Cryptography I, winter 2005/06 Joachim von zur Gathen, Michael Nüsken

11. Last exercise sheet Hand in before Monday, 2006/02/06, 14^{00} in b-it 1.22.

Exer	cise 11.1 (Identification, chronological order). (1 points)	
	implify the Schnorr identification scheme: Bob sends the challenge r and answers with $C(A)$, γ und y .	1
Expl	ain why Bob should not verify Alice' identity like this.	
Exer	cise 11.2 (Schnorr identification, example). (5+3 points)	
	e uses the Schnorr identification scheme with $q=1201$, $p=122503$, $t=10$ $\alpha=11538$.	
(i)	Verify that $\alpha \in \mathbb{Z}_p^{\times}$ has order q . [This should be done using a polynomial time algorithm!]	1
(ii)	Alice' secret exponent is $e_A = 357$. Compute her public key β_A .	1
(iii)	Alice chooses $k = 868$. Compute γ .	1
(iv)	Bob issues the challenge $r = 501$. Compute Alice' response y .	1
(v)	Simulate Bob's calculations to verify y .	1
(vi)	Perform the entire scheme in MuPAD (or any other appropriate system) with $2^{1023} \le p < 2^{1024}$ and $2^{159} \le q < 2^{160}$.	+3
Exer	cise 11.3 (Schnorr identification, attack). (4 points)	
(i)	Eve has intercepted two Schnorr identifications by Alice and now knows (γ_1, r_1, y_1) and (γ_2, r_2, y_2) . Furthermore Eve has ensured that she knows $z := \operatorname{dlog}_{\alpha}(\gamma_1^a \gamma_2^{-1})$ for some a . Show that she can easily compute Alice' secret exponent e_A . [<i>Hint</i> : Look at the case $a = 1$ first.]	2

1

1

1

1

+1

+1

Exercise 11.4 (Okamoto identification).

(4 points)

Alice uses Okamoto's identification scheme with q=1201, p=122503, t=10, $\alpha_1=60497$ and $\alpha_2=17163$.

- (i) Alice' secret exponents are $e_1 = 432$ and $e_2 = 423$. Compute β_A .
 - (ii) Alice chooses $k_1 = 389$ and $k_2 = 191$. Compute γ .
 - (iii) Bob issues the challenge r = 21. Compute Alice' response (y_1, y_2) .
 - (iv) Simulate Bob's calculations to verify y.

Exercise 11.5 (Attack on Okamoto identification).

(0+4 points)

Alice uses Okamoto's identification scheme with the same parameters as in Exercise 11.4. Furthermore let $\beta_A=119504$.

(i) Eve has discovered that the equality

$$\alpha_1^{70}\alpha_2^{1033}\beta_A^{877} \equiv \alpha_1^{248}\alpha_2^{883}\beta_A^{992} \mod p$$

holds. Verify this.

(ii) Use this information to find numbers b_1 and b_2 satisfying

$$\alpha_1^{b_1}\alpha_2^{b_2} \equiv \beta_A \bmod p.$$

(iii) Alice makes common cause with Eve and gives Eve her secret exponents $e_1 = 717$ and $e_2 = 266$. Show how Alice and Eve together can compute $dlog_{\alpha_1} \alpha_2$.