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Motivation

So far: only sequential models of computation

Now: Consider systems of processes with concurrent behaviour

Applications:

Programming languages with concurrency (e.g., Java’s threads)
Embedded systems with interacting hardware and software
components
Web services

Goals:

Better understanding of behaviour
Formal verification of desirable properties (e.g., absence of
deadlocks)
Systematic construction of implementations from (abstract)
specifications
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Reminder

Product construction for DFA A1,A2:

A := 〈Q1 × Q2,Σ, δ, (q1

0 , q2

0), F 〉

is defined by

δ((q1, q2), a) := (δ1(q1, a), δ2(q1, a)) for every a ∈ Σ

and
F := F1 × F2

=⇒ recognizes L(A1)∩L(A2) (similar construction for L(A1)∪L(A2))
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Reminder

Product construction for DFA A1,A2:

A := 〈Q1 × Q2,Σ, δ, (q1

0 , q2

0), F 〉

is defined by

δ((q1, q2), a) := (δ1(q1, a), δ2(q1, a)) for every a ∈ Σ

and
F := F1 × F2

=⇒ recognizes L(A1)∩L(A2) (similar construction for L(A1)∪L(A2))

Generalization:

arbitrary number of automata

NFA rather than DFA

not every action relevant for every automaton
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Synchronized Product of Automata I

Definition 1

Let Ai = 〈Qi,Σi,∆i, q
i

0
, Fi〉 be NFA for 1 ≤ i ≤ n. The synchronized

product of A1, . . . ,An is the NFA

A1 ⊗ . . . ⊗ An := 〈Q,Σ,∆, q0, F 〉

where

Q := Q1 × . . . × Qn

Σ := Σ1 ∪ . . . ∪ Σn

((q1, . . . , qn), a, (q′
1
, . . . , q′n)) ∈ ∆ ⇐⇒

{

(qi, a, q′
i
) ∈ ∆i if a ∈ Σi

q′
i
= qi otherwise

q0 := (q1

0
, . . . , qn

0
)

F := F1 × . . . × Fn
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Synchronized Product of Automata II

Example 2

Dining Philosophers Problem:

n philosophers sitting around a table

a fork between every two of them

philosophers are thinking, hungry or eating

need both neighbouring forks to eat

component automata + product: on the board
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Petri Nets

Definition 3

A Petri Net is a quadruple

N = 〈P, T, F,m0〉

where

P is a non–empty and finite set of places

T is a non–empty and finite set of transitions

F ⊆ P × T ∪ T × P is a flow relation

m0 is the initial marking

A marking of N is a function

m : P → N

which assigns a number of tokens to every place. If p = {p1, . . . , pn} we
write m = (m1, . . . ,mn) where mi = m(pi) for every 1 ≤ i ≤ n.
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Graphical Representation of Petri Nets

places as ◦
transitions as

tokens as •

flow relation by arrows

Example 4

Mutual exclusion protocol (on the board)
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Semantics of Petri Nets I

Definition 5

Let N = 〈P, T, F,m0〉 be a Petri Net.

The preset of t ∈ T is the set

•t := {p ∈ P | (p, t) ∈ F}.

The postset of t ∈ T is the set

t• := {p ∈ P | (t, p) ∈ F}.

Similarly for places and for sets of transitions or places

t ∈ T is enabled in m if m(p) > 0 for every p ∈ •t
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Semantics of Petri Nets II

Definition 6 (continued)

The firing relation is defined by:

m .t m′ ⇐⇒ t enabled in m,m′(p) =







m(p) − 1 if p ∈ •t \ t•
m(p) + 1 if p ∈ t • \ • t

m(p) otherwise

(we then also write m . m′)

A marking m 6= (0, . . . , 0) is called a deadlock if there exists no m′

such that m . m′.

A marking m′ is called reachable from m if m .∗ m′.

N is called k–safe if for every marking m reachable from m0 and
every p ∈ P , m(p) ≤ k.

N is called unsafe if no such k exists.
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Semantics of Petri Nets III

Example 7

(on the board)

1 Firing of a transition

2 A deadlock

3 A 1–safe Petri Net

4 An unsafe Petri Net

5 A more complicated example
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The Safeness Problem I

Definition 8

The safeness problem for Petri Nets is specified as follows.

Input: Petri Net N = 〈P, T, F,m0〉

Question: is N k–safe for some k ∈ N?
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The Safeness Problem I

Definition 8

The safeness problem for Petri Nets is specified as follows.

Input: Petri Net N = 〈P, T, F,m0〉

Question: is N k–safe for some k ∈ N?

Applications:

N safe =⇒ bounded use of resources (e.g., buffer memory)

N k–safe =⇒ N representable by finite automaton
(at most (k + 1)|P | states reachable)
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The Safeness Problem II

Theorem 9 (Karp, Miller 1968)

The safeness problem for Petri Nets is decidable.
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The Safeness Problem II

Theorem 9 (Karp, Miller 1968)

The safeness problem for Petri Nets is decidable.

Proof.

(idea)

start with m0

enumerate all marking reachable from m0

if m0 .∗ m .∗ m′ where m′ > m, then N is unsafe

only finitely many combinations to consider
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The Reachability Problem I

Definition 10

The reachability problem for Petri Nets is specified as follows.

Input: Petri Net N = 〈P, T, F,m0〉, set M of markings

Question: does m0 .∗ M (i.e., m0 .∗ m for some m ∈ M) hold?
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The Reachability Problem I

Definition 10

The reachability problem for Petri Nets is specified as follows.

Input: Petri Net N = 〈P, T, F,m0〉, set M of markings

Question: does m0 .∗ M (i.e., m0 .∗ m for some m ∈ M) hold?

Application:

M := set of “bad” states (e.g., deadlock markings)

N correct ⇐⇒ M unreachable
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The Reachability Problem II

Theorem 11

The reachability problem for Petri Nets is decidable for finite
reachability sets M (even for unbounded nets).

Proof.

omitted
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Dining Philosophers as Petri Net

Example 12

Petri Net representation of Dining Philosophers (n = 2; on the board)
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Outlook

Communicating automata with FIFO channels

Petri Nets with weights and capacities

Petri Nets as language acceptors

Matrix representation of Petri Nets

Message Sequence Charts

Process algebras
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