# Cryptography I, winter 2005/06 <br> Joachim von zur Gathen, Michael NÜsken 

## 10. Exercise sheet Hand in before Monday, 2006/01/30, $14^{00}$ in b-it 1.22.

## Exercise 10.1 (ElGamal signatures).

We choose a prime number $p=12347$ and the group $G=\mathbb{Z}_{p}^{\times}$. We use $a=$ 9876 as the secret part of the key $K=(p, g, \beta, a)$. The message $x$ to be signed consists of the last four digits of your student registration number. Use $k=399$ as your random number from $\mathbb{Z}_{p-1}^{\times}$.
(i) Show: $g=2$ generates $G$. Compute $\beta=g^{a} \in G$.
(ii) Compute the signature $\operatorname{sig}_{K}(x, k)=(x, \gamma, \delta)$. Here $\gamma=g^{k} \bmod p$ and $\delta=(x-a \gamma) k^{-1} \bmod (p-1)$. Verify your signature.

Exercise 10.2 (A mysterious equation).
Let $p \in \mathbb{N}$ be a prime number. The central operation in verifying an ElGamal signature is checking the equation $g^{x}=\beta^{\gamma} \cdot \gamma^{\delta}$ in $\mathbb{Z}_{p}$, where $g, \beta, \gamma \in \mathbb{Z}_{p}^{\times}$and $\delta \in \mathbb{Z}_{p}$ and $x \in\{0,1, \ldots, p-1\}$ is the message or its hash, respectively. For now we consider the somewhat simpler congruence

$$
\begin{equation*}
g^{x}=\beta^{\gamma} \cdot \gamma \quad \text { in } \mathbb{Z}_{p} \tag{*}
\end{equation*}
$$

with $g, \beta \in \mathbb{Z}_{p}^{\times}, \gamma \in \mathbb{Z}_{p(p-1)}$ and $x \in \mathbb{N}, 0 \leq x \leq p-1$.
(i) Show: $\gamma=g^{x}(1-p)$ rem $\left(p^{2}-p\right)$ is a solution to the equation $\left(^{*}\right)$.
(ii) It holds that $\mathbb{Z}_{p(p-1)} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p-1}$. We identify $\mu \in \mathbb{Z}, 0 \leq \mu<p$ with $(\mu, 0) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p-1}$. Let $\mu$ be a solution to congruence ( ${ }^{*}$ ). For which $\ell \in \mathbb{Z}_{p-1}$ is there a $\lambda \in \mathbb{Z}_{p}$ so that also $(\mu \cdot \lambda, \ell) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p-1}$ is a solution to ( ${ }^{*}$ )? Compute the dependency of $\lambda$ on $\ell$ for that case.
(iii) Is $^{\operatorname{sig}}{ }_{K}(x)=\left(x, g^{x}(1-p), 1\right)$ a legal ElGamal signature? What is the consequence of this discovery for the practical use of the ElGamal signature scheme?
(iv*) How many solutions $\gamma$ are there for the congruence $\left(^{*}\right)$ and fixed $g, \beta, x$,

Exercise 10.3 (DSA Practice).
In this exercise you will make practical computations with the DSA algorithm, using real life key sizes.
(i) Generate a random prime number $q$ with exactly 160 bits.
(ii) Generate a prime $p$ with exactly 1024 bits, such that $q$ divides $p-1$.
(iii) Find a $g \in \mathbb{Z}_{p}^{\times}$which has the exact order $q$. Let $G=\langle g\rangle \subset \mathbb{Z}_{p}^{\times}$be the cyclic group with $q$ elements generated by $g$.
(iv) Let $a<p$ be a random number and $y=g^{a} \in G$. We shall consider $a$ to be Alice's secret key and $y$ her public key.
(v) Let $m \in \mathbb{Z}_{q}$ be the integer value of the ASCII text: DSA for $_{U^{\prime}}$ real (note the two blanks in the text!). Using a random number $k \in \mathbb{Z}_{q}$ produce a DSA signature $S(m)=(m, x, b)$ on the message $m$ on behalf of Alice.
(vi) Let Bob know the public key $(p, g, y)$. Verify the signature $S(m)$ on behalf of Bob.
(vii) Let $m^{\prime}$ be the integer value of the ASCII text:

$$
\text { The } \text { Lord }_{\Psi} \text { of } \text { the }_{\Psi} \text { Rings }_{\Psi} \text { has }_{\Psi} \text { no }_{\Psi} \text { secrets. }
$$

Can you produce a DSA signature of this text using the same setting as above? If no, what additional steps are required?
(viii) The DSA system can be attacked in two different ways:
(a) By solving the index problem in the group $G$ iwth $q$ elements, with the baby-step giant step algorithm (or the Pollard- $\varrho$ method) in this group.
(b) By solving the general discrete logarithm problem in $\mathbb{Z}_{p}^{\times}$, using the up to date Number Field Sieve. The complexity of this method is given by the function:

$$
L(p)=\exp \left(1.992 \cdot\left(\log p \cdot(\log \log p)^{2}\right)^{1 / 3}\right) .
$$

The function log is the natural logarithm.
Compare the two estimated times, when $p \sim 2^{1024}$ and $q \sim 2^{160}$.

