ove® is x* — 10x* + 1. OverlFyg, the minimal
polynomial ofa + 7a = 8a is X2 + 4, andx* — 10x% + 1 = (x> +4) (x> +5) mod 19.

6.35 (i) Leta = ay,...,an € C be the roots off. Exercise 6.12 shows that
I = Na<i<n 9(X/ ).

(iii) Take res(f(y),9((x—ay)/b)) and reg(g(y), f(xy)), respectively.

(iv) The minimal polynomial ofy/2 — 2v/3 over@ is x* — 28x% + 100, and the
minimal polynomial ofy/2v/3 is X — 72 over both fields.

6.36 (i) By Exercise 6.12, we have= [1i<j<p(X—0(c)), Wherea = av, ..., an
are the roots of in C.
(i) The minimal polynomials are® — 2x — 2 andx® — 3x* — 3x — 1.

6.38 Instep 3, use the EEA to compustet € F[x] of degree less thashsuch that
s f +tg=gcd(f1,Q), and ses, =t ands = a;t for 3 <i < n. The additional cost
is (n—2)d + O(d?) operations irF.

6.39 We call Algorithm 6.45 with thg; as input, and then divide by the result.

If the division is not possible, then the random choice wdsaeky, and we return
“FAILURE”. If deg f; < d for all i, then the cost i©(n?d?) for computingm and

all gi, by Theorem 5.7. We have dgg< (n—1)d for all i, and the call to Algorithm
6.45 take$O(n?d?) operations, by Theorem 6.46. The same bound is valid for the
final division, and hence the overall cost@n?d?). Using the fast algorithms
from Part 11, the cost drops 0~ (n?d). By Theorem 6.46, the error probability is
at most 2 if we let #5> 2(n—1)d.
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6.41 The only nonzero entries in the first row of §ylg) and its submatriceS
are I f) and Iqg), so that this row is divisible by the gcd of the leading coeffi-
cients.

6.44 (i) follows by induction on.

(iii) Similarly to (i), induction oni shows that; > A(B+C)*~'C' and all coeffi-
cients ofr; are greater or equal #(B+ C)*1-1C',

(iv) Let n=dega> m=degb. Then the statement analogous to (i) says that
dega=«, deg b= 3, and degc = v imply deg,qi < a+ (k—i) +iv, degr <
a+(k+1-i)3+iv, and degr < a+ (k+1)3. The cost for the pseudodivision
is O(mk?d?) operations irF.

(In the 1999 edition, the variables are named differently.)
6.46 (i) We havep > d if and only if X; = Xj;1 = --- = Xj;4-1 = O for some
j <m—d. The probability for this to happen ¢ when j is fixed, and hence
prob(p > d) < (m—d+1)g 9. We have protp > 0) = 1, and therefore

E(p) <1+m Z q9<iy ——
1<d<m

(i) We define Bernoulli random variable§ such thatX; = 1 if i occurs in the
degree sequence axgd= 0 otherwise, for 6<i <m. Thend =p+1if g1 f, by
Exercise 4.17.

(i) Apply (ii) to g being a prime divisor of 2+ 1.
6.47 (i) Leta; =lc(rf) for 2 <i < ¢. We first prove by induction on that

i =aoiri for 0 <i < /. The start of the induction follows fromg = f,r; = g.
From the induction hypothesis, we find fiar 1

(af 1) 7 = (o )7 1 —ar) = (of 1) Mo aTica —GlegTi)
= ri1—(of (ofy) g)r,
ded (o 1)7'r,q) < degr; = degr;.

The uniqueness of remainder and quotient on division afby r; implies that
pieriz = (ai_y) 7y andg = of (o) ') (14)

In particular,r;, , is a scalar multiple ofi,;, and hence equal @, ,ri 1. Further-
more, the lengths of the two algorithms are equal.

Comparing leading coefficients in (14), we hawe; = (a;"_l)‘lai*ﬂ. Induc-
tively, we find o = . Together with (14) this proves the first two claimed
equations. The other two follow similarly by induction, atfernatively, by the
uniqueness property in Lemma 5.15.
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(i) For a polynomiala € Q[x], we write3(a) for the maximal absolute value of
the integers that occur in the (relatively prime) numeratutt denominator of any
coefficient ofa. Then we have for X i < ¢:

Ble) < B(p)B(pi—z) -+ < ACH/Z, _
B(A) < Blei-1)Blai)B(a) < B(pi)Bpic1) - Blp1)Bpo)B(ai) < AT,
B(ri) < Blew)B(ri) < AL/ B
B(s) < Blai)B(s) <AC/Z . B
BtY) < Blai)B(t) < ACl/.B

Thus all integers are absolutely at madC’ < C™?2,

6.48 (i) Let2<i </, n =degi, o =op,. As in the proof of Theorem 6.52, we
find thatori, o5, otj are inF x,y]. Cramer’s rule shows that deg< (n+m-—2n;)d
and the degree inof orj, 05, ot is at most(n+ m—2n; — 1)d.

To bound the degree of the quotients, we consider the pseisiod (13) on
page 181 (in the 2003 edition), as in the proof of Theorem ,6ab2l Exercise
6.44 implies that degor; o, ,0i) < (k+1)(n+m)d and deg(ayy oy, , pirafis1) <
(k+2)(n+m)d.

Thus the degree iy of all numerators and denominators in the EEA is at
most (6 + 2)(n+ m)d, and one arithmetic operation on such a coefficient takes
O((néd)?) word operations. Now the claim follows since the number aharetic
operations i$D(nm), by Theorem 3.16 (Theorem 3.11 in the 1999 edition).

(i) Letqf,r{, st € F(y)[x] denote the results of the traditional EE#,c F(y)
as in Theorem 6.53, arw= (0 + 2)(n+ m)d. Moreover, fora € F(y)[x], let 5(a)
be the maximal degree i of the relative prime numerator and denominator of
any coefficient of. Then essentially the same proof as in Exercise 6.47 shaws th
Theorem 6.53 (i) holds3(«i) < d+c[i/2], andB(q), 5(r), B(S), B(t") are all at
most 2 +ic < (m+2)c. Asin (i), the claim now follows from from Theorem 3.11
(Theorem 3.11 in the 1999 edition).

6.49 (i) We haves; = (pop2) * = a,
Lemma 3.15 (v), we have

! and hencev,! = k2 = y2/0n,. By

1,-1

Stir —tiSt1 = (=1) (po-+ pis1) "t = (=1)af i1

fori > 0. Comparing constant coefficients, we find that

i

Yi+1 -1
= KiAit1 — AiKit1 = (=1) .
O'niUni+1 alaH—l

This yields the first claim, and the second one follows by aiidun oni.
(i) By Hadamard'’s inequality 16.6, we haydety;|, |detZ;|, |on | < B, |y2| < B,
and |vyj| < 2B? for 2< j < £. All 5; are integers, and by (i), there are at most
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[i/2] of them in the denominator af;, so that this denominator is at mq@B)!
in absolute value. Similarly, the numeratorafcontains at mosti — 1)/2 of the
~; if i is even, and it containg, and at mosti/2) — 1 of the~; with j > 3if i is
odd. Thus the absolute value of the numerator is no more(2@yh as well.

For a € Q[x], we denote by3(a) the maximal absolute value of the coprime
numerator and denominator in any coefficientapfas in Exercise 6.47. Then
B(ri),B(s),B(t) < B, by Theorem 6.52, and together with what we have just
shown, we find thaB3(ri), 5(s’), 3(t*) < (2B)*1. The length estimate follows
fromi <m+ 1 and logB € O(nlog(nA)).

(iii) This is completely analogous to (ii). Léi= (n+m)d. The degree iry
of dety;, detZ;, andoy, is at mostb, and degyj <2b,for2<j</ Lets(a)
be the maximal degree yof the coprime numerators and denominators of any
coefficient ofa € F(y)[x]. Theng(a;) <ib, as in (i), Theorem 6.54 says that
B(ri), 6(s),B(ti) < b, and the claim follows.

6.50 The proofis analogous to the proof of Theorem 6.58/1.etN be the num-
ber of division steps of the Euclidean Algorithmfity)[x] of f, g, letom_1,...,00€
F[y] be their subresultants, amg > --- > nj. € N be their degree sequence. Now
deg, p > d, so thatp divides none of the leading coefficients bndg. For any
ke {0,...,m}, we have degp > (n+m)d > deg, ok, whencep{ o andn;, occurs

as a remainder degree in the EEA bfnod p andg mod p, by Theorem 6.55.
Thusn =y for 0 <i < ¢ =/¢*. The numerators and denominators of the coeffi-
cients of thej, s,ti € F(y)[x] have degree ig at most(n+m)d, by Theorem 6.54,
and Theorem 5.16 implies that they can indeed be reconstti@m their images
modulop.

The cost for evaluating andg at all points inSin step 2 isSO(n?d?) operations
in F. The cost of the EEA foif (x,u) andg(x,u) is O(nm) field operations per
evaluation poinu, in total O(n?md) field operations. The dominant cost occurs
for the Cauchy interpolation in step 3. By Theorem 6.54, thgree iny of both
the numerator and the denominator of any coefficient; 0§, or t; is at most
(n+m—2n;)d, for 0<i < /. Thus by Theorem 5.164 = 2(n+m—2n;)d+1
points in§ are sufficient to reconstruct such a coefficient. The costdomputing
an interpolating polynomial ifr[y| of degree less tham at ther; points is%’yi2+
O(v) field operations, by Exercise 5.11, and the rational fumcteronstruction
takes at most anothé(v?) operations, by Theorem 3.16 (Theorem 3.11 in the
1999 edition). We have; € O(nd), there areO(nm) coefficients in total, and
hence the overall cost 8(n®md?) operations irF.

In the normal case, we have_; =i andv,; = 2(n+m—2i)d + 1, and the
number of coefficients i (y) of ry_i,s—i,t,—i (without the leading coefficient
of rp_j, whichis 1) isn,j+m—n, i 1+14+n—n,j 1+1=n+m—i+1, by
Lemma 3.15 (b) (Lemma 3.10 in the 1999 edition) fox ®< m. Thus the overall
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cost for step 3 is

5% (ntm—i+1) ((2(n+ m— 2i)d+1)2+0(nd))
0<i<m
field operations, and a routine calculation (best done witbraputer algebra sys-
tem) shows that this sum can be bounded$y®md?+ O(n*d(n+d)).

6.51 ~ ALGORITHM 6.63 Modular EEA inQ[X]: big prime version:
Input: f,g € Z[x] with degf =n>degg=m> 1 and| f|.,|d]. <A
Output: The results;, s,t; in Q[x] of the EEA for f andg.

1. B+— (n4+1)narm
choose a prim@ € N with 2B? < p < 4B2

2. call the Euclidean Algorithm 3.14 to compute all result&igjx] of the EEA
for f mod p andg mod p

3. Letnp=n>n=m>ny, > ... >n; > 0 be the degrees of all remainders
that were computed in step 2
fori=2,...,/do
compute the coefficients of the monic remaindes Q[x| of degree
n; and ofs,t; € Q[x] from their images modul@ by rational number
reconstruction (Section 5.10)

4. returnri,s,tifor2<i </

For the modular EEA irF[X,y], we replaceZ, Q, Z, throughout byF [y, F(y),
Flyl/(p), respectively. The input then are two polynomidlg € F[x,y] with
deg f =n>degg=manddegf,degg <d. Instep 1, we choose a monic irre-
ducible polynomiap € F[y] of degree 2n+m)d+ 1, and we use rational function
reconstruction (Section 5.7) instead of rational numbeomstruction in step 3.

For Z[x], the cost for step 2 i®(nm) arithmetic operations ifZ,, each taking
O(log®B) or O(n?log?(nA)) word operations. Step 3 tak€§log?B) word opera-
tions for each coefficient of somrg s, ort;, by Corollary 5.17. There at®(nm)
coefficients, and the overall cost@n®mlog?(nA)) word operations. Similarly,
the cost for step 2 in the bivariate cas©isim) arithmetic operations in the residue
class field=[y]/(p). Each such operation tak€¢n?d?) operations irF. Thus step
2 takesO(n®md?) operations irF, and the same estimate holds for step 3.

6.53 (i) Letb=(n+m)d and 1<i < /. As in the proof of Theorem 6.62, we
find thato; € F[y] divides the subresultant, € F[y] of f andg, and Theorem 6.54
implies that degai,deg,ri < b. Then dega 1 < (0 +2)b, and Exercise 6.44
shows that degy, deg/(ai,l remr;) < (6 +2)bas well. Thus the degree yof all
coefficients inF[y] throughout the algorithm is at magt+ 2)b € O(nod), the cost
for one arithmetic operation on such coefficient®{®252d?) operations irF, and
the claim follows since there af@(nm) of them.
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(i) We initialize sp =t; = 1 ands; =ty = 0 in step 1, and additionally compute
piy1=conk(a 1 remr) R, sy1=(Ic(r)"""* "s 1 —qgs)/pita,

tipg = (Ic(r) ™2™y —qiti)/pia
in the body of thevhileloop in step 2. In generad, andt; need not lie irR[x|, but
their denominators divide,, /«;. We obtain from Theorem 6.52 and Theorem 6.54
that their numerators have max-norm at most 1)"A™™ if R= 7 and degree in
y at most(n+m)d if R= F|y], respectively, and the same bounds are valid for the
denominators.
Let1<i</. If R=7, then

|pia] < llai-g remril, < (2B)°*2, |lle(r) ™ Mon s 1/aial, < BT,

lgions /il < n(2B)"*3,

so that
(on_yom /aicaci) (Ic(r) ™ s — gis) |, < (n+1)(2B)° .

The latter quantity bounds the absolute value of all nunoeseand denominators
in Z occurring in the algorithm, and hence their lengtl®ig logB). This yields
the same time bound as in Theorem 6.62. The Basd-[y] goes analogously.

6.54 Letd; =n_1—n;. Assuming that the degree bound from Exercise 6.44 is an
equality, we find that

deg,(a;,l remr;) = degri 1+ (6 + 1)deg,ri
= (n+m-—2n_1)d+ (6 +1)(n+m—2n;)d,
deg,conl;((a;_l remr;) = deg/(a;_l remr;) —degri;1
= (n+m-—2n;_1)d+ (6 +1)(n+m—2n;)d
—(N+m—2n;4,)d
= —2(5i —f—5i+1)d + (5i + 1)(n+ m— 2ni)d.

Chapter 7

7.3 The roots ok®+x+ 1 aref, 32, 3%, the roots ofx® + x>+ 1 are33, 3°, and
(%2 = 3°, and the root ok+ 1 is 37 = 1. The following table gives all possible
BCH-codes.

) generator polynomial | exponents with g(5') =0 | dimC | d(C)
1 1 ] 7 1
2,3 X34+ x+1 1,2,4 4 3
4.5,6,7 X x+1 1,2,3,4,5,6 1 7
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7.4 Under the assumption that at most one error has occutredransmitted
words are

c1=r1=(C+x+x+1)gmodx’ —1,
_\6 74 7
co =X+ x*+x+1 modx’ —1 = (x*+1)g modx’ —1.

There are precisely three codewords with Hamming distarfoen2r,, namelyg
modx’ — 1,

X0 4+x% 4+ 1 modx’ —1 = (x*+x+1)g modx’ —1,
X8+ +xmodx’ —1 = (x®+x2+x)g modx’ — 1.

7.5 (ii) xt°—1 has the roots, B3, 52,...,3°.

(i) For 1 < ¢ < 10, the polynomial; = (x— ) (x— ?) - - (x— 8°~1) € F1a[X]
of degree’ — 1 generates a BCH1,10,6) code of dimension 1% § and minimal
distance’.

(iv) The transmitted word is

X6 453 4 8x2 + 7x 44 modx*® — 1 = (x* + 8x+4)g mod x'° — 1.

Chapter 8
8.1 The following scheme uses three multiplications anddfdivisions inR if
b; # 0.

dtai _ (ao+aii)(bo—bii) _ aobo+aubs + (a1bo —agby)i

bo+bii b3+ b2 b + b2
ao%i—f-al al%i—ao_
bo bo
bob—l-i-bl boli+b1

A similar scheme works whelo, # 0. Lickteig (1987 shows that this is optimal:
any such division algorithm uses at least six real multgilams and divisions.

8.4 Induction ork reveals that 93— 8- 2¢is strictly smaller than 24— 2.2+ 1
precisely wherk > 5. Thus in theory, Karatsuba'’s algorithm is faster thansitad
multiplication for degrees above 2 32.

8.5 Whenn = 2X, both variants yield the same running time boun% + O(n),
while the bound fon = 2¢-1 + 1 is 2'°93+O(n) for variant (i) and only 18°93+
O(n) for variant (ii).
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8.6 From Section 2.3, we know that classical multiplicatidriwo polynomials
of degrees less tharf fakes 2220 —2.29 1 1 operations irR. This yieldsy(d) =
(2-224+6.29+1)/39. Taking derivatives with respect t the unique positive
d € R that minimizesy(d) is d = 2.214. Of the nearest integers 2 andd3s 2
yields the smaller valug(2) = 19/3. Thus if classical multiplication is used for
polynomials of degree less thaf 2 4, then the overall cost is at moktn©9® +
O(n), which is significantly smaller than the'99 from Theorem 8.3.

8.7 (i) Proceeding a la Karatsuba, we first compute the ptsdwy, F1G1,
FGz, (Fo+F1)(Go+Ga), (Fo+ F2)(Go+Gz), and(F1 + F2) (G + Gz), and obtain

Ho = FoGo, Hi= (Fo+F1)(Go+ G1) — FoGo— FiGy,
Hy = (Fo+ F2)(Go + G2) — FoGo — F2G2 + F1 Gy,
H3 - (F1 + Fz) (Gl + Gz) — FlGl — Fsz, H4 = F2G2.

This leads to a®(n'°%®) multiplication algorithm.

(i) The cost of the algorithm i©(n°9%), This is asymptotically faster than
Karatsuba’s algorithm if logd < log 3, or equivalentlygd < m°93 = 3109™_For (i),
we haved = 6 > 3993~ 5.7, that is, the algorithm is slower than Karatsuba'’s.

8.8 (i) Correctness follows from noting thatis «(u;) with its coefficients sub-
stituted by thel, and similarly forQ;. The number of operations iR used in
step 1 ismk multiplications and m— 1)k additions for the computation of eaéh
and eacl;, in total (4m? — 2m)k multiplications and4n? — 6m-+ 2)k additions.
The degree of eadR is less than R— 1, and the cost for step 3 (@m—1)(2k—1)
multiplications and 2m— 2)(2k — 1) additions peH;, in total (2m— 1)?(2k — 1)
additions and4n? — 3m— 2)(2k — 1) multiplications. Thus the overall cost is
about 127k or 12mn multiplications and approximately the same number of ad-
ditions.

(i) We have
1 00 0O 1 00 00
| 11111 04231
Wocijes=| 1 2 4 3 1|, (Gosijes=| 0 4 1 1 4
13421 04321
141 41 4 4 4 4 4

This leads to the following scheme for computifg, ..., H,. First, we compute

Po = RoGo,

P = (Fo+Fi+F)(Go+ G2+ Gs),

P, = (Fo+2F1 +4F)(Go + 2G1 +4Gy),
Ps = (Fo+ 3F1 4 4F2)(Go + 3G1 +-4Gy),
Py = (Fo+4F1+F2)(Go + 4G + Gy).
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Then we havéy = BQ; for all i, and finally

Ho = R,

Hi = 4R+ 2R, + 3Rs + R4,

Ho = 4Ry + Ry + R3 + 4Ry,

Hs — 4R, + 3Ry + 2Rs + Ra.

Ha = 4Ro + 4Ry + 4R, + 4Rs + 4R,

(iii) Asin Exercise 8.7, the cost of the recursive algoritle®(n'°(2™1)) "and
the claim follows since lim_,« l0g,,(2m+1) = 1.

8.13 (i) We havdw )" = (")t =1, and(w 1)’ —1=w"*—1is not a zero
divisor for 1< /¢ < n, by Lemma 8.7.

(iii) Let k= e-gcdn,k), with e € N. Then(w¥)? = (w")® = 1, andwX is adth
root of unity. Sincen is a unit, so isd, with inversen *gcd(n,k). Finally, let
¢ e {1,...,d—1}. Division with remainder yields|,r € N such thatk =gn—+r,
with 0 < r < nsincelk is not divisible byn. Thus(w*)! —1= (W") %" —1=w"—1
is not a zero divisor, again by Lemma 8.7, and the claim fadlow

8.14 nis a primitive 2th root of unity if and only if 2 is a unit irR.

8.15 (i) Forw,n € Ry, we have(wn)" =w™" =1 and(w )" = (w") 1= 1.

(i) Since afield contains no nonzero zero divisors, (a) ddfe clearly equiv-
alent, and the implications (= (c) = (d) are obvious. To prove (&&= (b),
we letZ € {1,...,n—1}. Using the Extended Euclidean Algorithm, we find
s,t € Z such thasn+t/ = gcd(n, /). Now gcdn, /) < n, and hence there is some
prime divisor p of n such that gcth, ) dividesn/p. If we letk € N such that
k-gcdn,£) = n/p, then(w")® = LK — /P £ 1 and we conclude that also
w # 1.

(iv) The mapy:n+— w" from Z, to R, is a group homomorphism. Singeis a
primitive nth root of unity,y is injective, and henceR4 > n. On the other hand,
each element dR, is a root of the polynomiat” — 1, which has at most roots in
the integral domaifR. Thus R, < nas well, and we conclude thalR#= n andy
is an isomorphism.

(v) By Exercise 8.13wK is again a primitiventh root of unity if and only if
gcd(n, k) = 1, and there are precisep(n) choices for suck € {0,...,n—1}.

8.16 (i) follows from Exercise 8.15.

(i) Let a € F; be such thae@ /P £ 1. Such an element exists since the
polynomial x%1/Pi — 1 has at mostq—1)/p; < g—1 roots inF;. We let

ej €j et
bj = a®V/P’. Thenb]' =a¥! =1, by Fermats little theorem, and’ =
al@1/p £ 1, and (i) yields the claim.j(was called in the 1999 edition.)
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(iii) Let m= ord(a) ord(b). Since(ab)™ = (a°d@))ord®)pordb))orda _ 1 ‘e have
that ord ab) dividesm. Suppose that there is a prime divigpof m, say of orda),
with (ab)™P = 1. Nowa®® is an element of order ofd), by Exercise 8.13 (iii),

but
(aord(b))ord(a)/p — a_m/p . (bord(b))ord(a)/p — (ab)m/p -1

Thereforem = ord(ab).
(iv) is immediate from (ii) and (iii).
(v) follows from (iv) withn=qg— 1. (n was called in the 1999 edition.)

8.18 In a fieldF such thatn is a unit inF, the notions “primitiventh root of
unity” and “element of multiplicative order” coincide (Exercise 8.15). Now the
order ofFy is q—1, and by Lagrange’s theorem, the order of any elemefifin
dividesq— 1. Exercise 8.16 shows that the conditiohq— 1 is also sufficient for
an element of ordem to exist inlFy .

If nis not a unit iny, then the characteristig of [y dividesn, sayn = pm for
someme N. We letw € Fy be anynth root of unity. Thenw™—-1)P =w"-1=0,
so thatw™— 1 is a zero divisor and is not a primitiventh root of unity.

8.19 (i) Letwp,wq € Z be primitivekth andlth roots of unity modul, g, re-
spectively. If we compute € Z such thatv = wp mod p andw = wyq modg, then
w is a primitivemth root of unity modulopg.

(i) Bythe Chinese Remainder Theorem, an elemeatZ is a primitivekth root
of unity modulopqg if and only if it is a primitive kth root of unit modulop and
modulog. (It is not sufficient thatv be a primitivekth root of unity modulop and
only akth root of unity modulog, say of orderk/t for some prime dividing k,
since thens¥/t — 1 is a zero divisor modulpq.) By Lemma 8.8, the existence of
primitive kth roots of unity modulg and modula is equivalent t&k | (p— 1) and
k| (g—1), and the claim follows.

8.20 (i) Letge N be suchthat=gm+r and 0<r < m, andxan indeterminate.
We havex™ = 1 modx™—1, and hence" — 1= (XM —1=x"—1 modx™— 1.
Now degx — 1) < degx™—1), and henceX’ —1 = x"—1remx™—1. Since
X' —1=0if and only ifr = 0, we have in particular that™ — 1 dividesx" — 1
if and only if m| n. Now letro=nrp=m>r,>...>r;>ry 1 =0 be the
remainders in the Euclidean Algorithm foandm. Then

degx™—1) > degx?—1) > --- > degx"’ — 1) > degx"** — 1) = oo,

and hence"— 1,x™—1,...,x"* — 1 are the remainders in the Euclidean Algorithm
for x"—1 andx™— 1, and the claim follows. The proof for an integer 2 follows
from this by substituting = a in the Euclidean Algorithm fox" — 1 andx™— 1
and noting that < m <= degx' —1) <degx™—1) «<— a' —1<a"—-1and
r=0<= x"-1=0<«= a"-1=0.
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(i) We have 2 =1 modM,, whence 2 is amth root of unity moduloM,. We
first let n be prime. By Fermat's little theorem 4.972 = 1 modn, and hence

n=2-2""1—1=1modn. Thus gcdM,,n) = 1, andn is a unit moduloMy.
Moreover,n is its only prime divisor and™"— 1 = 1 is not a zero divisor mod-
ulo My, so that 2 is a primitiventh root of unity. Conversely, i has a proper
prime divisort, then ged2" — 1,27/t — 1) = 29¢dnn/t) _ 1 — 27/t _ 1 by (i). Now
Exercise 4.14 implies that'2 — 1 is a zero divisor modul®/, if t < n, and 2 is
not a primitiventh root of unity moduldM,,.

8.24 (i) LetT(n) denote the cost. Step 2 takes &lditions and subtractions,
step 3 costs B(n/2) ring operations plusry2 multiplications by powers o,
and step 4 takes anotherdditions ana divisions by 2. Thud (n) = 2T (n/2) +
11n/2 if n > 1, and together witfi (1) = O, the claim follows from Lemma 8.2.

(i) Using that classical multiplication of two polynomgbf degree less tharf 2
costs 2220 —2.29 1 1 operations, we obtain(d) = 2-29 — (14 11d/2) 4+ 279,
Taking derivatives with respect tbyields the minimal value when

29 = (11/2+ (121/4+8(In2)%)Y/?) /4In2 ~ 4.08967

and of the two nearest integers 2 andd3= 2 yields the smaller value(2) =
—15/4. The cost of the hybrid algorithm is thén(logn—15/4). As an example,
for n <128 this is at most half of the cost from ().

8.25 ALGORITHM 8.31 Fast Fourier Transform (FFT.

Input:n=2€ N,owithk e N, f = ¥4, fjx) € RX, and the powers,w?, .. .,
w"1 of a primitive nth root of unityw € R.

Output: DFT,(f) = (f(2), f(w),..., f(w"1)) €R".

1. if n=1thenreturn (fo)
2. write f = a(x?) +x-b(x?) with a,b € R[x] of degree less thamy/2

3. call the algorithm recursively to compute
n
(@)o<j<nsz = FFT(E,a,wz,w‘l, . ,wn>

n
(Bosi<nz = FFT( 5, b, wf, .. w")
4. for jZO,...,(I’]/Z)—ldO’)’j <—ozj—|—w1ﬂj, 'yj+n/2<—ozj—wjﬁj

5. return (4o, .., Yn-1)

8.26 (i) ALGORITHM 8.32 Three-adic FFT.

Input:k € N, n= 3%, f = 3o, fix) € Rx], and the powers,w?,...,w" ! of a
primitive nth root of unityw € R.

Output: DFT,(f) = (f(1), f(w), f(w?),..., f(w" 1)) € R".
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1. ifk=0thenreturn f

2. £ — W3 .
i Z (fj + fj+n/3+ fj+2n/3)xJ
0<j<n/3 -
re— 5 (fj+ funsé+ fjsan/a€”)wlx!
0<j<n/3 .
e Y (fj+ fins€® + firansEw?X
0<j<n/3
3. call the algorithm recursively to evaluatg ry,r at the powers of®

4. return
(ro(2),ra(2),r2(1), ro(w?), ra(w™), o), . Fo(™2), 12 (%), Fa(w"%))

Correctness is clear K= 0. If k> 1, we have to show that(w*) = ro(w®),
f(w3*) = ry(w¥), andf (w3*+2) =r,(w®) for 0 < ¢ < n/3. For example, the last
assertion follows frong® = w" = 1 and

f(w3£+2) _ fjw(3£+2)j + fjw(3€+2)j + fjw(3€+2)j
0<j<n/3 n/3<j<2n/3 2n/3<j<n
_ (f; w4 fj+n/3w(3[+2) je@+2) 4 fj+2n/3w(3£+2) £2(3t+2)y
0<j<n/3
= > (f+ fiin/a® + fiian/awdw? =ra(w®).
0<j<n/3

(iii) The cost for computing the coefficients f,ry,r, in step 2 is 2 multiplica-
tions by powers ofv and 2 additions. Thud (1) = 0 andT(n) = 3T(n/3) +4n
if n> 1, whenceT (n) = 4nlog;n.

8.28 w— 1is a zero divisor.
8.29 (i) Induction onp reveals thatf, = q- (x— 1) + p, whereq = xP2 +
P34+ 4+ (p—2)x+ (p—1). Thusqg- (x— 1) = —p mod f. If ais the inverse
of pin R, then—aq is the inverse ok — 1 modulof,. Similarly, if a € R\ {0} is
such thaap = 0 in R, thenaqg # 0 mod fj, in R[] sinceq is monic and of smaller
degree tharf,, andaq- (x— 1) = 0 mod fp,.

(i) We havewP" —1 = ¢pp(w) - (w"—1) =0, andpn is a unit inR sincep is,
with inversep~ 1. Now

("= 1) (P24 20PN (p—2)0" + (P~ 1)) = Fp(w") —p=—P,

by (i) and sincefp(w") = @®pn(w) = 0. Since—p is a unit, so isw" —1, and the
claim follows sincep is the only prime divisor opn.
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8.30 In the 1999 edition, the text of the exercise containersé typos, and we
first give a corrected version of it.

In this exercise, we discuss Schénhage’s (1977) 3-adianvaof Algorithm
8.20. It works over any (commutative) rirfg such that 3 is a unit iR, so in
particular over a field of characteristic 2.

ALGORITHM 8.30 Schonhage’s algorithra:
Input: Two polynomialsf,g € R[x] of degree less tham2= 2 3 for somek € N,
whereR s a (commutative) ring and 3 is a uniti
Output:h € R[X] such thatfg = h mod (x> +x"+ 1) and dedn < 2n.

1. if k< 2then
call the classical algorithm 2.3 (or Karatsuba’s algorithm &Igom-
putef -g
return fgremx®" +x"+1

2. m«—3¥2, te—n/m
let f,g' € R[x,y] with deg, f',deg. g < m such thatf = f'(x,x™) andg =
g (x,x™)

3. letD = R[x]/(}*™4xM 4+ 1)
if m=t then  +— x mod (x*" +x™+ 1) else n +— x mod (X" +xM+ 1)
{ nis a primitive 3th root of unity }
f*«— " mod (}®"+x"+1), g‘+— g mod(x*"+xM4 1)

4. for j=1,2do
fj «— f*remyt =)', g +—g* remyt -t
call the fast convolution algorithm 8.16 with = 7° to computeh; €
Dl[y] of degrees less thdrsuch that

fi(n'y)g;j(n'y) = hj(n'y) mody —1

{ the DFTs are performed by the 3-adic FFT algorithm from Eiser8.26,
and Algorithm 8.30 is used recursively for multiplicatiandD }

. 1
5. h" «— §(V(hz —hy) +p?hy —n'hy) (20" + 1)
leth’ € R[x,y] with deg,l¥ < 2msuch that* = i mod (XM + xM+ 1)
h < I (x,x™) rem (x*" +x" 4 1)
return h

(i) Use Exercise 8.29 to prove that the algorithm works azilye

(ii) Let T(k) denote the cost of the algorithm far= 3. Prove thafT (k) < 2-
32T (Tk/2]) + (c+48(|k/2| +1/2))3* for k > 2 and some constante N, and
conclude thaf (k) is at most 243%-k-logk + O(3%- k) = 24nlogz nlog,log; n+
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O(nlogn). Hint: Consider the functio®(k) = (3T (k) +c)/(k— 1), and prove
thatS(k) < S([k/2]) +24 if k > 2.

Solution:

(i) We proceed by induction ok. There is nothing to prove Kk < 2, and we
assume that > 3. Exercise 8.29 shows thamodx?™ 4 x™+ 1 € D is a primitive
3mth root of unity inD, and hence is a primitive 3th root of unity. By induction,
the results of the recursive calls in step 3 are correct. tButisg n~ly for y, we
obtain

f*g" = fig1 = hy mody' — !,  f*g" = f.g, = h, mody* — n?,

since(n~1y)! —1=n"'(y' — ') and (n~2y)' — 1 = n=2(y* —n?). Using the fact
thatn? 4 7' +1 = 0, a calculation shows that

h* = (o (he — ) + "y — ') 5= = hy = £°g" mod ( — 1),
and similarlyh* = f*g* mody' — n%. Now (y' — ") (y' — %) = y* +y* + 1 and
gedy —n?,yt —n') = 1 sincen? — n' is a unit, and the Chinese Remainder The-
orem implies thabh* = f*g* mody? +y' + 1. Now

h modx*"+x"+1 = h* = f*g' remy* +y' +1
= (f'd remy? +y +1) modx®"+x™+1,

and since the coefficients 6f andg’ have degrees less thamn X, the coefficients
of f'g’ remy? 4-y* + 1 have degree less tham#n x, and degh’ < 2mimplies that
W = f'g remy? 4-y* + 1. Finally, plugging inx™ for y (or equivalently, computing
moduloy — x™), we have

h=H(xx™ = f'(x,xMg (x,x") remx*" +x"+ 1= fg modx*" +x" + 1.

(i) The cost for step 1 iD(1), and steps 2 and 3 are for free. By Exercise
8.26, the two convolutions modulg — 1 in step 4 cost 64tlog,t additions and
multiplications by powers of, 2t divisions byt, and 2 “essential” multiplications
in D, each of the latter taking ([k/2]) operations irR. The reductions modulo
y' — it for j = 1,2 amount to # multiplications by powers of) and the same
number of additions iD, and computing;j(n'y),g;(n'y) from f;,g; andh; from
h; (nly) for j = 1,2 takes anothert@nultiplications by powers of. Finally, in step
5 we have # multiplications by powers of), 4t additions, and émultiplications
by 2 or 1/3 in D for the computation ofi*, plus at most gt additions inR to
computeh from h'.

The cost for one addition iB is 2m additions inR. Sincex™ 4 x™+ 1 divides
x3M— 1, one multiplication o mod x*™+x™+ 1 € D, with a € R[] of degree less
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than 2n, by a power;! can be done by first computirax! modx®™ — 1 or ax®l
mod x3™ — 1, respectively, which is just a cyclic shift of coordinatesl hence for
free, and one subsequent reduction moddib+ x™+ 1, taking 2n additions inR.
One division byt or one multiplication by 23 in D amounts to & divisions or
multiplications inR, respectively. Putting it all together, we have

T(K) < ZtT(P%-D + (48logst + 58)mt

IR HEE

if k> 2, that is,c = 82. LettingS(k) = (37¥T (k) +¢)/(k— 1), we obtain

k
Sk < S(|5]) +24< -+ < 5(2)+24([logk] 1)
for k > 2, by induction, and hence

T(k) = 3((k—1)S(k) —¢)
< 24-34(k—1)(logk] = 1) + S(2) - 3*(k— 1) — c3¥
€ 24-3klogk+ O(3*k) = 24nlogznlog,log; n+ O(nlogn).

8.31 (i) Letn=p*foraprimepe Nandsom&eN, fo=xP1+...4+x+1€
R[X|, &, = fp(xpk) € RX], w = xmod &, € R[X]/(®n), as in Exercise 8.29, and
1< =p" < n, with0<m< kandp1t. The p-adic expansion of all exponents
j yields the formula

X = f5() f(xP) -+ Fp ()
0<j<n

in R[X]. (The reader familiar with cyclotomic polynomials will regnize this as a
special case of Lemma 14.46.) If we plugke- ', we find the factorization

) (10)

wll = fp(w!) Fp(wP) - Fp(w?

0<j<n

in R. We claim thatf,(wP ™) = f,(w™/P) = 0. For eachj € {1,...,p— 1} there
is a uniquej* € {1,...,p— 1} such thatj = j* mod p. Since®, | (X"—1), we
havew" =1, and

WP =14+ § WMP=14 T W/P= f(w"P) = dy(w) =0,
1<j<p 1< <p

and the claim is proved. Together with (10), this shows tlehina 8.7 (ii) is true
for the above value af, and hence also the second conclusion of Theorem 8.13.
(j andt were called and j, respectively, in the 1999 edition.)
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(i) The recursive calls in step 3 of the modified algorithrtura 2(1¥/2/+1) times
the result of the original algorithm. The modified convabutialgorithm multi-
plies this factor byt = 2%/2l. Noting that| (k+1)/2] = [k/2] and[(k+1)/2] =
|k/2| +1, we obtain

e = [£52]2) (2] o[ ) o 3] o1

Letting S(k) = e(k+ 1) —k, we have

S(k):s([g])ﬂz---:su)ﬂlogk}

for k> 1, by induction, and the claim follows fro®(1) = e(2) — 1= —1.

8.32 We have 2= —1mod 2 +1and 2"=(-1)2=1mod 2 +1, and 2 is a

2nth root of unity. Assume first that= 2% for somek € N. Since 2 + 1 is odd,nis

a unit modulo 2+ 1. Moreover, 2—1= -2 mod 2"+ 1 is a unit, and therefore 2

is a primitive 2th root of unity, since 2 is the only prime divisor of.2
Conversely, iin = pmfor an odd primep andm € N4, then substituting 2 for

xin the equation

(X+1)'(Xp_l—Xp_2+---—X+1) :Xp—l—l
in Z[x] yields (2™ +1)-q=2"+1, where
"> q= 2mp-1) _om(p-2) L ... _2oM4 15 Q.

Thus
(22" —1)q=(2"—-1)(2"+1)g=0mod 2 + 1,

and 2" — 1 is a zero divisor modulo™+ 1. Finally, Lemma 8.7 implies that 2 is
not a primitive 2ith root of unity modulo 2+ 1.

8.33 We havéM(mn)/mn > M(n)/n, and the first claim follows from multiplying
up bymn. Similarly, M(m+n)/(m+n) > M(m)/mimplies

M andM(n) < nw

M(m) <m <
m+n m+n

and the second claim follows by summing the two inequaliti@sally, M(n) /n >
M(1)/1 =1, and the last claim follows.

8.34 LetRbe aring. To multiplya, b € R[x] of degrees at most, we write them
asa= apX"+a" andb = b,x" + b*, with a,,b, € Randa*,b* € R[x] of degrees
less tham. Then we computab = a,b.x?" + ax"b* + b,x"a* + a*b*. This takes
2n+ 1 multiplications for the first three summandgé(n) ring operations for the
last product, andi2— 1 additions for adding everything together.
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8.35 (i) LetRbe aring ana,b € R[x] with dega < nand ded < kn. We divide
b into k blocks of degree less thaneach:n = 20§j<kbjx”j, with b; € R[x] and
degb; < nforall j. Then we computab = ¥ o abjx". This takek-M(n) ring
operations for thé productsab;, plus (k— 1)(n— 1) additions inR for summing
up the overlapping blockab;x".

8.36 (i) Letf = 3o j.nfix andg= Foc;-nx! in Z[x], with all fj,g; € Z.
Then the absolute value of tinath coefficient offgis

fjgmfj < n.2| _2| _ 2k+2| < 2n71_

0<j,m—j<n

(i) Let f*=f mod 2'+ 1 andg* =g mod 2'+ 1 in R[X]. By Exercise 8.32, the
fast convolution algorithm 8.16 witlh = 2 computed* € R[x] of degree less than
n such thath* = f*g* modx"+ 1, and de@fg) < nimplies thath* = f*g* = fg
mod 2'+ 1. By (i), the coefficients of g are at most 2 in absolute value and
can be uniquely recovered from thosehbf

The cost for this i©O(nlogn) additions and multiplications by powers©fplus
O(n) essential multiplications iR and the same number of divisions hy by
Theorem 8.18. A multiplication by a power of corresponds to a cyclic shift in
the binary representation with a sign inversion of the weabground coordinates,
and hence one addition or one multiplication by a powet dakesO(n) word
operations. The same is true for a divisionbyOne multiplication inR can be
done withO(nlognloglogn) word operations, by Theorem 8.24 (one reduction of
amodulo 2'+ 1 corresponds to subtracting the upper pag fsbm the lower part
in the binary representation), and the claim follows.

Chapter 9

9.1 f1=1+42x+3x%+ D+ 5x*+6x°+ 7x% + 8x” mod 8.
9.2 941 =349 mod 8.

9.6 The cost for step=r — j is M([l 2711 +M([1271717) 4 |1271-1] operations
or 3M([1277])+0O(12" 7). Ignoring linear terms, which contribute ory() to the
total, we obtain

>3 Mz )<

o<y<r

M(l) 271 <3Mm(l).

NIl W

9.7 Letd = degp for short.
(i) Computingp?”* from p? takes at mosM(2'd) +4-2'd < 2" (M(n) + 4n)
operations irD, by Exercise 8.34. Summing this forQi < r yields the claim.
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(i) We use Algorithm 9.3 to compute rép) * remxd, taking M(d) +O(d) or
3-27"(M(n)+0O(n)) operations iD, by Exercise 9.6. Then we use Exercise 9.5 (i)
to compute regp? )~ modx?'d from rey(p? )~ modx?9, for 0 <i < r. This
takes M(2'd) +M(2*1d) +0O(2'd) or 4-2-"(M(n) +O(n)) operations irD for
each value of, in total at most #1(n) —4-2-"M(n) +-O(n), and the claim follows.

(iii) Using the precomputed data, computifigem p? from f rem p2'+1 takes
2M(2'd) +O(2'd) or 2- 2" (M(n) +O(n)) operations irD, and the claim follows
by summing up.

9.8 (ii) LetR=D|x] andd = degp. We first perform the precomputations as
in Exercise 9.7, at a cost oM{(ld) + O(Id) operations irD. The cost for theth
iteration of step 2 i#(2'~1d) for squaringg;_1, M(2'd) for multiplying the result
by f rem p?, O(2'd) for subtracting this from@_1, and M(2'd) + O(2'd) for the
final reduction modulg? . Together, this amounts to at md$¥(2'd) + O(2'd) or
£2"(M(Id) + O(ld)) operations irD. Summing this for i < r yields at most
7™(ld) +O(ld).

9.9 Letf = 5.0 fiX andh = S;-ohiX the power series inverse éf Theng =

h remx andhj 1 = —fo_l(flhi + fHohi +-- 4+ fi+1h0).

9.10 The Newton formula is they = fg? ; modx?. Squaring is for free, and
hence théth step cost#1(2'). The total cost is thefi ;. M(2') < 2M(l).

9.11 fh=fg- (e 1+ - +e+l)=—(e—1)(e" 1+ .- +te+ 1) =—€e+1=1
modxd. The costiO(M(l)).

9.15 (i) We havey =g;_; mod X2 in Algorithm 9.3, so that we need only con-
sider the coefficients of the upper haff= g quox? . Sincex? " | (1—fgi_1),
we haveg: = —(fgi_1 quox? )gi_1 modx? ', and hence

1G5 e < 271Gl G-l < 2207V il - llgiallz < 22079 g a2
(i) Taking derivatives and multiplying by, we find
o —iX 1%+ (1—-X)

X' =x ;
o<<i (1_X)2

and plugging ik = 1/2 yields
j2 i =2(—i27' +1-2"Y=2—(i+1)2" <2
o<J<i
(iii) We haveS(0) = log|go| = 0. From (i), we find inductively
Si)<2(i—-1)+1+291—-1) <2(i—1)+14+2(2(i—2) +1 +25(i — 2))
=2 (-1 +2%(i—2)+ (221 +2°]([(-2) < ---
<2 z 21+ (2-1)1+250) < (2+1)2,

o<J<i

by (ii).
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(iv) Letdeg a,degb <I. Then we have
degg <|+2degg_1 < - < (2 — 1) +2 deggo < 2.

9.17 The(x?+ 1)-adic representation i, —7x, 21x, —35x, 35x, —21X, 7X, —X).

9.18 If we denote the hexadecimal digits,10,...,15 by A B,...,F, then the
hexadecimal representation of 64 180 is FAB4.

9.20 We first precomputg?, p*, ..., p¥/?, at a cost oM (km/2) + O(km) ring op-
erations, by Exercise 9.7 (i). To compute the coefficients,ofve recursively
compute the coefficients af quo p¥/2 and arem p*¥/?, and then calculata =

(a quo p¥?) - P2+ (arem p*/?). Denote the cost for this b(k). ThenT (1) =0

and T (k) = 2T (k/2) +M(km/2) + km/2 if k > 1, which evaluates td (k) =

(M(km/2) 4+ km/2)logk. The claim follows fromM(km/2) < M(km) /2.

9.27 (i) follows by induction om, (iii) by induction onr, (ii) is a special case of
(iii), and (iv) follows from (ii) by dividing by f; - - - f,.

9.29 If the denominator op is not divisible byy — g, then the Taylor expan-
sion aroundy, as in Lemma 9.20, exists with a rational functiore R(y) whose
denominator is not divisible by —g. Then Lemma 9.21 holds, and the Newton
iteration algorithm 9.22 works ip andy' are defined agp modulop, ¢(go) =0
mod p, andy’(go) is invertible modulop.

Fory = fy—1, the Newton formulaigi =g-1 — (fgi-1—1)/f =1/f, and it
does not lead to an algorithm for computingfl

9.30 The roots ofp modulo 5 are 2 and 3, and the only rootwin Z is 18.

9.31 By Exercise 9.7, we can precompute the poveérg?, ..., p? " ata cost of
O(M(l degp)) operations irD. Then the cost for one multiplication of two poly-
nomials inD[x] modulo p? is O(M(2 degp)) operations irD, by Corollary 9.7.
The number of such modular multiplications and additionghiaith iteration
of step 2 isO(n), as in the proof of Theorem 9.25, and the claim follows from
M(2'degp) < 2"~'M(2' degp) by summing up.

9.36 14 2x— 2x% +3x3 — 10x* + 28x> — 84x5 4- 264x’.

9.37 There is only one cube root of 2 modulo 5, namely 3, andiS@3 only
cube root of 2 modulo%

9.39 We hava" = (a"/?)? if nis even, and" = (a"Y/2)2aif nis odd. Thus
the cost for computing” is T(|n/2]) for the recursive call, plu®(M(nl)) for
one or two multiplications of numbers of length at makt The claim follows

with T (1) = 0 by induction. In the polynomial case, the cosbigvi(ndega)) ring
operations.

9.40 (i) Zp =TF, is afield, and hence the polynomiak= y> —a has at most two
roots inF, andSy(a) € {0,1,2}. Each of the three cases occursplf 2, then
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g=ais the only solution ofp(g) =0 mod 2, ands(a) = 1. If p| a, thenp(g) =0
mod p <= g=0 modp, and we haveéS,(a) = 1 as well. In the remaining case
where 2# p1{a, we have alway$,(a) # 1, for if gis a zero ofp modulop, then so
is —g #Z g mod p. Each of the two cases occurs: for example, we I&y2) = 0
and$;(1) = 2.

(i) The claim is clear ifSy(a) = 0, so let us assume th&(a) > 0. If 2 #
ptaande(g) =0 modp, theng # 0 modp, and hence)’'(g) = 2g # 0 mod p.
Algorithm 9.22 then shows tha,(a) < Se(a), and the uniqueness of Newton
iteration (Theorem 9.27) implies the reverse inequality.

If 2 # p| & then there is precisely one root pfmodulo p, by (i), but there
may be none or more than one mody® as in the examplea = p anda =0,
respectively, where > 1.

(iii) 1f ged(a,n) =1, thenpjfafor 1 <i <r. Thus§,(a) = Syu(a) - Sy (a) =
Su(a)--- Sy, (@), by the Chinese Remainder Theorem and (ii). The last clalm fo
lows fromS,, (1) = 2 for alli.

(iv) We have 50625= 3*-5% and

10001 = 2mod 3 10001 = 1mod}5
42814 = 1 mod 3 42814 = 4 mod 5
31027 = 1mod 3 31027 = 2mod 5
17329 = 1mod3 17329 = 4 mod5

Since 2 has no square root modulo 3 and modulo 5, we conclode (fii) that
only 42814 and 17 329 possess square roots modulo 50625hanthéy have
exactly four such roots.

(v) We have 2025= 3*52, and the congruenceg = 91 = 1 mod 3 andy® =
91=1 mod 5 have solutiong= +1 mod 3 andy= +1 mod 5, respectively. Thus
there are four distinct square roots of 91 modulo 2025, ly (ising 3-adic and
5-adic Newton iteration and the Chinese Remainder Algorjtive obtain the four
solutions 46521, 1504, and 1979.

By (iii), there are precisely four square roots of 1 modul®3B. The two
trivial ones are 1 and-1, and Newton iteration and the CRA vyield the two other
ones 8749 and-8749.

9.41 (iii) Similarly as in Exercise 9.40, we halg(a) =Cp,(a)---Cp,(a).

(iv) We have 225625= 5*-1%°. The number 1 is the only cube root mod-
ulo 5 of 11= 1 mod 5, and there are three cube roots of 11 modulo 19, namely
5,16,17. Thus there are precisely three cube roots of 11 modul6225by (i).
Newton iteration and the Chinese Remainder Algorithm yibklthree solutions
4777150271, and 103396.

9.43 By extracting powers of 3 if necessary, we may assunetha Lety =
y>—ac Zly]. If a=1 mod 3, thenp(1) = 0 mod 3 andy’(1) = 2 # mod 3, and
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go = 1 is a starting solution. Otherwise, @ = 2 mod 3, thena has no square
root in Z. In the first case, we call Algorithm 9.22 with= [(logza)/2], so that
3? > a, and it computes a square rapt N of a modulo 3 with g < 3', taking
O(M(I)) word operations, by Theorem 9.26. Finally, we check whegfier a or
(3 —g)?2 = ain Z, taking anothe®(M(1)) word operations. If both tests fail, then
the unigueness of Newton iteration (Theorem 9.27) imple$d has no square
root inZ, as in Section 9.5.

The fourth root of 2313441 i is 39.

9.44 ALGORITHM 9.36 Perfect power testing.

Input: An integerae N, 1.

Output: Integerd,d,e;r € N such thata = 293%" andr is maximal with that
property.

1. leta=293bwith gcdb,6) =1, n<—2, r«—1
2. while4" < bdo

3. { 293%0" = aandb is not akth power for 2< k < n}
call the Newton iteration algorithm from Section 9.5 or Exerds&3
to check whetheb = c" for somec € N
if this is the casethenb+—c¢, r<«—rn
dsen«—n+1

4. return b,d,er

The loop invariants follow by induction and imply the correess. The cost for
step 1 i90(loga) word operations, by Exercise 4.1, and the condition in stegr?
be checked witlD(1) word operations, by examining the lengthtnfOne execu-
tion of step 3 take®©(M(loga)) word operations, and the number of iterations is
at most loga. Thenais a perfect power if and only if g¢d, e r) > 1.

9.47 The polynomial’(y) — ¢’(g) € Ry] hasg as a root and hence is divisible

byy—g. Thusy'(h) — ¢'(g) = - (h—g) for someq € R, andv(y'(h) — ¢'(g)) =
v(q)v(h—g) <e < 1. Then

V(@' (h)) = v(¢'(h) = ¢'(9) + ¢'(9) = max{v(¢'(h) — ¢'(9)),W(¢'(9))} = 1.

Chapter 10

10.3 Letr = 2. We have dedy; j = 2'd for all i, j, and hence computiniy; ;
amounts to multiplying two polynomials of degrée . This takedM(2'd +1) <
M(2-1d) +4-2-1d ring operations, by Exercise 8.34. There afe' hodes at
leveli, so that the cost at leveis 2<'(M(2'-1d) +O(2'~*d)) or M(n/2) +O(n),
and there ar& = logr levels.
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10.4 (i) We have & p; < 1, whence—pilogp; > O, for all i, and also the en-
tropy is nonnegative. Ih > 1, thenp; <1 and—p;logp; > O for all i, and the
entropy is nonzero.

(i) We have
1
H(p1,...,pn) —logn=— Y plogp— $ plogn=:=S pin—
" 1<5=<n I | lgzgn | In217|§n I pin
1 1 1
< — — 1) = ——p)=
- In21<|<np'<p,n ! In21|z<n<n p|> .

with equality if and only ifp; = 1/n for all i.

10.5 (i) Lett be a stochastic mobile. H = 1 then the average depth is=0
H(1) = H(p1), and we assume that> 1. Renumbering if necessary, we may
assume that the leavas- 1 andn are children of the same node. ltebe the tree
obtained from deleting those two leaves. Thers again a stochastic mobile with

leaf weightsps, ..., Pn—2, P = Pn—1+ Pn, and its average depth is inductively at
least

H(p,....Ppn2,p)=— > pilogp — plogp
1<i<n-2

= H(py,...,Ppn) — plogp+ pr-110g Pr_1+ pnlog pn

=H(pl,...,pn)—p-H(pll,%)-

Let 6 be the depth of the leaves— 1 andn. SinceH (p,-1/p,pn/pP) < 1, by
Exercise 10.4, the average depth of

d*_((s_l)p+5(pn—l+ pn) = d*‘l‘p
> H(pl,...,pn)+p<1_|_|(pn17&>>

p P
ZH(pla"'apn)'
(ii) n2l= Y 27 < pi = 1.
1§ZJ§I J 1§|Z§n 1§|z§n I

(i) We proceed by induction ofj. Initially, when j = 1, we have 2= 2 nodes
of depth 1, and (ii) implies that; = 2-n2°1 < 23 1<k<l n2 K< 2. Now we
assume that > 1 and the invariant holds before tlin pass through step 3. After
removing the subtrees of nodes of deptlj, there remain -2/~ —... —n;_; -
2—n; internal nodes of depth Each of them has two children, and thus there are

2+ 2l ... —pj.2 =214t (1— Z nkz—k> +Nj N2
1<K<I

+ny 2j+lfl
> Njy1
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nodes of depthj + 1, by (ii), and the invariant holds before tfi¢ + 1)st pass
through step 3 as well. Thus after the looptds a binary tree with at least
leaves, and after step 4 there remain preciselgaves with weightss, ..., pn.
Step 5 does not remove any leaves, and hence step 6 indeatsratstochastic
mobile with leaf weightg;, ..., pn.
(iv) By construction, the depth of leafafter step 4 igj, and hence the average
depth is
Y lim< > (=logpi+1)p =H(py...,pn)+1
1<i<n 1<i<n
Since the average depth does not increase when removing e@dgeep 5, the
claim follows.

10.7 (i) At an internal node of weight p(v), we multiply two polynomials
whose product has degreév)n, at a cost of at mod¥l(p(v)n) = p(v)nS(p(v)n) <
p(v)nS(n) = p(v)M(n). By (i), the overall cost is at mo$t, p(v) M(n) = dM(n),
where the sum is over all internal nodesf t. By Exercise 10.5, we may choose
such thad < H(po,...,pr—1) + 1, and the claim follows.

10.8 Induction ori shows that\(M; j) < 2. The cost for computindl; j from
its two children isO(M(2'1)) word operations. There aré2 nodes at level and
k = logr levels, and the claim follows as in Exercise 10.3.

10.11 For multipoint evaluation, we may precompute bhg and the inverses

modulox? of their reversals, as in Exercise 10.9. Then the cost foremainder

computation moduld; ; drops to M(2') +O(2') ring operations, and summing

over alli,j gives at most2M(n) + O(n))logn. In the interpolation algorithm

10.11, steps 1 and 2 are precomputation steps, and by Thddré® the cost for

step 3 is(M(n) +O(n))logn.

10.12 (i) = ALGORITHM 10.28 CRA overF [x] for two moduli.

Input: Coprime monieny, m; € F[x] andvy, V2 € F[X] such that dew; < degm; <n
and degy, < degm, < n.

Output: The unique polynomidl € F|[x] of degree less than deg + degm, sat-
isfying f = v, modm, andf = v, modm,.

1. call the fast EEA to compute t € F[x] such thatsmy +tm, = 1, degs <
degmy,, and ded < degmy.

2. bp—wvitremmy, by<+—wvsremm
3. return f = bymy +bom

Correctness of the algorithm was shown in Section 5.4. Tl fow step 1
is O(M(n)logn) field operations, by Theorem 11.7, and steps 2 and 3 take only
O(M(n)).
(i) The idea for a recursive approach is to compute the tvierpolating poly-
nomials for the first and the second half of the points, retbdyg, and construct
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f from them using (i). IfT (n) denotes the cost of the algorithm, then the cost for
the two recursive calls isT2An/2), plus O(M(n)logn) for constructingf, by (i).
Together withT (1) = 0, Lemma 8.2 yield3 (n) € O(M(n)log?n). This is slower

by a factor of logh than Algorithm 10.11.

10.13 “(i) = (ii)": Suppose thaty is an isomorphism, and let8i,j <r
with i # j. Sincey is surjective, there exists a polynomiak R[x] such thatf =1
modm; andf =0 modmy for k #1i. In particular, the latter is true fér= j, and we
may write f = 5;m; for somes;; € R[x]. Thuss;m; = 1 modm;, or equivalently,
sjm; +t;jm = 1 for somet;; € R[X].

“(iif) == (ii)” follows from [7; ;(sjm; +ti;m) = 1.

“(il) = (i)": The assumption implies thag(m/m) = 1 modm for all i. To
show thaty is surjective, lety,...,v;_1 € R[X] be arbitrary. Then the polynomial

satisfiesf = v modm for 0 <i < r, and hence¢(f modm) = (vp modmy,...,
Vi1 modm;_1). For the injectivity, we assume that R[x] satisfiesf =0 modm
for all i, sayf = uim. Multiplying (ii) by f yields

f= Z fsm:m Z UsS.

o<i<r m o<i<r

Finally, the equivalence “(iii)<= (iv)" is Exercise 6.15.

10.15 We proceed by induction d¢n If k = 0, then ded < n = degmg implies
thatf = f remmy. If k> 1, then we may assume inductively that the results of the
recursive calls in steps 3 and 4 are correct. Leti0< r /2 andgo = f quoMy_10.
Thenm | Mg_10 and f = goMy_10+ro = fo modm, and we findf remm =
fo remm. The proof forr /2 <i < r is similar.

(In the 1999 editionfy and f; were calledg andry, respectively.)

10.16 Correctness follows as in the proof of Theorem 10.H.Tlk, n) denote
the cost of the algorithm. Then the cost for step 1 is 0, the reaursive calls
in steps 2 and 3 tak&(k — 1,degMy_10) and T (k— 1,degM_11), respectively,
and the cost for step 4 is at mos¥i2n) +- O(n). The cost estimate follows from
T(0,n) = 0 by induction ork = logr.
10.17 Letd = degm for all i, so thatn = rd = 2d.

(i) Asin Exercise 10.3, the degree lf ; is 2d, and the cost for one remainder
computation moduld; j is D(2'd) € 5M(2'd) + O(2'd). Thus the cost per node
at leveli is 10M(2-1d) +0O(2'd). There are 2 nodes at level andk = logr

levels, and summing up shows that the overall cost for Atgori10.20 is at most
(10M(n/2) 4+ O(n))logr. The first claim now follows from Exercise 10.3.
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If T(n) denotes the cost of Algorithm 10.20, then we h#@yd) = 0 andT (n) =
2T(n/2) 4+ 2M(n/2+ 1), and Exercise 8.34 and Lemma 8.2 show thét) is at
most(M(n) +O(n))logr.

(i) We haves ., degn? = 2n, and hence (i) implies that the cost for step 1 s at
most(11IM(n) + O(n))logr operations irR. Step 2 takesD(d) or 5SM(n) -+ O(n)
operations, and the cost for step 3 {24M(d) + O(d))logd field operations, by
Theorem 11.7.

(iii) The cost for step 1i§3M(n) +O(n))logr, by Exercise 10.3. Part (ii) of this
Exercise gives the cost for step 2, and step 3 takes ang@¥her) + O(n))logr,
by (i). The claim follows by summing up and usiﬁ§+ 11+1)logr +5< 24logr
ifr>2.

10.21 = ALGORITHM 10.29 Small primes modular quotient7iix].
Input: Nonzeraa, b € Z[x] with degb < dega=nand||a|,, < A.
Output: The quotiend/b € Z[X] if b | a, and otherwise “FAIL".

1. B<— (n41)¥22"A
if ||, > Borlc(b){lc(a) then return “FAIL”

2. r+— [log(2lc(b)B+1)]
choose primesZ pr < P2 <--- < pr < 2rinr
S«—{1<i<r:ptlc(b)}

3. for all i € Scomputea rem p; andb rem p;

4, for alli € Sdo
if b does not dividea modulop; then return “FAIL”
else computeq; € Z[x] with a = gib mod p;, degg; < dega — degb,
and||gjf|., < pi/2

5. computey € Z[x] with degq < dega—degb, [|gj|., < 3 [1<i<r Pi, andg= g
mod p; foralli € S

6. if |ql|,||bll, < Bthenreturn qelsereturn “FAIL"

For the correctness proof, let= []icspi. Thenm> 2B anda = gqb modm. If
b | a, then clearlyg = b/a, and the algorithm returng by Corollary 6.33. Con-
versely, if |qfl,/|b]; < B, then [lab|., < lab]; < [ally]lbll, < B < m/2, and the
congruence = gb modmis in fact an equality.

We have logy; € O(logr) for all i and logme O(rlogr). Using the integer vari-
ants of Algorithms 10.16 and 10.22 for each coefficierd,df andg, respectively,
steps 2, 3, and 5 tak®(nM(rlogr)logr) word operations, by Theorems 10.24
and 10.25. Step 4 take3(M(n)) additions and multiplications plus one inver-
sion inFy, for eachi, in total O(r M(logr)(M(n) + loglogr)) word operations, by
Corollary 11.10. The time estimate now follows frang O(logB).
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Chapter 11

11.3 This is wrong, as the exampfe= x?, g=x, f* =x3+x, g* =x°+1 for
k=1 shows.

11.5 Letr; € Z[x] for 0 <i < ¢ denote the primitive associates of the remainders
in the Euclidean Algorithm. Then
le(rf)™ My = g+ ol

wherep;, ; = conf(lc(r;)"+~"*1rs | remr;) € Z, so that

- (ppardinens i)
I (prﬁ-l)_llc(ri*)ni*l_nﬁ_l —(PT+1)_1QT '
We replace; by Q' in step 9, and step 6 by

6. a1« lc(rp)HNa—Npx g «+— g1 quor;,
pip <—contl@_yremry), iy <—pp(a-1remry), N <—degry,
The matrixQ; has rational entries in general.

11.6 The standard approach, as in the proof of Theorem 14e5,10 polynomial
multiplications where the product polynomial has degremastk < x, each of
them taking essentially threepoint FFTs, in total 30 FFTs plud(x) operations.
In the alternative approach, we have nivpoint FFTs for evaluating); and the
entries ofR and S, plus another four for the interpolation of the entries a# th
product matrix, in total only 13 FFTs plu3(x) operations.

11.7 ALGORITHM 11.19 Fast Extended Euclidean Algorith::
Input: ro,r; € F[x] monic,np = degrp > n; = degry, k € N with ng/2 < k < n.

Outputh=n(k) € N, R, € F[xj**? as in (1), anc(rrh > =Ry <ro>.

h+1 ry

1. ifry=00rk< ng—ng thenreturn O,( 10 >,and<ro>
01 r

2. d— |k/2]

3. a=rpl2d, a;+—ry](2d—(ng—ny))
call the algorithm recursively with inpuo, a; andd, giving j — 1 = 7(d),

aj_1 do
R=Q_;---Qq,and( =R .
a.s- (") -4(3)
rj—l ajilxno—Zd ro _ aoxno—Zd
+ < fi ><_< apxo-2t ) TR r _apo-as
Nj-1 ), degrj_;
n; degr;
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: : ri—
5. if rj =0o0rk < ng—n; thenreturn j — 1, R, and< Jr l>
j
6. ; «—rj_1quorj, pjy1<—lc(rj_o remr;),
Mt <— (rj_oremrj)p Y, Nj1 «— degriyg

7. d* «—k—(ng—n;)

8. @ «—rjl2d", a4 <—rjual(2d" —(nj—nj;1))
call the algorithm recursively with inpuj,aj,, andd, giving h—j =

d*),S=Qn---Qji1, and| =S|
() " a <ah‘ <aj+1>

+1

0 1
9-Qj<—< -1 _,—1)
Pis1 —Uipjia

£y 20" F— gtyni—2d"
return h, SQ;R, and( ah _ de> +S b od-
B XY 41X

Fi+1— 841

The cost for step 4 is now essentially 4 multiplications diypomials of degree
aboutk/2 by polynomials of degree aboutor 4M(k) + O(k). Step 6 and the
computation ofQ;R in step 9 takeD(k), and the computation d- Q;R in step
9 takes M(k) + O(k), as in the proof of Theorem 11.5. Additionally, we have
essentially 4 multiplications of polynomials of degree @tdg'2 or 2V(k) + O(k)
for the computation off, ri 1 in step 9, and the claim follows.

A variant of this algorithm is given by Brent, Gustavson & Y{ir980.

11.9 (i) We first call Algorithm 11.4 with inpuf, g, andk = degf —e;. Then
we computeg(rh, rny1)" = Ry- (f,9)". The polynomialry, is the remainder of de-
greee;. Sincee; < ey, the remainder of degres in the EEA of f andg is equal
to the remainder of degres in the EEA ofr, andry, 1, and we can proceed re-
cursively. The overall cost is

O(M(n) logn+M(er)loge; + - +M(ey-1) Ioged_1>

arithmetic operations if, and the claim follows frone; + - - - +e4_1 < nand the
superlinearity oM.

(i) We modify Algorithm 6.59 so as to compute only the regairemainders.
We can computé (x,u) andg(x, u) for all u € U in step 2 using®(nM(nd) log(nd))
arithmetic operations, by Corollary 10.8. By (i), the cast €omputing only the
remainders of the required degrees in step @(sdM(n)logn) operations. In
step 3, we again interpolate only the remainders of the redulegrees. The cost
per coefficient iSO(M(nd)log(nd)) arithmetic operations, by Corollaries 10.12
and 11.6, and there asg + - - - + 4 < n coefficients. The claim now follows by
adding up costs.
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Chapter 12

12.1

Uy = P+ P> = A11B11 + A12Bos,
Uz = P14+ Ps = A11B11+ ST = A11B11+ (St — A11) (B2 — Ty)
= A11B11+ (—A11+ A21 + A22) (B11 — B12+ Ba2)
= A11B12— A11B22 + A21B11 — A21B1o + A21B22
+A22B11 — AooBi2 + A2oBoo,
Uz = U2+ Py = U2+ STz = Uz + (A11 — A21) (B22 — B12)
= A21B11+ A22B11 — AzaBi2 + AzoBoo,
Us = U2+ Ps=U2+ ST = Uz + (A21 + Azz2) (B12 — B11)
= A11B12— A11Boo + A21Bos + AxoBoo,
Us = Us+Ps=Us+ SiBoo = Us+ (A2 — $)B22
= Us+ (A1 + Ao — Az1 — Ap2) By
= A11B12+ A12B22,
Us = Us — Py = Uz — ApoTy = Uz — Ap(T2 — B21)
= Uz — Az(B11 — B12— B21+ B22)
= A21B11+ A22Bo1,
U7 = Uz +Ps =Us+ STy = Us+ (A1 + Azz) (B2 — B11) = Ax1B1a+ AxoBoo.

12.4 (i) Lety be a new indeterminate. By Exercise 9.8%as the Taylor ex-
pansiong(x) = ¥ o<in 9" (y) (x—y)!/i! aroundy in Rjy][x], and substituting = ho
andx = hyields the claim.

(i) hy is invertible modulox™¥, and Algorithm 9.3 computes its inverse at a
cost ofO(M(n)) ring operations. Lea = gV (hy). ThengY (hy) = a - (h,) ™! =
(aremx™k=1Y(h1)~* modx™ -1 and this computation takes anoti@{M(n))
ring operations. We note that the latter congruence doesatdtmodulox™ <= in
general (see Exercise 9.24). Thus the precision is deddnsene in each step,
and this is the reason why we start with the higher precisigrk instead ofn in
step 2. Things get even more complicated in (v) below.

(iii) The costisO(kM(n)) ring operations for step D(mM(n)logn) for step 2,
by Exercise 12.30(kM(n)) for step 3, by (ii), and anoth&(kM(n)) for step 4.

(iv) Letting n/m~ k ~ mlogn yields m ~ (n/logn)*? and a time bound of
O((nlogn)*2M(n)).

(v) We may assume thé, # 0, since otherwiséyg is constant and aty" (ho)
can be computed in tim®(kn). So leth) = x%b with 0 < d < m andb(0) # 0.
The chain rule shows that') (ho)’ = g(*+Y (h)h;, is divisible by x? for all i. We
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modify step 3 and perform all computations to slightly larmgeecision, as follows.
Lettinga; = g\ (ho), we find thata] = & 1h, = & 1x%b, and therefore

Q1 = bfl(a{- rem X“*(k*i)(d+1))’/xd mod X (k=i=1)(d+1)

Now n+ (k—i)(d+ 1) < n+kme O(n), and hence we can compube! mod
x"KA+D) with O(M(n)) ring operations, and alsa ., remx™ k=i=D(d+1) from
a remx™(k=D(d+D) n step 2, we computg(hy) remx™ K+ takingO(kM(n))
ring operations, and the same bound is valid for step 3.

12.6 (iymy =X (ii) Mynea | My | X"Myneq.

12.7 (b) < (c)isclear. Solef =y, i ijj be a characteristic polynomial
ofa. Thenr =3 o i<, fa—jx) andrh = ¥y bix with by = 5 o ;i fa_i—j)q; foralli,
where we seff; =0 if j < 0. Thenbg, = Yi<j<d+i fi_iaj = 20<j<d fig ;=0
for all i if and only if f is a characteristic polynomial &, and this shows the
equivalence of (a) and (b).

12.8 ()a=0,a0=-1,a=0,anda,3=—a,2+4a fori e N.
(i) ag=1,a1 = —2,ap=2,andaj;3=—aj;»+4q fori e N.
(i) ag=0,a=—-1,ao=1,;3=a4=—1,anda, 3= —a,»+a foralli > 2.

12.9 The minimal polynomial i8> — x — 1, like for the Fibonacci sequence, and
the first 20 elements are 3,4,7,11,18,29,47,76,123 199 322 521 843 1364
2207,3571,5778934915127.

12.10 (ii) Letmy be the minimal polynomial of the sequenae= (7(5))ien.
Thenm, | m, and sincem s irreducible, we have eithen, = 1 or my = m. But
7(8% = 1, so thata # 0, and this shows thath, = m.

(i) We first computeg, 52,..., 3>t in polynomial representation. This takes
O(n-M(n)) operations irF, by Corollary 11.8. Computing(3') for 0 <i < 2n
is for free, and computing the minimal polynomial @takesO(M(n)logn) field
operations, by Theorem 12.10.

(iv) m=x3—3x>—3x—1.

12.12 f is a characteristic polynomial & if and only if u” f (A)A'b = 0 for
0<i<n.

12.15 (i) Letd = degf < n. We define thé—linear map)*:F" x F" — FN

by 1*(u,b) = (U"A'b)icy, and letM; C FYN be the submodule of all sequences
annihilated byf. As in the proof of Lemma 12.16, we find that(F" x F") = Mg,
sincel, A, ...,A%1 are linearly independent iB™". Then we let) = ¢~ 1o )%,
wherep:F[x]/(f) — My is the isomorphism of cycli€[x]-modules from (9).
Thenv is F—bilinear and surjectivege 1)*(u,b) = »((g mod f) - ¢ (u, b)) for all

g € F[x] andu,b € F", and the claim follows, as in the proof of Lemma 12.16.
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(iii) Let e € F" be thejth unit vector for 1< j < n, u= (Uy,...,u,) andb =
(by,...,by) in F", andhj; mod f = (e,€;) for 1 <i,j < n. Then the bilinearity
of v yields

z/;(u,b) = z Uibjhij mod f.

1<47<n

If we let
r:res(< yizjhij,f>eF[yl,...,yn,zl,...,zn],

1<17<n

where they; andz; are new indeterminates, then (ii) and Lemma 6.25 imply that
¥ (u,b) is a unit if and only ifr(us,...,un,by,...,by) = 0. As in the proof of
Lemma 12.17, we find thatis a nonzero polynomial of total degree at most 2
and the claim follows from Lemma 6.44.

12.16 (i) LetB e F™" be the matrix whose columns avg ...,b,_;. Then the
b, are linearly independent if and only if the rankB®fqualsr. This rank can be
computed by Gaussian elimination (see Section 25.5), daddmputation is the
same whether we perform it ovEror overK.

12.18 (i) Leth=gcd f,g). Then we havene (gea) = mgea = 0if and only
if f|mg, which in turn is equivalent td /h | m.

(i) Let b* be the initial value ob, f be the minimal polynomial of Ab")ien,
andh the minimal polynomial of A'b)icry in step 2. Then the invariants= gh
andb = g(A)b* follow from (i) by induction. Nowb = g(A)b* = 0 in step 2 if and
only if f | g, and the correctness follows.

(iii) We havegea® = (uA'b)icy, and by (i), the minimal polynomiah of this
sequence igx/gcd(g,g«k). The second claim follows by induction, using Exercise
3.6.

(iv) For afixedj, the probability thaf; divides allh; is g~*9€9%i. By the Chinese
Remainder Theorem, thesevents are independent, and the stated formulgagor
follows.

(v) Letse F[x]. Similarly to the proof of Lemma 12.16, we have

| f
Sev(W) =0 = (smod)-4(u) =0 = f[sh = s

proving the first claim. Lebhy mod f = ¢ (u) for all k. Thengx = f/ged(f,hy).
Inductively, we find that lcrfo,,...,0«) = f if and only if gcd hy, ... h, f) = 1.
Since they; are independent uniform random element&bfthe h; are indepen-
dent uniform random polynomials of degree less thanfddgy (ii) and (iii), the
algorithm terminates if and only if = g =Icm(ga,...,0), and the claim follows
from (iv).
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(vi) The first claim follows by induction on. Then

if k> 2, where we used that> 2, and hence

2
(1-p)<2+25 gtk=2+-2_<a
kgo k;z q-1

Chapter 13

13.2 If all integrals exist, then fdc € 7Z we have

—

(M®®=/%Uw e o= [ [7 t90(t - e asat

/ e / g(t—sje " Jd(t—s)ds

~

ﬂ%§g®=umaw

13.3 Using sift) = ‘i(e*it — &), we find

1 t T 10t TG
f(t) = 5 <7r|e — i+ 10 ~10¢ )
The uniqueness of the Fourier series (1) implies th(at) fA(—l) = —i,

f(10) = —f(—10) = —xi/10, andf (k) = 0 for all other integerk.
13.4 (i) We havesy = 0, and fork # 0, thekth Fourier coefficient is

1 27 . 1 s . 2m .
B = —/ f(t)e Mdt = — / e—'“dt—/ e Mdt
27 Jo 2r \Jo ™

_ 2%( (efikw P gikam efikw) _ 1
_ [ F& if kis odd;
| 0 ifkiseven

So we have

f(t) = Z = —2A g

k odd
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Incidentally, this gives a method to computeWe find

f(t) = Bo+ Z (€™ + p_e ™) = Z T(_ji(eikt _eMy40
2 (coskt) + isin(kt))  (cos(kt) — i sinkt)))

or in other words,

f(t)= g(sin(t) + %sin(St) + %sin(St) +-00).

From f(7/2) = 1 we may deduce that

™

s
=

1-— .
4

1
5

1
3
This equation, already known to Leibniz in 1673, is not a pcat way of calcu-
lating the digits ofr (Section 4.6).
13.6 (i) We have
gk = 3 g(je
0<j<4n

_ (g(2j i 1)e—7rik(2j+l)/2n +g(4n—2j— 1)e—7rik(4n—2j—1)/2n>

0<)<n
_ £()) (e—nik(2j+1)/2n+ewik(21+1)/2n>
0<j<n
=2 f (J) Cosm
0<j<n 2n

for k € Z. The claimed symmetry properties follow from those of thsie.
(i) Part (i) implies in particular thafi(2n) = —g(0) andg(n) = g(3n) = 0. The
claim follows from the symmetry properties together with thversion formula

1 .
o) =5 5 Gloemie
4n O§Z<4n

for the Discrete Fourier Transform.
(j andn were callech andN, respectively, in the 1999 edition.)
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Chapter 14

14.1 (i) For eacla# +1, botha and its inverse! # a occur exactly once in
the product and cancel each other. T[TH@F(? a=[|a=r1a= —1; thisis also valid
for evenq, where 1= —1.

(i) If nis not prime, then it has a prime divispr< n which divides(n— 1)! but
does not divide-1.

14.2 f has no proper divisors of degree at most 2, and hence it duicible.
14.3 The factorization pattern dfis (1,1,1,2,2,4,6).

14.6 (i) An irreducible factor off divides |‘|a§d<b(qu —x) if and only if its
degree divides some number in the intedala+1,...,b— 1}, by Theorem 14.2,
and the claim follows sincé is squarefree.

(i) We havex? —x@" = (x&" —x)4"™, so that

o= ([ o —x))qe,

a<d<b
wheree= 5 ..qp(b—d) = S1c4<p ad = (b—a+1)(b—a)/2. Thus the gcd is
the same as in (i), by (i) and the squarefreeness of
(iii) ALGORITHM 14.56 Interval distinct-degree factorizatic::
Input: A monic squarefree polynomidl € Fy[x] of degreen > 1, whereq is a
prime power, and integers2cp < ¢ < --- < =n+1.
Output: The monic polynomialgs, ..., 0s € Fy[X] such thats <k, eachg; is the
product of all monic irreducible factors df whose degree is in the interval
lj ={cj_1,...,¢; — 1}, andgs # 1.
1. hg<—xX%, fo+—f, i+—0, j«<—0O
repeat

a<d<b

2. { i=c¢;—1andf; is the product of all irreducible factors df of
degree at least; }
j—Jj+1, u+—1
whilei < ¢j —1do

3. { hi=x4 remf andu= g ,<qi(x¥ —x) remf }
i«—i+1
call the repeated squaring algorithm 4.8 Rn= Fq[x]/(f) to
computeh; = h | rem f
u«—u-(hj—x) remf

fi_
4, gj — gcd(u, fj,l), fj — J—l
5. until f; =1
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6. S+ |
return (gs,---,0s)

This blocking idea becomes really useful with more efficialys to compute
the required values ai, as in von zur Gathen & Shou@d992 and Kaltofen &
Shoup(1999.

14.8 Whenq is even, then squaring is an automorphisn¥gfand there are no
nonsquares. Otherwise, dfis odd then(ab)(4-Y/2 = a(@-1/2p(a-1/2 = (1) .
(—1) =1, by Lemma 14.7.

14.11 (i) Forn€ Z, we havea" = 1 if and only if orda divideskn, or equiva-
lently, orda/ gcd(k,orda) dividesn. See also Exercise 8.13.

(iii) Let a € Fy, and assume that gddq—1) = 1. By Lagrange’s theorem
(or Fermat's little theorem), we have adq—1=F;. Thus gcdk,orda) = 1.
Then (ii) shows that or@y(a)) = orda. In particular, the only element with
ord(ok(a)) = 1isa=1, so that ke = {1} andoy is injective. Now[Fy is a
finite set, so thaty is surjective as well.

Conversely, let be an automorphism arada generator of; , which exists by
Exercise 8.16. Theny(a) is also a generator @, so that ordox(a)) = orda =
g— 1, and (ii) implies that gogk,q— 1) = 1.

(iv) Let k= gk*. Then gcdk*,q— 1) = 1, (iii) implies thatoy- is an automor-
phism, and the claims follow fromy = oo 0.

14.13 If p= 2, thena= 1 is its only square root. Ip is odd, apply the equal-
degree factorization algorithm 14.10 to the squarefregnuohial x* — a € Fp[X].
You find (£1111)2 = 1005 mod 2591.

14.15 The degree of the smaller factor is at mast2|, and the claim follows
from

Z)(dlogq+|og(n2*i>>M<Ln2*‘J> < (dlogq-+logn) Z)M(LnZ*‘J)

i> i

i= >

< (dlogg+logn)M(n) _Z)Z*i

< 2(dlogqg+logn)M(n),
where we used the superlinearityldf
14.16 (i) The first claim follows fromly(Tym + 1) = T2 + Ty = Tn(X2) + T
Now leta € Fy. By Fermat's little theoremg is a root ofx?" + x, so that it is a
root of T, or of T, + 1, and hence eithél,(a) = 0 or Ty(a) = 1. Both T, and
Tm+ 1 have degree™ !, and hence each of them has precisély’2oots.

(i) The fieldR = x;(R) is isomorphic tdf = Faa, and the first claim follows
from (i) with k replaced bykd. By the Chinese Remainder Theorefgy(«) is in
IF, if and only if they;(Twq(cr)) are equal for ali, so that either all are 1 or all are 0.
Since theyi(Tkg()) are independent random variablesiis chosen uniformly at
random, the probability that this happens i22", by (i).
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(iii) The modified algorithm fails ifTyg(a mod f) € Iz, and (ii) gives the er-
ror probability. We can comput&g(a) rem f by computing alla? rem f for
0 <i < kd, taking kd — 1 squarings moduld or O(kdM(n)) operations inFy,
and adding up the results, using at m@st— 1)n additions inFy. Sincek = logq,
this yields the same cost estimate as for step 3 of the otigigarithm, and the
claim follows.

(iv) Let Bi = xi(B) € R. ThenB; = Fy, and hencei(Tc(a)) = Te(xi(e)) € Fo
for all « € B, by (i). The probability estimate follows as in (ii).

(v) The estimate of the failure probability follows from Yi\Similarly as in (iii),
the time for computinglx(a) rem f is O(kM(n)) operations infq, which is the
same estimate as for step 6 of Algorithm 14.31.

14.17 Inths 1999 edition, the text of the exercise contagnsral typos, and we
first give a corrected version of it.

Let g be an odd prime power ande Fy[x] squarefree of degreewith r > 2
irreducible factord;, ..., f, of degreed =n/r. We [etR Ry, ..., R and the Chinese
remainder isomorphism=x1 x--- X x;:R— Ry x --- X R, be as in Section 14.3.
Thenorm on R, 2 Fy is defined byN(a) = aa%a® - a® " = (@ -D/(@-1) and
we use the same formula to define the nornRon

(i) Leta € R* be a uniform random elemerit=N(«), and 1<i <r. Show that
xi(B) is aroot ofx4=1 — 1, and conclude thag;(3) is a uniform random element
in Fg . Hint: N is a homomorphism of multiplicative groups.

(i) Provided thatg > r, what is the probability that thg;() are distinct for
1 <i < r? Prove that this probability is at least2Lif q— 1 > r?.

i)y For u € Fy, let 7(u) = u@ /2 so thatr(u) € {—1,0,1}, (u) = 0 if and
only if u=0, andr(u) = —1 if and only ifuis a nonsquare. Moreover, letv € [,
be distinct. Prove that for a uniformly randdng Fy, we haver(u+t) # w(v+t)
with probability at least 12. Hint: The map — (u+t)/(v+t) if t # —vand
—v+— 1 is a bijection off.

(iv) Consider the following variant of Algorithm 14.8, due Rabin(19800).

ALGORITHM 14.54 Equal-degree splitting.

Input: A squarefree monic reducible polynomiat I [x] of degreen, whereq is
an odd prime power, a divisa < n of n, so that all irreducible factors of
have degreel, anda € [Fy[x] of degree less thanwith x;(amod f) € Fy for
alli.

Output: A proper monic factay € Fy[x] of f, or “failure”.

1. g1 +—gcda,f)
if g1 # 1 andg; # f thenreturn g;
2. chooseé € Fq at random

3. call the repeated squaring algorithm 4.8Rn= [Fy[x]/(f) to computeb =
(a+1)@D/2 rem f
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4. go+—gcdb—1,f)
if g2 # 1 andg, # f then return g, elsereturn “failure”

Use (iii) to prove that the failure probability of the algibwin is at most 12 if
ag .

(v) Use the algorithm from (iv) as a subroutine to create aingee algorithm
for equal-degree factorization, which has the same inpatifipation as the above
algorithm and outputs all irreducible factors fof Prove that the algorithm never
halts if x;(a mod f) = xj(amod f) for somei # j, and that otherwise, if aj};(a
mod f) are distinct elements dfy, the probability for its recursion depth to be
more thark = 1+ [2log,r] is at most ¥2. Conclude that in the latter case, the
number of operations iy is O(M(n)log(gn) logr).

(vi) Now we first compute = c(@~1/(@1 rem f for a uniform random polyno-
mial ¢ € Fy[x] of degree less than, and then call the algorithm from (v) for that
value ofa and stop the recursion at defthWe assume that— 1 > r?. Prove that
with probability at least 14, this method yields the irreducible factors off in
time O(dM(n)logg+ M(n)log(gn) logr).

Solution:

() By Lemma 14.6, we havll(R*) = {y e R“:74 1 =1} = [y , using Fermat's
little theorem. By Lagrange’s theorem, we hawe#(~) = (¢° —1)/(q— 1) for all
v € Fy, and hencé(v) is a uniform random element iy if + is a uniform ran-
dom element ifR*. Similarly, xi(N(a)) = N(xi(«)) is a uniform random element
of Iy if ais a uniform random element R*.

(i) The xi(N(«)) are independent random variablesyife R* is chosen uni-
formly at random, by the Chinese Remainder Theorem. Thua fored pair of
indicesi < j, the probability thaty;(N(«)) andx;(N(«)) are equal is 1(q—1).
There are (r —1)/2 < r?/2 such pairs, and hence the probability thag@lN(c))
are distinct is at least4r?/2(q— 1) > 1/2.

(iii) Let ¢(t) = (u+t)/(v+t)if t # —vandy(—v) = 1. One verifies that the map
Y with(t) = (u—wt)/(t—1) if t # 1 andy)(1) = —vis the inverse of, and hence
both are bijections. If = —v, thenm(u+t) # 0= w(v+t). Otherwise, we have
m(u+t) =7m(p(t))m(v+t), sincer is multiplicative. Thusr(u-+t) # w(v+t) if
and only ift = —vorm(p(t)) # 1. Sincey is a bijection, this condition is satisfied
for at least 2+ (q—1)/2 > q/2 elementd of Iy, and the probability estimate
follows.

(iv) For a specific choice df € Iy, the algorithm succeeds unless either all the
xi(a+t mod f) are nonzero squares, or they are all nonsquares, or theylare a
zero. Ifa ¢ [y, then the last case is impossible and there are two indiee$
with xi(a mod f) # xj(a mod f), by the Chinese Remainder Theorem. Then with
probability at least 12 for randomt, xi(a+t modf) and x;(a+t mod f) are
neither both squares nor both nonsquares, by (iii), andlgwithm will separate
fi and fj.
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(v) The algorithm works as follows. Call Algorithm 14.54 Wwinput f anda. If
its output is “failure”, then call yourself recursively Witnput f anda (this leads to
infinite recursion ifa € IFy). Otherwise, in case of success, call yourself recursively
with inputg, anda remg,, and also with inpuf /g, andarem(f/gz). Then the
bad casea € Iy occurs somewhere during the recursive process if and only if
initially x;(a mod f) andy;(a mod f) are the same elementslgf for somei < j.

Now we assume that this is not the case. Then for a fixed paidideési < j,
the probability thatf; and f; are not yet separated at depthf the recursion tree is
at most 2', by (iv). A similar analysis as in the proof of Theorem 14.1Jeg the
probability estimate and the time bound.

(vi) By (ii), the probability thaty;(amod f) # xj(amod f) for all i < j is at
least 12, and by (v), the conditional probability that the alganitis successful in
that case is also at least2, so that the total success probability is at l¢agp)?.

The cost for computing is O(dM(n)logq) arithmetic operations iffy, and the
time estimate follows from (v).

14.18 The irreducible factors axd+ x+ 1 andx* +x3 + 1.

14.21 Thath coefficient of(ux+v)gisvgo if i =0, ugi_1 +vg; if 0 < i < n, and
ugn_1 ifi=n.
(i) We have|go| = | fo/v| < A/|v|. Inductively, we find for I<i < nthat

Atlug| _ (i+1)A
VMo T

fi —ugi_1
v

<

|gl| = ‘ )
and the last claim follows fronv| > 1.

(i) We proceed as in (i), by induction dnThe casé= 0 is clear. For Ki < n,
we have

A+|ugi-i] A A 1-a A 1ot
< T 2 <= (14a——) == .
Y I R e R VL G W) Bl tv R s
Finally, _
11—/t 1 1

< = <1
(L=a)lv = A=) VM =Ju —
if ju| < |v|. If Ju| > |v|, then we take reversals (Section 9.1) and apply what we just
have shown to re\ f) = (vx+ u) revn_1(9).

14.22 (i) We proceed by induction an If r =1, thenf = f* and f’' =
e f 2t = e f/f/f;, by the chain rule. If > 1, we write f = gf&, with g =
fgre-- 31 Then

9 9 _
f| fr

(9f*) =g +oaf/fe =5 af

1<i<r

f
’
in fi,

1<i<r

by the Leibniz rule and the induction hypothesis.
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(i) Let 1 <i<r. Asdiscussed in the text, the polynomi‘ﬁl‘l divides f’, and
f& divides f’ if and only if g f/ = 0. Thusf? does not dividef / gcd(f, f'), andf;
divides it if and only ife f/ # 0.

14.23 (i) Letf =x0904 2 ¢ F5[x]. Thenf’ =0 and gcdf, f') = f # 1, so that
f is not squarefree. More preciselff,= 0 implies thatf is a 5th power, namely
f = (x2042)5 = (x¥+2)%.

(i) The claim is false. A counterexample is given by= g = X, wherex is the
squarefree part of, of g, and of fg. The correct statement is that the squarefree
part of fg is the least common multiple of the squarefree parté afidg.

14.25 (i) X3 —3x?+4 = (x+ 1)(x— 2)? is not squarefree,
(i) x®—2x2 —x+2= (x+1)(x—1)(x—2) is squarefree.

14.27 We should assume that thewre monic.
(i) follows from Exercise 14.22 (ii) together with the fabit f/ £ 0 for alli.
(ii) Sinceg <nfor alli, we have

gedu. ) =ged [] #7417 []1) = [
pte ple pfe pfe
and the first claim follows. We first calcula® rem u with repeated squaring, tak-
ing O(logn) multiplications modulai or O(M(n)logn) field operations. Comput-
ing gcdu, V" remu) takesO(M(n) logn) field operations as well. Finally, dividing
u by the gcd takes onl@(M(n)) field operations.
(iii) ALGORITHM 14.57 Squarefree part over finite fielc.e.
Input: A monic polynomialf € [Fy[x] of degreen > 1.
Output: The squarefree part bf
f u
1. f,f — —
u«—gcdf,f’), v+— G W gcdu )
2. call the algorithm recursively to compute the squarefiatz of w/ P
3. return vz

Let S(n) denote the cost of the algorithm ant= degw. Steps 1 and 3 take
O(M(n)logn) field operations. Computing/’/? in step 2 amounts to calculat-
ing m/p many (g/p)th powers inFy, taking at most @m/p)log(q/p) operations,
where log is the binary logarithm. The degreezoh step 4 ism/p, so that we
have the following recursive relation:

Sin) e s(%) +0(M(n)logn-+ nIog%), (15)

andS(1) = 0. If cis the implied constant in (154 = pc/(p— 1), andT(n) =
M(n)logn+ nlog(q/p), we claim thatS(n) < dT(n). Indeed, we find inductively

Sin) < s(%) +cT(n) <dT (%) +cT(n) < (% +¢)T(n) = dT(n),
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usingp-M(m/p) < M(m) andm < n. ThusS(n) € O(M(n)logn+ nlog(q/p)).
14.30 (i) Lemma 14.22 is valid more generally for perfectéeko in particular
for finite fields. This together with Exercise 14.27 (i) imgdithe claim.

(i) Using the same facts as in (i), the invariants

hi= 1 9fizl via= [] 9 Wa= ) (-9
j=i modp j remp>i j remp>i 9

are easily proved for & i < p by induction on, as in the proof of Theorem 14.23.
In particular, this shows that the algorithm stops vtk p.
(iii) Replace step 3 by the following steps.
f
hih3 - - hk
if z=1thenreturn (hy,..., hy)
call the algorithm recursively to compute the squarefremdgosition
(si,...,§) of 2/P
4. fori=k+1,...,p—1doh«+—1
fori=1,...,p—1landj=1,...,l dsotjp+i «—gcdh,s))

for j=1,...,1 dotjp+— .
Up+alipt2- - Yjt1)p-1

3. 2+

fori=1,...,p—1dotj ¢— —————
tp+it2p+i N p+i
5. letr < (I +1)p be maximal witht, # 0

return (tg,....t)

We note thats = [jp<i<(j+1)p for 1 < j <1 at the end of step 3. Thux
dividesh; if and only if j =i rem p, and it dividess; if and only if j = |i/p|. This
implies the correctness.

The cost for computing in step 3 isO(M(n)logn) field operations, and com-
puting z/P takesO((n/p)log(q/p)) operations. To compute all gcd’s in step 4
efficiently, we proceed as follows. We first compste s; - - -5, of degree at most
In/p|, takingO(M(|n/p|)logn) operations. Then we reduce eagmodulos,
takingO(M(degh)) field operations, in totaD(M(n)) sincey ;<. ,degh; < nand
M is superlinear. Then for eadh computing gcéh,s;) = gcd(h; rems;s;) for
1< j<ItakesO(M(|n/p])logn) operations, by Exercise 11.4, a®dM(n)logn)
in total for alli. The cost for the divisions in step 4 @(M(degs;)) pers; and
O(M(degh;)) per h;, in total O(M(n)). Thus together with the proof of Theo-
rem 14.23, we find that the cost for all steps except the reeucall in step 3 is
O(M(n)logn+nlog(q/p)), and the running time estimate follows from d&@ <
n/p, as in the solution to Exercise 14.27.

14.32 (i) Iff = ffl--- f¥, with all f; € Fy[x] irreducible, monic, and distinct,
and positiveey, ..., &, thenh = g oqq fi Yields the desired decomposition. Let
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Pn, S C Fy[X] be the set of all monic and monic squarefree polynomialpees
tively, of degreen. We have just shown thd, is the disjoint union of the sets
PIEZ) ‘S for0< 2k <n, wherePliz) is the set of all squares of polynomialshi
Thus
q" = #Pn = #P #S 2= OS2k
0<Zk<n 0<%k<n
holds forn > 0.
(i) Every monic linear polynomial is squarefree, so tkat= g, and 1 is the
only monic squarefree polynomial of degree zero, whegee 1. Now letn > 2.
Subtractingy times the formula from (i) fon— 2 from the formula fon, we find

g —q"t= Osh_ok — Aok
0<T<n 0<2ASn-2
=S+ ash ok — > sy o) = Sn.
2<2k<n 2<2(k+1)<n

14.33 Letg € F[x] be a nonconstant irreducible factorfobf degreen. Theng =

(x—aP)", sinceF (a'/P)[x] is a UFD. The coefficient of** in g is —nal/P. This
is an element oF, and ifn < p, thennis a unit inF andal/P e F, contradicting
our assumption that has nopth root inF. Thusn= pandf = gis irreducible.

14.34 The claimis wrong. Ifwe legf=3, f =x°+1, anda = x+1 modvf, then
we hvaveaq:x3+1 modf = —x+1modf, ¢ =x3modf =—xmodf, ¢ = —x,
and{(a) = —a=—-x—1modf.

14.35 By Exercise 10.2, the cost for tile iteration of step 2 of Algorithm 14.26
is at most

n 11 i n . i
<2F+1+E(I—1)>M(2' 1)+O<<F+(I—1)>2' l> (16)
operations irR, for 1 <i < |, and the cost for step 3 can be bounded by the same
estimate with =1 + 1. Usingl = log,d and the superlinearity & and summing
(16) for 1<i <I+1, we find an overall estimate of no more than

(23 +11) M(d) log,d +2M(d) + O(nlogd)
operations irR. Thus we may choosg, = 2 andc, = 11. Using Exercise 10.9,
we can even achiew® = 7.

14.39 In step 1 of Algorithm 14.31, we computerem f, takingO(M(n)log p)
operations inF,. Similarly, we computeaY/2 rem f in step 6, at a cost of
O(M(n)logp). The matrixQ in step 2 is now &n x kn matrix overFy, and Gaus-
sian elimination in step 3 tak&3((nk)“) operations inFy. In step 4, thec; are
chosen fromF,, and each execution of that step tak&snk) operations inf,.
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The cost for all other steps it the same as in the originalrdlgn. Each arithme-
tic operation inf, takesO(M(k) logk) operations ir,. The cost for steps 1 and
3 of the “absolute” algorithm dominates the cost of the o#tteps, and the overall
cost isO(M(n) M(K)(logk) log p+ n“k*) or O~ (nklog p+ n“k*) arithmetic oper-
ations inFp. In contrast, the original algorithm tak€M(n)kM (k) (logk) log p+
n“ M(k) logk) or O™ (nk?log p+n~k) operations ir¥. Thus for largen or largek,
the original algorithm is faster, while for large the “absolute” algorithm is prefer-
able.

14.40 (i) Itis clear that god,b—a) | f, for all a € [, and sinceb —a and
b—a" are coprime for distinca,a* € Fp, we find that the product on the right
hand side divided. Conversely, leg € Fy[x] be a monic irreducible factor df.
Thenb = amodg for somea € [, andg | gcd(f,b—a). Since all irreducible
factors of f are pairwise coprime, we see thiatlivides the product. Now both
polynomials divide each other and are monic, so that thegaguel.

(i) We haver(a) =0 if and only if gcd f,b— a) is nonconstant, which in turn is
equivalent to the existence of an irreducible fagar Fy[x] of f such thath = a
modg. If b ¢ F,, andr(a) = 0, then gcdf,b— a) is a nontrivial factor off.

(iii) Given a monic nonconstant squarefree polynonfial Fy[x], we compute a
basisb; mod f,... b, mod f of the absolute Berlekamp algelifaas in Exercise
14.39. Then we find all roots iif, of gcdres(f,b —y),xP —x) € Fply], for
1<i <r. Finally, we obtain the irreducible factorization éfby successively
taking gcd’s withb; — a for all rootsa € Fy, of res(f,b —y) and 1<i <r, as
in Exercise 14.38. All steps except the root finding can beedardeterministic
polynomial time.

14.42 Inthe 1999 edition, the text of the exercise contagweml typos, and we
first give a corrected version of it.

This exercise discusses the easiest case of another factogthod based on
linear algebra, due to Niederreiter (see Notes 14.8) pleelN be prime.

(i) Prove that for all rational functionis € Fy(x), the (p— 1)st derivativeh(P~Y)
is a pth power.

(if) Show that for any nonzero polynomidl e [F,[x], the rational functiorh =
f'/f € Fp(X) is a solution of the differential equation

h(P~Y 4 hP = 0. (17)

Hint: Prove this first wherf is squarefree, using Exercise 9.27 over the splitting
field of f, and Wilson’s theorem (Exercise 14.1). For the general, sploy the
squarefree decomposition dfand Exercise 9.27.

(iii) Prove that ifh=g/f € [F,(x) satisfies (17), with nonzero coprinfeg €
Fy[x] and f monic, then deg < degf andf is squarefree.
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(iv) Let f,gbe asin (iii) and\y,... Ay € E the (distinct) roots off in a splitting
field E of f overlF,. By partial fraction decomposition, there exikt...,d, € E
such that

g di
f X— A ’

1<i<n

Show thaty = d; /(x— Ai) solves (17) for < i < n. (Hint: Uniqueness of partial
fraction decomposition). Prove that= di € I, if \; and\. are roots of the same
irreducible factor off, and conclude that
f!
9_ v ¢
f 1<7<r

for somec;,...,c € Fy, wherefy,..., f; are the distinct monic irreducible factors
of f.

(v) Let f € Fp[x] be monic of degrea and

N ={g € Fp[x:degg < nandh = % solves (17).
Prove thatf{f/fi,..., f/f/f, is a basis of\V" as a vector space ovét, if f =
fit--- f& is the factorization of into irreducible polynomials.

(vi) Now let f be squarefree an88 C Fy[x]/(f) the Berlekamp algebra of.
Prove that the map: N — B with ¢(g) = g- (f")" mod f is a vector space
isomorphism. Hint: Considep(g) mod f; for all j.

(vii) Assume thatp > 2. Letf as in (vi),g = y1<j<Cjf{f/fj € N with all
G € Fp, andSC Iy the set of squares. Show that

ged g® /2~ ()" V12 1) = 7 1y

cjeS

and conclude that this gcd is nontrivial with probabilityedst /2 if ¢y, ..., ¢, are
chosen uniformly at random i, and gcdf,g) = 1.
Solution:

(i) We first prove the claim for polynomials. It is clear tH@tP-Y) = h(P) =0
for all h € Fp[x], and since,, is perfecth is the pth power of a polynomial. Now
leth= g/ f for two nonzero polynomial§, g € F,[x]. Then the Leibniz rule shows
that

Ozg(p):(hf)(p): Z <p>h(i)f(l3*i):h(p)f_|_hf(l3):h(P)f7

odizp !

and henceh® = 0. Furthermore, we see by induction orthat hi-Vfi is a
polynomial fori > 1. Now (h(P-Y fP)" = h(P) fP  h(P-1). pf/fP-1 = O, s0 that
h(P~Y) fP = uP for some polynomiall € Fp,[x], andh(P-Y) = (u/f)P is a pth power.
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(i) We start withf =x— X, where) is in an extension field af,. Then

1 \PY  (—yrip-1 1\°
X— A\ o (x=P \x=A)
by Wilson’s theorem (Exercise 14.1). ifis a monic squarefree polynomial, with

f = N1<i<n(X—Ni) for distinctA4,..., X, in the splitting field off, then

f/ 1
f _1§|Z§nx_/\i7

by Exercise 9.27 (iv), and the claim follows by linearityrfnavhat we have shown
above. Iff is an arbitrary monic polynomial, with squarefree deconitpms f =
Mi<i<n f!, then Exercise 9.27 (iii) shows that

f/ f/
- = | —

f 1§|Z§n fi’
and again the claim follows by linearity from the squareftase.

(ii) Let deg(u/w) = degu — degw for all polynomialsu,w. Then pdegh =
deghP = degh(P~Y < degh— p+ 1, which implies that dely< —1 or deggy < degf.
Similarly, if t € Fy[X] is irreducible andx is thet-adic valuation or¥(x), so that
Vi (u) = max{i € NU{e}:t" | u} for a polynomialu € Fp[X] andv (u/w) = v (u) —
vt (w) for nonzero polynomials,w € Fy[X], then pv(h) = v (hP) = v (h(P-Y) >
vi(h) — p+ 1, so thats (h) > —1. In particular, ift | f, thent t g sincef andg are
coprime, and-1 < v (h) = w(g) —w(f) = —w(f) < —1 implies that?{ f.

(iv) Since raising to thepth power is an endomorphism @, (x), the partial
fraction decomposition ofhP is

_<%>p: X—Cii)p'

On the other hand, we have

(p-1)
<g>(P*1) _ Z di _ di(p—1)! _ —d
f 1520 X— A 1bzn (X=A)P Lz (X= )P

by Wilson’s theorem. Thud” = d; for all i, by the uniqueness of partial fraction
decomposition, and henak € F,. If A\ and \¢ are conjugate (so that they are
roots of the same irreducible factor dfin I, [x]), thend; andd are conjugate as
well, andd;, dy € Fp, implies thatd, = dx. Let f; be such an irreducible factor, and
di = c; for all i with f;(\;) = 0. Then Exercise 9.27 (iv) implies that

d 1 f;

Z X—/\i:Cj Z X—)\i:Cj_

fj(Ai)=0 fj(Ai)=0 fi
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and hence

g di fi
f

) i
X= A 1<T<r

f_J-

1<i<n

(v) By (i), each fjf/f; belongs toN. By (i), if gisin N, thenf/f;-.-f,
dividesg, so thatg/f =g*/f,--- f; for g* =gf;--- f; /f € Fp[x], and (iv) implies
thatg/ f is anfFp-linear combination of the;/ f;, or equivalentlyg is ankFp-linear
combination of thef; f/f;. It remains to show that th& f/f; are linearly inde-
pendent. Ify i cjfif/fi =0inTFy[X, theny, ;. cjf{/fj =0inFy(x). The
rational function on the left hand side has a unique pantgtion decomposition
with denominatord, ..., f, (Lemma 5.29), but also the partial fraction decompo-
sition with all coefficients equal to zero; hence= 0 for all j.

(vi) Sincef is squarefreef’ is invertible modulof, andy is well defined. It is
clear thaty is Fy-linear, and it remains to show tha{\') = B. By the Leibniz
rule, we have

f'=(fy---f) = fjf/f; mod f;.

Letg; = fif/fe Nfor 1< j<r. Then
gi(f) =gj(f/f/fj)) ' =1modfj,

or equivalently,¢(gj) mod f; = 1, andy(g;) mod fy = O for k # j. Thus the
image undetry of the basisf; f/f1,..., f/f/f; of A is a basis of3, and the claim
is proved.

(vii) Let ¢(g) =g* mod f and(f’)~t=smod f. Then
S(p—l)/Z(g(p—l)/Z _ (f/)(p—l)/Z) = (g*)(p—l)/Z —1modf,
and sincesis coprime tof, we have
gcd(g(pfl)/Z — (f’)(P*l)/Z, f)= gcd((g*)(pfl)/Z —1,f).

The claims now follow from the discussion preceding Aldamit 14.31 and the
facts thatp is an isomorphism of vector spaces ajid coprime tof if and only if
g*is.

14.45 In the statement (iii) of Lemma 14.47, we have to asdhaud is a prime
not dividingn.

(i) Lemma 14.46 shows thaf — 1 = &;P, = (x— 1)y,

(ii) If w € Cis a primitiventh root of unity, then—w is a primitive Zth root of
unity, by Exercise 8.16 (iii). Conversely,df € C is a primitive 21th root of unity,
thenw" = —1, and—w is a primitiventh root of unity. Thuss,(x) and¢an(—Xx) are
monic, squarefree, and have the same roots, so that theyaak e
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(iii) We havep(kn) = p(k)p(n) = (k—1)p(n). If w € C is a primitiveknth root
of unity, then Exercise 8.13 (iii) shows that is a primitive nth root of unity.
Moreover, ifw is a primitive nth root of unity, then so isX, as in Exercise 8.16
(iii). Thus all roots ofb,®,, are roots ofb,(x*), and since the former polynomial is
squarefree, it divides the latter. Now both polynomialsraomic of degredyp(n),
and hence they are equal.

(iv) Since every prime divisor df dividesn, we havep(kn) = kp(n). Similarly
as in (iii), we find thatpy, dividesgﬁn(xk), and since both polynomials are monic
of degreep(nk), they are equal.

14.46 (i) Theclaimis clearif one ofiornis not squarefree. th=p; --- pr and
n=q;---Qs, With distinct primespy,...,pr,q1,---,0s thenp(nm) = (=1)"s =
(=1)"(=1)° = p(m)u(n).

(i) We write n = mp® for a primep not dividingmandm,e> 1. Then

%u(d) = %‘Oggeu(dp ) = %noggeu(d)u(p ) = %(u(d)u(l) +p(d)p(p))
= g(u(d) —p(d)) =0,

by (i).
(iii) We have

% p(@)f(5) = ; u(d)e| %d)gme) = 3 nldgle) = ;g(e)d‘ n e)u(d) —g(n)

since the last inner sum vanishes unlessn, by (ii).
(iv) The corresponding formula is

g(n) = [ F ()0 = [ (9)“(d) for n e N.o,
din din d

and follows from (iii) by taking logarithms.
(V) This follows fromy o, 1 = d(n) by Mobius inversion.

14.47 (i) FromgS, = S, and the fact that for all, j € S;, i = j modn implies
X =x modx"— 1, it follows thatb] = b; modx" — 1, andb; modx" — 1 belongs
to the Berlekamp algebrd. Similarly,b, modx"—1,... . b, modx"—1 € B. As-
sume thag ; i, Aibj = 0 modx" —1 for some\y, ..., A\; € Fy. The sum on the left
hand side has degree less tmamwhence\; = --- = A\, = 0 and they; modx" — 1
are linearly independent ford i <r.

It remains to show that modx" —1,...,by modx" — 1 generate3. Let f =
So<jn fjX € Fg[X]. A similar argument as above shows that for each equivalence
classS, raising f to theqth power and reducing moduld — 1 permutes the coef-
ficientsf; with j € § cyclically. Thusf modx" — 1 is in the Berlekamp algebia
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if and only if for 1 <i <r, all coefficientsf; with j € § are equal, or equivalently,
f is a linear combination df,, ..., b;. In particular,3 is anr-dimensional vector
space ovely.

(i) We first determine all equivalence class®s...,S. This takes at mosh
multiplications byq modulon. Computingq remn takesO((logq)logn) word
operations with classical arithmetic, and the cost for aldar multiplications
is O(nM(logn)) word operations with fast arithmetic. Then we sethyp..., by,
repeatedly and independently perform essentially stepodgh 7 of Berlekamp’s
algorithm 14.31 and refine the partial factorizations thatolitain, as described in
Exercise 14.38 (ii), until we have found a factorizatiorointfactors. The cost is
O(n) arithmetic operations ifilq for step 4 (no additions have to be performed),
O(M(n)logn) for the modified steps 5 and 7, by Exercise 11.4, @l (n)logQq)
for step 6. A similar analysis as in the proof of Theorem 14haws that the
expected number of iterations @(logr), and hence the expected cost for the
second part i©(M(n) log(gn) logr) arithmetic operations iif.

Chapter 15

15.3 f is either irreducible, or it splits into one irreducible facof degree 5 and
one of degree 3, or into a linear factor and an irreducibleofaaf degree 7.

15.4 We havef =x*—2x2+9, f = (x+1)* mod 2, f = x*(x*+ 1) mod 3, and

f = (X2 —x+2)(x* 4+ x+2) mod 5. None of the divisors-1,43,49 of f(0) is a
root of f, so thatf has no linear factor, and comparing coefficients in the ansat
(X2 +ax+b)(x? +cx+d) = f proves thatf has no quadratic factor.

15.7 If p= py, thend, = &5, mod p, and similarly forp = p,. Now we assume
thatpis a prime different fronp; andp,. Then Lemma 14.50 shows thag splits
into ¢(n)/d irreducible factors of degre@ = ord,(p). The Chinese Remainder
Theorem implies thatl = lcm(ordy, (p),ordp, (p)) | lcm(py —1,p> —1). Since
p1 —1 andp, — 1 are both even, we hawk< ¢(n) = (py — 1)(p2 — 1) = degd,,
ande(n)/d > 2. If p;—1 even divideg, — 1, thend | p, — 1 andp(n)/d > p; — 1.
15.8 If p divides the discriminant of the polynomial, then it may happhat the
polynomial has some linear and some quadratic irreducéatofs modulm, as
for f5 below. So we assume thptdoes not divide the discriminant.

Leti € N be positive,ps,...,pi € N be the firsti primes, and,/p; € R the
positive square root op;, for all j. Fore= (ey,...,&) € {0,1}', we writes, =
(=1)®&/P1+---+(—=1)%,/p for short, so that

f= ] ==
ec{0,1}

is theith Swinnerton-Dyer polynomial. Moreover, we Iptc N be a prime not
dividing the discriminant réd, f') of f, so thatf mod p is squarefree. The field
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F» contains the square roots of @i, so thatf splits into linear factors ovef .,
and all irreducible factors of mod p in Fy[x] are at most quadratic; this is also
true whenp divides the discriminant. We may assume that phere ordered in
such a way thap, ..., p; are squares ang,1, ..., pi are nonsquares modufm
for somet € {0,...,i}. For 1< j <i, we letr; € F» be a fixed square root qf;
modulop. Thenrj € F, if and only if j <t.

We letR=Z[,/P1, ... ,+/Pi], and consider the ring homomorphigmR — [,
which maps an integerto zmod p and,/pi tor; for all i. Such a homomorphism
exists by induction on: for i = 0 this is just the canonical residue class map
7. — FFp. So let us assume that> 1 and we already have shown that &=
Z[\/P1,---,+/Pi—1], there exists a ring homomorphismS —; F with )(2) =z
mod p for all ze Z and+(,/pj) =rj for 1< j <i. We can extend) to the
polynomial ringSy] by mappingy to ri, and denote the extension alsodyThen
(y?>— pi) C keryp, and this implies that the mapg R=S,/pi] = Syl /(Y* — pi) —

Fpe with p(a+b,/pi) = ¢ (a) + 4 (b)r; is a well-defined ring homomorphism.

This homomorphisnp can be extended to a ring homomorphiBiR — 2 [X]
in a canonical way, by applying to each coefficient, and we denote the latter
homomorphism by as well. Then

p(s)= 5 (~1)°rjforallec {0, 1Y,

1<<i

and

o(h= ] ()
ec{0,1}'

If all r; are inFp, thenf splits into these linear factors modupo

Sincep(f) = f mod p is squarefree, we have(se) # ¢(Se-) for all distinct
e e €{0,1}", and in particulap & {p1,...,pi}-

Assume thatf does not split into linear factors moduj@ Thent <i. Let
g € Fp[X] be an irreducible factor of mod p, ande € {0, 1}' be such that— ¢(se)
dividesgin .. Then

A= 3 (D4 Y (-0 = 3 (-1 - Y (~1%r = pls)

157xt < 157xt <

holds inF., wheree* = (ey,...,&,1—@.1,...,1—&). The Frobenius auto-
morphisma — oP of F» over F, permutes the roots af € Fy[x], and hence
¢(ser) = ¢(se)P is also aroot ofy in Fe. Sincee # € andy(f) is squarefree, we
conclude that(ss) andy(s;) are distinct elements @, and deg = 2.

In fact, the discriminant of may be divisible by primes other tham,..., p;.
For example, lefs be the polynomial correspondingite- 5. Then 13 req fs, fZ),
so thatfs mod 13 is not squarefree, but #3{ps,...,ps}. Moreover,fs mod 13
has both linear and quadratic irreducible factors.
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15.11 ap =0,a; = 65,a, = 1625.

15.12 Letf =mf* for a polynomialf* € R[x]. Then (i) implies thaf* =qg*g+r*
for someq*,r* € R[x] with degr* < degg. Now f = mf* = (mq*)g+ mr* and
f = qg+r are both divisions with remainder, and the uniqguenessmatateof (i)
implies thatg = mg* andr = mr*.

15.13 (i) By the uniqueness of Hensel liftinfjfactors modulop'® into three
monic irreducible and pairwise coprime polynomials of eegr12, and 5.

(i) The possible factorization patterns éfin Q[x] are (1,2,5), (3,5), (2,6),
(1,7), and(8).

(i) It follows that f is irreducible.
15.17 We have

s'g-+t*h*—1= (s—sb—ch")g"+ (t—tb—cg")h* — 1
= sg* +th* — 1— (sg* +th*)b = —b? = 0 modn?,

sinceb =0 modm, by assumption. Moreover, Lemma 15.9 implies thatd =0
mod m, and hences* = smod mandt* =t modm. Since deg < degh*, we have
degs' < degh*, ands'g* +t*h* = 1 modn?¥ together with the fact that* is monic
implies that deg" < degs® + degg” — degh* < degg*.

15.18 (i) u= ¢? mod p is a unit modulop, and by symmetryy is also a unit
modulog. Thus, by the Chinese Remainder Theorem, it is a unit mogaqlo

(i) (px+a)(ax+ p) = pax* + (p*+0”)x+ pg = ux mod pa.

(iii) Let g,h € Z[x] with px+q = gh mod pg. Theng= gh mod p implies that
both g andh are units modulg, and px = gh mod g shows that exactly one of
g andh is a unit modulog, where we use unique factorization of polynomials
modulo p and modulag. Thus, by the Chinese Remainder Theorem, exactly one
of gandh is a unit modulopg, andpx+ q is irreducible modulqqg.

15.21 (i) We havep; = ¥ i gjhk — fi, and this implies thady;/0g; = hi_;
anddy;/ohj = gi_j, for all j, where we leg; andh; be zero if the indey is “out
of range”.

(i) The fact that I¢ f) is a unit modulop implies that the leading coefficients of
g, hare units modul@. Thus the Sylvester matrix gfmod p andh mod p equals
the Sylvester matrix off andh, taken modulg. Then Exercise 6.15 (ii), which is
valid more generally for polynomials with invertible leadi coefficients, proves
thats,t € R[x] with degs < degh, deg < degg, andsf +tg= 1 mod p exist if and
only if reg(g, h) = detJ is a unit modulap, or equivalently)] is invertible modulap.
Finally, if we have arbitrarg*,t* with s‘g+t*h =1 modp, then we perform one
division with remaindes® = gh+ s mod p, with degs < degh, sett =t*+qg, and
thens,t satisfysf +tg= 1 mod p plus the above degree conditions.

(In the 1999 editionp was calledm.)
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15.24 Since gcf,0f /ox) = 1 in F(y)[x], the resultant = res(f,df/0x) €
Fly] is a nonzero polynomial of degree less tham,2by Corollary 6.17 and
Theorem 6.22. Sinchk | r, by Exercise 6.41, the condition in step 2 is satisfied
if and only ifr(u) # 0. Nowr has less thanrl roots, and the success probability
for step 2 is at least/R.

We first show that the condition in step 9 is satisfied if and/ahg*h* = bf*.
The “if” part is clear, and we assume conversely that (g#") = deg,(bf*).
By construction, we havg*h* = bf* mod (y —u)'. Now both sides have degree
deg b+deg, f* <1, and hence they are equal.

For a polynomial € F[x,y], we denote by:(v) the number of irreducible factors
in F[x] of v(x,u), and show the invariants

f*Ebl_lieTgi mod(y—u)', bZlCX(f*), f= f*ﬂgeGga

each polynomial irG is irreducible,

f* is primitive with respect tax and each of its irreducible factors
ve F[xy] hasu(v) >s

(6)

of the loop 6 by induction. This is clear initially, and we asge that the conditions
hold before step 8, and that the condition in step 9 is trusdone subseésC T
of cardinalitys. As in the proof of Theorem 15.3, we then find that the invagan
hold again at the next pass through step 6. Now we assumehthabndition in
step 9 is false for all subseSsbut thatf* has an irreducible facta € F[x,y] with
w1(g) =s. Leth= f*/g. SinceF[x] is a UFD, there is a subs8tC T with #S=s,
g = Icx(9) Mieshi mody —u, andh = Iex(h) ier\shi mody—u. As in the proof
of Theorem 15.20, the uniqueness of Hensel lifting implreg ¢ = Icx(9) [1icsOi
mod (y—u)', h=lcy(h) [icr\s9 mod (y—u)', andg* = Icx(h)g mod (y—u)' and
h* = lcx(g)h mod (y—u)' in step 8, so that the condition in step 9 is satisfied for the
particular subse$. This contradiction proves that f*) > s+ 1, and the invariants
hold again after step 10. Finally, as in the proof of Theoré&n31f * is irreducible
if 2s > #T in step 6, which together with (6) proves that the algorit@tums the
correct result.

The cost for evaluatindg aty = uin step 2 iSO(nd) arithmetic operations if,
and the gcd take®(M(n)logn) field operations. By the above, the expected cost
for step 2 isO(nd + M(n)logn) field operations. The estimate for step 3 in the
finite field case is from Corollary 14.30, and Theorem 15.1&gjithe cost for
step 4. The cost for computirgf andh* in step 8 iSO(M(n)logn) additions and
multiplications on polynomials ifr [y] of degree at most, or O(M(n)logn-M(d))
field operations, by Corollary 10.8, and computing the piirai parts in step 9
takesO(nM(d)logd) field operations. The number of iterations is determined as
in the proof of Theorem 15.3.

15.25 (i) Sincegyis primitive with respect to botlk andy, Theorem 14.20 im-
plies thatu = v is the squarefree part ¢f ThusV UW contains all irreducible
factors ofg after step 4, and the algorithm returns the correct ressitap 7.
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(i) If his a pth power, then clearlph/ox = oh/dy = 0. Conversely, if both
partial derivatives vanish, théris a polynomial irxP andyP, and the claim follows
sincely is a perfect field.

(iii) We write hy = oh/ox for short, and assume that dbxlhy) is constant in
Fq[x,y]. In particular, this implies that is primitive with respect tx. Exercise
14.22 (ii) shows that an irreducible factere Iy[x,y] of h with multiplicity e
divideshy if and only if e> 1 orw, = 0. Since gc¢h, hy) is constant, we have
e=1 (andwy # 0).

If his squarefree, then g@d hy) is the product of all irreducible divisors €
F[x,y] of h with wy = 0. In characteristic zero, no such divisors exist, and the re
verse statement is true. However, in positive characieriisiay fail to hold.
For example, the polynomidi = (y — xP)(x — yP) € Fy[x,y] is squarefree, but
gcd(h, hy) = y—xP and gcdh, hy) = x—yP.

(iv) Sinceg is primitive with respect tok, Exercise 14.22 (ii) shows thatis
squarefree and every irreducible factoe Iy [x,y| of g hashy # 0. Again by the
same Exercise, we find that geduy) = 1. The other claims follow fronw | u and
analogous arguments.

(v) Sinceh is irreducible, (ii) implies that one diy andhy is nonzero. Ifp{e,
then Exercise 14.22 (ii) shows thatu or h | v, and hencé | vw. Thenh € V UW,
andh® is removed fromg in step 5. On the other hand, ff| e, thenh divides
neitheru norv, andh® dividesg after step 5.

(vi) By (v), gis apth power in step 6.

15.26 In the 1999 edition, the definition in part (ii) of thigseecise must be
changed so that onlly is required to be nonconstant, somehgf..., h, ; may
well be constant.

(i) LetK be the field of fractions dRandgj, . .., i, € K[x] be the polynomials in
the monic squarefree decompositionfofic(f) in K[x], and letgy,...,gm € R[X]
be primitive scalar multiples afj, ..., 0. Then they, are squarefree and pairwise
coprime inK[x], since they are. Nowf = lc(f) [11<i<m(g)', together with Gauld’
lemma, implies tha) = ﬂlgigmg} € Z[x] is a primitive polynomial and = cg for
a unitc € R*. Multiplying gn, by c if necessary, we may assume tbat 1. This
proves the existence gf,...,dgn. The uniqueness up to multiplication by units in
R* follows from the uniqueness of the monic squarefree decaitipo in K[x].

(In the 1999 edition, we haie = Z andK = Q, andf and theg; have positive

leading coefficients, so that=1.)

(i) The goal of this part is to show that the modular image loé primitive
squarefree decomposition dfis equal to the squarefree decomposition of the
modular image of, for all primes except those dividing resg).

Each irreducible factor of in Z[x] divides the squarefree pagt=g;---gm
of f in Z[x], and hence each irreducible factor bmod p dividesg modp. In
particular, the squarefree pdtt; - - -h) mod p € [F[x] dividesg mod p. Let 1<
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i <m, letg" € Z[x] be an irreducible factor aj;, andh € Z[x] be monic such that
h mod p is an irreducible factor of* mod p. Thenh' divides f modulop, so that
the multiplicity of hmod p in f mod p is at least, and hencé dividesh; - - - hg
modulo p and does not dividéy ---h,_; modulo p. In particular, taking = m
implies thatk > m.

Now we assume thai does not divide rgg,d’). Sincep does not divide I¢f),
it does not divide I¢g) either, and the discriminant gfmod p is equal to re§, d')
mod p # 0. Thusg mod pis a squarefree divisor df mod p which is divisible by
the squarefree part df mod p, by the above, and hence

g1 - Om=g=lc(g)hs---he modp. (7)

Sinceg mod p is squarefree, thg; mod p are squarefree and pairwise coprime.
We have seen above that any irreducible factofgef - - gm) mod p is coprime to
h; mod p and divides(h, - -hy) mod p. Thusg;---gn is coprime toh; modulop
and dividesh; - - - hy modulop, and hencd, dividesg; modulo p. Assume thag;
mod p andh; - - - hy mod p have a monic irreducible common divisomod p, for
someh € Z[x]. Thenh mod p dividesg; mod p exactly once and mod p at least
twice, so that it dividegf /g1) mod p. Sinceh mod p is irreducible, it divides;
mod p for somei > 2. But the latter polynomial is coprime tg mod p, and this
contradiction proves tha; andh; - - - hy are coprime modul@ andg; = Ic(gy)hy
mod p. Dividing both sides in 7 byy; and proceeding inductively, we find that
g = lc(gi)hi mod p for 1 <i < m, and this also implies th&t= m.

We note thak = mdoes not imply thag) mod p is squarefree: a counterexample
is given by f = x* +x% = (x*+ 1) - x* = (x> +x)? mod 2.

(iv) Here is the algorithm.

Input: A nonconstant primitive polynomidl € Z[x] of degreen and max-norm
| fll, =Aand with Iq f) > 0.
Output: The primitive squarefree decompositionfof Z[x].
1. b+—lc(f), B+— (n+1)Y227Ab
k<+— [2log,(n""B*"-1)], | <— [log,(2B)]

2. repeat
3. choose a s&f of 2| odd primes, each less thaklak
4. S« {peS:pth}

for eachp € S; call Yun's algorithm inF,[x] (Exercise 14.30) to com-
pute the monic squarefree decompositbes b[;<j<m h,; mod p,
with all hy; € Z[x] monic and with coefficients if0,..., p—1}

5. e«— max{deghpi---hpm):PE S}, s«—min{my:pe S}
S« {pe S:deghpi---hpm,) =€}
if #5 > | then remove %, — | elements frong; else goto 3
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6. for i =1,...,scall the Chinese Remainder Algorithm 5.4 to compute
g’ € Z[x] with max-norm less thaf,cs, P)/2 andg; = bhy; mod p
forallpe S

7. until [ Ic(pp(g))' =band [ [ pp(g)[y < B
1<i<s 1<i<s

8. return pp(gy), ..., PP(%s)

The proof of correctness and timing estimates are in Gerf20@113.

In practice, the same remarks as for the modular gcd algor@!38 apply. In-
stead of choosinglrimes, one would work adaptively by starting with ohlgr
even fewer, check whether the constant coefficients afid[];j<s pp(g’)' agree
in step 7, and if not, add some more primes dynamically. Ifabestant coeffi-
cients agree, then one would check whether in faet[T] 1§i§mpp(gi*)i holds. Con-
cerning the size of the primes, it is advantageous to chaonggprecision primes
fitting precisely into one machine word, maybe even detestaally from a pre-
computed list, instead of the firktprimes. For example, if the word size of our
processor is 64, then= [log,(2B)/63] primes between® and 2 are sufficient
to reconstruct the gcd.

15.27 Here is the algorithm.

Input: A nonconstant primitive polynomidl € Z[x] of degreen and max-norm
| fll, =Aand with Iq f) > 0.

Output: The primitive squarefree decompositiorf af Z[x|, as defined in Exercise
15.26.

1. call the modular gcd algorithm 6.38 to compute
f f/
u+— gedf, '), Vie— o Wi o

2. b+—lc(v1), B+«— (n+1)¥227Ab
k +— [2log,(n"B>"1)]

3. choose an odd primgwith n < p < 2kink such thatpt b andv; mod p is
squarefree
| «— [Iogp(ZB)]

4. i+—1
repeat
compute the polynomials;, vi;1, Wi, 1 € Z[x] with coefficients in the
set{0,..., p—1} such thaty mod p = gcd(v; mod p,w; —v; mod p),
hi is monic,v; = hjvi;; mod p, andw; — vV, = hjwi,; mod p

i+—i+1
until degv; =0
s+—i—1
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5. call the multifactor Hensel lifting algorithm 15.17 to computiaetorization
Vi = b[1<i<shf, with all ' € Z[x] monic of max-norm less thapl /2 such
thathy = h; mod p

6. for i = 1,...,s computeg; € Z[x] of max-norm less tham' /2 such that
g' = bhf mod p

7. return pp(g;),. .., PP(gs)

This variant of Algorithm 14.21 appears essentially in Yd976. Let f =
ﬂlgigmg} be the primitive squarefree decompositionfoin Z[x|, with primitive
squarefree and pairwise coprirges Z[X] with positive leading coefficients. Then
Vi =01 -Om- NOw assume that satisfies the conditions in step 3, or equivalently,
that it does not divide r¢s;,V;). By Exercises 14.30 and 15.26 (i), we hawe m
and (b/lc(gi))gi = bhy modp for 1 <i < mandv; = b[];<j<mhi modp. The
uniqueness of Hensel lifting (Theorem 15.14) implies theic(gi))g = bhy = g7
mod p'. Now both sides have max-norms less thay2, by Mignotte’s bound
6.33 and the choice df and hence they are equal. Since bgtland pdg’) are
primitive and have positive leading coefficients, we findttha= pp(g/). This
shows that the algorithm works correctly.

Step 1 take®™~(n? + nlogA) word operations, by Corollary 11.11. We have
V1]l WA |, < NB, by Mignotte’s bound 6.33. The cost for one execution of 8tep
is O(nlogB-logk) word operations for reducing all coefficients\afandw, mod-
ulo pandO(M(n)logn- M(logk) + nM(logk) loglogk) word operations for com-
puting gcdva mod p,v; mod p) to check whethev; mod p is squarefree. Novp
dividesb if and only if it divides Iqv1), and the latter in turn divides res, V), by
Exercise 6.41. Thug{b and gcdv; mod p,v; mod p) = 1 for a primep if and
only if ptregvy,vy). Since|vi|, < Band|v;||, <nB, Theorem 6.23 implies that
[regvy,V;)| < n"B?"1 < 2¥/2. Sinceg is squarefree, its discriminant is nonzero
and has at most/2 prime divisors, and if we choogeuniformly at random from
among the firsk primes exceeding, then the expected number of iterations of
step 3 is at most 2. (We may even allow primes smaller thdmwe modify step
4 according to Exercise 14.30). We ignore the cost for primeirig. Step 4 takes
O(M(n)logn-M(logk) loglogk) word operations, by Exercise 14.30. The cost for
step5is

O((M(n)M(I logk) + M(n)logn-M(logk) + nM(logk) loglogk) Iogn)

word operations, by Theorem 15.18. Steps 6 and 7 @dkéVI(I logk) log(l logk))
word operations. Using € O(n?+ nlogA), logk € O(log(nlogA)), andl! logk €
O(n+logA), the overall cost for steps 2 through 7 is

O((M(n)logn-+nlog(nlogA))M(n+logA))

or O~ (n? +nlogA) word operations.

Modern Computer Algebra@QhCHIM VON ZUR GATHEN and JJRGEN GERHARD, version 14 September 2003



Solutions to Chapter 16 73

15.29 Lets,t; € R[x] be such thas; fi+t;;f; =1 for 1<i < j <r. Multiplying
the congruences for £ i < k andk < j <r, we obtains,t* € R[x] such that
s‘g+t*h= 1. Then we can take= s'b~! remh andt = t* + (s‘b~! quoh)g.

Chapter 16

16.2 (i) LetR,F; € R consist of the firsk rows of F andF*, respectively,
andMy be the principak x k submatrix oM. Then (2) implies thaf, = MF;", we
have deMy = 1, so thaiM is invertible, and this proves that the subspdge R"
spanned by the rows &% is equal to the subspace spanned by the rov& of

(i) By (iii), f; is orthogonal tofy,..., f7 ;, and since these spak_1, by (i),
we conclude thaf; € U ;. Now the claim follows fromf — f € Ux_1.

(iif) We prove by induction ok thatf;, ..., f; are pairwise orthogonal. The case
k=1 is trivial, and we assume thkt> 2. For 1< | < k, we have

£

foxf' = fux £ — Z puii (T ) = fex £ — f'xf" =0,

1<j<k
sincef; x f; = 0 for j #1, by the induction hypothesis.
(iv) is immediate from (2).
16.3 (i) fo(x) =1, f1(X) = X, f2(X) = x> —1/4, f3(x) = X3 —x/2.

16.9 LetU =Rh;+---4+Rh_ =Rgi +---+Rg_2. In the proof of Lemma
16.13 (iii), we have seen thh{ is the component af;_; orthogonal tdJ +Rg; =
U +Rh" ;. Nowg, is already orthogonal td, and hence

Cglixhi

hiyxhiy v

The claim now follows by plugging il ; = g + pii-10 1, which was shown in
the proof of Lemma 16.13 (ii).

16.10 (i) We have

2
0 < N IVllzx+ [IXllay|[ ) = CIYlx+ [IXlI2y) * (IVllox 4 [x]2)
2

= [IYI200x %)+ 20X Yo (x5 Y) + X5 (y*Y)
= 2|XlI IVl (X1 1Yllz +Xx5y)-

The claim is trivial if one o andy is zero, and we may assume tHjat, ||y, > O.
Then—xxy < ||X||5||yll,- Replacingk by —x, we find that also

xxy = —(=xxy) <[ =X2[¥ll = [X2[Yl2;

and the claim follows.
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(i) We calculate

X +Yllz = (x+y) % (x+Y) = X2+ 2(xxy) + yll3
< IXliz+ 21X 112 + Y1z = (Xl + Ivil)?.

In fact, it is also easy to deduce the Cauchy-Schwarz indggudedm the triangle
inequality.

16.12 Inthe 1999 edition, the text of the exercise contagnsrml errors, and we
first give a corrected version of it.

This exercises discusses basis reduction for polynomiakt F be a field,
R=F[y], andn € N.o. The max-norm of a vectorf = (f1,...,fy) € R"is
Tl = IIfll. = max{degfi:1 <i < n}. For vectorsfy,..., f, € Rwhich are lin-
early independent ovét(y), the field of fractions oR, the R-module spanned by
fi,...,fmisM =3, Rfi, and(fy,..., f) is abasis of M.

(i) Let fq,..., fm€ R"be linearly independent (over(y)), with fi = (fi1, ..., fin)
for 1 <i < m. We say that the sequencg, ..., f) is reduced if

o [fal <|faf <--- <[ fwl], and

o degfij < degfj for 1 < j <n, with strict inequality ifj <i, for1<i<m.

In particular, we havd| fi|| = degf;; for 1 <i < m. Prove thatf; is ashortest
vector in theR-moduleM = ¥ ;i Rf;, so that| f;| < | f| for all nonzerof € M.
(i) Consider the following algorithm, from von zur Gath&9843.
ALGORITHM 16.27 Basis reduction for polynomia:z.

Input: Linearly independent row vectofs, ..., f, € R", whereR= F|y] for a field
F, with | fi| <dfor1<i<m.

Output: Row vectorgys,...,gm € R" and a permutation matridA € R™" such
that (gs,...,0m) is a reduced sequence afglA,...,gnA) is a basis oM =
Y1<i<mRfi.

1. Iet gl: ce ;gm be SUCh tha{gla te :gm} = {fla tr fm} and ||g| || S ||gi+1|| for
1<i<m
Ac——id, k+—1

2. whilek<mdo

3. { (91,...,01) is reduced anglg | < ||gi+a] for1<i<m}
U <— g

4, fori=1,...,k—1do

3. 04— Ok quUOGii, Ok <— Ok — Qg

6. if g/ < uthen

r «— min{izi=kor (1<i<kand|gl > [akl)}

replacegr, ..., 0k-1,0k bY 9k, O, - - -, Ok-1
k<«—r, goto2

Modern Computer Algebra@QhCHIM VON ZUR GATHEN and JJRGEN GERHARD, version 14 September 2003



Solutions to Chapter 16 75

7. | «— min{k < j <n:deggy = u}
let B € R™" be the permutation matrix for the exchange of colurkins
andl

fori=1,...,mdog «— gB
A+—BA, k«+—k+1
8. returngy,...,gmandA
Show thatM = ¥ ;.- R- giA holds throughout the algorithm, and conclude that
theg; are always nonzero vectors.

(iif) Assume that the invariants in curly braces are truet@ps3. Convince your-
self that||gk—1| < u holds during steps 4 and 5kf> 2. Show thaty; # 0 holds in
step 5 ifk > 2, so that the division with remainder can be executed, aodepthe
invariants||gx|| < uand degy; < ufor 1< j <i of the loop 4.

(iv) Show that(gs,...,0k_1) is reduced andgi|| < ||gi;1| for 1 <i < m holds
each time the algorithm passes through step 3. Concludé thaiks correctly if
it halts in step 8.

(v) Show that|gi|| < d for 1 <i < m holds throughout the algorithm. Prove
that the cost for one execution of steps 3 throughQ(ism) arithmetic operations
(additions, multiplications, and divisions with remaingdie R or O(nmM(d)) op-
erations inF.

(vi) Show that the functiors(gs,...,0m) = Y1<i<m||Gi|| Never increases in the
algorithm and strictly decreases if the condition in steg &ue. Conclude that
the number of times when the latter happens is at mdsand that the number of
iterations of the loop 2 is at mo&in— 1)(md + 1).

(vii) Putting everything together, show that the runningeiof the algorithm is
O(nm*dM(d)) or O~ (nmd?) arithmetic operations if.

(viii) Trace the algorithm on th&g;[y]-module generated by

(5y° + 44y* + 37y + 91, 8y° + 86y* + 91y + 89, 16y*+ 65y°+ 20y + 76),
(8y®+70y+ 37, 16y® + 7y*+ 54y + 38, 3%+ 23y* 4 80y + 77),
(16y?+84y+ 63, 32y?+ 15y + 19, 64y*+ 48y +51) € For[y]>.

Solution:
(i) Let f =35 .<mrifi be a nonzero vector iM, with all r; € Fly], lete=
max{||r; fi||: 1 <i<m}, and let be the least index such that f||| = dedr f;) =e.
This implies in particular thaty £ 0. Then for 1<i < |, we have

deg(ri fi|) < deg(ri fii) = ||I’i fi || < ||I’| fi || =g,
and forl < i <m, we find

deg(ri fn) < deg(rir“) = ||I'i fi|| < ||r| fi || =e
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Thus thelth entry of f, which equalsy ;i i fii, has degree, and we conclude
that
[fa]l <[ fill < degr +[[fi = rfi| =e<|f].

We note that reduced bases are not unique: for example,(bdh (0,1) and
(1,1), (0,1) are reduced bases of tRemoduleR?.

(ii) The invariant clearly holds initially, so let us assurtimat it holds at some
pass of the algorithm through step 2. There are three paointeialgorithm where
thegi’'s change. In step 5, a polynomial multiple @fis added tagk. This is an
invertible transformation and does not change the gereeratelule. In step 6, the
gi’s are permuted, which does not change the spanned moduée. dit step 7, all
gi’s are multiplied by the permutation mati and the invariant holds again at the
next pass through step 2 sinBas multiplied by the inverse dB, which happens
to beB itself. Thus the invariant holds at all times in the algamththeg;’s are
always linearly independent, and nonzero in particular.

(iii) Since (gs,...,0« 1) is reduced, we havlgi|| = degg; andg; is nonzero,
by (ii). Before the first iteration of the loop 4, we ha\gx_1|| < ||gk|| = u. Since
Ok—1 does not change in steps 4 and &1/ < u holds throughout these steps. So
we assume thdlgi|| < u holds before some pass through step 5. There is nothing
to prove ifq = 0, and otherwise, we find

degq = deggw — deggii < [|gk/| — [laill
l9« — agill < max{{ok[,dega+[|gill} < max{]igl, o[} = u,

so that|gk|| < u holds again after step 5.

The second invariant is vacuously true at the beginning efltlop, and we
assume that it holds before some pass through step $.<If, then degj; <
deggii = ||gil| < [lgk_1/|, since(gy,. - -,0k_1) is reduced, and

dedgyj —0gij) < max{deggy;,degq-+degg;j} < max{u,degq-+ deggi }
= max{u,deggk } = u,

by the first invariant. This inequality also holdgjif= 0, and together with

deqgw —0gi) = deg gk remg;) < deggi = |Gl < [lgk-1]| < u

implies that the invariant holds again before the next passigh step 5.

(iv) The invariants are clearly true before the first passugh step 2, and we
assume that they hold before step 3. The..,gk 1 do not change in steps 3
through 5, so that the first invariant holds again at the nasshrough step 3 if
the condition in step 6 is true, and otherwise this is enshye(i) and the actions
taken in step 7. Moreover, ttgg's are resorted in step 6 when the if condition is
true, and hence the second invariant holds again after séel Gt the next pass
through step 3. In particulafgs, . ..,gm) is reduced if the algorithm terminates in
step 8.
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(v) The value mag||gi|l:1 <i < m} is less thard initially, it changes only dur-
ing steps 4 and 5, and (iii) implies that one complete pasaitiir these steps does
not increase the value. Thus the degree of all polynomialsaralgorithm is less
thand, at all times. The cost for one execution of step Big) arithmetic opera-
tions inR, each takindd(M(d)) operations irf, and there ar®(m) iterations of
the loop 4. All other steps are for free, and hence the costrieriteration of the
loop 2 isO(nmM(d)) field operations.

(vi) By a similar argument as in (vl changes only during steps 4 and 5, and a
complete pass through these steps does not increase its \tadiecreases strictly
between two successive passes through step 3 if and onlg @ahdition in step
6 is true. Since al’s are nonzero, by (ii)sis always a nonnegative integer, and
initially s < md. Thus the number of decreasesse$ at mostmd. Between each
two times that the condition in step 6 is true, there are attmos 1 passes of
the loop 2 where the condition is false, and also before thedimd after the last
decrease. Thus the total number of iterations of the loop& most(m—1) -
(md+1).

16.13 The analog statement is as follows. Edte a field andR=Fy], let f,g €
F[x,y] = R[X] have positive degreesk in X, respectively, and suppose that R[x]
is monic nonconstant with respecttand divides botH andg modulomfor some
m e Rwith kdeg, f +ndeg,g < deg,m. Then gcdf,g) € R[x] is nonconstant with
respect to.

We imitate the proof of Lemma 16.20, and suppose thatfig) =1 in F(y)[x].
Then there exis$,t € R[x] such thasf 4+tg =res(f,g), by Corollary 6.21. Since
u divides bothf andg modulom, it divides reg( f,g) € Rmodulom. With respect
to x, the polynomialu is monic and nonconstant, and thus,(ésg) = 0 modm.
Since deg(rex(f,g)) < kdeg, f +ndeg,g < deg m, by Theorem 6.22, it follows
that reg(f,q) is zero. This contradiction to our assumption shows that g
F(y)[X] is nonconstant. By Corollary 6.10, the gcd bfand g in R[x] is also
nonconstant.

16.15 The number of nonzero coefficients of the polynomial.is'he arithmetic
circuit first computes? for 1 <i < n, takingn— 1 squarings, then computes-y*
for 0<i < n, takingn additions, and finally multiplies all factors up, taking #mer
n— 1 multiplications.

16.16 (i) It is clear that is a ring homomorphism, so that in particular its
restriction toU is F-linear. Moreover, we have dég(f)) < (n—1) 1Nt =
nt —1 for f € U, so thatr(U) C V. Moreover, the monomiaB = {x*---x:0 <
e1,...,a < n} form anF-basis olJ, ands(B) = {x:0 <i < n} is anF-basis oWV,
so thato mapsU isomorphically ontd/.

(i) Let R=F[x,...,%] for short. Ifg € Ris a factor off, then, by unique
factorization inF [x], there is a unique subs8tC {1,...,r} and a nonzero constant
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c € F such thatr(g) = c[iecshi = ch. Sinceg divides f, it has degree less than
in all variables, and hendec V ando—1(h) = ¢ g divides f.

(i) Let hy,...,h € F[x] be as in (i), andSC {1,...,r}. Thenr < n‘, and
we can computd = [ieshi andh* = o(f)/hin time O(M(n')tlogn). Comput-
ing g = o~%(h) andg* = o~1(h*) is for free. Sinces(x;) = X, we may iden-
tify x; andx. ThenF[x] becomes a subring d®, and f = gg* mod|, where
| = (% —x”H,...,xz—x”> C R Finally, we check whethef = gg* holds, at a
cost ofO(M(n)!) operations. This solves our task completely.

There is, however, a way to avoid the computatiog af* if we proceed as fol-
lows to computgy andg*. We definef; € F[x1,Xi11,...,%] by fi=f(x,xX",... X
Xi+1,---,%), andg;, g are derived frong,g* in a similar way, for 1<i <t. Then
fi=f,1=00;=0" fi=0(f), 5 =h,andg = h*. The degreesirof fi,g,q
are less than', for all i, and all these polynomials can be computed without arith-
metic cost. We now claim théft= gg* if and only if deg fi = deg (gig;) for all i.
The “only if” part is clear. For the converse, we show by reeeinduction ori
that fi = gig. This is clear fori =t, and we assume that t. The induction
hypothesis implies that

fi = fir1 = G101 = GiG7 modX” — X 1.

By assumption, both sides have degree less thanx, and hence they are equal.
Thus it is sufficient to check whether @il g° have correct degrees ¥xpand no
multivariate multiplications are necessary. The numbesulifsetsS that have to
be checked in the worst case 5,2nd hence the overall cost, without the cost for
the univariate factorization, to find one irreducible faabf is O(t2"M(n') logn)
field operations. This is singly exponential in the degreg @mubly exponential
in the number of variables.
If one wanted to use this in practice, one would first checlbabdlistically if
f = gg* holds, say by substituting — g for x;, with randoma, ..., a,.
(In the 1999 edition, some variables were named differgntly

Chapter 17

17.1 (i) The encryption of “ALGEBRAISFUN” is
810Q 8019 14487 96, 15989 10786

(i) We have
—1

—+
Il

WX g = Z XiCi modm,

0<i<9 0<i1<9

and the claim follows since both sides of the congruence anaeegative and less
thanm.
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(iii) The original message was “LATTICEREDUCTION?".

Chapter 18

18.1 Ifais even, therm? = 0 mod 4, and ifais odd, there? = 1 mod 4.

18.2 We havep(55) = ¢(5) - ¢(11) = 40, and Euler’s theorem implies tha&2=
1 mod 55. Thus

21000005_ (240)25000. 2°=2°—-32 mod 55

18.3 N = 10?994 349 is composite sincé'2? # 1 modN.

18.6 (i) LetN = p®for an odd primep ande > 1. Then Fermat's little theorem
says thata® ! = 1 modp, and since(p—1) | (p*—1) = N -1, we also have
a1 =1 modp. Thus gcda ! — 1,N) is divisible byp.

(if) The criterion is as follows. LeN —1 = 2mwith vm e N andm odd. If
either gcda™ 1 — 1,N) = 1 or there is an indeke€ {1,...,v} such thaw®™ =1
modN anda? 'm # £1 modN, thenN is not a prime power. To see why, we let
N be as in (i). Then (i) implies that g¢a~* — 1,N) > 1. If a™ = 1 modN for
somei < v, thena? '™ is a square root of 1 moduls. By Exercise 9.40, the only
square roots of 1 modulo an odd prime power are 1-ahdand hence? ™= +1
mod p.

In fact, if N is composite ané? "™ % +1 modN, then gcda? ™ —1,N) is a
nontrivial factor ofN.

18.9 (i) By Lemma 18.4, we may assume tNak squarefree. Lgb be a prime
divisor of N andb € Z coprime top with ord,(b) = p—1; such & exists according
to Exercise 8.16. By the Chinese Remainder Theorem 5.3 tivdsts ara € Z
such thata= b mod p anda = 1 modN/p. Then gcda,N) =1 andaV-1=1
mod p, and Lemma 18.1 implies that— 1 dividesN — 1.

(i) “="follows from Lemma 18.4 and (i).

“«<=": Let N be squarefree and enjoy the property in (i), @d Zg. Then
a1 =1 modp, and henca ! = 1 modp, for all prime divisorsp of N. Thus
aV"1 =1 modN.

(i) If the Carmichael numbeN were even, then, since itis squarefree by Lemma
18.4 and composite, it would have an odd prime divigpand the even number
p— 1 would divide the odd numbe¥ — 1. Now we assume thai < g are odd
primes withN = pg. Theng— 1 dividesN — 1 = pg—1, by (i), and hence it also
divides(pg—1) — p(g—1) = p—1 < q— 1. This contradiction proves the claim.

(iv) 561=3-11-17, 1105=5-13-17, 1729=7-13-19, 2465=5-17- 29,
2821=7-13-31, 172081 7-13-31-61 are the only Carmichael numbers in the
list. 663=3-13-17 has 13-11663—1, 867=3- 172 is not squarefree, 935
5-11-17 has 13- 11935—1, 1482 is even, 154# 7-13-17 has 7- 111547—1,
2077= 31-67 has only two prime factors, and 2647 is prime.
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18.11 (i) The proper divisors d®, are 12 4,...,2" 1 andM,,2Mn,4M,, ...,
2"-2M,,. The first ones sum td'2- 1 = M, and the last ones {@"* — 1)M,, and
hence the sum of all proper divisors & 2M,, = P,.
(iii) Multiplying out the product definindN, we find
N = |‘2| (diPim+1) = 1+Pym d; +1Pn?
1<i<2n-1 1<i<Zn-1

= 1+P’m(1+1m)

for somel € N. Thusp; — 1 = diP,m|P?m|N — 1 for alli.

18.12 (i) ALGORITHM 18.16 Special integer factorizatic:.

Input: A squarefree odd integhk> 3, a multipleL € N of A(N), and a confidence
parametek € N.

Output: The set of prime divisors &f.

1. h«—1
2. whileh < kdo
3. choosae € {2,...,N — 2} uniformly at random
4. g<«—gcda,N)
if g > 1then break the loop 2 andoto 9
5. writeL = 2mwithvme N, v> 1, andm odd

call the repeated squaring algorithm 4.8 to compgte- a™ remN
if bp=1thenh+—h+1, goto2

6. fori=1,...,vdob +— b? ; remN

7. je—max{0<i<wvib#1}, g<+—gcdb;+1N)
ifg=1lorg=Nthenh+—h+1
else break the loop 2 andoto 9

8. return {N}

9. call the algorithm recursively with inpug, L,k and with inputN/g, L,k to
compute the setd,V of prime factors ofy andN/g, respectively
returnU uv

(The numberd. andmwere calledn andm®, respectively, in the 1999 edition.)

It is clear that the algorithm returns a (possibly incomgjdactorization ofN
if it terminates. We claim that iN is composite, then & g < N holds in step 4
or 7 with probability at least A2 over the random choices in step 2. This implies
that each returned factor is prime with probability at lehst2 ¥, and that the
returned factorization is the prime factorization with ipability at least 1-r2
wherer <log, N is the number of returned factors.

To prove the claim, we proceed as in the proof of Theorem Zhd,letP be
the set of prime divisors dfl and

| = {i:0<i<vandvueZ W™= 1}.

Modern Computer Algebra@QhCHIM VON ZUR GATHEN and JJRGEN GERHARD, version 14 September 2003



Solutions to Chapter 18 81

SinceA(N) | L, we havev € I. As in the proof of Theorem 18.6, we find thag0,
letl <vbesuchthat¢Zl andl+1€1, and

G={ueZ{:W¥™=+1} C 7.

Then # < ¢(N)/2 sinceN is composite. Now assume thet Zy \ G in step 3.
As in the proof of Theorem 18.6, we find tha& | in step 7 and

g=gcdlb +1,N) = p
[

a2M=_1 modp

is a proper divisor oN. Since #Zy \ G) > (#Zn)/2 and the algorithm detects
a proper factor oN in step 4 ifa € Zy \ Zy, we obtain the claimed probability
bound.

The cost for one iteration of the loop 2@ (logL + loglogN)M(logN)) word
operations, oiO(logN - M(logN)) if logL € O(logN). By what we have just
shown, the expected number of iterations until a propeofdstfound is at most
2 if N is composite, andk if N is prime. Since the sum of the word lengths
over all leaves of the recursion tree@logN), the total cost for all leaves is
O(klogN - M(logN)) word operations, by the superlinearityMf The sum of the
word lengths of the inner vertices at each level of the tré&(legN) as well, the
depth of the recursion tree is at mast O(logN), and hence the expected total
cost for all inner vertices of the tree@log?N - M(logN)) word operations. Thus
the worst case overall cost @(klog?N - M(logN)) word operations, while the
expected cost is onl@((k+logN)logN - M(logN)).

18.13 (i) For 1< i <r, we haven?(P") = 1 modp®, by Euler’s theorem, for all
b € Z not divisible byp;. Sincep(p) | A(N), we conclude that*™) = 1 mod p’
if pi 1b, and henc&®*™) =1 modN if gcd(b,N) = 1.

(i) We conclude from (i) thagN-1 = 1 for alla € Z if A(N) | N — 1. For the
converse, we assume that-! = 1 for all a € Z§. If N is prime, then\(N) =
N — 1. OtherwiseN is a Carmichael number, and Exercise 18.9 (ii) showslthat
is squarefree and— 1| N — 1 for all prime divisorsp of N. But A(N) is the least
common multiple of all thesp— 1, and therefora(N) | N — 1.

18.15 (i) Ifb € Fy is a square, then Lemma 14.7 says #i&t"/? = 1. Thus
ord(b) < (p—1)/2 < p—1, and hencé does not generafe; .
(i) Let b€ Fy be a nonsquare. Then Lemma 14.7 implies t&t/? = —1,

and since 2 is the only prime divisor pf- 1, Exercise 8.16 (i) shows that gt =
p—1andb generate& .

18.16 (i) Letb=a". Thenb® = aP~! =1 modp, by Fermat's little theorem,
andb mod p is a Zth root of unity. Sincep is prime and 2< p, 2° is a unit
modulo p. Finally, sincea mod p is a nonsquare, Lemma 14.7 shows that =
alP-1/2= _1 modp, and hencé mod pis a primitive 2th root of unity.
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(i) The algorithm choosea € {2,...,p— 1} uniformly at random and checks
whethera(P-1/2 = —1 mod p by repeated squaring. If this is not the case, then
it chooses anothea. Otherwise, it returng’ remp. The cost for the repeated
squaring, which can be arranged such #iaem p is computed along the way, is
O(log p) multiplications modulop or O(logp-M(logp)) word operations. Since
at least half of the elements between 2 gnd 1 are nonsquares modufm by
Lemma 14.7, the expected number of iterations of the algoris at most 2.

(iiiy The integer 2’k + 1 is prime fork € {15,17,24,26,29} and composite for
all other values ok between 1 and 31. Thus there are precisely four priries 2
p < 2%2such that 2’ | p— 1 and only two with 28 | p— 1.

18.18 (i) Letx > 59. From the prime number theorem 18.7, we have

2X 1 X 3
_ > - - -
m(20) =) 2 In2x<1+2In2x> Inx<1+2Inx> @)

X 2Inx 3

> —1——

“Inx\Inx+In2 2Inx Inx +% 2Inx

L X (pf1 2y 3\ x(, 3
Inx Inx 2Inx Inx Inx
X

~ 2Inx’

where we have used th@t+0) 1 >1-§forO<d<land2In2+3/2~2.89< 3
in the third line, and the last inequality holds if and onlx it €® ~ 40343.

(iii) Using (i), we haver (2%2) —7(231) > 231/(61In 2) > 49970387 and (254) —
m(28%) > 283/(126In2 > 1.056- 10'7. In fact, the more accurate estimate (4) im-
plies that there are more than 91082775 32-bit primes ane than 202- 10’
64-bit primes.

(iv) We needr single precision primes such that their product excedtis=2
2n"/2BN ny 20221 = p*+(nlogn)/2+1 \yhere log denotes the binary logarithm. Each
single precision prime is greater thafr 2 so that(k— 1)r > n?+ (nlogn)/2+1
is sufficient. Fork = 32 andk = 64, the number of single precision primes is
at least 910" and 2- 107, respectively, and substituting these numbersrfor
leads—after some calculation—to admissible values ap to (at least) 52816
and 3549647861, respectively.

18.19 (i) In Table 18.2, the first column contains the values,ofhe second
column the estimated numbg&2<—S/(k — 1)In2| of Fourier primes, and the third
column the true number of Fourier primes for that valus.of

(i) To multiply two polynomials of degree less than= 251 with coefficients
of bit length at most = 25-1, we needr Fourier primes such that their product
exceed®2?+1 = 252 Since each prime is greater than 2 r > (s+25)/(k—1)
primes are sufficient. Now the estimate for the number of ieoyrimes implies
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| k=32 | k=64 |
1]99940774 9818265p |33 ] 49177206 4874222
249970387 49090415 | 34| 24588603 24371651
3| 24985193 24545135 | 35| 12294301 12184774
412492596 12273201 |36 6147150 6092470
5| 6246298 6136376 | 37| 3073575 3044704
6| 3123149 3068306 |38| 1536787 1522110
7| 1561574 1534382 |39| 768393 761041
8| 780787 766507 |40| 384196 380158
9| 390393 382950 |41| 192098 189935
10| 195196 191549 |42| 96049 94895
11| 97598 95658 |43| 48024 47179
12| 48799 47700 | 44| 24012 23606
13| 24399 23893 |45| 12006 11888
14| 12199 12052 |46 6003 6003
15 6099 6046/ | 47 3001 2986
16 3049 3020 |48 1500 1498
17 1524 1540 | 49 750 743
18 762 762| | 50 375 380
19 381 394| |51 187 196
20 190 199 |52 93 88
21 95 102 53 46 49
22 47 56 54 23 22
23 23 24 55 11 14
24 11 14 56 5 8
25 5 8 57 2 5
26 2 6 58 1 1
27 1 4 59 0 1
28 0 2 60 0 0
29 0 1 61 0 0
30 0 1 62 0 0
31 0 0 63 0 0

TABLE 18.2: Estimated and true number of Fourier primes (Exeft8s&9)

thatr < 2¢-5/(k—1)In2, and combining both inequalities, we obtain the comstra
25(25+5) < 2¢/In2. Substitutingk = 32 andk = 64, we find that the maximal
possible values fas are 16 and 32, respectively.

18.20 (This solution refers to the 2003 edition only.)

(i) One execution of Algorithm 19.2 take(M(r/2)M(3)(logr +log/3)) word
operations, by Theorem 19.3, and we expect to n@{@) choices before termi-
nation.

(i) This follows from the fact that a numbgrwhich passes the gcd test is prime
with probability at leastB/23)/(B/Inr) = (Inr) /243, and a similar analysis as in
the proof of Theorem 18.8.

(i) The expected number of primality tests @&k3/Inr), taking O(5M(3))
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word operations each, and the claim follows from

M(r*/?)(logr +log ) = 2M(5*/?)log 3 € O(5/log3)
by adding up the costs.

18.21 We haved(x) > x(1—1/Inx) > x/2 if x > 49, and we easily check that in
fact¥(x) > x/2 forx > 5.

(i) In step 1 of the small primes modular determinant aldgponit5.10, we let
x=[2In(2C+1)] and choose the first= 7(X) primes 2=my <m; < ---m_1 < X.
Then[o<ior m = €™ > 2C, and the determinant is correctly recovered in step 4.
Step 1 take©(r log?r loglogr) word operations, by Theorem 18.10 (ii). The cost
for step 2 isO(n?logm - logB) for eachi, in total O(n?xlogB). The cost for step
3 is O(n*log?m;) word operations for each in total O(n®xlogx). Finally, the
Chinese remaindering tak€¥x?) word operations. Using € O(nlog(nB)) and
r € O(x/logx), we find an overall cost dd(n*log(nB) log(nlogB) + n®log?(nB))
word operations.

In step 1 of the small primes modular EEA 6.57, wexet [2In(2A%B% + 1)]
and choose aSthe firstr = 7(x) primes. Similarly as above, we haf,csp >
2A?B%in step 1[pesPp > 2B%in step 2, and .5 p > 2B?in step 3, for each and
the correctness follows as in the proof of Theorem 6.58. Tséfor choosing the
primes isO(r log®r loglogr) word operations. Reducing all coefficients foind
g modulo all primes irSin step 2 take©(nxlogB) word operations, and the cost
for all modular EEAs iO(nmxlogx). Finally, the rational number reconstruction
in step 3 take©(x?) word operations per coefficient, togett@fnmx?) word op-
erations. Using € O(nlog(nA)) andr € O(x/logx), we see that the cost for step
3 is dominant and obtain a total cost@fn®mlog?(nA)) word operations.

(i) Leto=reqf,f’)andC = (n+1)2"A%"-1 suchthatC< |o| <CandInC <.

If we let x = [2InC] andr = 2r(x), then the product of the first(x) primes is
e’® > C > |o|, and hence any product af(x) of the firstr primes exceeds|.
Thus at mostr(x) = r/2 of the firstr primes divides. By Theorem 18.10 (ii),
the cost for computing the firstprimes isO(r log?r loglogr) word operations, or
O(~logvloglogy) sincer € O(y/log).

18.22 (i) Letac Fy such thae® = —1. Thena® = 1 and orda) = 4, by Exer-
cise 8.16 (i). Thus 4#F; = p—1, by Lagrange’s theorem.

(i) If a€[Fy is nota square, thealP 1/2 = —1, by Lemma 14.7. Thua'P- /4
is a square root of-1.

18.23 (i) Letpy,..., pr be the distinct prime divisors &fl andN, andey, f4,...,
&, fr € N such thaN =[], p* andM =[], p{". Then

(0)=nG =16 =R

(2= 1" = 0 (3 )= (@)
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(i) Let N=p;---pr anda= 0 ---qs, Whereps,...,pr,q1,...,0s € N are (not
necessarily distinct) odd primes afigs,...,pr } N {a,...,0s} =D. Let 1<i<r
and 1< j <s. The law of quadratic reciprocity for the Legendre symbolssa
that (qﬂji) = (%) unless and only unless = g; = 3 mod 4. If we lete(u,v) =
(—1)(-DOv-D/4for u,v € Z, then this can be rewritten as

PN g g (O
(qj) =e(poa) ()
Letu,v,w be odd integers. Theotw — 1 =v+w—2 mod 4 and
(v=1)/2+(w—1)/2

(u,w) = (—1) DD/ ((—q)@B72) = (U V)e(u,w).

Thus, by symmetrys is multiplicative with respect to both (odd) arguments, and

hence
N pi j

N——

1<i<r 1<i<r

1<j<s 1<j<s

— e(py--- 4 _ a

=elprpuane-a) [ () == ().
1<j<s

and the claim follows.

(iii) Let N-=py---pr as in (ii). Then(2) = (—1)P/8 = 6(p). Since the
congruencéw)? — 1 =v?— 1+w? —1 mod 16 holds for all odd integevsw, we
find thaté is multiplicative on odd arguments and

2

(%)Z [1 <E>: [1 9(p)=3(N).

1<i<r 1<i<r

(iv) LetN = p;---prasin (ii) ando=aremN. Thena= b mod p; implies that
(2)= (g) for all i, and hence

®-06-n6-&

(V) ALGORITHM 18.17 Jacobi symbol computatic:.
Input: An odd integeN > 1 anda € {1,...,N—1}.

Output: The Jacobi symbcﬁl%).

1. writea= 2b for k,b € N andb odd
2. if b=1then return (—1)kN-1/8
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3. M«—Nremb, ifM=0thenreturnO

. . M
4. call the algorithm recursively to compute= (E)
5. return (_1)k(Nz—l)/8+(N—1)(b—1)/4u

The algorithm returns the correct result in step 2 if and ahlyis a power of
two, by (i) and (iii). If the algorithm returns 0 in step 3, thgcda,N) > 1, and the
outputis correct as well. Otherwise, sifeés odd, 1< b < N, and 0< M < b, we
may conclude by induction that the result of the recursitkicatep 4 is correct.
If gcd(M, b) > 1, then gcda,N) > 1, u= 0, and the algorithm correctly returns O
in step 5. Now assume that géd,b) = 1. Then gcda,N) = 1, and using parts (i)
through (iv) of this exercise, we find that

(3)- GG - comemmcarenone(

M
_ (_1\KIN*=1)/8+(N-1)(b—1)/4 (V]
(-1 (%)

The dominant cost of the algorithm is the remainder compriah step 3,
which takesO(logN - logb) word operations with classical arithmetic. With the
exception of step 2, the computations in the recursive poeee essentially the
same as in the Euclidean Algorithm, and a similar analysis &gction 3.3 shows
that the overall cost i©(logN - loga) word operations.

18.24 (i) This follows immediately from Lemma 14.7.

(i) Let N = p®mfor a primep € N, e N>1, and an integem > 1 coprime
to p. We may assume thatl € T, and letc € N be such that(c modN) =
—1. Using the Chinese Remainder Theorem, we can fing & such thabb = c
mod p® andb =1 modm. Then gcdb,N) = 1 andb modN € Zy. Moreover,
b(N-1/2 = ¢(N-1/2 = _1 mod p® andbN-Y/2 = 1 modm, and we conclude that
b(N-1/2 £ +1 modN.

(iii) By Lemma 18.1,a= (1+ p® 1) modN has multiplicative ordep in Z.
Now (N—1)/2= (p®—1)/2 is coprime top, and hence (a) has ordeip as well,
by Exercise 14.11 (ii). Sincp > 3, we conclude that(a) # +1.

We remark thall = +1+ pZy if eis odd andl = 1+ pZy if eis even.

(iv) If T={1},thenaV-t=¢(a)>=1forallac 7.

(v) Suppose first thal is prime. Thenb; = +£1 and, by Lemma 14.7, each
of the two possible values occurs with probability21 for alli. The algorithm
incorrectly returns “probably composite” if and only if leér allb; are 1 or all
b; are—1. Each of the two events happens with probabilityf,2and hence the
correctness probability is4 21,

Now assume thatl is composite. If gcth,N) > 1 for some, then gcdb;, N) >
1 as well andb; # +1, and the algorithm correctly returns “probably compos-
ite”. Thus it is sufficient to show the probability estimata fthe case where
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gcda,N) =1foralli. If T = {1}, thenb; = 1 for alli, and the algorithm correctly
outputs “probably composite”. Otherwise, (ii) and (ii)phy G=TN{+1} isa
proper subgroup of, so that #& < #T /2, by Lagrange’s theorem. Sineeis a
group homomorphism, Lagrange’s theorem also implies that ¢#6) < #7; /2,
and we haver(a) # +1 for at least half of the elements #,. Thus eaclp; is
different from+1 with probability at least A2, for all i, and the probability that
bi = +1 for alli is at most - 2 K.

In fact, if —1 ¢ T, then the algorithnalwaysreturns the correct result “probably
composite”.

(vi) Each execution of step 2 tak€logN - M(logN)) word operations, and this
dominates the cost for the other steps. Thereaterations of the loop 1, and the
claim follows.

(vii) If N is composite, then the same proof as in (v) shows that thefreddi
algorithm returns the correct answer with probability askel— 2. If N is prime,
then the correctness probability of the modified algoritBri+ 2 as well.

(viil) We have 343= 7%, s0Tasz = +1 + 77343 and #z43 = 2-49 = 98, by the
remark at the end of (iii). 56 3-11-17 is the smallest Carmichael number,
and Tse1 = {1,67}. For N = 667 = 23-29, we haveTgsr = Zgg; and fAgsr =
©(667) = 22-28= 616, sincg667—1)/2 = 333=9-37 is coprime to the order
616=23.7-11 of Z};, and hence is an automorphism dy . Finally, 841= 29,
andTgs1 = 1+ 29%g41 and #ig4y = 29, again by the remark at the end of (iii).

ForN =561 and\ =841, we have-1 ¢ T, and the algorithm returns “probably
composite” in any case. For the other two numbers, the pibityathat o(a) = 1
for a randomly chosem € Zy is 1/#T, and the probability that(a) = —1 is
1/#T as well. The algorithm incorrectly returns “probably primeand only
if bj = +1 for all i and theb; are not all equal. This happens with probability
(2/#T)K—2(1/#T)k. If we letk = 10, then the exact error probability is 49 —
2.98719 < 1.251.10° ' for N = 343, and 333'°—2.6661° < 5.953.102° for
N = 667. The estimate from (v) for the error probability is only*2~ 10-3.

18.25 (i) Letn> 1. Thenk, =1 mod 4. We havéy, = 2 mod 3, so thaF, is
not a square modulo 3, and the law of quadratic reciprocilies that 3 is not a
square moduldr,. Similarly, F, =3 mod 7 ifnis even and=, =5 mod 7 ifnis
odd, and both 3 and 5 are nonsquares modulo 7. Thissnot a square modulo 7,
and again the law of quadratic reciprocity implies that 7dsansquare modulB,.

If n> 2, we havel, = 2 mod 5, so thak, is not a square modulo 5, and hence 5
is not a square modulg,.

(i) If Fyis prime, then 3 is not a square modig and hence &-b/2= 1
modF,, by Lemma 14.7. Conversely, suppose tHatd/2 = —1 modF,. Then
371 = 1 modF,, and hencem = ordg, (3) dividesF, —1 = 2%, If m# 27,
thenm = 2¢ for somek < 2", so thatm | (F, — 1)/2, which is a contradiction
to 37 1/2= _1 modF,. Thusm= 22", and Exercise 18.27 (i) implies thB} is
prime.
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(iii) Computing 37~Y/2 remF, by repeated squaring tak€glogF,-M(logF,))
or O(2"-M(2")) word operations.

18.26 Letpbe a prime divisor oF,. Then2'=F,—1=—1 modpand Z
mod p, and Exercise 8.16 (i) implies that (@) = 2", Lagrange’s theorem
implies that 8§ 2! | p— 1, and hencg? — 1 = (p+1)(p—1) = 0 mod 16. Then
Exercise 18.23 (iii) shows thaﬁ) =1, and hence 2 is a square modpldf ae N

is such that? = 2 modp, then org(a) = 2"2, and again Lagrange’s theorem
implies that 22 | p— 1.

18.27 In part (iv) of this exercise in the 1999 edition,/¢® should be replaced
by NP NcoNP.

(ii) If N is prime, then Exercise 8.16 implies tHdthas a Pratt witness. Con-
versely, ifu € Zy has ordeN —1, thenN —1| Zy <N—1, by Lagrange’s theorem,
and hencéy, =Zy \ {0} andN is prime.

(iii) The certificates are given in Figure 18.3; the certifest2, 1) for 2 are omit-
ted. The number of distinct certificates depends on the nuoflzgenerators of the

n+l

23,52,1,11,1;

1922132 p13213151\ 1122151

NN

3221 5222

FIGURE 18.3: Various Pratt certificates (Exercise 18.27)

multiplicative groupZy; for a primeN. More precisely, it is equal to the number
of generators times the product of the number of certifickaesll prime divi-
sors ofN —1. Letu e Z be such a generator. Then each generator is of the
form uk for somek € {1,...,N — 2} with gcdk,N — 1) = 1, by Exercise 14.6 (ii).
Thus the number of generatorsdéN — 1). We havep(3—1) =1, p(5—1) =2,
©(11-1) =4,p(19-1) =6, p(23—1) = 10, andp(31— 1) = 8. The following
table gives the number of distinct Pratt certificates forgaheve numbers.

N|3 5 11 19 23 31
1 2 8 6 80 16
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(iv) LetC=(N,u;ps,e1,...,pr, &;Ci,...,C) be aPratt certificate amd= logN.
The cost for checking wheth&r= pf* - - - p* is O(M(n) logn) word operations, us-
ing an integer analog of Algorithm 10.3. Computimy * remN andu®™-1/P rem
N for all i by repeated squaring tak€rnM(n)) or O(n>M(n)) word operations
sincer <logN. If we arrange the certificate in form of a tree witat the root and
Ci,...,C children ofC, then the sum of the binary lengths of the integers at one
particular level i0(n). Using the superlinearity d¥, we find that the overall cost
at each level i©(n?M(n)) word operations. Sincg, < N/2 for alli, the depth of
the tree igO(n), and we obtain a total cost @(n*M(n)) word operations.

It follows that PRRIMESE N'P; PRIMESE coNP is trivial: as certificate for a
composite numbeX one can take a proper factor Mf

Chapter 19

19.2 We identify the elements &f, with O,...,p—1.

ALGORITHM 19.27 .
Input: A primep andf € [F,[x] monic of degre@ and dividingxP — x.
Output: All roots off.

1 k«— [P, S+—0O
2. g |_| (x—1)

0<i<k

3. for j =0,...,k—1 computes; € [F,[x] with a; = g(x— jk) mod f and de-
gree less than

4. for j=0,...,k—1do
hj <_gCCKaJ'7f)
if hj # 1then S«— SU{i: jk<i < (j+1)kandh;(i) =0}

5. return S

Correctness of the algorithm follows immediately from

h =geda;, f) =gedg(x— jk), f) =[]  (x-i)
jk<i<(J+1)k
f(i)=0

for all j. By Lemma 10.4, we can compute the coefficientg af step 2 using
O(M(p/?)logp) arithmetic operations iff,. In step 3, we use the fast multi-
point evaluation algorithm 10.7 ov& = [F,[x] /(f) to evaluateg € R[x] at thek
pointsx mod f,x—kmod f,...,x— (k— 1)k mod f in R, takingO(M(p'/?) log p)
additions and multiplications iR or O(M(p*?)logp- M(n)) arithmetic opera-
tions in Fp,. The cost for computindy; in step 4 isO(M(n)logn) arithmetic
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operations inf,, and O(p*?M(n)logn) for all j. Evaluatingh; at k points in
I, takesO(pY2degh;) operations inf,. Sincey ;. degh; € O(n), the over-
all cost for the evaluations i©(p*2n) operations inf,. Thus the total cost is
O(M(pY2)log p-M(n) + p2M(n) logn) or O~ (n,/p) arithmetic operations ifp,.
19.3 N =12347.1927836461.

19.5 (i) Here is a table of the integegsmodulo the primep < 11 fori < 6.

i|xmod2 xxmod3 xmod5 x; mod7 x mod11
0 0 2 2 2 2
1 1 2 0 5 5
2 0 2 1 5 4
3 1 2 2 5 5
4 0 2 0 5 4
5 1 2 1 5 5
6 0 2 2 5 4

We read offe(2) = 2,e(3) = 1,e(5) = 3,e(7) = 1, ande(11) = 2.

(iii) Let pbe a prime divisor oN andi = e(p) > 0. Thenp dividesx; — Xy, and
hence also gda; — xzi,N). Since the latter gcd is 1 for< k, we findi > k.

(iv) follows from (ii) and (iii).
19.6

[ee] 2 [ee] [ee] 00 00
< / exzdx> = / e ¥ dx- / e Ydy= / / e ¥ Ydxdy
:/oo/w e7r2(00§¢+5in2¢)rd<pdr:/wrefrz/w dodr
0 J-m 0 -

*© 2 2
= 27r/ re"dr=—r- (e*r ) =,
0 r=0

where we have used that the absolute value of the Jacobiesatt of the sub-
stitution (x,y) = f(r,¢) = (rcosg, rsing) forr > 0'is

2
_er

=00

of(r,¢)

det or — |det( 0% SInY =T.
of(r,p) —rsing rcosy
0

19.8 (i) Let(x.,y.,z) € N3, be a Pythagorean tripley = gcd(x.,y.,z.), and
let (X.,Y.,Z.) = (AX, Ay, A2). Then gcdx,y,z) = 1 andx® +y? = (X2 4+ y?)/\? =
Z/\2=2Z.

(i) We check that

(S —t?)? 4 (2¢)%2 = &* — 26°12 14 + 46°12 = &' 4 2512 +-t4 = (P +1?)2,
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Let A = gcd(s® — 12,24, 5% +t2). Then) | 28% and) | 2t?, and geds, t) = 1 implies
that\ | 2. Sincedt is even, exactly one afandt is even, and hence +t2? is odd.
Thus\ = 1.

(iii) If both x andy were even, then botl? = x?> +y? andz would be even as
well, contradicting primitivity. If bothx andy were odd, them® = 2 mod 4, which
is impossible since 0 and 1 are the only squares modulo 4. &actly one of
andy is even, and botl# = x> +y? andz are odd. Ifxis odd, then botlz— x and
z+xare even, and hen¢e—x) /2 and(z+x)/2 are positive integers. X Nis a
common divisor of these two numbers, then it divides thein gutheir difference
—x, and their producty/2)?, and hence\ = 1 sincex,y,z are coprime and,z
are odd. But the product of two coprime numbers is only a sgudren both
numbers are themselves squares, and hence there existgosjirimes,t € N
with s = (z+x)/2 andt? = (z— x) /2. Thens>t, sis odd and is even ifz= x
mod 4, andsis even and is odd ifz= —x mod 4. Thusst is even, and one easily
checks thatx,y,z) = (s —t?,2¢,s* +t?).

(iv) Here is a list of all coprime pairst € N> with s>t andst even and such
thats® +t? < 100, and the corresponding primitive Pythagorean trifkeg z) =
(£ —12,2¢, 5% +12).

s|t] (xy.2 s[t] (xy2
21| (3,45 712 (45,2853)
3|2/ (51213 7|4 (3356,65)
4|1/ (15,8,17) 7|6 (13,84,85)
4|3 (7,24,25) 8|1/ (63 16,65)
52| (21,20,29 8|3 |(55,48,73)
5|4 (9,40,41) 8|5 |(39,80,89)
61|(351237) 9|2 (77,36,85)
6|5 |(11,60,61) 94| (657297)

19.9 We haveD™(n) C n**°), but not vice versa: for examplelt(o9n ™ —
nev'°9" does not belong t®~(n). More preciselyQ™ (n) = ni+O(loglogn/logn)

19.10 Letd C | be the set of with #(BiNC) > sk/2, andl =#J. Then

lk+ — = IkJFT > k+ (# —1)

SHA sk# {Sk— 1J
2

>Z#B,DC+ #(B,NC) = #C = SHA,

sHA S
> — .
=2k 2
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19.14 (i) We have’ = 3x?+aand

req f, f') = det

T o9 O

0
0
3 | =4a+ 272
0

O OFr O
OO ow
oY O wo

0

(i) This follows from the fact thaff is squarefree if and only if it is coprime to
its derivative and Corollary 6.17.

(iii) For a= —1, we haver = —4+270% = 0 if and only if b = +2,/3/9 ~
+0.3849.
19.15 The equation of the tangenfat (x3,y1) is given by the first order Taylor
expansion off =y? —x® —ax— b aroundP:

a

0X
= —(3¢+a)(x—x1)+2y1(y—y1),

and the tangent is defined by the equatien0. SinceE is nonsingulart is not the
zero polynomial, and at least one 0€3+ a andy; is nonzero. Ify; = 0, then the
equation of the tangentis= x;. This is a vertical line througR, and its only other
intersection point with the curve is the poifitat infinity. ThusP+P=-0=0
in that case.

Otherwise, ify; # 0, then we can solve= 0 for y and obtain the equivalent
equation

t(x,y) = f(xe,y1) + ﬂ(X17y1) S(X—=x1) + %(Xl,)h) “(y—w1)

32 +a

y=Y1+ (X—=X1) = y1+a(X—X1). (17)

This is the unique line througR with slopea = (3x¢ 4 a)/2y;. To find the only
other intersection poink = (x3,—y3) of the tangent with the curve, we replace
X,y by X3, —ys3 in (17) and substitute the expression fgrthat we obtain into the
equationf (xs,y3) = 0:

(axg+y1—ax))? =y2 = X3+ axzg+b.
Now g = u*+au+b— (au+y; —ax;)? is a cubic polynomial iru which has
u=x; as a root. Differentiating with respect toyields
g =3u*+a—2a(au+y; —axy),

and we see thay'(x;) = 0 andu = x; is in fact a double root of (this mirrors

the geometric situation th&tis a double point of intersection of the tangent with
the curve). The third root df is x3, the coordinate we are interested in, and hence
g = (u—x1)?(u—xz). Thus the coefficient o in g is equal to—2x; — x3, and
solving this equality foxs yieldsxs = —a? — 2xq, as in (11). Finally, we plu§=
(x3,—Y3) into the equation (17) for the tangent and obtaiyy = y; + a/(X3 — X1).
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19.16 P = (xg,y1) has order two if and only if an®+ P = O, or equivalently,
y1 = 0. But the equatioy? = X3 + ax; + b has at most three roots, and the claim
follows. The solutions correspond to the three pointk @in thex-axis.

19.17 The following MAPLE program is the main step in proving the associa-
tive law for addition on elliptic curves. Addition is giverylthe proceduredd.
Associativity is tested at the three generic inpRt®, R. They are given by their
3-2 =6 coordinates, but should correspond to only five free clsoftgo for the
curve, one each for the points), and we have to compute madtel@quation
eq= V2 — (u®+au+b), whose parameteesandb we find by elimination fronP
andQ.

plus := proc(P,Q) # adding P=(P[1], P[2]) and Q=(Q[1], Q[21)
s := (P[2] - Q[2]) / (P[11 - Q[1D);

x3 := normal(s~2 - P[1] - Q[11);

[x3, normal(s * (P[1] - x3) - P[2])];

end;

P := [x1, x2];

Q := [y1, y21;

R := [z1, z2];

a = (y172 - y272)/(x1 - x2) - (x172 + x1 % x2 + x272);
b :=y172 - x1°3 - a * x1;

eq := numer(normal(z1°3 + a % z1 + b - 2272));

assl := plus(plus(P, Q), R);

ass2 := plus(P, plus(Q, R));

# The following are the differences of the two coordinates
# of (P+Q +Rand P+ (Q + R), and hopefully turn out

# to be zero.

zerol := rem(numer (normal(ass1i[1] - ass2[1])), eq, y3);
zero2 := rem(numer (normal(ass1[2] - ass2[2])), eq, y3);

19.18 (i) By using the symmetr(y'f(”) = (zﬁfk) of the binomial coefficients, we

find that on on on
22n20§é2n< k) = ( n>+20§%n< k)'

The other formula is proven similarly.
(i) We haveX = 2(n—Kk) if and only if X; = —1 for preciselyk values ofi. Of
the 2" equally probable random vectof¥q, ..., Xz) € {1,—1}?", exactly ()

satisfy this requirement, and hence the probabilityZJE)/ZZ”. The argument for
X = —2(n—Kk) follows by symmetry considerations.
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(i) It is clear thatX can only take even values betwee2n and 2. For 0<
k < n, let px and gy denote the probabilities of the evel)(s_ 2(n—k) andX =
—2(n—Kk), respectively. Then (ii) shows thpt = qk_( ")4-"for all k, and hence

= 5 keprot(x =k = 5 (2(n=K)pc—2(n-Kja) =0,
E(X)) = 3 keprobX| =K) = 5 (2(n=—Kpc+2n—Kax)

keN

n B 2n
=447 3 0 (%)

ooy (D)3 (0))
o (2w (2) =20 (271))
= (22 70) < 3(2)) = anan(T).

(iv) We have

_a/2n _q(2n)! _ V4mn(2n)2e 2" (14-0(n™ 1))
2w () =24 2 S o e A4 O 1)

4 3/2
= ﬁ?; (1+0(n™1) = 2r~Y2nt2(1+0(n7Y)),
i

where we used that/{1+O(n~1)) € (1+0O(n™1)) for n — .
Chapter 20

20.1 (i) The cleartextis “COMPUTER”, and the keykis= 12.
(i) “ALGEBRA".

20.3 Part (iii) needs the additional assumption thigtcoprime to chafF.
(i) We have

h—d h—d
g(ox+d)o :g(c _ +d>:gGU:f.

If we chooseal = h(0), c=Ic(h), g =g(cx+d)/lc(g(cx+d)), andh* = (h—d)/c,
theng*, h* are monich*(0) = 0, andf =Ic(f)-g*(h*).
(i) Let =X + SoirGiX, with all g € F. Thenf = h" + Yo, gih'. Substi-
tutingx = 1/x and multiplying byx"s, we find
f=x°f(1/x) =X*h(1/x)"+ Y gixsh(1/x)!

o<i<r

= (M) +x Y gx"HV3(h) = (h")" modx’.

o<i<r
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(iii) Ifwelet o =y — f* € F[X][y], thenp(h*) = (h*)' — f*=0= (h])" — f* =
©(h}) modx®, by (ii). Since botth andh; are monic, we havl* = h; =1 modx,
and hence’(h*) = ¢'(h) =r modx. Since we assume thais coprime to chaf,
both ¢'(h*) and ¢'(h;) are invertible moduloak. Thush* = h; modx®, by the
uniqueness of Newton iteration (Theorem 9.27). Sim@ = h;(0) = 0, we con-
clude thah=h;. Theng(h) =g=gi(h1) =g1(h), or equivalently(g—g:)(h) = 0.

If g# g1, then deg(g— ;1) oh) = dedg—0;) - degh > 0, and hencg = g;.

The case where chirdividesr is more difficult; see von zur Gathét990bH
for a discussion.

(iv) Itis clear that the output is correct if the algorithmiueisg andh in step 3.
Conversely, we leff = g; o h; be a normal decomposition with dgg=r and
deghy =s. Then(h;)" = f* modx®, by (ii), and as in (iii), the uniqueness of
Newton iteration implies thah* = h; modx® andh; = h in step 2. Letg; =
X + Socicr GuX. Thenf = giohimplies thatf = h" + S, gih'. Now the
h-adic expansion of is unique, by Lemma 5.30, and hergie= g;; € Rfor all i,
and the algorithm correctly returigs= g; andh = hy in step 3.

Theorem 9.25 states thiait can be computed frorh* with O(r - M(n)) arithme-
tic operations irR. The factor in the estimate comes from the cost for evaluating
the functiony from (iii), which has degree in y, and its derivativey’ = 0 /dy at
y = h* remx for severali < sin a Horner-like way. Due to the special structure
of ¢, we can do this much faster with repeated squaring (we haeaisted this in
the integer case in Section 9.5), and then the cost for stepgly O(M(n)logr)
arithmetic operations. The same estimate is valid for stdyy 3heorem 9.15.

If gcd(r,charR) > 1, theny’(1) = r is not a unit inR, and the Newton iteration
does not work since 1 is not a proper starting solution. Hawrethis does not
imply that no normal decomposition exists. For exampl® 4 [F,, thenx* +x? =
(X2 +x) ox? is @ normal decomposition.

(V) f=0C—x2+2)o(X+2x+2).

20.4 (i) d=5, (i) x=1999.

20.5 (i) Theclaimis clear k= 0. So we le > 0 and assume that| X. Since

x < N, we then havej{ x. Moreover,x® = x = 0 mod p andx® = x mod q since
(q—1) | ¢(N) | de— 1. Thusx® = x modN, by the Chinese Remainder Theorem.

(i) Assume again thap | x andg{x. Thenp |x® andqt x®, and hencep =
gcde(x),N).

20.6 (i) We haveéx—p)(x—q) =x*>— (p+q)X+N=x>—(N—1—p(N))x+N.
Thusp andqg can be found by solving a quadratic equation, for exampleidyg
Algorithm 14.17 or Theorem 15.21, at a cost®f(logN) word operations.

(i) We call the black box foe=2,3,.... Since the product of all primes below
x=2InN is ’® > N if x > 5, by the solution of Exercise 18.21, there exists a
prime e < x with gcde,o(N)) = 1. Then the black box returr< ¢(N) such
thateo(N) | ed —1. Nowed — 1 < ep(N), and we successively dividel — 1 by
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1,2,...,e—1 and use the trial values far(N) from those divisions that have the
remainder zero to fingh andq as in (i). The overall cost i©®(logN) calls to the
black box andD(logN) calls to the square root finding algorithm.

An alternative is to use the algorithm from Exercise 18.9)2nith L =ed — 1.
(The numbel. was callednin the 1999 edition.)

Chapter 21

21.1 IfF[x,y] were Euclidean, then we could use the EEA to compyte F[X,Y]
such thatsx+ty = 1 = gcd(x,y). Now substituting« = y = 0 leads to the contra-
diction 0= 1.

21.2 ltis clear that C J. For the reverse inclusion, we note that
x=(1-y)- (x+xy) +x-y* €l andy = (1-x) - (y+xy) +y-X* €.

21.7 Ifa < g andpg < «, then the transitivity ok impliesa < «, contradicting
irreflexivity.

21.8 Suppose that < 0 for somea € N"\ {0}. Addingi« to both sides of the
inequality, we find(i + 1)a < i for all i € N. Thus{ia:i € N} is a nonempty
subset of\" with no least element, contradicting the well-order prope8ince<
is a total order, we conclude that- 0.

21.10 Letx‘il - -xﬁ" be a monomial of total degree=d; +- - - +d,. We associate
to it the vector

v=(0,...,0,1,0,...,0,1,...,1,0,...,0) € {0,2}™"1,
d d d
1 2 n

This induces a bijection between the monomials of total eéengrand the binary
vectors of lengthim+ n— 1 with preciselyn— 1 ones, and the number of the latter
is (M) = (M ).

21.11 We say that a monomigt occurs in a polynomidh if its coefficient inh
iS nonzero.

(i) Every monomial occurring irigis of the formx®*# such thaxk® andx” occur
in f andg, respectively. This implies that mdglg) < mded f) + mdegg). On
the other hand, if eithe < mded f) or 5 < mdedg), thena + 5 < mded f) +
mdedg). Thus the coefficient ok™dedf)+mdedy) js |¢(f)Ic(g) # 0, and hence
mded fg) = mded f) +mdedg).

(i) Every nonzero term of + g is of the form(c+ d)x®, for a coefficientc of
f and a coefficient of g. Sincec+d # 0, at least one of andd is nonzero,
which implies thata < mded f) or « < mdedg), and hence mdéd + g) <
max{mded f),mdedg)}. If mdeg f) < mdedg), then the coefficient afm9d9)
in f +gislc(g), and hence mdéd + g) = mdedg) = max{mded f), mdedg)}.
The claim for mdegf) - mdedg) follows by a symmetric argument.
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21.12 ltis clear that the invariants hold after step 1. We magsaume that they
hold at the beginning of step 3 and show that they hold agaimea¢nd of step 3.
We denote the new values pfr,qq,...,0s by p*,r*,q;, ..., ds. When the condition
in step 3 is false, then

mded p*) = mded p—It(p)) < mded p) < mded f),
P 1" = p—lt(p)+r+lt(p) = p+r,

and sinceg’ = q; for all i, the first two invariants holds for the starred elements.
By induction and since the condition in step 3 is false, tiseilavariant also holds
for r*.

Now we assume that the condition in step 3 is true. Tihesa r, and the last
invariant holds for* by induction. We have

mded p*) = mdeg( - %fi) < mded p) < mded f),

since both polynomials in the difference have degree rfylegnd their leading
coefficients coincide. Moreover,

P +aifi= _%fi‘f‘(qi‘f‘%) fi=p+af,

and sincer* =r andgj = q; for j # i, the first invariant holds for the starred
elements. Finally, i = 0 then

mdedq i) = mdeg(ll;[é—:) fi> = mded p) < mdeqd f),

~—

and similarly

mdedq; fi) = mdeg(qi fi+ % fi> < max{mdedq; fi),mded p)} < mded f)

if both ¢, g are nonzero. Sincgj = q; for j # 1, this proves that the second
invariant holds for the starred elements.
21.13 (a1 +1)--- (an+1).

21.14 IfE is any subset oA such thatxF) = (x*), thenx? € (xF) for all 3 € B.
Thus( > o for somea € E, by Lemma 21.15, and the minimality ¢fimplies
that3 = a € E, which proves thaE containsB.

21.15 For exampld,= ({xy""1-:0<i < n}).
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21.17 Lett €lt(l) andf € | with It(f) =t. Sincef rem(fy,...,fs) =0, there
existq,...,0s € F[Xq, ..., Xs) with f =g f1+- - - +0sfsand mdedq; f;) < mded f)
if g # 0. But then

t=It(f) = S It(q) It(f) € (It(fy),....It(fs)),
mdedq; fi)=mded f)

and hence (1) C (lt(f1),...,It(fs)). The reverse inclusion is trivial, arfd, ..., fs
is a Grébner basis.

21.18 LetG' =G\ {g}. Since l{g) € (It(G')), we have(lt(G')) = (It(G)) = It(l).

21.19 LetR=F[xy,...,X). If G contains a nonzero constant, thea (G) =R
and 1€ I. Conversely, if e |, then 1=1t(1) € It(l) = (It(G)). By Lemma 21.15,
there exists @ € G with It(g) | 1, and hence is a nonzero constant. If no® is
reduced, therg = 1 sinceg is monic. If G contains another polynomial # g,
then 1] It(g*) contradicts the minimality o6, and henc& = {1}.

21.20 (i) The reduced Grobner basigds= {x*> +y—1,xy —X,y* — 2y +1}.

(i) We havef, remG =0 andf, remG=1, and hencd; € | andf, ¢ I.

21.21 (i) This is a reduced Grobner basis sigte+y,y? — 1) = y®+x and
Y2+ xrem(x+y,y?—1) =0.

(i) This is not a Grébner basis since the leading tegmof Sy +x,y?> — 1) =
xy+ 1 is neither divisible by = It(y+ x) nor byy? = It(y> — 1).

(iii) This is a not Grobner basis; the reduced Grobner bawmidlfe generated
ideal is{1}.

(iv) Thisis a Grobner basis, but not a minimal omgz = It(xyz— 1) is divisible
by x =Ilt(x—y).

21.24 LetR=F[xq,...,Xn)-

(i) The polynomials inG_ 4 areF-linear combinations of the polynomials @,
which shows thali s C I4; this holds for anyn x n matrixL. If L is invertible, then
the above argument shows that=1, 1.4 C I a.

(i) By (i), we have(Gy) = Iy = la, and it remains to show th&y is a reduced
Grobner basis. Legi = x + h; correspond to théh row of U, such thath; is an
F-linear combination ok, 1,...,X,, for L<i <r. Then

S(9,9i) = %G —%gj = xjhi —=xihj = gjh — gih;

andS(gi,gj) rem(gs,...,9r) =0 fori # j. ThusGy is a Grobner basis. Nog
is monic, and since does not occur ig;, we find thatx = It(g;) does not divide
any term ing;, for j #i. ThusGy is reduced.

(iii) If Ais nonsingular, theV (la) = kerA = {0} andG = {xq,...,X} is the
reduced Grobner basis by.
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21.26 The polynomiat®—2 has no root ifi's. Thus the ideall = (x* — 2) C F5[X]
has no root irifs.

21.27 Letl C C[x] be an ideal and € C[x] such thaig(u) = 0 for allu € V(I).

If I = {0}, thenV(l) = C, and this implies thagj= 0. Thus we may assume that

| # {0}. SinceC[x] is a Euclidean domain, there is a unique nonconstant monic
polynomial f € C[x] generatind. If f =1, thenl = C[x], V() = @, and trivially

g € I. Now we assume that is nonconstant. By the fundamental theorem of
algebra,f splits into linear factors. Lats,...,u, € C andey,...,& € N> be such
thatf = [(1<i<,(Xx—u;)%. ThenV(l) = {uy,...,u}. Sinceg(u) =0for 1<i <r,

we conclude thafx—u;) - (x—ur) | . Butthenf | g®fore=max{e:1<i<r},

and hencef® € (f) =1.

Chapter 22

22.2 () D(1)=D(1-1)=D(1)-1+1-D(1) = 2D(1), by the Leibniz rule, and
subtractingd(1) on both sides yields the claim.

(i) We haveD(af) =D(a)f +aD(f) =aD(f) andD(bg) = D(b)g+bD(g) =
bD(g), and henc®(af +bg) = D(af)+ D(bg) = aD(f)+bD(g).

(iiiy We first note that 0= D(1) = D(gg™') = D(g)g*+ gD(g™?), and hence
D(g~!) = —D(g)g~2. Thus

D(fg™") =D(f)g™*+ fD(g™*) = (D(f)g— fD(g))g~*.
(iv) We use induction om. The casa = 0 follows from (i), and ifn > 1, then

D(f") =D(ff" 1) =D(f)f" 1+ fD(f" 1) =D(f)f" 1+ (n—1)D(f) "
= nD(f)f"L

(v) This follows immediately from the Leibniz rule.

22.4 Since the field of constants@fx) is a subfield, by Exercise 22.1, and con-
tains 1, by Lemma 22.2 (i), it contaifg the subfield of)(x) generated by 1. Now
let f = Y oci<n fiX' € QX of degreen > 1, with all f; € Q. Then Lemma 22.2 im-
plies thatf’ = Xogignifixi*l. In particular, sincenf, # 0, we have de’ =n—1,
and f' is not the zero polynomial. Now It = g/h, with nonzero coprime poly-
nomialsg, h € Q[x], such thatf’ = 0. Using the quotient rule (Lemma 22.2 (jii)),
we obtain 0= (g’h—g)/h?, and hence/h = g. Sinceg andh are coprime, we
haveh | . If h ¢ Q, then dedyY < degh, by the above. This contradiction shows
thath € Q andg’h=h'g= 0, and we conclude that = 0 andg € Q as well.

22.5 In the 1999 edition, the text of the exercise contaimseserrors, and we
first give a corrected version of it.

Let F be a field of characteristic zero, aat, c,d € F[x] nonzero polynomials
such thatc/d)’ = a/b.
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(i) Prove thatdeg—degb < degc—degd —1, with equality if and only if deg #
degd. Give an example where equality does not hold. Conclude dbgh —
degb = —1 is impossible.

(i) Let p € F[x| be irreducible andiy(a) = e € N if p®|a and p*™ fa (this
is the negative logarithm of thp-adic value ofa, as in Example 9.31 (iii)), and
similarly vp(b), vp(C), vp(d). Prove thatp(a) — vp(b) > vp(c) — vp(d) — 1, with
equality if and only ifvp(c) # vp(d). Give an example where equality does not
hold. Conclude thavp(a) — vp(b) = —1 is impossible, and that,(b) > 2 for
every irreducible divisor ob if gcd(a,b) = 1. In particularb is not squarefree if
it is nonconstant and coprime 0

Solution:

(i) Using the quotient rule (Lemma 22.2 (iii)), we find tregto = (c'd — cd’) /d?.

Now degc’ < degc and degl’ < degd, and hence

dega—degb = degc'd — cd’) — 2degd < degc+ degd — 2degd = degec — degd.

Let n = degc andm = degd. The coefficient o&k™™ 1 in ¢'d is nic(c)lc(d), and
the coefficient o&k™™ 1 in cd’ is mic(c)lc(d). Thus the coefficient of"™*™ 1 in
c¢'d — cd’ vanishes if and only i = m. If n# m, then deg@—degb=n—m—1+#
—1,and ifn=m, thende@—degb<n—-m—1=-1.

(i) We show first thaw,(u’) > v,(u) — 1 for all nonconstant € F [x], with equal-
ity if vp(u) > 1. Letu= p*wwith e€ N andp{w. Thenu' = (ep'w+ pw')p*1, by
Lemma 22.2. Thusp(U') > e—1=vy(u) — 1. Sincepis irreducible,p’ # 0, and
degp’ < degp, we find thatp does not dividegy'. If e > 1, thenp does not divide
ep'w since it is coprime tav, and hencep { (ep'g+ pg’) andvp(u') =e—1.

Now letc = peuandd = pfw, with e, f € N andu,w € F[x] not divisible byp.
Thenvy(c) —vp(d) = e— f. Asin (i), the quotient rule implies that

a cdd—cd (epu+pu)p*tp'w— ptu(fp'w+ pw)p'~?
b~ dz p2fw2
((e— f)p'uw+ (U'w—uw') p) peti-t
- p2fw2 :
Sincep{w, we find thatvy(a) —vp(b) > e+ f —1—-2f =e— f — 1. Moreover,
since p does not dividegp’ andu either, it does not dividg/uw. Thus p divides
((e—=f)puw+ (Uw—uw)p) ifand only ife= f. If e# f, thenvy(a) — vy(b) =
e—f—-1+# -1, andife= f, thenvy(a) — vp(b) > e— f —1= —1. Now suppose
thatb is nonconstant and coprime @pand letp € F[x] an irreducible divisor ob.
Thenvy(a) = 0 andv,y(b) > 1, so thatv,(a) — vp(b) < —1. By the above, we have
strict inequality, and henog,(b) > 2 andp? | b.
22.8 (i) By the Leibniz rule, we have

/ H ld H /b
bd’=b- % (j—1)gj—=d (J—l)gjg—,

2<Zm 9 2fz=m j

Modern Computer Algebra@QhCHIM VON ZUR GATHEN and JJRGEN GERHARD, version 14 September 2003



Solutions to Chapter 22 101

and the right hand side is a polynomial. Thdushd’. For 2<i < m, g; divides all
summands of ,i<m(j — 1)gjb/g;j with j # i, and it is coprime tdi — 1)gib/g.
Thus gcdbd’/d,b) = 1. Usings andt as assumed, we find

h*  s(bd’/d)+tb shbd’/d—sb+(t+s)b sd'—sd t4s
g b db =@ T4
_(-s\  t+s
- <F> T
and hence we can take= —sandv=t+5s.

(i) Computingd = gcd(g,d’), the squarefree pagib = g/d of g, and the poly-
nomialsb = gcd(gib,d), g1 = gi1b/b, g = g/g1, andbd’/d takesO(M(n)logn)
arithmetic operations. Computing the numerator$* in the partial fraction de-
composition can be done wit®(M(n)logn) operations as well, and the same
estimate is valid for computing, t, ands+t’. Thus the cost for one step is
O(M(n)logn). Since the maximal multiplicity of an irreducible factor dfis
m— 1, the recursion depth is at most and the claim follows.

(iii) With classical arithmetic, the cost for squarefreettaization, partial frac-
tion decomposition, and all Hermite reduction step®(s?) arithmetic operations
in F. If k=degd, then a careful analysis of all computations in (ii) showet the
cost for the first step of Mack’s algorithm@(n(n—k)) field operations with clas-

sical arithmetic, and summing over all recursive callsdseh total cost 0O(n?)
as well.

22.9 The constant coefficient of igay — b, b) is res(—b',b) = +res(b,b’), and
this discriminant is nonzero sintes squarefree.

22.11 (iii) Leth; =gcdb,a—ib’). The claim follows from the following in-
variants, which one proves by simultaneous inductionfan 0 <i < d:
(@) Hi=hjifi >0,
(b) hy---hi-by =b,
(c) a=hy---hi(a +ib)) modb;.
The case = 0 is immediate. For the induction step, we have
hit1 = ged(hy---hib,a— (i+1)b") by (b)
=gcdbj,a— (i+1)b") by (ii)
= gcd(by,hy---hi(a +ib)) — (i+1)b") by (c)
= gcdbi,hy---hi(g +ib)) — (i+1)h;---hib{) by (b) and Leibniz rule
= ged(bi, & —b) = Hisa by (i),
proving (a). Claim (b) follows from (a), and (c) follows from
a +ibi = hijaa1+ b +ibf
=hjaa+ 0+ 1)hi+1bi/+1 modby, 1,
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again using the Leibniz rule.
22.12 Letg=gcdr,t). ThenrU’'—<sJ =t and gcdr,s) = 1 imply thatg | U.
Writing U = gU*, we obtain the differential equation (U*)' — (s—g'r/g)-U* =
t/gfor U*. Thus we can set* =s—¢'r/gandt* =t/g. If gcd(r,t*) > 1, then we
can repeat this process.
22.13 (i) By Lemma 22.18 (iii), we have deg = degH, = 4. If we letc =
Ic(H1)/Ic(H2), thenH; — cH; € Sand de@H; — cHy) < ¢, and the lemma implies
thatH; —cH, = 0.

(i) If H* € Sis nonzero, thetdy = H*/Ic(H*) is in Sas well, and the claims
follow from (i).

(i) If Uy is another solution of (8), thed; —U € S ConverselyU +H is a
solution of (8), for anyH € S.

Chapter 23

23.1 f(k) =k+sin(kr) andg(k) = 1.

23.5 (i) Forx € R, the functionf (t) = e't* is continuous and strictly pos-
itive on the interval(0,), and it is even continuous o, ) if x > 1. Let
x> 1. Then there exists a positivg € R such thatt* ! < &/2if t >r,. Let
yx = Jo* f(t)dt € Rso. If s> 1y, then

S 5% S S
Og/ f(t)dt:/ f(t)dt+/ f(t)dtgyx+/ /2
0 0 Ix Ix
=y — 272 4 2672 <y, 4 2672,

Thus [3 f (t)dt is bounded fos — «, and its limit f;° f (t)dt is finite.
If 0 <x< 1, thenf;” f(t)dt < [{"e'dt = e7L. For 0< s< 1, we have
1

1 1 1
og/ f(t)dtg/ t*ldt = (X -8 < .
s s X X

Thus 5 f(t)dt = lims_o [T f(t)dt + [;” f(t)dlt is finite as well.
Forx =0, the integral does not exist since

1 1
/ f(t)dtZe‘l/ d  _etins
s s t

grows unboundedly fos — 0, and the gamma function has a simple pole.
(i) Using 2 (e7't¥) = —e't* +xe 't~ for x> 0, we find

—I(X+1)+x['(X) = — / e't*dt +x / e 't 1dt
0

0

- /m(—e*ttX +xe 't )dt
0

= (lim €7%) — (lim %) = 0.

S— s—0
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(iii) We have
_ “ —t _ H —S__ 0\ _
F(l)_/o e dt_—(sllmme e)=1,

and the claim follows by induction from (ii).

23.7 ()
n \ k 1 2 3 4

1 id

2 (12) id

3 (123, (132 (12),(13),(23) id

(123), (132), (124

o | (150 (1oam (1920139093 00T
(14249’(1433 (234), (243, (12)(34) (24)’(34) !
(1423, (1433~ (13)(24), (14)23) ® Y

(ii) The only permutation om numbers withn cycles is id, and;] =1. The
permutations wittn — 1 cycles are the transpositions that exchange two numbers
i < j and fix all others. There arg) of them, and hencg "] = (7). Finally,
the permutations with exactly one cycle are the cyclic peatimns. For such a
permutationr, there aren — 1 choices forr(1), namely all numbers except 1,
n— 2 choices forr(7(1)), namely all numbers except 1 andl), n— 3 choices
for 73(1), and so on, in totaln— 1)! choices. Thus?| = (n—1)!.

(i) S, isthe group of all permutations ¢f., ..., n}. Consider the map: S, —

S 1 with o(7) = o, whereo (i) = «(i) if i  {z=1(n),7(n)}, ando(r1(n)) =
m(n)if w(n) #n. Letw € S, havek cycles. Ifr(n) = n, theny() is the restriction
of wto {1,...,n—1} and hask — 1 cycles. Thusy maps the elements &, with
k cycles andn as a fixed point bijectively onto the elements®f; with k— 1
cycles. Now consider thosec S, that havek cycles and for whichr(n) # n. For
anyo € §, 1 with k cycles, preciselyn— 1 suchm are mapped te by . Thus

M=+ -1 forl<k<n

(iv) We proceed by induction om. Form= 0, we havex™ =1 = (—1)0[8]. If
m> 0, then

- 2o e g e [T
- Lo
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by (iii). UsingX™ = (—1)™(—x)™, we find that
. mi .
XM= XL
i
(v) This follows from plugging the formula from (iv) into (8)nd vice versa.

23.8 In the 1999 edition, the text of this exercise contaormaestypos, and we
first give a corrected version of it.

Form e N, themth Bernoulli number By, € Q is recursively defined bigo =1
and

1
3 <m+ >B. 0forme Nay,
0<i<m I

and form > 0 we define the polynomial

1 m+1
Sh=

m+1, %m0 < k

(i) ComputeB,, andS,,for0<m<4.
(i) For nonnegative integers< b < a, prove the identity

a\(b\ (a\/a-c
b/\c) \c/\b-c/
(iii) Prove thatAS, = x™for all me N. (Hint: Use (ii).) Show that this implies

S o<kenK™ = Sn(n) forallme N.
(iv) Conclude from Exercise 23.7 and (7) that

Brmy1-k <m—|— 1) B (—1)i+1k{ m} [i+1]
m+1 \ k _kflglzgmﬂ i+1 i k

holds for allk, me N with 1 <k <m+ 1.

> Bm+1_ka G Q[X]

Solution:

() m|Bnm S
0] 1 X
1| -3 be -3
2| % 33— 3x%+ 2X
3|0 1x“—lx3+}12
41 L [ LE_Ixdy e Ix

(i) We have

Q

(b)(lc):) (a— b) c!-(s!—c)!:c!-(:!—c)!'(b—gz?!_-(cai!—b)!
=<‘Z‘><Z:§>-

Modern Computer Algebra@QhCHIM VON ZUR GATHEN and JJRGEN GERHARD, version 14 September 2003



Solutions to Chapter 23 105

(iii) The recursion formula definingy,_1 implies that

S (W)a:sw+ ) <m>a:anm¢L
0<i<m I 0<i<m-1 I

and form= 1 the sum is equal to-£ B,,. Thus

m+1

z < K )Bm+1—k(x+1)k
1<k<m+1
m-+1 k\
= 5 s ()
1<k<mH10<1<k
m+1\ m+1—i
=mnar 3 (T3 (e B

m+1\ . m+1—i
= —Bm+1 + Z < . > X Z < K ) By
0<iSMt1 ' o<kt 1-i

m+1\ ; m+1
= —Bm1+ Z < i >X"Bm+1i+< m >Xm
oci

<i<m+1

= (M+1)(Sn(X) +x7).

(M+1)Sn(x+1) =

(iv) LetTn= zoggm{’i“}x‘*—l/(i +1). Then (iii) and (7) imply thatAS, = XM =
ATn, and hences, — Ty, is a constant, by Lemma 23.3 (vi). Pluggingxr= 0
yields S,, = T,. Using Exercise 23.7 (iv), we find

m+ 1\ Brs1—k m) x+i
< K )n?flxkzs“ﬂm: 2 {i}i+1
1<k<m41 0<i<m

SISt D St S

ST (]

0<k<m+1 k—1<i<m+1

and the claim follows by comparing coefficients.

23.9 (i) If we fix the number of women to be N, then there ar¢! ) possibil-
ities to choose the women atﬁqf;i) to choose the men, in total

SO0

possibilities. On the other hand, there &f&°) possibilities to choosen persons
out ofr +smany.
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(iii) If we write the binomial coefficient(}}) asn(n—1)---(n—k+ 1)/k! and
(formally) substitute indeterminatesandy for r ands, respectively, in the differ-
ence of the two sides of (25), we get a polynomial

S T

OSISmi!(m—i)!

(x+y)™
m!

f= € Q[Xa y]

of total degree at mosh. Vandermonde’s convolution can now be restated as
f(r,s)=0forallr,se N.

Lemma 6.44, applied t6 andS= {1,...,m+ 1}, then implies thaf is the zero
polynomial.

(iv) The binomial theorem follows from (iii) by multiplyingvith m!. The rising
factorials also satisfy a binomial theorem:

Y () = (xry)

0<i<m

This follows from the binomial theorem for the falling fadi@s by usingx' =
(=1 (=x)".
23.10 (i) We have
XML = x(x—1) - (Xx—m+1)(x—m)(Xx—m—1)--- (Xx—m—n+1)
=XNE ™) (E"M(x—1))---(ET™(Xx—n+1)) = x"E""X"
(i) The definition reads

T 1 B 1 B 1
S e T D (DX 2) (k) (30)

forallne N.

To prove (26) for arbitrary integers, n, we distinguish several cases. The case
m,n > 0 has been shown in (i). For examplepik 0 andm+n > 0, thenm > O,
and hence

XN — x(x—1)---(X—m—n+1)
X(X—=1)---(X—m—n+1)(X—m—n)(X—m—n—1)--- (x—m+1)
(X—m—n)(x—m—-n—1)---(x—m+1)

Xm
= xemepe o™

by (30). The proof for the other cases is similar.
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If m< 0, then
A 1 - 1
(X +2) - (Xx=m)(Xx—m+1)  (X+1)(X+2)--- (x—m)
(Xx+1)—(x—m+1) o me1

T X+ 1)(X+2) - (x—m)(x—m+1)

23.11 (i) (n*—6n®+11n?+14n)/4; (i) n2"—2M1 42,

23.12 For a polynomiaf € F[x], we have degAf) < degf — 1, with equality if
f ¢ F. Now

A<i>_E_f_i_Ef-g—f-Eg_Af-g—f-Ag
g Eg g g-Eg g-Eg

Now the degree of the numerator of that expression is at mezst ¢ degg — 1,
and the coefficient of?e9'+9e%9-1 in it is Ic( ) Ic(g)(degf — degg). Thus the de-
gree of the numerator is equal to deg degg— 1 if and only if degf = degg,

or equivalently, deg = 0, and the claim follows since the denominator has de-
gree 2deg. In particular, we have dég\p) = degp — 1 # —1 if degp # 0, and
deg Ap) < degp—1 < —1if degp =0.

23.13 (i) We haveD(Ap) = D(p(x+ 1) — p(X)) = (Dp)(x+ 1) — (Dp)(x) =
A(Dp), by the chain rule for the differential operator.
(i) Assuming (i), we have

AWy(x) = AD™InI'(x) = D"AInI'(x) = D™In <F(x+ 1)>
= DMInx =DMt = (~1)™Hm—1)x ™

(iii) The partial fraction decomposition is/1x*+ax) = (1/x—1/(x+a))/a, and
hence

st < 1(s2- o) - R wocra

X X+a
o (LX) lppeo _1DX
a I'(x+a) a ax@

(In the 1999 edition, thia was calledd.)
23.15 (i) (X(x+3),(x+3)%,1,x+3); (i) (x,x+1,1,1,1,x+3).

23.16 We only have to verify property;) for (f1,...,fn). Sowe let 1I<i <
j <m. Ifi > 2, then propertyFs) for (gi,...,0m 1) implies that

ged £, E7IH1f)) = ged(g 3, EIt1gj 1) = L.
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Now E-1*1f; = E-I+1g; ; divides f /g, by (14), andE f; dividesE(f;--- fy) =
(Ef)/g, and sincef /g and (Ef)/g are coprime, so arE~*1f; andEf;. Thus
gcd E fH,E-1*1f;) = 1, and applying= ! once shows thatF,) holds ifi > 2. For
i = 1, we find thatE~1+1f; | f/gandEf, | (Ef)/g, again gcdf/g,(Ef)/g) =1
implies that gc@E f;, E-+1f;) = 1, and hence also gtti,E~I fj) = 1.
23.18 The term ratios are

L (P4 AXHA) (R HAX+I) P+ AX+2) o X+2 g

(i) C (i) =22

(X2 +2x+ 1) (X2 +2x) (X2 +2x — 1) x+1

(i) (=1)%*(x+1) = —x—1.

Thus only (ii) is not hypergeometric; (i) is a polynomial.

23.20 Letg(k) = k& = k(k—1). We know from Section 23.1 that

3 _
s =5 = 2w, @)
The term ratio is
o (K) = gk+1) k+1
gk k-1

We takea = x+1 andb = x— 1. Step 1 of Algorithm 23.18 computes

1 1
R=res(x+1x+y—1) —det< 1 y1 ) =y-2,

and thud = 2. In step 2, we have

Hi = gcdE a,b) = ged(x,x— 1) = 1,
H, = gcd E~'a,Eb) = gcd(x, X) = X,

and henc&/ = H%sz = x2 = x(x—1). (Algorithm 23.20 produces the same val-
ues.) Now (20) is

(X+1)x3-EU — (x— 1) (x+1)2U = (x— 1)x¥(x+1)%,

or equivalently
EU —U =x(x—1), (32)

after dividing both sides byx+ 1)x(x — 1), which of course is nothing else than
our original problem, but we have now found that the denoiinaf — (from (15))
dividesV = x(x—1).

The following derivation refers to the 2003 edition only.rfFoe determination
of degJ, we haver =s=1,t =x>—x,deg — 1= —1> —o = degs—r), and
6 =0. Lemma 23.24 (i) implies that either ddg= degt —m= 3 or dedJ = § =0.
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The latter is impossible, and we make the anghtz Usx® 4+ Uox? 4+ Uix+ Ug in
(32) and obtain

X2 —x = (Us(+3x% 4 3x+ 1) + Up(x® + 2x+ 1) + Uy (x4 1) +Uo)
— (Uax® + Uax® + Upx+Uo)
= 3UaX* + (3Us + 2Up)x+ (Us+ U + U1 )X,
which leads—by comparing coefficients on both sides—to trstesn of linear

equations
1=3U;, —-1=3U3+2U,, 0=Uz+U;+Uj.

The solutions arbl3 = 1/3,U, = —1, andU; = 2/3, with arbitraryUp € F. Setting
Uo =0, we have) = (x3 —3x?+2x) /3= x(x—1)(x—2)/3, and finallyr =U /V =
(x—2)/3, in accordance with (31).

23.21 This solution refers to the 2003 edition. The termorafi the binomial
coefficient iso(x) = (—x+n)/(x+ 1), and we havea = —x+nandb = x+ 1. As
in the Example 23.27, Algorithms 23.20 and 23.18 yMlg 1, since the resultant
R only changes sign. Equation (20) is

(—=x+n)EU — (x+ 1)U =x+ 1.
Lemma 23.24 implies that dey= degt — m= 0. LettingU =Up € F, we obtain
X+ 1= (—Xx+n)Up— (X+1)Ug = (—2x+n— 1)Uy,

which has no solutiob)y € F sincen # —1. ThusE(Q) is not hypergeometric.
23.22 Only the first sum is hypergeometric, and we have

5 3X+1/2x (2
x+1\x/)/) \x/)’
23.23 This solution refers to the 2003 edition. Neither eftivo sums is hyper-

geometric. The term ratio fa(x) = (—1)*(})?is o(x) = —(n—x)?/(x+1)?, and
hencea = —x? + 2nx—n? andb = x> — 2x+ 1. The resultant

res(a(x), b(x+y)) = (y+n+1)*

has no nonnegative integer roots, and both Algorithms 2ar2 23.18 return
V = 1. Equation (20) is

(—x%+2nx— n?)EU — (¢ + 2x+ 1)U = X2+ 2x+ 1.

Lemma 23.24 implies that deéh= degt — m= 0. Comparing leading coefficients
givesU = —1/2, and comparing coefficients gfyieldsU = rll This is a con-
tradiction sincen > 1.
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If g(x) = (})?, then we again find/ = 1, since the resultant does not change,
but now (20) is

(X% — 2nx+n?)EU — (X + 2x+ 1)U = X2 + 2x+ 1, (33)

andd =2n+2 € N. Thus either deg = deg —m=1orded) = = 2n+ 2, by
Lemma 23.24 (i).

Assume first that ddd = 2n+ 2. The unique nonzero monic solutibri € F[x]
of the corresponding homogeneous equation

(x—n)?EU" — (x+1)U* =0

isU* = (x1)2, NowU —Ic(U)U* is also a solution of the inhomogeneous equa-
tion (33) and has degree less tham{22, and Lemma 23.24 implies that it has
degree 1. Thus it is sufficient to look for a solution of degtedhis yields

(X—N)?(Uy(x+1) +Up) — (x+1)?(Ux+Up) = (x+1)?,
or equivalently, the linear system
—(2n4+1U; =2, (NP—=2n—1)U;—2(n+1)Up=2, n?U;+(n*—1)Up= 1.

The first equation gived; = —n—1/2, from the second equation we obtalp=
—%(n+1)/(2n+1), and the third equation yielddo = (n+1)/(n—1)(2n+1).
The latter two are equal if and only if = —1, which is not the case, and hence
(383) has no solution.

23.24 (i) The only root-(2n—1)/2 of R=res(a(x),b(x+y)) is not integral.
(iii) The following derivation refers to the 2003 editionlgnEquation (21) is
2n
(x+1)%-EU — ( x (2n+1)x+( L U

+
4
(2n + 1) > (34)

<x +(2n+1)x

and we have = aands=t = b. Moreover,

degr —1=1=deg (2n— 1)x+ (4n’ +4n—3)/4) = degs—r),
d=2n—1¢€N, and Lemma 23.24 (i) says that either teg degt — m= —1,
which is impossible, or ddd = § = 2n—1 > 0. (Thus the summation problem

has no solution ifh is an indeterminate.) The value &fis exponentially large in
the size ofa andb, which is about logs.: n words.
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(iv) In terms of the operatadk, (34) readd.U = b. If Lf = 0 for some nonzero
f € Q[x], thena/b = f/Ef, which is a contradiction sind® has no integral roots,
and hencd is injective. By construction, we have déd ) < 1+ degf, and even
degLf) < degf if degf =2n— 1. ThusL maps the B-dimensional vector space
W C Q[x] of all polynomials of degree less than @ itself, and sincé is injective
andW is finite-dimensionall is also surjective oiV. Finally, we have deb =
2 < 2n, whenceb € W, and there is a unique polynomidle W of degree 2 — 1
such thatU = b.

(v) Forn=6, we haveyo.m9(k) = U(m)g(m) —U(0)g(0) for all me N,
where

4% + 44x+ 121) (4x+7
= +28)12028);5X+ )(838860&8+1174405127+6587678726

+1881800704° + 2862755848 + 2179846 144° + 648167 048°
+504 006 — 496 125.

U=

23.26 Letg=gcdTr,t). Thenr-EU —s-U =t and gcdr,s) = 1 imply thatg | U.
Writing U = gU*, we obtain the difference equatiénEg)/g)-EU*—s-U* =t/g
for U*. Similarly, if g=gcd(s,t) > 1, theng | EU, and writingU = E 1gU*, we
obtain the difference equationEU* — (s(E 1g)/g)-U* =t/gfor U*.

23.27 By Exercise 6.23, the roots bfandg in C are absolutely at mosB By
the discussion preceding Example 23.22 on page 653 (in tB8 24dition), we
conclude that

d<max{|f—al: f(a) =0=9(8)} <4B.

Using Mignotte’s bound (Corollary 6.33) would lead to thigistly worse estimate
4(max{degf,degg} +1)Y/?B.

23.28 In the 1999 edition, there is a typo in the exercise; ax o require that
degg > O instead of ded > 0.
(i) We write p = f /g, with f,g € F[x] coprime and deg > 0. Then
g-Ef—f-Eg u
Y= TgE v
whereu= (g-Ef — f-EQ)/gcd(g,Eg) andv= (g-Eg)/gcd(g,EQ) = lcm(g,EQ)
are coprime. Letl = dis(p) and p € F[x] be an irreducible factor of g¢d, E%g).
ThenEp | Eg|v andEp | E9*lg | E9*+ly, which shows that digdp) > d + 1.
On the other hand, ip is an irreducible factor of gdd, EXv) for somek € N,
thenp|v|g-Eg and p | EXv | Eg- E¥*'g. Thus gcdg,E'g) # 1 for somel ¢
{k—1,k,k+1}. In particulark— 1 <| < d, which implies that dieAp) < d+1.
(i) Since the difference of a polynomial is again a polynamp is not a poly-
nomial. But then (i) implies that & dis(x ™) = dis(p) — 1 < —1, and this contra-
diction shows that no sughexists.
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23.31 We rewrite (21) as
r-AU —(s—r)-U =t
and compare the degrees and the top coefficients. Firstljawe

degt < max{degrU’),degq(s—r)U)}
< max{degr +degU —1,degs—r) +degU } = m+degU.

Let v € F denote the coefficient of™? in r. Then the coefficient ok™ 9% in

rU’isylc(U)degU, and the coefficient of™ e in (s—r)U is §lc(U). Thus the
coefficient ofix™9d int is (ydegU —§)Ic(U), and deg < m+degU if and only
if this coefficient vanishes.

If degr —1 < degs—r), theny =0 andj =Ic(s—r) # 0, and hence déd =
deg —m. Otherwise, we have = Ic(r) = 1. We conclude that dédj > degt —m,
with strict inequality if and only if deg— 1 > degs—r) and dedy = 6. This
proves (i), (i), and (iii).

To show (iv), we assume that* € F[x] is another solution of (21). Then the
homogeneous equatiofU —U*)' — (s—r)(U —U*) = 0 holds for the difference
U —U*, and the claim follows from (iii).

Chapter 24

24.3 We first note thdtpy = 0 if k < sork > n—w+s, and hence the summation
range on the left hand side in (6) may be replaced ¥k < n—w-+s. Multiplying
both sides by " )/s, we find that (6) is equivalent to

k n—k n+1/n n+1
sgng—WJrs(S) <W_5> T wtl <W> - <W+ 1>' (30)

If n=w, then both sides of (30) are equal to 1. Nownet w=s, and assume
that the claim has already been shownrier1. Then

K\ /n—k n K\ /n—1—k
2, ()0 - (02, (D)
Ffen\s/\s—s S s«<i&h1\S S—s
n n n+1
<s> <s+ 1> <s+ 1)
Thus (30) is true ih = w orw=-s. Now assume that/ > s, and that the claim has
already been shown fav— 1 and arbitraryn > w— 1. We have already seen that

it is true forn = w, and hence we may also assume that w and that the claim
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holds forn— 1 andw. Then

265
="V s WS )
SO A 9 1 (v D N O
¥ : R
w+1 W w-+1

24.4 (i) Letl C{1,...,n} be nonempty. Ify;c, Aigg = 0, with all \; € F, then
the linearity of the inner product in the first argument ireplthaty ;.| Ai(aj xa;) =
0for 1< j < n. Conversely, let i Ai(a«aj) =vxa; =0 for 1< j <n, where
V=i Aig. Then alsovxv= 73 Aj(vxa;) =0, and hence = 0. Thus theg,
fori €| are linearly independent if and only if the rows®fwith index inl are.

24.5 (i) The projection ofAis {(u,v) € R?:3w € R (u,v,w) € A}. This set is
contained inB. For the reverse inclusion, we latv € [—1,1] such thatu+v <
—2/3. Thenu,v < 1/3, and if we letw = —1— (u+v), we find—1/3 <w< 1,
u+w=-1-v<-2/3,andv+w=—1—u< —2/3. Thus(u,v,w) € A.

(ii) The roots of the polynomial & 4 6u— 23 are(—1+2/6)/3 > 1.29965 and
(—1-2v6)/3 < —1.96633, and henceu®+ 6u— 23 = 0 comprises two parallel
vertical lines enclosing, but not intersectirgy,
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