Cryptography I, winter 2005/06
 Joachim von zur Gathen, Michael NÜsken

3. Exercise sheet
 Hand in before Monday, 2005/11/21, 14^{00} in b-it 1.22.

Exercise 3.1 (Euler totient function).

In the course we defined the Euler totient function φ by $\varphi(N)=\# \mathbb{Z}_{N}^{\times}$, and we proved that $\varphi(p \cdot q)=(p-1)(q-1)$ if p and q are different primes.
(i) Compute $\varphi(5)$ and $\varphi(25)$.
(ii) Compute $\varphi(p)$ for a prime p.
(iii*) Compute $\varphi\left(p^{e}\right)$ for a prime p and some positive integer e.
(iv) Express $\varphi(a \cdot b)$ using $\varphi(a)$ and $\varphi(b)$ provided a and b are coprime, that is, they have no non-trivial common divisor. [Use the method from the course. Prove as a lemma that if a divides c and b divides c (and a, b are coprime) then $a b$ divides c.]
(v^{*}) Suppose that the factorization of N is given: $N=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots \cdots p_{r}^{e_{r}}$ with pairwise different primes p_{i} and positive integers e_{i}. Give a formula for $\varphi(N) / N$.

Exercise 3.2 (Power of 3).
Calculate $3^{1000003} \bmod 101$ by hand. Hint: You need almost no calculation for this!!

Exercise 3.3 (Extrapolating ...).

(i) Assume that a factoring algorithm requires time $\Theta(\exp (\sqrt[2]{\ln N \ln \ln N}))$ to find the prime factorization of a number N. And assume that this algorithm only needs a second to factorize a number less than 2^{100}. How large should N be so that this algorithm can not factorize N in less than the age of the universe, which is about $15 \cdot 10^{9}$ years or about 10^{18} seconds?
(ii) How large should be a number if a new algorithm is found that requires only time $\Theta\left(\exp \left(2 \sqrt[3]{\ln N(\ln \ln N)^{2}}\right)\right)$?
(iii) How large should be a number if the new algorithm is optimized and now requires only time $\Theta\left(\exp \left(\sqrt[3]{\ln N(\ln \ln N)^{2}}\right)\right)$?

