Cryptography I, winter 2005/06

Joachim von zur Gathen, Michael NÜsken

6. Exercise sheet
 Hand in before Monday, 2005/12/12, 14^{00} in b-it 1.22.

Exercise 6.1 (Pollard's ρ method).

(7 points)
(i) Fill in the table below, which represents a run of the algorithm for $N=3$ $132659=53 \cdot 2503$ and the initial value $x_{0}=222$, up to $i=10$.

i	x_{i} rem N	x_{i} rem 53	y_{i} rem N	y_{i} rem 53	$\operatorname{gcd}\left(x_{i}-y_{i}, N\right)$
0	222	10	222	10	N
1	\ldots	\ldots	\ldots	\ldots	\ldots

(ii) The smallest prime divisor of N is 53 . Describe the idea behind the algorithm by taking a look at x_{i} rem 53 and y_{i} rem 53 .

Exercise 6.2 (Dixon's random squares).
(9+1 points)
(i) You find a complete implementation of Dixon's random squares method on the course homepage. Put in comments that explain what the various steps are doing. Add userinfo commands to produce a human understandable execution summary (useful for the next parts of this exercise).
(ii) Find a factor of $N=1517=37 \cdot 41$ using Dixon's random squares method. Choose $B=5$ and execute the algorithm step by step.
(iii) For $N=1845314859041$ compute the value $B=\exp (\sqrt{\ln N \ln \ln N})$ used 1 in the course as well as the promised value $B=\exp \left(\sqrt{\frac{1}{2} \ln N \ln \ln N}\right)$.
(iv) Factor $N=1845314859041$ using Dixon's random squares method. Choose $B=320$. Hand in a protocol of a (possibly unsuccessful) attempt that does not find a factor ahead of time. Give a short comment about what has happened.
(v^{*}) Measure the cpu time of the previous step and compare with the cpu time MuPAD's own factoring algorithm ifactor uses. Explain. Hint: Consider expose to explain.

Exercise 6.3 (Dixon's random squares).
(i) Let $N=q_{1} q_{2} \cdots q_{r}$ be odd with pairwise distinct prime divisors q_{i} and $r \geq 2$. Show: The equation $x^{2}-1=0$ has exactly 2^{r} solutions in \mathbb{Z}_{N}^{\times}.
Hint: Use the Chinese remainder theorem.
Note: The claim is also true, if the q_{i} are pairwise distinct prime powers. To see this you have to know that also for prime powers q the equation $x^{2}-1=0$ has exactly 2 solutions in \mathbb{Z}_{q}.
(ii) If s, t are random elements of \mathbb{Z}_{N}^{\times}satisfying $s^{2} \equiv t^{2} \bmod N$, then the probability for $s \not \equiv \pm t \bmod N$ is at least $1-\frac{1}{2^{r-1}}$.

