6. Exercise sheet Hand in before Monday, 2005/12/12, 14⁰⁰ in b-it 1.22.

Exercise 6.1 (Pollard's ρ method).

(i) Fill in the table below, which represents a run of the algorithm for N = 3 $132659 = 53 \cdot 2503$ and the initial value $x_0 = 222$, up to i = 10.

i	$x_i \operatorname{rem} N$	$x_i \operatorname{rem} 53$	$y_i \operatorname{rem} N$	$y_i \mathrm{rem} 53$	$gcd(x_i - y_i, N)$
0	222	10	222	10	N
1					

(ii) The smallest prime divisor of *N* is 53. Describe the idea behind the algorithm 4 by taking a look at x_i rem 53 and y_i rem 53.

Exercise 6.2 (Dixon's random squares).

(9+1 points)

(7 points)

- (i) You find a complete implementation of Dixon's random squares method on the course homepage. Put in comments that explain what the various steps are doing. Add userinfo commands to produce a human understandable execution summary (useful for the next parts of this exercise).
 (ii) The left for the form of the state of the stat
- (ii) Find a factor of $N = 1517 = 37 \cdot 41$ using Dixon's random squares method. 2 Choose B = 5 and execute the algorithm step by step.
- (iii) For $N = 1\,845\,314\,859\,041$ compute the value $B = \exp(\sqrt{\ln N \ln \ln N})$ used 1 in the course as well as the promised value $B = \exp(\sqrt{\frac{1}{2} \ln N \ln \ln N})$.
- (iv) Factor $N = 1\,845\,314\,859\,041$ using Dixon's random squares method. Choose 2 B = 320. Hand in a protocol of a (possibly unsuccessful) attempt that does not find a factor ahead of time. Give a short comment about what has happened.
- (v*) Measure the cpu time of the previous step and compare with the cpu time +1 MuPAD's own factoring algorithm ifactor uses. Explain. Hint: Consider expose to explain.

Exercise 6.3 (Dixon's random squares).

(0+4 points)

+3

(i) Let $N = q_1 q_2 \cdots q_r$ be odd with pairwise distinct prime divisors q_i and $r \ge 2$. Show: The equation $x^2 - 1 = 0$ has exactly 2^r solutions in \mathbb{Z}_N^{\times} .

Hint: Use the Chinese remainder theorem.

Note: The claim is also true, if the q_i are pairwise distinct prime powers. To see this you have to know that also for prime powers q the equation $x^2 - 1 = 0$ has exactly 2 solutions in \mathbb{Z}_q .

(ii) If *s*, *t* are random elements of \mathbb{Z}_N^{\times} satisfying $s^2 \equiv t^2 \mod N$, then the probability for $s \not\equiv \pm t \mod N$ is at least $1 - \frac{1}{2^{r-1}}$.