7. Exercise sheet Hand in before Monday, 2005/12/19, 14⁰⁰ in b-it 1.22.

Exercise 7.1 (*u*).

(6+4 points)

For Dixon's random squares method *B*-smooth numbers were important. Denote by $\psi(x, B)$ the number of positive integers less than or equal to *x* whose prime divisors are at most *B*. Dickman's rho function $\varrho(x, B) = \psi(x, B)/x$ denotes the fraction of *B*-smooth integers.

- (i) How many 2-smooth numbers are there up to 100? [This is $\psi(100, 2)$.]
- (ii) How many 3-smooth numbers are there up to 100? [This is $\psi(100, 3)$.]
- (iii) ... 10 000? [This is $\psi(10\,000,3)$.]

In the course we used that $\varrho(x, b) \approx u^{-u}$ with $u = \ln(x) / \ln(B)$.

- (iv) Compute the estimate xu^{-u} of 3-smooth numbers less than 10 000. Compare 1 this to the exact value.
- (v) How many 5-smooth numbers are there up to 10 000? [This is $\psi(10\,000, 5)$.]
- (vi) Show how to calculate $\psi(x, p)$ with p prime from values $\psi(x/p^e, p-1)$.
- (vii*) Write a (recursive) procedure countsmooth(x,b) that computes the exact number $\psi(x,b)$. (*Hint*: numlib::prevprime(b) might be helpful. Use option remember to save time. Remark: MuPAD has protected psi for the digamma function Γ'/Γ .)

Consider the value $B_x = \exp(\sqrt{\ln x \ln \ln x})$ that we derived for use in Dixon's random squares method.

(viii*) Plot the ratio $\rho(x, B_x)/(u^{-u})$ for x in the range 1 through 10^6 with u calculated for $B = B_x$.

1

1

1

1

1

+2