Cryptography I, winter 2005/06

Joachim von zur Gathen, Michael Nüsken

4. Exercise sheet

Hand in before Monday, 2005/11/28, 14^{00} in b-it 1.22.

Exercise 4.1 (Strong Pseudo Primality Test).

(4+4 points)
Execute the Strong Pseudo Primality Test with
(i) $N=41, a=2$.
(ii) $N=57, a=37$.
(iii) $N=1105, a=47$. 1
(iv) $N=1105, a=2$.

It's ok to use MuPAD's powermod for computing the necessary powers.
(v^{*}) Compute the number of Fermat liars for $N=35$.
(vi*) Compute the number of Strong Pseudo Prime Test liars for $N=35$.
(vii*) Do the same for $N=561$.

Exercise 4.2 (Prime number theorem).
(6 points)
Use MuPAD's numlib: :pi to generate a plot (see plot: : Function2d) over the ranges $1 . .100$ (and 1..1000)
(i) with $\pi(x) / \frac{x}{\ln x}$,
(ii) with the three functions in the prime number theorem (the bounds and π). (Use Color=RGB: : Green to plot in green.)
(iii) with the solution $c(x)$ of $\pi(x)=\frac{x}{\ln x}\left(1+\frac{c(x)}{\ln x}\right)$.

Exercise 4.3 (Carmichael numbers \& order).
By Euler's theorem we know that $x^{\varphi(N)}=1$ for all $x \in \mathbb{Z}_{N}^{\times}$. By Fermat's little theorem we know that $x^{N-1}=1$ for all $x \in \mathbb{Z}_{N}^{\times}$in case N is prime.
(i) Verify that for $N=561=3 \cdot 11 \cdot 17$ we have of course $x^{2 \cdot 10 \cdot 16}=1$ but also $x^{560}=1$ for all $x \in \mathbb{Z}_{N}^{\times}$.
(ii) Formulate and verify the corresponding statement for $N=5 \cdot 13 \cdot 17$.
(iii*) Suppose the factorization $N=p_{1}^{e_{1}} \cdots \cdots p_{r}^{e_{r}}$ (with pairwise different primes p_{i} and all $e_{i} \geq 1$) is given. Characterize Carmichael numbers: give a condition (on the p_{i}, e_{i}) characterizing when N is a Carmichael number without referring to elements in \mathbb{Z}_{N}.

Exercise 4.4 (Lagrange's theorem).
We have seen that in a commutative group G we have $x^{\# G}=1$ for $x \in G$. There is a more general version of the theorem which says more and works also for noncommutative groups.

Theorem (Lagrange). Suppose G is a finite group.
(a) If H is a subgroup of G, then $\# H$ divides $\# G$.
(b) If $x \in G$ then $x^{\# G}=1$ in G.

We are going to prove the first part. Let $a \in G$ be arbitrary group elements. We consider the so-called cosets $a H=\{a h \mid h \in H\}$.
(vi) Conclude that $\# H$ divides $\# G$.

We derive the second part from the first in the following steps:
(viii) Now let n be the order of a, that is $a^{n}=1$ and $a^{k} \neq 1$ for all $0<k<n$. Prove that $\langle a\rangle=\left\{1, a, \ldots, a^{n-1}\right\}$ and in particular $\#\langle a\rangle=n$.
(ix) Conclude that $a^{\# G}=1$.

Exercise 4.5 (Loops).
Consider an algorithm consisting of a single loop like this:

Algorithm.

1. Repeat
2. Perform some (constant time) computation involving random bits.
3. Until condition()

Suppose that the probability for condition() is p, that is $\operatorname{prob}(\operatorname{condition}())=p$, and indepently in each iteration. Denote by X_{i} the random variable which equals 1 if condition() is true in the i-th iteration and 0 otherwise.
(i) Translate the assumption into

- $\operatorname{prob}\left(X_{i}=1\right)=p$,
- $\left(X_{1}, \ldots, X_{n}\right)$ are independent random variables.
(ii) Prove that the probability to have exactly one loop iteration, that is $X_{1}=1$, is p.
(iii) Prove that the probability to have exactly two loop iterations, that is $X_{1}=0$ and $X_{2}=1$, is $p(1-p)$.

Let K be the random variable that gives the number of loop iterations, that is $K=k$ iff $X_{1}=0, X_{2}=0, \ldots, X_{k-1}=0$, and $X_{k}=1$.
(iv) Prove that $\operatorname{prob}(K=k)=p(1-p)^{k-1}$ and $\operatorname{prob}(K \geq j)=(1-p)^{j-1}$.

The expected (or average) value $\mathrm{E}(K)$ is the weighted sum of the outcomes of K, that is $\mathrm{E}(K)=\sum_{k \in \mathbb{N}} \operatorname{prob}(K=k) \cdot k$.
(v) Rewrite that last formula into $\mathrm{E}(K)=\sum_{j \geq 1} \operatorname{prob}(K \geq j)$.
(vi) Prove that the expected running time, that is the expected value $\mathrm{E}(K)$ of the number of loop iterations, is $1 / p$.

Hint: Use that $\sum_{j \in \mathbb{N}} x^{j}=\frac{1}{1-x}$ for $|x|<1$.
Remark: To be prudent we should make sure that we only deal with finite probability spaces. This will be explained in the tutorial.

