Cryptography I, winter 2005/06 Joachim von zur Gathen, Michael Nüsken

5. Exercise sheet Hand in before Monday, 2005/12/05, 14^{00} in b-it 1.22.

Exer	cise 5.1 (Chinese Remainder Theorem). (10 poin	nts)	
(i)	Consider $21=3\cdot 7$ and, as we did in the course, produce a table indicing the relation betweeen \mathbb{Z}_{21} and $\mathbb{Z}_7\times \mathbb{Z}_3$.	cat-	1
(ii)	Pick two elements $x,y\in\mathbb{Z}_{21}$ (to make it interesting: the sum of the repsenting integers shall be larger than 21). First, add them in \mathbb{Z}_{21} and the map to $\mathbb{Z}_7\times\mathbb{Z}_3$. Second, map both to $\mathbb{Z}_7\times\mathbb{Z}_3$ and add afterwards. W do you observe?	nen	1
(iii)	Pick two elements $x, y \in \mathbb{Z}_{21}$ (to make it interesting: the product of representing integers shall be larger than 21). First, multiply them in and then map to $\mathbb{Z}_7 \times \mathbb{Z}_3$. Second, map both to $\mathbb{Z}_7 \times \mathbb{Z}_3$ and multiply afterwards. What do you observe?	\mathbb{Z}_{21}	1
(iv)	Mark all the invertible elements in \mathbb{Z}_7 , \mathbb{Z}_3 , and \mathbb{Z}_{21} . Do you note a retionship?	ela- [1
Now consider $a,b\in\mathbb{Z}_{\geq 2}$ coprime.			
(v)	Suppose you are given $x \mod ab, y \mod ab \in \mathbb{Z}_{ab}$. Prove that		2
	$(xy \bmod a, xy \bmod b) = ((x \bmod a) \cdot (y \bmod a), (x \bmod b) \cdot (y \bmod b)$).	
	(You might want to do, say, the first component first.) For short: the many $\mathbb{Z}_{ab} \to \mathbb{Z}_a \times \mathbb{Z}_b$, $x \mod ab \mapsto (x \mod a, x \mod b)$ preserves the multiplication.	-	
(vi)	Suppose $u = x \mod ab \in \mathbb{Z}_{ab}$ is invertible. Prove that $x \mod a$ is invertible in \mathbb{Z}_a and $x \mod b$ is invertible in \mathbb{Z}_b .	ert-	1
(vii)	Now suppose that $x \mod a$ in \mathbb{Z}_a and $x \mod b$ in \mathbb{Z}_b are both invertible. Prove that then $x \mod ab$ in \mathbb{Z}_{ab} is invertible.	ble.	1
(viii)	Conclude that $\mathbb{Z}_{ab}^{\times} \to \mathbb{Z}_a^{\times} \times \mathbb{Z}_b^{\times}$, $x \mod ab \mapsto (x \mod a, x \mod b)$ is w defined and bijective.	ell-	1
(ix)	Derive that $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$.	-	1

Exercise 5.2 (An application).

(4+2 points)

For RSA we consider a lot of numbers modulo $N=p\cdot q$. Since p and q are required to be different primes they are clearly coprime. Thus by the Chinese Remainder Theorem we know that \mathbb{Z}_N is *isomorphic* to $\mathbb{Z}_p \times \mathbb{Z}_q$.

2

(i) Prove that we can compute $z := y^d$ rem N by computing $z_1 := y^d$ rem p and $z_2 := y^d$ rem q and combining these into $z = (z_1tq + z_2sp)$ rem N where sp + tq = 1.

Suppose that in a given implementation a multiplication modulo an k-bit number takes $\mathcal{O}(k^2)$ bit operations. Let p and q be both n/2-bit numbers.

1

(ii) How much time do we need to compute $z = y^d$ rem N?

1

(iii) How much time do we need to compute z as in (i)? (Do not count the computation of s and t because this can be done in a precomputation. So assume that sp and tq are given.)

+2

(iv*) Bob encrypts x and sends $y=x^e$ rem N to Alice. Now, say, she actually does the decryption of y using (i). What do you think about the security of this approach? (Consider what happens if Alice, or her computing device, does an error in computing z_2 and gets z_2' instead of the correct value. How do x and $z'=z_1tq+z_2'sp$ differ?)

Exercise 5.3 (Birthdays).

(0+3 points)

+2

(i) Write a procedure that draws 23 random numbers from $\{1, 2, ..., 365\}$. Let it output 1 if it drew a number twice and 0 otherwise.

+1

(ii) Run the procedure, say, a thousand times, and derive the frequency with which a collision occured.

[As stated before: hand in printouts of your programs and their output.]