Foundations of Informatics: a Bridging Course

Week 3: Formal Models and Semantics

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

B–IT, Bonn, Winter term 2005/06
Part III

Processes and Concurrency
Outline

1 Motivation

2 Communicating Automata

3 Petri Nets

4 Outlook
Motivation

- So far: only **sequential** models of computation
- Now: Consider systems of **processes with concurrent** behaviour
- Applications:
 - Programming languages with concurrency (e.g., Java’s threads)
 - Embedded systems with interacting hardware and software components
 - Web services
- Goals:
 - Better understanding of behaviour
 - Formal verification of desirable properties (e.g., absence of deadlocks)
 - Systematic construction of implementations from (abstract) specifications
Outline

1 Motivation

2 Communicating Automata

3 Petri Nets

4 Outlook
Product construction for DFA $\mathcal{A}_1, \mathcal{A}_2$:

$$\mathcal{A} := \langle Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), F \rangle$$

is defined by

$$\delta(((q_1, q_2), a) := (\delta_1(q_1, a), \delta_2(q_1, a)) \text{ for every } a \in \Sigma$$

and

$$F := F_1 \times F_2$$

recognizes $L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$ (similar construction for $L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$)
Product construction for DFA $\mathcal{A}_1, \mathcal{A}_2$:

$$\mathcal{A} := \langle Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), F \rangle$$

is defined by

$$\delta((q_1, q_2), a) := (\delta_1(q_1, a), \delta_2(q_1, a))$$

for every $a \in \Sigma$

and

$$F := F_1 \times F_2$$

recognizes $L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$ (similar construction for $L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$)

Generalization:

- arbitrary number of automata
- NFA rather than DFA
- not every action relevant for every automaton
Definition 1

Let $A_i = \langle Q_i, \Sigma_i, \Delta_i, q_0^i, F_i \rangle$ be NFA for $1 \leq i \leq n$. The synchronized product of A_1, \ldots, A_n is the NFA

$$A_1 \otimes \ldots \otimes A_n := \langle Q, \Sigma, \Delta, q_0, F \rangle$$

where

- $Q := Q_1 \times \ldots \times Q_n$
- $\Sigma := \Sigma_1 \cup \ldots \cup \Sigma_n$
- $((q_1, \ldots, q_n), a, (q'_1, \ldots, q'_n)) \in \Delta \iff \begin{cases} (q_i, a, q'_i) \in \Delta_i & \text{if } a \in \Sigma_i \\ q'_i = q_i & \text{otherwise} \end{cases}$
- $q_0 := (q_0^1, \ldots, q_0^n)$
- $F := F_1 \times \ldots \times F_n$
Example 2

Dining Philosophers Problem:

- n philosophers sitting around a table
- a fork between every two of them
- philosophers are thinking, hungry or eating
- need both neighbouring forks to eat
- component automata + product: on the board
Outline

1. Motivation
2. Communicating Automata
3. Petri Nets
4. Outlook
A Petri Net is a quadruple

\[N = \langle P, T, F, m_0 \rangle \]

where

- \(P \) is a non-empty and finite set of places
- \(T \) is a non-empty and finite set of transitions
- \(F \subseteq P \times T \cup T \times P \) is a flow relation
- \(m_0 \) is the initial marking

A marking of \(N \) is a function

\[m : P \to \mathbb{N} \]

which assigns a number of tokens to every place. If \(p = \{p_1, \ldots, p_n\} \) we write \(m = (m_1, \ldots, m_n) \) where \(m_i = m(p_i) \) for every \(1 \leq i \leq n \).
Graphical Representation of Petri Nets

- places as \(\bigcirc \)
- transitions as \(| \)
- tokens as \(\bullet \)
- flow relation by arrows

Example 4

Mutual exclusion protocol (on the board)
Definition 5

Let $N = \langle P, T, F, m_0 \rangle$ be a Petri Net.

- The **preset** of $t \in T$ is the set
 $$\bullet t := \{ p \in P \mid (p, t) \in F \}.$$
- The **postset** of $t \in T$ is the set
 $$t \bullet := \{ p \in P \mid (t, p) \in F \}.$$

- Similarly for places and for sets of transitions or places
- $t \in T$ is **enabled** in m if $m(p) > 0$ for every $p \in \bullet t$
Definition 6 (continued)

The **firing relation** is defined by:

\[m \triangleright_t m' \iff t \text{ enabled in } m, m'(p) = \begin{cases}
 m(p) - 1 & \text{if } p \in \bullet t \setminus t\bullet \\
 m(p) + 1 & \text{if } p \in t \bullet \setminus \bullet t \\
 m(p) & \text{otherwise}
\end{cases} \]

(we then also write \(m \triangleright m' \))

- A marking \(m \neq (0, \ldots, 0) \) is called a **deadlock** if there exists no \(m' \) such that \(m \triangleright m' \).

- A marking \(m' \) is called **reachable** from \(m \) if \(m \triangleright^* m' \).

- \(N \) is called **\(k \)-safe** if for every marking \(m \) reachable from \(m_0 \) and every \(p \in P, m(p) \leq k \).

- \(N \) is called **unsafe** if no such \(k \) exists.
Example 7

(on the board)

1. Firing of a transition
2. A deadlock
3. A 1-safe Petri Net
4. An unsafe Petri Net
5. A more complicated example
The Safeness Problem I

Definition 8

The \textbf{safeness problem} for Petri Nets is specified as follows.

\textbf{Input:} Petri Net $N = \langle P, T, F, m_0 \rangle$

\textbf{Question:} is N k–safe for some $k \in \mathbb{N}$?
Definition 8

The **safeness problem** for Petri Nets is specified as follows.

Input: Petri Net $N = \langle P, T, F, m_0 \rangle$

Question: is N k–safe for some $k \in \mathbb{N}$?

Applications:

- N safe \implies bounded use of resources (e.g., buffer memory)
- N k–safe \implies N representable by finite automaton
 (at most $(k + 1)^{|P|}$ states reachable)
Theorem 9 (Karp, Miller 1968)

The safeness problem for Petri Nets is decidable.
The Safeness Problem II

Theorem 9 (Karp, Miller 1968)

The safeness problem for Petri Nets is decidable.

Proof.

(idea)

- start with m_0
- enumerate all marking reachable from m_0
- if $m_0 \triangleright^* m \triangleright^* m'$ where $m' > m$, then N is unsafe
- only finitely many combinations to consider
Definition 10

The **reachability problem** for Petri Nets is specified as follows.

Input: Petri Net $N = \langle P, T, F, m_0 \rangle$, set M of markings

Question: does $m_0 \triangleright^* M$ (i.e., $m_0 \triangleright^* m$ for some $m \in M$) hold?
Definition 10

The reachability problem for Petri Nets is specified as follows.

Input: Petri Net $N = \langle P, T, F, m_0 \rangle$, set M of markings

Question: does $m_0 \triangleright^* M$ (i.e., $m_0 \triangleright^* m$ for some $m \in M$) hold?

Application:

- $M :=$ set of “bad” states (e.g., deadlock markings)
- N correct \iff M unreachable
Theorem 11

The reachability problem for Petri Nets is decidable for finite reachability sets M (even for unbounded nets).

Proof.

omitted
Example 12

Petri Net representation of Dining Philosophers \((n = 2; \text{ on the board})\)
Outline

1. Motivation
2. Communicating Automata
3. Petri Nets
4. Outlook
Outlook

- Communicating automata with FIFO channels
- Petri Nets with weights and capacities
- Petri Nets as language acceptors
- Matrix representation of Petri Nets
- Message Sequence Charts
- Process algebras